搜档网
当前位置:搜档网 › 有限元发展历史

有限元发展历史

有限元发展历史
有限元发展历史

有限元方法历史简介

数学有限元方法(FEM)是用来求偏微分方程式(PDE)的近似解,也求积分方程式,例如热传输方程式。求解方法是基于完全取消微分方程式(稳态问题),或把偏微分方程式(PDE)译成等效的常微分方程式,然后采用像有限差等标准的技术求解。

在解偏微分方程式时,主要的挑战是创建近似研究的方程式,但数字稳定,这意味着在输入数据和中间计算都不会聚集错误,并造成无意义的输出结果。有许多这么做的方法,它们都有各自的优缺点。对于求解复杂域(像汽车和油管道)偏微分方程式,或当希望在全部范围精确变化时,有限元方法是好的选择。例如,在模拟地球气候模式时,在土地和完全开放的海域之上有着准确的预测是非常重要的,采用有限元方法,这个要求是可以做得到的。

1 历史

有限元方法起源于需要解决市政工程和航空工程方面复杂的弹性结构分析问题。它的开发可以追溯到A.Hrennikoff(1941)和R.Courant(1942)的工作。虽然这些先驱者使用这些方法,并且引人注目的不同,但他们都共享一个基本的特性:把连续域的网格离散化进入一组离散的子域里。Hrennikoff的工作是采用格子使域离散,而与之类似,为了求解起源于汽缸扭转的问题的二阶椭圆的偏微分方程式(PDEs),Richard Courant的方法是把域划分成有限的三角形子域。对于由Rayleigh,Ritz和Galerkin开发的偏微分方程式(PDEs),Richard Courant的贡献是改进,绘制了大量的早期结果。针对机身和结构分析的有限元方法的开发最早开始于1950年代中期,并且用于市政工程的有限元方法许多是1960年代在伯克利开始启动(见伯克利早期有限元研究)。在1973年Strang和Fix出版的《有限元方法的分析》里,提供的方法采用了严格的数学基础,并且已经在广泛变化的工程学科,即电磁和流体力学里,针对物理系统的数字建模,归纳成为应用数学的分枝。

在结构力学里,有限元方法的开发常常是基于能量理论,即虚功原理或最小总潜能原理,对于结构工程师来说,早就强烈要求提供综合的,直觉的和物理的依据。

2 技术讨论

我们将从可以推断的普通方法里取二个简单问题来举例说明有限元方法。我们假设读者是熟悉微积分学和线性代数。我们将采用一维空间

式中f是假设的,而u是x的未知函数,并且u〞是与x有关的u的二阶导数。二维空间取样问题是狄利克雷问题

式中Ω是在(x,y)平面内连接开区域,那些边界是“和谐的”(即平滑流形或多边形),并且u xx和u yy,分别表示与x和y有关的二阶导数。

通过计算不定积分,可以“直接”求解问题P1。然而,只有当只有一个维度空间时,才使用这个方法求解边界值问题,并且不推广到更高空间的问题,或像u+u”=f问题。出于这个原因,我们将针对P1开发有限元方法,并且略微叙述它对P2的广义性。

我们的解释将发生在二个步骤里,反映出二个本质的步骤,第一步必须采用有限元方法(FEM)求助于求解边界值问题(BVP)。在第一步,在它的弱或变分形式上重新描述初始的边界值问题(BVP)。通常这一步几乎不需要作计算,只是在纸上手工进行转换。第二步是离散化,在有限的维度空间里,把弱形式离散化。在这个第二步之后,对于大的,但是有限空间的线性问题,我们有具体的公式,那些解将近似解答初始的边界值问题(BVP)。然后就在计算机里执行这个有限的空间问题。

3 变分公式化

第一步是把P1和P2转换为它们的变分公式。如果u求解P1,那么对于任何平滑函数v,我们有

反过来,如果对于假设的u,⑴控制每个平滑函数v(t),那么一步就可以显示这个u将求解P1。(证据是非平凡的,并且采用Sobolev空间)

通过在⑴的右边采用部分积分法,我们获得

式中我们已经做了另外的假设v(0)=v(1)=0。

4.1 存在的证据概要和解的唯一性

我们可以定义是有界变分的(0,1)的函数,在x=0和x=1是0。这样的函数是“一次可微分的”,并且它产生出相对称的双线性图Φ,然后把定义的内积转换成为Hibert空间(详细的证据是非平凡的)。在另一方面,左侧也是内积,

这次在Lp空间L2(0,1)。针对Hibert空间的Riesz表示法则显示有一个唯一的u解⑵和因此的P1。

4.2 P2的变分形式

如果我们采用Green的理论做部分积分,我们看到如果u求解出P2,那么对于任何v:

式中表示梯度,并且·表示二维平面里的点积。一旦在Ω的“一次可微分的”函数的匹配空间

里,能够把更多的Φ转换成为点积,那么就是0。我们也已经假设。空间

可能不再按照有界变分来定义,而是看Sobolev空间。也可以显示解的存在和唯一性。

4 离散化

在里端点(蓝色)带有0值

的函数和分段线性近似法(红色,

参见直接强度图说里的彩图)。

在二维里的分段线性函数

基本函数v k(蓝色,参见直接强度图说

里的彩图)和它们的分段线性线性组合。

基本思想是替代有限空间的线性问题

采用有限空间的版本:

(3)

式中V是的有限空间子空间。V有许多可能的选择(一种可能导致spectral方法)。然而,对于有限元方法,我们取V为分段线性函数的空间。

对于问题P1,我们取间隔(0,1),选择nx值0<x1<…<x n<1,并且我们定义V 为

式中我们定义x0=0,和x n+1=1。依照微积分学的初步定义,观察V里的函数是不可微

的。确实,如果,那么在任何x=x k,k=1,…,n处,通常是不定义导数的。然而,在x的每个其它数值里存在着导数,以及为了部分积分法的目的,同样可以使用这个导数。

对于问题P2,我们需要V是Ω的一组函数。在右边的算式里,我们已经在平面里(三维图的下面)把15边多边形区域Ω划分成三角形,并且这个多变形的分段线性函数(上面带颜色的三维图)在三角系的每个三角形都是线性的;在选定的三角系的每个三角形上,空间V由线性函数组成。

在文献里,经常用V代替V h。原因是希望把下面的三角形格栅变得好上加好,离散问题(3)的解将在某种意义上聚集到初始边界值问题P2的解。那么就由取值很小的,h>0的真实数值参数分成三角系。这个参数将涉及到最大,或三角系里的平均三角形的空间。正如我们定义的三角系,分段线性函数的空间V也必须改为h,因此没有符号V h。由于我们没有执行这样的分析,我们将不使用这个符号。

4.1 选择基础

完成离散化,我们必须选择V的基础。在一维空间情况里,对于每个控制点x k,我们

将选择分段线性函数v k,在x k,V里那些数值是1,在每个,V里那些数值是O,即

对于k=1,…,n。对于二维情况,我们按照平坦区域Ω的三角系的最高点的x k,再次选择一个基本函数v k。函数v k是V的唯一函数,在x k,那些数值是1,并且在每个

,那些数值是0。

根据作者的意思,在“有限元方法”里的“元”字,既涉及到领域里的三角形,也涉及到分段线性基本函数,或二者都涉及。作为例子,作者的兴趣在于采取舍弯取直,可以把曲线域改为三角形,在哪个情况里,他可以把他的元作为曲线描述。在另一方面,一些作者用“分段二次方程式”,或者甚至“分段多项式”来取代“分段线性”。那时作者可能说,“高次元”代替“更高程度的多项式”。有限元方法是不受三角形限制的(或在三维空间里的四面体,或者在多维空间里的更加高次的单形体),但是可以在四边形子域上定义(在三维空间里的六面体、棱柱、或者棱椎,如此等等)。可以采用多项式,以及甚至非多项式形状(即椭圆或圆)来定义更高次形状(曲线要素)。

常常把采用更高程度分段多项式基本函数的方法称为光谱元方法,尤其如果多项式的次数增加,当三角系空间h趋于0。

更加高级的执行(适用有限元方法)利用方法,(基于错误估计理论)评估结果的质量,并且在求解期间,根据连续问题的“精确”解,在某些限度之内,瞄准达到近似解来修改网孔。可以利用各种技术来适应网孔,最流行的是:

?移动节点(r-自适应性)

?精炼(和非精炼)元(h-自适应性)

?改变基本函数的次序(p-自适应性)

?上述组合(即hp-自适应性)

4.2 基础的小支撑

这个基础的选择的主要优点是内积

并且

几乎所有的j,k都将是0。在一维情况里,v k的支撑是间隔[x k?1,x k+1]。因此,只要|j?k|

>1,和φ(v j,v k)的被积函数同样是0。

同样,在平面情况里,如果x j和x k,不共享三角系的边缘,那么积分

二个都为0

4.3 问题的矩阵形式

和,那么问题(3)变成。

(4) 对于j=1,…,n。

如果我们用u和f表示列向量(u1,…,u n)t,和(f1,…,f n)t,并且如果让L=(L ij)和M=(M ij)是那些输入为L ij=φ(v i,v j)

的矩阵,那么我们就可以改写(4)为。

(5)

.

正如我们之前已经讨论的,因为基础函数v k有小支撑,所以大多数L和M的输入都是0。所以我们必须在未知u里求解线性系统,哪儿大多数矩阵L的输入都需要我们改为0。

这样的矩阵就是著名的稀疏矩阵,并且针对这样的问题,有不同的解(比实际转化矩阵更加非常有效)。另外,L是相对称的,所以共轭梯度方法这样的技术就有用武之地了。

对于不太大的问题,稀少的承载单元分解和Cholesky分解仍然工作良好。例如,对于带有成百上千顶点的网格,Matlab的反斜杠算子(基于稀少的承载单元)就足够了。

矩阵L通常是涉及到劲度矩阵,而矩阵M称为质量矩阵。

5 比较有限差方法

对于求解偏微分方程(PDEs),是可以选择有限差方法(FDM)的。在有限元法(FEM)和有限差分法(FDM)之间的差异是:

n 有限差分法(FDM)是近似于微分方程式;有限元法是近似于它的解。

n 有限元法(FEM)最吸引人的特色是它能够相当容易的处理复杂的几何参数(和边界条件)。而在它的基本格式里的有限差分法(FDM)处理矩形形状是受限制的,并且简单的把它改造一下,在有限元法(FEM)里,几何参数的处理是理论上简单明了的。

n 有限差分法(FDM)最吸引人的特色是它能够很容易的执行。

n 有几种方法,一种可以把有限差方法(FDM)考虑为有限元法(FEM)的子集。一种可以选择基本函数作为分段持续函数或迪拉克三角函数。在二种方法里,在整个域定义近似值,但是必须不是连续的。作为选择,一种可以在离散域定义函数,结果连续的微分算子不再有意义,然而,这个方法不是有限元法(FEM)。

n 有理由认为有限元近似值的数学基础是更加合理的,例如,在有限差方法(FDM)里,因为在格子点之间的近似值的质量是差的。

n 有限元法(FEM)近似值的质量常常是比相应的有限差方法(FDM)高的,但是,这个是极端的问题,并且可以提供相反的个别例子。

通常,有限元法(FEM)是在结构力学所有类型的分析里选择的方法(即在固体或结构动力学里求解变形和应力),而计算流体动力学(CFD)趋向于使用有限差方法(FDM)或其它的方法(即有限体积方法)。计算流体动力学(CFD)问题通常需要把离散化的问题分成大量的单元/格栅点(数百万和更多),因此,求解的成本偏于简单,在每个单元之内近似。对于“外部流”问题,比如像围绕着汽车或飞机的空气流,或在大范围内的气候模拟,这个是尤其正确。

现在有大量的有限元软件包,有些免费,有些要付费。

国内有限元法的发展之路

国内有限元法的发展之路 我国的力学工作者为有限元方法的初期发展做出了许多贡献,其中比较著名的有:陈伯屏(结构矩阵方法),钱令希(余能原理),钱伟长(广义变分原理),胡海昌(广义变分原理),冯康(有限单元法理论)。遗憾的是由于当时环境所致,我国有限元方法的研究工作受到阻碍,有限元理论的发展也逐渐与国外拉开了距离。 20世纪60年代初期,我国的老一辈计算科学家较早地将计算机应用于土木、建筑和机械工程领域。当时黄玉珊教授就提出了“小展弦比机翼薄壁结构的直接设计法”和“力法-应力设计法”;而在70年代初期,钱令希教授提出了“结构力学中的最优化设计理论与方法的近代发展”。这些理论和方法都为国内的有限元技术指明了方向。 1964年初崔俊芝院士研制出国内第一个平面问题通用有限元程序,解决了刘家峡大坝的复杂应力分析问题。20世纪60年代到70年代,国内的有限元方法及有限元软件诞生之后,曾计算过数十个大型工程,应用于水利、电力、机械、航空、建筑等多个领域。 20世纪70年代中期,大连理工大学研制出了JEFIX有限元软件,航空工业部研制了HAJIF系列程序。80年代中期,北京大学的袁明武教授通过对国外SAP软件的移植和重大改造,研制出了SAP-84;北京农业大学的李明瑞教授研发了FEM软件;建筑科学研究院在国家“六五”攻关项目支持下,研制完成了“BDP-建筑工程设计软件包”;中国科学院开发了FEPS、SEFEM;航空工业总公司飞机结构多约束优化设计系统YIDOYU等一批自主程序。

上世纪90年代以来,大批国外CAE软件涌入国内市场,遍及国内的各个领域,国外的专家则深入到大学、院所、企业与工厂,展示他们的CAE技术、系统功能及使用技巧,因此使得国内自主研发CAE软件受到强烈打压。同时,有关管理部门在对直接为先进装备制造业服务的CAE软件核心技术的认识上产生了偏差:CAE既不属于基础科学,又不属于科技攻关,故而失去了必要的支持,使其发展举步维艰,以至于在上世纪的最后十几年国内CAE自主创新的步伐已经非常缓慢,也逐渐的拉开了与国外CAE软件的距离。 进入21世纪后,虽然国外CAE软件占据市场主流的现状短时间内已经无法撼动,但国内自主知识产权CAE软件逐渐市场化,获得了一定的发展:元计算科技发展有限公司推出的FELAC、郑州机械研究所推出的紫瑞CAE、湖南大学与吉林大学开发了针对汽车结构的KMAS分析系统;清华大学、上海交大在注塑成型CAE领域也推出了相应的分析软件。 虽然国内CAE自主研发之路历经艰辛,但是广大专家学者用锲而不舍的战斗精神顽强地生存下来。尤其是在近几年,数字化产品设计的概念逐渐深入人心,国内高校技术研究和应用水平不断提高,有限元技术已经为广大企业所认可。随着国家对发展自主CAE平台已经愈发重视,国内CAE的研究已经逐渐走出低迷状态,获得了一定的发展,而且值得注意的是,有限元技术不再仅仅停留在高校中,而是更多的走向了企业。同时,更多使用方便、操作简单的专用分析软件也得到了广泛应用。

有限元法

【第1章思考题】 1、何为有限元法?其基本思想是什么? 1)“有限单元法”简称“有限元法”,是借助于电子计算机解决工程问题的近似方法。 2)“化整为零,集零为整”。也就是将一个原来连续的物体假想地分割成由有限个单元所组成的集合体,简称“离散化”。然后对每个单元进行力学特征分析,即建立单元节点力和节点位移之间的关系。最后,把所有单元的这种关系式集合起来,形成整个结构的力学特性关系,即得到一组以节点位移为未知量的代数方程组。处理后即可求解,求得结点的位移,进一步求出应变和应力 2、为什么说有限元法是近似的方法,体现在哪里?p3 用离散单元的组合体来逼近原始结构,体现了几何上的近似;而用近似函数逼近未知变量在单元内的真实解,体现了数学上的近似。 3、单元、节点的概念? 网格划分中的每一个小部分称为单元。网格间相互联结点称为节点。 4、有限元法分析过程可归纳为几个步骤?p4 结构离散化、单元分析、整体分析 5、有限元方法分几种?本课程讲授的是哪一种? 从选择基本未知量的角度来看,可分为3类: 1、位移法:以节点位移为基本未知量的求解方法称为位移法。本课程讲授的内容 2、力法:以节点力为基本未知量的求解方法称为力法; 3、混合法:一部分以节点位移,另一部分以节点力作为基本未知量的求解方法称为混合法。位移法 6、弹性力学的基本变量是什么?p8何为几何方程p11、物理方程p12及虚功方程?p14弹性矩阵的特点? 弹性力学变量:外力、应力、应变和位移。描述弹性体应变分量与位移分量之间的方程称为几何方程;物理方程描述应力分量与应变分量之间的关系;弹性体上外力在虚位移发生过程中所做的虚功与储存在弹性体内的需应变能相等。弹性矩阵由材料的弹性模量和泊松比确定,与坐标位置无关。 7、何为平面应力问题和平面应变问题p17 平面应力问题:在结构上满足a几何条件:研究对象是等厚度薄板。b载荷条件:作用于薄板上的载荷平行于板平面且沿厚度方向均匀分布,而在两板面无外力作用。 平面应变问题:满足a几何条件:长柱体,即长度方向的尺寸远远大于横截面的尺寸,且横截面沿长度方向不变。b载荷条件:作用于长柱体结构上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力两条件的弹性力学问题 【第2章思考题】 1、何为结构的离散化?离散化的目的?何为有限元模型? 结构的离散化:把连续的结构看成由有限个单元组成的集合体②目的:建立有限元计算模型 ③通常把由节点,单元及相应的节点载荷和节点约束构成的模型称为有限元模型 2、结构离散化时,划分单元数目的多少以及疏密分布,将直接影响到什么?确定单元数量的原则?通常如何设置节点? ①单元的数量要根据计算精度的要求和计算机的容量来确定,因此在保证精度的前提,力求采用较少的单元。②节点的布置:a集中载荷的作用点b分布载荷强度的突变点 c分布载荷与自由边界的分界点d支承点e厚度不同或材料不同的区域等都应取为节点。 3、节点总码的编号原则?何为半带宽?半带宽与节点总码的编号有何关系?p21 ①节点编号时,应注意尽量使同一单元的相邻节点的号码差值尽可能地小些,以便缩小刚度矩阵的带宽,节约计算机存储。节点应顺短边编号为好②包括对角线在内的半个带状区域中每行具有的元素的个数,③半带宽B=(相关节点编号最大差值+1)*2

有限元原理与步骤

2.1.1 有限元法基本原理(Basic Theory of FEM) 有限元法的基本思想是离散的概念,它是指假设把弹性连续体分割成数目有限的单元,并认为相邻单元之间仅在节点处相连。根据物体的几何形状特征、载荷特征、边界约束特征等,选择合适的单元类型。这样组成有限的单元集合体并引进等效节点力及节点约束条件,由于节点数目有限,就成为具有有限自由度的有限元计算模型,它替代了原来具有无限多自由度的连续体[24][25]。 有限元法从选择基本未知量的角度来看,可分为三类:位移法、力法和混合法。以节点位移为基本未知量的求解方法称为位移法;以节点力为基本未知量的求解方法称为力法;一部分以节点位移,另一部分以节点力作为基本未知量的求解方法称为混合法。由于位移法通用性强,计算机程序处理简单、方便,成为应用最广泛的一种方法[26]。 有限元法的求解过程简单、方法成熟、计算工作量大,特别适合于计算机计算。再加上它有成熟的大型软件系统支持,避免了人工在连续体上求分析解的数学困难,使其成为一种非常受欢迎的、应用极广泛的数值计算方法[27]。 2.1.2 有限元法基本步骤(Basic Process of FEM) 有限元法求解各种问题一般遵循以下的分析过程和步骤[28][29]: 1. 结构的离散化 结构的离散化是进行有限元法分析的第一步,它是有限元法计算的基础。将结构近似为具有不同有限大小和形状且彼此相连的有限个单元组成的计算模型,习惯上称为有限元网格划分。离散后单元与单元之间利用单元的节点相互连接起来,而单元节点的设置、性质、数目等应视问题的性质、描述变形形态的需要和计算精度而定。所以有限元法分析的结构已不是原有的物体或结构物,而是同种材料的由众多单元以一定方式连接成的离散物体。这样,用有限元分析计算所获得的结果是近似的。显然,单元越小(网格越密)则离散域的近似程度越好,计算结果也越精确,但计算量将增大,因此结构的离散化是有限元法的核心技术之一。有限元离散过程中又一重要环节是单元类型的选择,这应根据被分析结构的几何形状特点、载荷、约束等因素全面考虑。 2. 位移模式的选择 位移模式是表示单元内任意点的位移随位置变化的函数,位移模式的选择是有限元特性分析的第一步。由于多项式的数学运算比较简单、易于处理,所以通常是选用多项式作为位移函数。选择合适的位移函数是有限元分析的关键,它将决定有限元解的性质与近似程度。位移函数的选择一般遵循以下原则(有限元解的收敛条件):

有限元基础知识归纳

有限元知识点归纳 1.、有限元解的特点、原因? 答:有限元解一般偏小,即位移解下限性 原因:单元原是连续体的一部分,具有无限多个自由度。在假定了单元的位移函数后,自由度限制为只有以节点位移表示的有限自由度,即位移函数对单元的变形进行了约束和限制,使单元的刚度较实际连续体加强了,因此,连续体的整体刚度随之增加,离散后的刚度较实际的刚度K为大,因此求得的位移近似解总体上将小于精确解。 2、形函数收敛准则(写出某种单元的形函数,并讨论收敛性)P49 (1)在节点i处N i=1,其它节点N i=0; (2)在单元之间,必须使由其定义的未知量连续; (3)应包含完全一次多项式; (4)应满足∑Ni=1 以上条件是使单元满足收敛条件所必须得。可以推证,由满足以上条件的形函数所建单元是完备协调的单元,所以一定是收敛的。 4、等参元的概念、特点、用时注意什么?(王勖成P131) 答:等参元—为了将局部坐标中几何形状规则的单元转换成总体(笛卡尔)坐标中的几何形状扭曲的单元,以满足对一般形状求解域进行离散化的需要,必须建立一个坐标变换。即: 为建立上述的变换,最方便的方法是将上式表示成插值函数的形式,即: 其中m是用以进行坐标变换的单元节点数,xi,yi,zi是这些结点在总体(笛卡尔)坐标内的坐标值,Ni’称为形状函数,实际上它也是局部坐标表示的插值函数。称前者为母单元,后者为子单元。 还可以看到坐标变换关系式和函数插值表示式:在形式上是相同的。如果坐标变换和函数插值采用相同的结点,并且采用相同的插值函数,即m=n,Ni’=Ni,则称这种变换为等参变换。 5、单元离散?P42 答:离散化既是将连续体用假想的线或面分割成有限个部分,各部分之间用有限个点相连。每个部分称为一个单元,连接点称为结点。对于平面问题,最简单、最常用的离散方式是将其分解成有限个三角形单元,单元之间在三角形顶点上相连。这种单元称为常应变三角形单元。常用的单元离散有三节点三角形单元、六节点三角形单元、四节点四边形单元、八节点四边形单元以及等参元。 6、数值积分,阶次选择的基本要求? 答:通常是选用高斯积分 积分阶次的选择—采用数值积分代替精确积分时,积分阶数的选取应适当,因为它直接影响计算精度,计算工作量。选择时主要从两方面考虑。一是要保证积分的精度,不损失收敛性;二是要避免引起结构总刚度矩阵的奇异性,导致计算的失败。

有限元发展史

有限元法的发展现状及应用 学院:机电学院班级:机制1044班姓名:于中文学号:10 【摘要】简述了有限元法的起源、基本理论及发展现状。有限元法自1943 年次提出以来, 有限元理论及其应用得到了迅速发展。发展至今, 已由二维问题扩展到三维问题、板壳问题, 由静力学问题扩展到动力学问题、稳定性问题, 由线性问题扩展到非线性问题。重点总结了有限元法在生物医学、激光超声研究、机电工程、汽车产品开发、物流运输、建筑等多个领域的应用。 【关键词】有限元; 发展现状; 分析方法 有限元法( Finite Element Method, FEM) , 是计算力学中的一种重要的方法, 它是20世纪50年代末60年代初兴起的应用数学、现代力学及计算机科学相互渗透、综合利用的边缘科学。有限元法最初应用在工程科学技术中, 用于模拟并且解决工程力学、热学、电磁学等物理问题。对于过去用解析方法无法求解的问题和边界条件及结构形状都不规则的复杂问题, 有限元法则是一种有效的分析方法。有限元法的基本思想是先将研究对象的连续求解区域离散为一组有限个且按一定方式相互联结在一起的单元组合体。由于单元能按不同的联结方式进行组合, 且单元本身又可以有不同形状,因此可以模拟成不同几何形状的求解小区域; 然后对单元( 小区域) 进行力学分析, 最后再整体分析。这种化整为零, 集零为整的方法就是有限元的基本思路。 1 、有限元法的发展现状 有限元法是R. Courant 于1943年首先提出的。自从提出有限元概念以来, 有限元理论及其应用得到了迅速发展。过去不能解决或能解决但求解精度不高的问题, 都得到了新的解决方案。传统的FEM假设: 分析域是无限的; 材料是同质的, 甚至在大部分的分析中认为材料是各向同性的; 对边界条件简化处理。但实际问题往往是分析域有限、材料各向异性或边界条件难以确定等。为解决这类问题,

有限元复习重点

●有限元起源于20世纪50年代中期航空工程中飞机结构的矩阵分析。 ●有限元基本思想:在力学模型上将一个原来连续的物体离散成为有限个具有一定大小的单元,这些单元仅在有限个节点上相连接,并在节点上引进等效力以代替实际作用于单元上的外力。对于每个单元,根据分块近似的思想,选择一种简单的函数来表示单元内位移的分布规律,并按弹性理论中的能量原理(或用变分原理)建立单元节点力和节点位移之间的关系。最后,把所有单元的这种关系式集合起来,就得到一组以节点位移为未知量的代数方程组,解这些方程组就可以求出物体上有限个离散节点上的位移。 “一分一合”,化整为零,集零为整,把复杂的结构看成由有限个单元组成的整体。 ●单元、节点、边界:采用8节点四边形等参数单元把受力体划分成网格,这些网格称为单元;网格间互相连接的点称为节点;网格与网格的交界线称为边界。节点数和单元数目是有限的。 ●有限元法的优点:(1)理论基础简明,物理概念清晰,且可在不同的水平上建立起对该法的理解。(2) 具有灵活性和适用性,应用范围极为广泛。(3) 该法在具体推导运算中,广泛采用了矩阵方法,便于实现程序设计的自动化。 ●有限单元法分为三类:位移法(以节点位移为基本未知量)、力法(以节点力为基本未知量)和混合法(一部分以节点位移,另一部分以节点力作为基本未知量)。 ●有限元法分析计算的基本步骤可归纳如以下五点。1.结构的离散化(将某个机械结构划分为由各种单元组成的计算模型)在平面问题用三角形、矩形或任意四边形单元。在空间问题用四面体、长方体或任意六面体单元2.单元分析①选择位移模式(位移模式是表示单元内任意点的位移随位置变化的函数式,由于所采用的函数是一种近似的试函数,一般不能精确地反映单元中真实的位移分布)位移模式或位移函数:i n i i a y φ∑=②建立单元刚度方程e e e F k =δ,e 为单元编号;e δ为单元的节点位移向量;e F 为单元的节 点力向量 ;e k 为单元刚度矩阵.③计算等效节点力:用等效的节点力来代替所有作用在单元上的力。3.整体分析:整体的有限元方程F K =δ。K 为整体结构的刚度矩阵;δ为整体节点位移向量;F 为整体载荷向量。4.求解方程,得出节点位移5.由节点位移计算单元的应变与应力 ●有限元中得一个基本近似性是几何近似性 ●有限元中的变量:应力、应变、变形。基本方程有:平衡方程、物理方程、几何方程。边界条件:力边界、位移边界。 ●弹性力学的任务是分析弹性体在受外力作用并处于平衡状态下产生的应 力、应变和位移状态及其相互关系等。 ●外力:体力(分布在物体体积内的力---重力、惯性力、电磁力)、面力(分布在物体表面上的力---流体压力、接触力、风力) ●应力:物体受外力的作用,或由于温度有所改变,其内部将发生内力。

有限元分析71831

有限元分析 有限元法的基本思想是将结构离散化,用有限个容易分析的单元来表示复杂的对象,单元之间通过有限个节点相互连接,然后根据变形协调条件综合求解。由于单元的数目是有限的,节点的数目也是有限的,所以称为有限元法(FEM,Finite Element Method)。 有限元法是一种求解关于场问题的一系列偏微分方程的数值方法.这种类型的问题会在许多工程学科中遇到,如机械设计、声学、电磁学、岩土力学、断裂力学、流体力学等.在机械工程中,有限元分析被光分应用在结构、振动和传热问题上。 有限元法是60年代以来发展起来的新的数值计算方法,是计算机时代的产物。虽然有限元的概念早在40年代就有人提出,但由于当时计算机尚未出现,它并未受到人们的重视。随着计算机技术的发展,有限元法在各个工程领域中不断得到深入应用,现已遍及宇航工业、核工业、机电、化工、建筑、海洋等工业,是机械产品动、静、热特性分析的重要手段。早在70年代初期就有人给出结论:有限元法在产品结构设计中的应用,使机电产品设计产生革命性的变化,理论设计代替了经验类比设计。目前,有限元法仍在不断发展,理论上不断完善,各种有限元分析程序包的功能越来越强大,使用越来越方便。 大约在300年前,牛顿和莱布尼茨发明了积分法,证明了该运算具有整体对局部的可加性。虽然,积分运算与有限元技术对定义

域的划分是不同的,前者进行无限划分而后者进行有限划分,但积分运算为实现有限元技术准备好了一个理论基础。 在牛顿之后约一百年,著名数学家高斯提出了加权余值法及线性代数方程组的解法。这两项成果的前者被用来将微分方程改写为积分表达式,后者被用来求解有限元法所得出的代数方程组。在18世纪,另一位数学家拉格郎日提出泛函分析。泛函分析是将偏微分方程改写为积分表达式的另一途经。 在19世纪末及20世纪初,数学家瑞雷和里兹首先提出可对全定义域运用展开函数来表达其上的未知函数。1915年,数学家伽辽金提出了选择展开函数中形函数的伽辽金法,该方法被广泛地用于有限元。1943年,数学家库朗德第一次提出了可在定义域内分片地使用展开函数来表达其上的未知函数。这实际上就是有限元的做法。 所以,到这时为止,实现有限元技术的第二个理论基础也已确立。 20世纪50年代,飞机设计师们发现无法用传统的力学方法分析飞机的应力、应变等问题。波音公司的一个技术小组,首先将连续体的机翼离散为三角形板块的集合来进行应力分析,经过一番波折后获得前述的两个离散的成功。20世纪50年代,大型电子计算机投入了解算大型代数方程组的工作,这为实现有限元技术准备好了物质条件。1960年前后,美国的R. W. Clough教授及我国的冯康教授分别独立地在论文中提出了“有限单元”,这样的名词。此后,这样

有限元法发展综述

有限元法发展综述 随着现代科学技术的发展,人们正在不断建造更为快速的交通工具、更大规模的建筑物、更大跨度的桥梁、更大功率的发电机组和更为精密的机械设备。这一切都要求工程师在设计阶段就能精确地预测出产品和工程的技术性能,需要对结构的静、动力强度以及温度场、流场、电磁场和渗流等技术参数进行分析计算。例如分析计算高层建筑和大跨度桥梁在地震时所受到的影响,看看是否会发生破坏性事故;分析计算核反应堆的温度场,确定传热和冷却系统是否合理;分析涡轮机叶片内的流体动力学参数,以提高其运转效率。这些都可归结为求解物理问题的控制偏微分方程式往往是不可能的。近年来在计算机技术和数值分析方法支持下发展起来的有限元分析(FEA,Finite Element Analysis)方法则为解决这些复杂的工程分析计算问题提供了有效的途径。 有限元法是一种高效能、常用的计算方法.有限元法在早期是以变分原理为基础发展起来的,所以它广泛地应用于以拉普拉斯方程和泊松方程所描述的各类物理场中(这类场与泛函的极值问题有着紧密的联系)。自从1969年以来,某些学者在流体力学中应用加权余数法中的迦辽金法(Galerkin)或最小二乘法等同样获得了有限元方程,因而有限元法可应用于以任何微分方程所描述的各类物理场中,而不再要求这类物理场和泛函的极值问题有所联系. 一、有限元法的孕育过程及诞生和发展 大约在300年前,牛顿和莱布尼茨发明了积分法,证明了该运算具有整体对局部的可加性。虽然,积分运算与有限元技术对定义域的划分是不同的,前者进行无限划分而后者进行有限划分,但积分运算为实现有限元技术准备好了一个理论基础。 在牛顿之后约一百年,著名数学家高斯提出了加权余值法及线性代数方程组的解法。这两项成果的前者被用来将微分方程改写为积分表达式,后者被用来求解有限元法所得出的代数方程组。在18世纪,另一位数学家拉格郎日提出泛函分析。泛函分析是将偏微分方程改写为积分表达式的另一途经。 在19世纪末及20世纪初,数学家瑞雷和里兹首先提出可对全定义域运用展开函数来表达其上的未知函数。1915年,数学家伽辽金提出了选择展开函数中形函数的伽辽金法,该方法被广泛地用于有限元。1943年,数学家库朗德第一次提出了可在定义域内分片地使用展开函数来表达其上的未知函数。这实际上就是有限元的做法。 所以,到这时为止,实现有限元技术的第二个理论基础也已确立。 20世纪50年代,飞机设计师们发现无法用传统的力学方法分析飞机的应力、应变等问题。波音公司的一个技术小组,首先将连续体的机翼离散为三角形板块的集合来进行应力分析,经过一番波折后获得前述的两个离散的成功。20世纪

有限元地MATLAB解法

有限元的MATLAB解法 1.打开MATLAB。 2.输入“pdetool”再回车,会跳出PDE Toolbox的窗口(PDE意为偏微分方程,是partial differential equations的缩写),需要的话可点击Options菜单下Grid命令,打开栅格。 3.完成平面几何模型:在PDE Toolbox的窗口中,点击工具栏下的矩形几何模型进行制作模型,可画矩形R,椭圆E,圆C,然后在Set formula栏进行编辑并(如双脊波导R1+R2+R3改为RI-R2-R3,设定a、b、s/a、d/b的值从而方便下步设定坐标) 用算术运算符将图形对象名称连接起来,若还需要,可进行储存,形成M文件。 4.用左键双击矩形进行坐标设置:将大的矩形left和bottom都设为0,width是矩形波导的X轴的长度,height是矩形波导的y轴的长度,以大的矩形左下角点为原点坐标为参考设置其他矩形坐标。 5.进行边界设置:点击“Boundary”中的“Boundary Mode”,再点

击“Boundary”中的“Specify Boundary Conditions”,选择符合的边界条件,Neumann为诺曼条件,Dirichlet为狄利克雷条件,边界颜色显示为红色。 6.进入PDE模式:点击"PDE"菜单下“PDE Mode”命令,进入PDE模式,单击“PDE Specification”,设置方程类型,“Elliptic”为椭圆型,“Parabolic”为抛物型,“Hyperbolic”为双曲型,“Eigenmodes”为特征值问题。 7.对模型进行剖分:点击“Mesh”中“Initialize Mesh”进行初次剖分,若要剖的更细,再点击“Refine Mesh”进行网格加密。 8.进行计算:点击“Solve”中“Solve PDE”,解偏微分方程并显示图形解,u值即为Hz或者Ez。 9.单击“Plot”菜单下“Parameters”选项,打开“Plot Selection”对话框。选中Color,Height(3-D plot)和Show mesh三项,然后单击“Plot”按钮,显示三维图形解。 10.如果要画等值线图和矢量场图,单击“Plot”菜单下“Parameters”选项,打开“Plot Selection”对话框。选中Contour和Arrows两项,然后单击Plot按钮,可显示解的等值线图和矢量场图。 11.将计算结果条件和边界导入MATLAB中:点击“Export Solution”,再点击“Mesh”中“Export Mesh”。

传统木结构的整体有限元分析

传统木结构的整体有限元分析 1.引言 中国古建筑是中华文明的重要组成部分,是中华民族乃至世界建筑艺术的瑰宝,具有极高的文物、历史和艺术价值。而其中的木结构古建筑,不仅蕴含了丰富的历史文化信息,由于其建筑材料和建筑方式的独特性,更有其独特而优良的力学性质。 对这些古建筑的动力特性的研究,从七十年代就已经开始了,但是由于技术的限制,这些研究还远远不够。随着社会的进步,人们也开始对古建筑的维护投入了更多的关注。因此对古建筑的研究也要求进一步的深入。 本文根据2007年1月18日木结构足尺模型振动台实验结果,采用有限元计算软件对木结构动力特性进行计算模拟,并将实验数据与计算值进行对比,希望更深刻地了解木结构建筑的抗震性能和结构耗能减震的基本原理,这对木结构建筑遗产的保护修缮具有重要的意义。 2.木结构整体有限元分析方法 早在1994年Kasal[1]等就利用大型商业有限元软件ANSYS对一层木框架房屋进线性的静力分析。在此模型中,剪力墙被简华成由刚性杆和斜向弹簧组成的桁架模型线性由斜向弹簧的单元特性来实现,而屋面和楼板被简化为超级单元。 2001年,由Slovenia的研究小组提出的Slovenia模型[2][3]将木结构房屋的整体分三个阶段:钉连接模型一墙体模型一木结构房屋整体模型。其研究思路为:先根据D分析剪力墙所得的滞回曲线,将每片墙简化成一个等效支撑框架。定义斜撑单元的参模型的滞回曲线拟合而得到,并采用CANNY-E(采用Newmark 算法)程序对整体行非线性动力时程分析。 3.木结构的整体有限元分析 3.1 足尺寸实验模型概况 本文以日本防灾科学技术研究所兵库抗震工程研究中心进行的足尺寸木结构的振动台实验为原型进行有限元分析。该振动台实验主要研究带墙体覆面板结构自振以及在不同地震波程度下的动力特性。模型标准层结构平面布置层高为2.93m,柱横向间距和纵向间距均为1.92m,采用以杉木为原材料的木框架结构。柱截面和基础梁截面均为120mm×120mm,屋面外框梁截面120mm×270mm,次梁截面为120mm×210mm,其梁和柱均为榫卯连接,墙面板为干式土壁覆面板。 3.2 有限元计算模型 本工作希望从数值方法出发,用简单有效的方法,建立木结构的有限元计算模型,对其动力特性进行计算模拟,并结合实验数据评判模型。 建立的有限元计算模型主要包括以下几个方面: (1)基础模拟。地震波在地表传播时,地基是一个变形体,地震发生时结构基础处各点的运动是不同的。但是,对于一般建筑物,其长度远小于地震波的波长(它和场地介质的情况有关),因此通常情况下将建筑物的地基近似看作刚性盘体是合理的[8]。因此在本次实验中,基础梁是固定在振动台上,计算模型中假定基础为刚性连接。 (2)木框架模拟。实验中的木结构框架可视为一种梁柱结构体系。梁柱之间上下叉接,左右卡连,如图3所示是实验中梁柱榫卯连接。榫卯连接是介于刚接与铰接之间的半刚性连接,在进行有限元分析时,通常的方法是用空间二节点虚拟弹簧单元来模拟这种半刚性连接性质。在同一空间位置的梁柱各端部节点与相应梁柱构件各自对应,并选择合适的自由度赋予弹簧刚度参数,形成半刚性连接[5]。因此,在计算模型中,柱一柱、梁一梁和梁一柱之间用弹簧单元来实现它们之间半刚性的连接。 考虑到木构架材质主要发挥其顺纹力学性质,可以将材料近似看作各向同性。参考文献[4]本文采用的木构架材料弹性模量15.5×109Pa,密度为3766kg/m3,泊松比0.25。 (3)屋面板单元。实验模型中屋面刚度很大,可以认为是刚性的,因此用Shell63单元固接在屋面梁上模拟。屋面上的配重在剪力有限元模拟过程中,利用质量单元Mass21模拟,将屋盖配重按面积等效原则

有限元分析的发展趋势

有限元分析的发展趋势 摘要:1965年“有限元”这个名词第一次出现,到今天有限元在工程上得到广泛应用,经历了三十多年的发展历史,理论和算法都已经日趋完善。有限元的核心思想是结构的离散化,就是将实际结构假想地离散为有限数目的规则单元组合体,实际结构的物理性能可以通过对离散体进行分析,得出满足工程精度的近似结果来替代对实际结构的分析,这样可以解决很多实际工程需要解决而理论分析又无法解决的复杂问题。 关键词:有限元分析结构计算结构设计 Abstract: The 1965 "finite" appeared for the first time this term, and today is widely used finite element in engineering, after more than 30 years of history, theory and algorithms have been improved. Finite element discretization of the core idea is to structure, is the actual structure of the supposed discrete combination unit for a limited number of rules, the actual structure to analyse the physical properties can be felt through a discrete body of drawn precision engineering approximation as an alternative to the analysis of actual structures, this would solve a lot of theoretical analysis and practical engineering needed to address complex problems that cannot be resolved. Key words: finite element analysis structural calculation physical design 1 有限元的发展历程 有限元法的发展历程可以分为提出(1943)、发展(1944一1960)和完善(1961-二十世纪九十年代)三个阶段。有限元法是受内外动力的综合作用而产生的。 1943年,柯朗发表的数学论文《平衡和振动问题的变分解法》和阿格瑞斯在工程学中取得的重大突破标志着有限元法的诞生。 有限元法早期(1944一1960)发展阶段中,得出了有限元法的原始代数表达形式,开始了对单元划分、单元类型选择的研究,并且在解的收敛性研究上取得了很大突破。1960年,克劳夫第一次提出了“有限元法”这个名称,标志着有限元法早期发展阶段的结束。 有限元法完善阶段(1961一二十世纪九十年代)的发展有国外和国内两条线索。在国外的发展表现为: 第一,建立了严格的数学和工程学基础;第二,应用范围扩展到了结构力学以外的领域;第三,收敛性得到了进一步研究,形成了系统的误差估计理论;第四,发展起了相应的商业软件包。 近年来随着计算机技术的普及和计算速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的重视,已经成为解决复杂的工程分析计算问题的有效途径,现在从汽车到航天飞机几乎所有的设计制造都已离不开有限元分析计算,其在机械制造、材料加工、航空航天、汽车、土木建筑、电子电器,国防军工,船舶,铁道,石化,能源,科学研究等各个领域的广泛使用已使设计水平发生了质的飞跃,主要表现在以下几个方面: 一、增加产品和工程的可靠性; 二、在产品的设计阶段发现潜在的问题 三、经过分析计算,采用优化设计方案,降低原材料成本

有限元方法的发展及应用

有限元方法的发展及应用 摘要:有限元法是一种高效能、常用的计算方法。有限元法在早期是以变分原理为基础发展起来的,所以它广泛地应用于以拉普拉斯方程和泊松方程所描 述的各类物理场中。自从1969年以来,某些学者在流体力学中应用加权余数法中的迦辽金法或最小二乘法等同样获得了有限元方程,因而有限元法可应用于 以任何微分方程所描述的各类物理场中,而不再要求这类物理场和泛函的极值 问题有所联系。基本思想:由解给定的泊松方程化为求解泛函的极值问题。 1有限元法介绍 1.1有限元法定义 有限元法(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。它是起源于20世纪50年代末60年代初兴起的应用数学、现代力学及计算机科学相互渗透、综合利用的边缘科学。 有限元法的基本思想是将求解域看成是由许多称为有限元的小的互连子域 组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总 的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而 是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得 到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行 之有效的工程分析手段。有限元法最初应用在工程科学技术中,用于模拟并且解 决工程力学、热学、电磁学等物理问题。 1.2有限元法优缺点 有限元方法是目前解决科学和工程问题最有效的数值方法,与其它数值方 法相比,它具有适用于任意几何形状和边界条件、材料和几何非线性问题、容 易编程、成熟的大型商用软件较多等优点。 (1)概念浅显,容易掌握,可以在不同理论层面上建立起对有限元法的理解,既可以通过非常直观的物理解释来理解,也可以建立基于严格的数学理论 分析。 (2)有很强的适用性,应用范围极其广泛。它不仅能成功地处理线性弹性

ABAQUS有限元发展趋势

有限元分析的发展趋势 1 有限元的发展历程 有限元方法(FEM)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。 有限元法的发展历程可以分为提出、发展和完善三个阶段。有限元法是受内外动力的综合作用而产生的。 现代科学技术的发展,正在不断催生更为快速的交通工具、更大规模的建筑物、更大跨度的桥梁、更大功率的发电机组和更为精密的机械设备。而这一切都要求在设计阶段就能精确地预测出产品和工程的技术性能,需要对结构的静、动力强度以及温度场、流场、电磁场和渗流等技术参数进行分析计算。分析计算高层建筑和大跨度桥梁在地震时所受到的影响;分析计算核反应堆的温度场;分析涡轮机叶片内的流体动力学参数。这些问题的解析计算可归结为求解物理问题的控制偏微分方程式。有限元分析(FEA,Finite Element Analysis)方法则为解决这些复杂的工程分析计算问题提供了有效的途径。在工程实践中,有限元分析软件与CAD系统的集成应用主要表现在以下几个方面: (1)增加设计功能,减少设计成本; (2)缩短设计和分析的循环周期; (3)增加产品和工程的可靠性; (4)采用优化设计,降低材料的消耗或成本; (5)在产品制造或工程施工前预先发现潜在的问题; (6)模拟各种试验方案,减少试验时间和经费; (7)进行机械事故分析,查找事故原因。 目前流行的CAE分析软件主要有NASTRAN、ADINA 、ANSYS、ABAQUS、MARC、COSMOS等。

有限元求解步骤方法

步骤方法 对于不同物理性质和数学模型的问题,有限元求解法的基本步骤是相同的,只是具体公式推导和运算求解不同。有限元求解问题的基本步骤通常为: 第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域。 第二步:求解域离散化:将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。显然单元越小(网格越细)则离散域的近似程度越好,计算结果也越精确,但计算量及误差都将增大,因此求解域的离散化是有限元法的核心技术之一。 第三步:确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题状态变量边界条件的微分方程式表示,为适合有限元求解,通常将微分方程化为等价的泛函形式。 第四步:单元推导:对单元构造一个适合的近似解,即推导有限单元的列式,其中包括选择合理的单元坐标系,建立单元试函数,以某种方法给出单元各状态变量的离散关系,从而形成单元矩阵(结构力学中称刚度阵或柔度阵)。 为保证问题求解的收敛性,单元推导有许多原则要遵循。对工程应用而言,重要的是应注意每一种单元的解题性能与约束。例如,单元形状应以规则为好,畸形时不仅精度低,而且有缺秩的危险,将导致无法求解。 第五步:总装求解:将单元总装形成离散域的总矩阵方程(联合方程组),反映对近似求解域的离散域的要求,即单元函数的连续性要满足一定的连续条件。总装是在相邻单元结点进行,状态变量及其导数(可能的话)连续性建立在结点处。 第六步:联立方程组求解和结果解释:有限元法最终导致联立方程组。联立方程组的求解可用直接法、迭代法和随机法。求解结果是单元结点处状态变量的近似值。对于计算结果的质量,将通过与设计准则提供的允许值比较来评价并确定是否需要重复计算。 简言之,有限元分析可分成三个阶段,前置处理、计算求解和后置处理。前置处理是建立有限元模型,完成单元网格划分;后置处理则是采集处理分析结果,使用户能简便提取信息,了解计算结果。

有限元软件应用范围及发展趋势

有限元软件应用范围及发展趋势 学号: 姓名: 学号: 2009年10月

有限元分析(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 有限元是那些集合在一起能够表示实际连续域的离散单元。有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。 有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。20世纪60年代初首次提出结构力学计算有限元概念的克拉夫(Clough)教授形象地将其描绘为:“有限元法=Rayleigh Ritz法+分片函数”,即有限元法是Rayleigh Ritz法的一种局部化情况。不同于求解(往往是困难的)满足整个定义域边界条件的允许函数的Rayleigh Ritz法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。 对于不同物理性质和数学模型的问题,有限元求解法的基本步骤是相同的,只是具体公式推导和运算求解不同。有限元求解问题的基本步骤通常为: 第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域。 第二步:求解域离散化:将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。显然单元越小(网络越细)则离散域的近似程度越好,计算结果也越精确,但计算量及误差都将增大,因此求解域的离散化是有限元法的核心技术之一。 第三步:确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题状态变量边界条件的微分方程式表示,为适合有限元求解,通常将微分方程化为等价的泛函形式。第四步:单元推导:对单元构造一个适合的近似解,即推导有限单元的列式,其中包括选择合理的单元坐标系,建立单元试函数,以某种方法给出单元各状态变量的离散关系,从而形成单元矩阵(结构力学中称刚度阵或柔度阵)。 为保证问题求解的收敛性,单元推导有许多原则要遵循。对工程应用而言,重要的是应注意每一种单元的解题性能与约束。例如,单元形状应以规则为好,畸形时不仅精度低,而且有缺秩的危险,将导致无法求解。 第五步:总装求解:将单元总装形成离散域的总矩阵方程(联合方程组),反映对近似求解域的离散域的要求,即单元函数的连续性要满足一定的连续条件。总装是在相邻单元结点进行,状态变量及其导数(可能的话)连续性建立在结点处。 第六步:联立方程组求解和结果解释:有限元法最终导致联立方程组。联立方程组的求解可用直接法、选代法和随机法。求解结果是单元结点处状态变量的近似值。对于计算结果的质量,将通过与设计准则提供的允许值比较来评价并确定是否需要重复计算。

有限元的发展历史现状及应用前景

有限元分析的发展趋势 “有限元”这个名词第一次出现,到今天有限元在工程上得到广泛应用,经历了三十多年的发展历史,理论和算法都已经日趋完善。有限元的核心思想是结构的离散化,就是将实际结构假想地离散为有限数目的规则单元组合体,实际结构的物理性能可以通过对离散体进行分析,得出满足工程精度的近似结果来替代对实际结构的分析,这样可以解决很多实际工程需要解决而理论分析又无法解决的复杂问题。
近年来随着计算机技术的普及和计算速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的重视,已经成为解决复杂的工程分析计算问题的有效途径,现在从汽车到航天飞机几乎所有的设计制造都已离不开有限元分析计算,其在机械制造、材料加工、航空航天、汽车、土木建筑、电子电器,国防军工,船舶,铁道,石化,能源,科学研究等各个领域的广泛使用已使设计水平发生了质的飞跃,主要表现在以下几个方面:
增加产品和工程的可靠性;
在产品的设计阶段发现潜在的问题
经过分析计算,采用优化设计方案,降低原材料成本
缩短产品投向市场的时间
模拟试验方案,减少试验次数,从而减少试验经费

国际上早在60年代初就开始投入大量的人力和物力开发有限元分析程序,但真正的CAE软件是诞生于70年代初期,而近15年则是CAE软件商品化的发展阶段,CAE开发商为满足市场需求和适应计算机硬、软件技术的迅速发展,

在大力推销其软件产品的同时,对软件的功能、性能,用户界面和前、后处理能力,都进行了大幅度的改进与扩充。这就使得目前市场上知名的CAE软件,在功能、性能、易用性、可靠性以及对运行环境的适应性方面,基本上满足了用户的当前需求,从而帮助用户解决了成千上万个工程实际问题,同时也为科学技术的发展和工程应用做出了不可磨灭的贡献。目前流行的CAE分析软件主要有NASTRAN、 ADINA 、ANSYS、ABAQUS、MARC、MAGSOFT、COSMOS等。MSC-NASTRAN 软件因为和NASA的特殊关系,在航空航天领域有着很高的地位,它以最早期的主要用于航空航天方面的线性有限元分析系统为基础,兼并了PDA公司的PATRAN,又在以冲击、接触为特长的DYNA3D的基础上组织开发了DYTRAN。近来又兼并了非线性分析软件MARC,成为目前世界上规模最大的有限元分析系统。ANSYS软件致力于耦合场的分析计算,能够进行结构、流体、热、电磁四种场的计算,已博得了世界上数千家用户的钟爱。ADINA非线性有限元分析软件由著名的有限元专家、麻省理工学院的 K.J.Bathe教授领导开发,其单一系统即可进行结构、流体、热的耦合计算。并同时具有隐式和显式两种时间积分算法。由于其在非线性求解、流固耦合分析等方面的强大功能,迅速成为有限元分析软件的后起之秀,现已成为非线性分析计算的首选软件。

纵观当今国际上CAE软件的发展情况,可以看出有限元分析方法的一些发展趋势:

1、与CAD软件的无缝集成

相关主题