搜档网
当前位置:搜档网 › 美赛数学建模比赛论文资料材料模板

美赛数学建模比赛论文资料材料模板

美赛数学建模比赛论文资料材料模板
美赛数学建模比赛论文资料材料模板

The Keep-Right-Except-To-Pass Rule

Summary

As for the first question, it provides a traffic rule of keep right except to pass, requiring us to verify its effectiveness. Firstly, we define one kind of traffic rule different from the rule of the keep right in order to solve the problem clearly; then, we build a Cellular automaton model and a Nasch model by collecting massive data; next, we make full use of the numerical simulation according to several influence factors of traffic flow; At last, by lots of analysis of graph we obtain, we indicate a conclusion as follow: when vehicle density is lower than 0.15, the rule of lane speed control is more effective in terms of the factor of safe in the light traffic; when vehicle density is greater than 0.15, so the rule of keep right except passing is more effective In the heavy traffic.

As for the second question, it requires us to testify that whether the conclusion we obtain in the first question is the same apply to the keep left rule. First of all, we build a stochastic multi-lane traffic model; from the view of the vehicle flow stress, we propose that the probability of moving to the right is 0.7and to the left otherwise by making full use of the Bernoulli process from the view of the ping-pong effect, the conclusion is that the choice of the changing lane is random. On the whole, the fundamental reason is the formation of the driving habit, so the conclusion is effective under the rule of keep left.

As for the third question, it requires us to demonstrate the effectiveness of the result advised in the first question under the intelligent vehicle control system. Firstly, taking the speed limits into consideration, we build a microscopic traffic simulator model for traffic simulation purposes. Then, we implement a METANET model for prediction state with the use of the MPC traffic controller. Afterwards, we certify that the dynamic speed control measure can improve the traffic flow .

Lastly neglecting the safe factor, combining the rule of keep right with the rule of dynamical speed control is the best solution to accelerate the traffic flow overall.

Key words:Cellular automaton model Bernoulli process Microscopic traffic simulator model The MPC traffic control

Content

Content (2)

1. Introduction (3)

2. Analysis of the problem (3)

3. Assumption (3)

4. Symbol Definition (3)

5. Models (3)

5.1 Building of the Cellular automaton model (3)

5.1.1 Verify the effectiveness of the keep right except to pass rule (4)

5.1.2 Numerical simulation results and discussion (5)

5.1.3 Conclusion (8)

5.2 The solving of second question (8)

5.2.1 The building of the stochastic multi-lane traffic model (8)

5.2.2 Conclusion (8)

5.3 Taking the an intelligent vehicle system into a account (8)

5.3.1 Introduction of the Intelligent Vehicle Highway Systems (9)

5.3.2 Control problem (9)

5.3.3 Results and analysis (9)

5.3.4 The comprehensive analysis of the result (9)

6. Improvement of the model (10)

6.1 strength and weakness (10)

6.1.1 Strength (10)

6.1.2 Weakness (10)

6.2 Improvement of the model (10)

7. Reference (12)

1. Introduction

As is known to all, it ’s essential for us to drive automobiles, thus the driving rules is crucial important. In many countries like USA, China, drivers obey the rules which called “The Keep-Right-Except-To-Pass (that is, when driving automobiles, the rule requires drivers to drive in the right-most unless they are passing another vehicle)”.

2. Analysis of the problem

For the first question, we decide to use the Cellular automaton to build models, then analyze the performance of this rule in light and heavy traffic. Firstly, we mainly use the vehicle density to distinguish the light and heavy traffic; secondly, we consider the traffic flow and safe as the represent variable which denotes the light or heavy traffic; thirdly, we build and analyze a Cellular automaton model; finally, we judge the rule through two different driving rules, and then draw conclusions.

3. Assumption

In order to streamline our model we have made several key assumptions

● The highway of double row three lanes that we study can represent

multi-lane freeways.

● The data that we refer to has certain representativeness and descriptive

● Operation condition of the highway not be influenced by blizzard or accidental factors ● Ignore the driver's own abnormal factors, such as drunk driving and fatigue driving ● The operation form of highway intelligent system that our analysis can reflect

intelligent system

● In the intelligent vehicle system, the result of the sampling data has high accuracy.

4. Symbol Definition

i The number of vehicles

t The time

5. Models

By analyzing the problem, we decided to propose a solution with building a cellular automaton model.

5.1 Building of the Cellular automaton model

Thanks to its simple rules and convenience for computer simulation, cellular automaton model has been widely used in the study of traffic flow in recent years.

Let )(t x i be the position of vehicle i at time t , )(t v i be the speed of vehicle i at time t ,

p be the random slowing down probability, and R be the proportion of trucks and buses, the distance between vehicle i and the front vehicle at time t is:

1)()(1--=-t x t x gap i i i , if the front vehicle is a small vehicle.

3)()(1--=-t x t x gap i i i , if the front vehicle is a truck or bus.

5.1.1 Verify the effectiveness of the keep right except to pass rule

In addition, according to the keep right except to pass rule, we define a new rule called: Control rules based on lane speed. The concrete explanation of the new rule as follow:

There is no special passing lane under this rule. The speed of the first lane (the far left lane) is 120–100km/h (including 100 km/h);the speed of the second lane (the middle lane) is 100–80km8/h (including80km/h);the speed of the third lane (the far right lane) is below 80km/ h. The speeds of lanes decrease from left to right.

● Lane changing rules based lane speed control

If vehicle on the high-speed lane meets control v v <, ),1)(min()(max v t v t gap i f i +≥, safe b i gap t gap ≥)(, the vehicle will turn into the adjacent right lane, and the speed of the vehicle after lane changing remains unchanged, where control v is the minimum speed of the corresponding lane.

● The application of the Nasch model evolution

Let d P be the lane changing probability (taking into account the actual situation that some drivers like driving in a certain lane, and will not take the initiative to change lanes), )(t gap f i indicates the distance between the vehicle and the nearest front vehicle, )(t gap b i indicates the distance between the vehicle and the nearest following vehicle. In this article, we assume that the minimum safe distance gap safe of lane changing equals to the maximum speed of the following vehicle in the adjacent lanes.

● Lane changing rules based on keeping right except to pass

In general, traffic flow going through a passing zone (Fig. 5.1.1) involves three processes: the diverging process (one traffic flow diverging into two flows), interacting process (interacting between the two flows), and merging process (the two flows merging into one)

[4].

Fig.5.1.1 Control plan of overtaking process

(1) If vehicle on the first lane (passing lane) meets ),1)(min()(max v t v t gap i f i +≥ and safe b i gap t gap ≥)(, the vehicle will turn into the second lane, the speed of the vehicle after lane changing remains unchanged.

5.1.2 Numerical simulation results and discussion

In order to facilitate the subsequent discussions, we define the space occupation rate as L N N p truck CAR ??+=3/)3(, where CAR N indicates the number of small vehicles on the driveway,truck N indicates the number of trucks and buses on the driveway, and L indicates the total length of the road. The vehicle flow volume Q is the number of vehicles passing a fixed point per unit time,T N Q T /=, where T N is the number of vehicles observed in time duration T .The average speed ∑∑?=T i

t i a v T N V 11)/1(, t i v is the speed of vehicle i at time t . Take overtaking ratio f p as the evaluation indicator of the safety of traffic flow, which is the ratio of the total number of overtaking and the number of vehicles observed. After 20,000 evolution steps, and averaging the last 2000 steps based on time, we have obtained the following experimental results. In order to eliminate the effect of randomicity, we take the systemic average of 20 samples [5].

Overtaking ratio of different control rule conditions

Because different control conditions of road will produce different overtaking ratio, so we first observe relationships among vehicle density, proportion of large vehicles and overtaking ratio under different control conditions.

(a) Based on passing lane control (b) Based on speed control

Fig.5.1.3

Fig.5.1.3Relationships among vehicle density, proportion of large vehicles and overtaking ratio under different control conditions.

It can be seen from Fig. 5.1.3:

(1) when the vehicle density is less than 0.05, the overtaking ratio will continue to rise with the increase of vehicle density; when the vehicle density is larger than 0.05, the overtaking ratio will decrease with the increase of vehicle density; when density is greater than 0.12, due to the crowding, it will become difficult to overtake, so the overtaking ratio is almost 0.

(2) when the proportion of large vehicles is less than 0.5, the overtaking ratio will rise with the increase of large vehicles; when the proportion of large vehicles is about 0.5, the overtaking ratio will reach its peak value; when the proportion of large vehicles is larger than 0.5, the overtaking ratio will decrease with the increase of large vehicles, especially under lane-based control condition s the decline is very clear.

Concrete impact of under different control rules on overtaking ratio

Fig.5.1.4

Fig.5.1.4 Relationships among vehicle density, proportion of large vehicles and overtaking ratio under different control conditions. (Figures in left-hand indicate the passing lane control, figures in right-hand indicate the

speed control. 1f P is the overtaking ratio of small vehicles over large vehicles, 2f P is the overtaking ratio of

small vehicles over small vehicles, 3f P is the overtaking ratio of large vehicles over small vehicles, 4f P is the overtaking ratio of large vehicles over large vehicles.).

It can be seen from Fig. 5.1.4:

(1) The overtaking ratio of small vehicles over large vehicles under passing lane control is much higher than that under speed control condition, which is because, under passing lane control condition, high-speed small vehicles have to surpass low-speed large vehicles by the passing lane, while under speed control condition, small vehicles are designed to travel on the high-speed lane, there is no low- speed vehicle in front, thus there is no need to overtake. ● Impact of different control rules on vehicle speed

Fig. 5.1.5 Relationships among vehicle density, proportion of large vehicles and average speed under different control conditions. (Figures in left-hand indicates passing lane control, figures in right-hand indicates speed control. a X is the average speed of all the vehicles, 1a X is the average speed of all the small vehicles, 2a X is the average speed of all the buses and trucks.).

It can be seen from Fig. 5.1.5:

(1) The average speed will reduce with the increase of vehicle density and proportion of large vehicles.

(2) When vehicle density is less than 0.15,a X ,1a X and 2a X are almost the same under both control conditions.

● Effect of different control conditions on traffic flow

Fig.5.1.6

Fig. 5.1.6Relationships among vehicle density, proportion of large vehicles and traffic flow under different control conditions. (Figure a1 indicates passing lane control, figure a2 indicates speed control, and figure b indicates the traffic flow difference between the two conditions.

It can be seen from Fig. 5.1.6:

(1) When vehicle density is lower than 0.15 and the proportion of large vehicles is from 0.4 to 1, the traffic flow of the two control conditions are basically the same.

(2) Except that, the traffic flow under passing lane control condition is slightly larger than that of speed control condition.

5.1.3 Conclusion

In this paper, we have established three-lane model of different control conditions, studied the overtaking ratio, speed and traffic flow under different control conditions, vehicle density and proportion of large vehicles.

5.2 The solving of second question

5.2.1 The building of the stochastic multi-lane traffic model

5.2.2 Conclusion

On one hand, from the analysis of the model, in the case the stress is positive, we also consider the jam situation while making the decision. More specifically, if a driver is in a jam B

P

(

situation, applying ))

results with a tendency of moving to the right lane for this

,2(x

R

driver. However in reality, drivers tend to find an emptier lane in a jam situation. For this reason, we apply a Bernoulli process )7.0,2(B where the probability of moving to the right is 0.7and to the left otherwise, and the conclusion is under the rule of keep left except to pass, So, the fundamental reason is the formation of the driving habit.

5.3 Taking the an intelligent vehicle system into a account

For the third question, if vehicle transportation on the same roadway was fully under the control of an intelligent system, we make some improvements for the solution proposed by us

to perfect the performance of the freeway by lots of analysis.

5.3.1 Introduction of the Intelligent Vehicle Highway Systems

We will use the microscopic traffic simulator model for traffic simulation purposes. The MPC traffic controller that is implemented in the Matlab needs a traffic model to predict the states when the speed limits are applied in Fig.5.3.1. We implement a METANET model for prediction purpose[14].

5.3.2 Control problem

As a constraint, the dynamic speed limits are given a maximum and minimum allowed value. The upper bound for the speed limits is 120 km/h, and the lower bound value is 40 km/h. For the calculation of the optimal control values, all speed limits are constrained to this range. When the optimal values are found, they are rounded to a multiplicity of 10 km/h, since this is more clear for human drivers, and also technically feasible without large investments.

5.3.3 Results and analysis

When the density is high, it is more difficult to control the traffic, since the mean speed might already be below the control speed. Therefore, simulations are done using densities at which the shock wave can dissolve without using control, and at densities where the shock wave remains. For each scenario, five simulations for three different cases are done, each with a duration of one hour. The results of the simulations are reported in Table5.1, 5.2, 5.3.

●Enforced speed limits

●Intelligent speed adaptation

For the ISA scenario, the desired free-flow speed is about 100% of the speed limit. The desired free-flow speed is modeled as a Gaussian distribution, with a mean value of 100% of the speed limit, and a standard deviation of 5% of the speed limit. Based on this percentage, the influence of the dynamic speed limits is expected to be good[19].

5.3.4 The comprehensive analysis of the result

From the analysis above, we indicate that adopting the intelligent speed control system can effectively decrease the travel times under the control of an intelligent system, in other words, the measures of dynamic speed control can improve the traffic flow.

Evidently, under the intelligent speed control system, the effect of the dynamic speed control measure is better than that under the lane speed control mentioned in the first problem. Because

of the application of the intelligent speed control system, it can provide the optimal speed limit in time. In addition, it can guarantee the safe condition with all kinds of detection device and the sensor under the intelligent speed system.

On the whole, taking all the analysis from the first problem to the end into a account, when it is in light traffic, we can neglect the factor of safe with the help of the intelligent speed control system.

Thus, under the state of the light traffic, we propose a new conclusion different from that in the first problem: the rule of keep right except to pass is more effective than that of lane speed control.

And when it is in the heavy traffic, for sparing no effort to improve the operation efficiency of the freeway, we combine the dynamical speed control measure with the rule of keep right except to pass, drawing a conclusion that the application of the dynamical speed control can improve the performance of the freeway.

What we should highlight is that we can make some different speed limit as for different section of road or different size of vehicle with the application of the Intelligent Vehicle Highway Systems.

In fact, that how the freeway traffic operate is extremely complex, thereby, with the application of the Intelligent Vehicle Highway Systems, by adjusting our solution originally, we make it still effective to freeway traffic.

6. Improvement of the model

6.1 strength and weakness

6.1.1 Strength

●it is easy for computer simulating and can be modified flexibly to consider actual traffic

conditions ,moreover a large number of images make the model more visual.

●The result is effectively achieved all of the goals we set initially, meantime the conclusion is

more persuasive because of we used the Bernoulli equation.

●We can get more accurate result as we apply Matlab.

6.1.2 Weakness

●The relationship between traffic flow and safety is not comprehensively analysis.

●Due to there are many traffic factors, we are only studied some of the factors, thus our

model need further improved.

6.2 Improvement of the model

While we compare models under two kinds of traffic rules, thereby we come to the efficiency of driving on the right to improve traffic flow in some circumstance. Due to the rules of comparing is too less, the conclusion is inadequate. In order to improve the accuracy, We

further put forward a kinds of traffic rules: speed limit on different type of cars.

The possibility of happening traffic accident for some vehicles is larger, and it also brings hidden safe troubles. So we need to consider separately about different or specific vehicle types from the angle of the speed limiting in order to reduce the occurrence of traffic accidents, the highway speed limit signs is in Fig.6.1.

Fig.6.1

Advantages of the improving model are that it is useful to improve the running condition safety of specific type of vehicle while considering the difference of different types of vehicles. However, we found that the rules may be reduce the road traffic flow through the analysis. In the implementation it should be at the

85

V speed of each model as the main reference basis. In

recent years, the

85

V of some researchers for the typical countries from Table 6.1[ 21]:

Author Country Model

Ottesen and

Krammes2000

America LC

DC

L

DC

V

C

?

-

-

-

=01

.0

012

.0

57

.1

44

.

102

85

Andueza2000 Venezuela

]

.

[

308

.9

486

.7

)

/

894

(

)

/

2795

(

25

.

98

85

curve

horizontal

L

DC

Ra

R

V

T

+

+

-

-

=

]

.

[tan

819

.

27

)

/

3032

(

69

.

100

85

gent

L

R

V

T

+

-

=

Jessen2001 America

]

[

00239

.0

614

.0

279

.0

80

.

86

1

85

LSD

ADT

G

V

V

P

-

-

+

=

]

[

00212

.0

432

.0

10

.

72

85

NLSD

ADT

V

V

P

-

+

=

Donnell2001 America

2

2

)

2

(

85

00724

.0

40

.1

0140

.0

4.

78

T

L

G

R

V-

-

+

=

2

2

)3

(

85

008369

.0

48

.1

0176

.0

1.

75

T

L

G

R

V-

-

+

=

2

2

)

4

(

85

00810

.0

69

.1

0176

.0

5.

74

T

L

G

R

V-

-

+

=

2

2

)

5

(

85

00934

.0

08

.2

1.

83

T

L

G

V-

-

=

BucchiA.BiasuzziK.

And SimoneA.2005 Italy

DC

V124

.0

164

.

66

85

-

=

DC

E

V4.0

46

.3

366

.

55

85

-

-

=

Meanwhile, there are other vehicles driving rules such as speed limit in adverse weather conditions. This rule can improve the safety factor of the vehicle to some extent. At the same time, it limits the speed at the different levels.

7. Reference

[1] M. Rickert, K. Nagel, M. Schreckenberg, A. Latour, Two lane traf?c simulations using

cellular automata, Physica A 231 (1996) 534–550.

[20] J.T. Fokkema, Lakshmi Dhevi, Tamil Nadu Traf?c Management and Control in

Intelligent Vehicle Highway Systems,18(2009).

[21] Yang Li, New Variable Speed Control Approach for Freeway. (2011) 1-66

当我谈数学建模时我谈些什么——美赛一等奖经验总结

前言:2012年3月28号晚,我知道了美赛成绩,一等奖(Meritorious Winner),没有太多的喜悦,只是感觉释怀,一年以来的努力总算有了回报。从国赛遗憾丢掉国奖,到美赛一等,这一路走来太多的不易,感谢我的家人、队友以及朋友的支持,没有你们,我无以为继。这篇文章在美赛结束后就已经写好了,算是对自己建模心得体会的一个总结。现在成绩尘埃落定,我也有足够的自信把它贴出来,希望能够帮到各位对数模感兴趣的同学。 欢迎大家批评指正,欢迎与我交流,这样我们才都能进步。 个人背景:我2010年入学,所在的学校是广东省一所普通大学,今年大二,学工商管理专业,没学过编程。 学校组织参加过几届美赛,之前唯一的一个一等奖是三年前拿到的,那一队的主力师兄凭借这一奖项去了北卡罗来纳大学教堂山分校,学运筹学。今年再次拿到一等奖,我创了两个校记录:一是第一个在大二拿到数模美赛一等奖,二是第一个在文科专业拿数模美赛一等奖。我的数模历程如下: 2011.4 校内赛三等奖 2011.8 通过选拔参加暑期国赛培训(学校之前不允许大一学生参加) 2011.9 国赛广东省二等奖 2011.11 电工杯三等奖 2012.2 美赛一等奖(Meritorious Winner) 动机:我参加数学建模的动机比较单纯,完全是出于兴趣。我的专业是工商管理,没有学过编程,觉得没必要学。我所感兴趣的是模型本身,它的思想,它的内涵,它的发展过程、它的适用问题等等。我希望通过学习模型,能够更好的去理解一些现象,了解其中蕴含的数学机理。数学模型中包含着一种简洁的哲学,深刻而迷人。 当然获得荣誉方面的动机可定也有,谁不想拿奖呢? 模型:数学模型的功能大致有三种:评价、优化、预测。几乎所有模型都是围绕这三种功能来做的。比如,今年美赛A题树叶分类属于评价模型,B题漂流露营安排则属于优化模型。对于不同功能的模型有不同的方法,例如评价模型方法有层次分析、模糊综合评价、熵值法等;优化模型方法有启发式算法(模拟退火、遗传算法等)、仿真方法(蒙特卡洛、元胞自动机等);预测模型方法有灰色预测、神经网络、马尔科夫链等。在数学中国网站上有许多关于这些方法的相关介绍与文献。 关于模型软件与书籍,这方面的文章很多,这里只做简单介绍。关于软件这三款已经足够:Matlab、SPSS、Lingo,学好一个即可(我只会用SPSS,另外两个队友会)。书籍方面,推荐三本,一本入门,一本进级,一本参考,这三本足够: 《数学模型》姜启源谢金星叶俊高等教育出版社 《数学建模方法与分析》Mark M. Meerschaert 机械工业出版社 《数学建模算法与程序》司守奎国防工业出版社 入门的《数学模型》看一遍即可,对数学模型有一个初步的认识与把握,国赛前看完这本再练习几篇文章就差不多了。另外,关于入门,韩中庚的《数学建模方法及其应用》也是不错的,两本书选一本阅读即可。如果参加美赛的话,进级的《数学建模方法与分析》要仔细研究,这本书写的非常好,可以算是所有数模书籍中最好的了,没有之一,建议大家去买一本。这本书中开篇指出的最优化模型五步方法非常不错,后面的方法介绍的动态模型与概率模型也非常到位。参考书目《数学建模算法与程序》详细的介绍了多种建模方法,适合用来理解

美赛数学建模比赛论文模板

The Keep-Right-Except-To-Pass Rule Summary As for the first question, it provides a traffic rule of keep right except to pass, requiring us to verify its effectiveness. Firstly, we define one kind of traffic rule different from the rule of the keep right in order to solve the problem clearly; then, we build a Cellular automaton model and a Nasch model by collecting massive data; next, we make full use of the numerical simulation according to several influence factors of traffic flow; At last, by lots of analysis of graph we obtain, we indicate a conclusion as follow: when vehicle density is lower than 0.15, the rule of lane speed control is more effective in terms of the factor of safe in the light traffic; when vehicle density is greater than 0.15, so the rule of keep right except passing is more effective In the heavy traffic. As for the second question, it requires us to testify that whether the conclusion we obtain in the first question is the same apply to the keep left rule. First of all, we build a stochastic multi-lane traffic model; from the view of the vehicle flow stress, we propose that the probability of moving to the right is 0.7and to the left otherwise by making full use of the Bernoulli process from the view of the ping-pong effect, the conclusion is that the choice of the changing lane is random. On the whole, the fundamental reason is the formation of the driving habit, so the conclusion is effective under the rule of keep left. As for the third question, it requires us to demonstrate the effectiveness of the result advised in the first question under the intelligent vehicle control system. Firstly, taking the speed limits into consideration, we build a microscopic traffic simulator model for traffic simulation purposes. Then, we implement a METANET model for prediction state with the use of the MPC traffic controller. Afterwards, we certify that the dynamic speed control measure can improve the traffic flow . Lastly neglecting the safe factor, combining the rule of keep right with the rule of dynamical speed control is the best solution to accelerate the traffic flow overall. Key words:Cellular automaton model Bernoulli process Microscopic traffic simulator model The MPC traffic control

2014年数学建模美赛题目原文及翻译

2014年数学建模美赛题目原文及翻译 作者:Ternence Zhang 转载注明出处:https://www.sodocs.net/doc/bb13905930.html,/zhangtengyuan23 MCM原题PDF: https://www.sodocs.net/doc/bb13905930.html,/detail/zhangty0223/6901271 PROBLEM A: The Keep-Right-Except-To-Pass Rule In countries where driving automobiles on the right is the rule (that is, USA, China and most other countries except for Great Britain, Australia, and some former British colonies), multi-lane freeways often employ a rule that requires drivers to drive in the right-most lane unless they are passing another vehicle, in which case they move one lane to the left, pass, and return to their former travel lane. Build and analyze a mathematical model to analyze the performance of this rule in light and heavy traffic. You may wish to examine tradeoffs between traffic flow and safety, the role of under- or over-posted speed limits (that is, speed limits that are too low or too high), and/or other factors that may not be

数学建模美赛o奖论文

For office use only T1________________ T2________________ T3________________ T4________________ Team Control Number 55069 Problem Chosen A For office use only F1________________ F2________________ F3________________ F4________________ 2017 MCM/ICM Summary Sheet The Rehabilitation of the Kariba Dam Recently, the Institute of Risk Management of South Africa has just warned that the Kariba dam is in desperate need of rehabilitation, otherwise the whole dam would collapse, putting 3.5 million people at risk. Aimed to look for the best strategy with the three options listed to maintain the dam, we employ AHP model to filter factors and determine two most influential criteria, including potential costs and benefits. With the weight of each criterion worked out, our model demonstrates that option 3is the optimal choice. According to our choice, we are required to offer the recommendation as to the number and placement of the new dams. Regarding it as a set covering problem, we develop a multi-objective optimization model to minimize the number of smaller dams while improving the water resources management capacity. Applying TOPSIS evaluation method to get the demand of the electricity and water, we solve this problem with genetic algorithm and get an approximate optimal solution with 12 smaller dams and determine the location of them. Taking the strategy for modulating the water flow into account, we construct a joint operation of dam system to simulate the relationship among the smaller dams with genetic algorithm approach. We define four kinds of year based on the Kariba’s climate data of climate, namely, normal flow year, low flow year, high flow year and differential year. Finally, these statistics could help us simulate the water flow of each month in one year, then we obtain the water resources planning and modulating strategy. The sensitivity analysis of our model has pointed out that small alteration in our constraints (including removing an important city of the countries and changing the measurement of the economic development index etc.) affects the location of some of our dams slightly while the number of dams remains the same. Also we find that the output coefficient is not an important factor for joint operation of the dam system, for the reason that the discharge index and the capacity index would not change a lot with the output coefficient changing.

2015数学建模美赛翻译

C和D 2015 ICM问题C 组织中的人力资本管理 构建一个组织填充好,有才华的,训练有素的人是成功的关键之一。但是这样做,组织需要做更多的招聘和雇用最好的候选人–也需要保持良好的人,让他们适当的训练并放在合适的位置,最终目标新员工来取代那些离开组织。个人发挥独特的作用,在他们的组织,正式和非正式的。因此,从组织个体离开留下重要的信息和功能组件丢失,需要更换。这是真正的运动队,商业公司,学校,政府,和几乎任何正式的团体或组织的人。 人力资源(HR)专家帮助高层领导通过改进保留和激励,管理人员协调培训,并建立良好的团队。特别是,领导人寻求建立一个有效的组织结构,人们被分配到适当的位置他们的天赋和经验,以及有效的沟通系统,以促进发展创新的理念、优质的产品(商品或服务)。这些人才管理和人力资源管理团队建设方面正在对许多现代组织。 在一个组织内人力资本的流体网络管理人员需要了解忠诚于公司和亚群;在工作场所建立信任;管理的形成,溶解和保持人与人之间的正式和非正式的关系。当人们离开其他工作或退休所取代,由此产生的湍流是统称为组织“流失”。你的团队你的人力资源经理要求在信息协同制造发展了一个理解流失的框架和模型(ICM)的370人的组织。ICM是一个高度竞争的市场,导致具有挑战性,有效地管理其人力资本的相关问题。 人力资源经理要地图人力资本在组织通过建立网络模型。这里有一些你的公司面临的问题: 1。ICM的目的是在其早期阶段的流失的风险,因为它是获得一个员工在职业生涯早期而不是提高文化一旦有了忠诚的便宜。这是更高效的开始而不是提供激励措施来阻止人们离开有一个积极的员工。 2。一个工人更容易流失,如果他或她与其他前 谁有生产员工。因此,从员工流失似乎弥漫 员工,所以识别那些可能流失是有价值的信息 防止进一步的搅动。 3。一个问题是员工人力资源匹配到正确的位置,使自己的知识和能力可以最大化。目前每个员工基于绩效的主管判断年度评估。这些评价是目前不是由人力资源办公室。

数学建模美赛题目及翻译

PROBLEM A: The Keep-Right-Except-To-Pass Rule In countries where driving automobiles on the right is the rule (that is, USA, China and most other countries except for Great Britain, Australia, and some former British colonies), multi-lane freeways often employ a rule that requires drivers to drive in the right-most lane unless they are passing another vehicle, in which case they move one lane to the left, pass, and return to their former travel lane. Build and analyze a mathematical model to analyze the performance of this rule in light and heavy traffic. You may wish to examine tradeoffs between traffic flow and safety, the role of under- or over-posted speed limits (that is, speed limits that are too low or too high), and/or other factors that may not be explicitly called out in this problem statement. Is this rule effective in promoting better traffic flow? If not, suggest and analyze alternatives (to include possibly no rule of this kind at all) that might promote greater traffic flow, safety, and/or other factors that you deem important. In countries where driving automobiles on the left is the norm, argue whether or not your solution can be carried over with a simple change of orientation, or would additional requirements

2014年数学建模美赛ABC_题翻译

问题A:除非超车否则靠右行驶的交通规则 在一些汽车靠右行驶的国家(比如美国,中国等等),多车道的高速公路常常遵循以下原则:司机必须在最右侧驾驶,除非他们正在超车,超车时必须先移到左侧车道在超车后再返回。建立数学模型来分析这条规则在低负荷和高负荷状态下的交通路况的表现。你不妨考察一下流量和安全的权衡问题,车速过高过低的限制,或者这个问题陈述中可能出现的其他因素。这条规则在提升车流量的方面是否有效?如果不是,提出能够提升车流量、安全系数或其他因素的替代品(包括完全没有这种规律)并加以分析。在一些国家,汽车靠左形式是常态,探讨你的解决方案是否稍作修改即可适用,或者需要一些额外的需要。最后,以上规则依赖于人的判断,如果相同规则的交通运输完全在智能系统的控制下,无论是部分网络还是嵌入使用的车辆的设计,在何种程度上会修改你前面的结果? 问题B:大学传奇教练 体育画报是一个为运动爱好者服务的杂志,正在寻找在整个上个世纪的“史上最好的大学教练”。建立数学模型选择大学中在一下体育项目中最好的教练:曲棍球或场地曲棍球,足球,棒球或垒球,篮球,足球。 时间轴在你的分析中是否会有影响?比如1913年的教练和2013年的教练是否会有所不同?清晰的对你的指标进行评估,讨论一下你的模型应用在跨越性别和所有可能对的体育项目中的效果。展示你的模型中的在三种不同体育项目中的前五名教练。 除了传统的MCM格式,准备一个1到2页的文章给体育画报,解释你的结果和包括一个体育迷都明白的数学模型的非技术性解释。 使用网络测量的影响和冲击 学术研究的技术来确定影响之一是构建和引文或合著网络的度量属性。与人合写一手稿通常意味着一个强大的影响力的研究人员之间的联系。最著名的学术合作者是20世纪的数学家保罗鄂尔多斯曾超过500的合作者和超过1400个技术研究论文发表。讽刺的是,或者不是,鄂尔多斯也是影响者在构建网络的新兴交叉学科的基础科学,尤其是,尽管他与Alfred Rényi的出版物“随即图标”在1959年。鄂尔多斯作为合作者的角色非常重要领域的数学,数学家通常衡量他们亲近鄂尔多斯通过分析鄂尔多斯的令人惊讶的是大型和健壮的合著网络网站(见http:// https://www.sodocs.net/doc/bb13905930.html,/enp/)。保罗的与众不同、引人入胜的故事鄂尔多斯作为一个天才的数学家,才华横溢的problemsolver,掌握合作者提供了许多书籍和在线网站(如。,https://www.sodocs.net/doc/bb13905930.html,/Biographies/Erdos.html)。也许他流动的生活方式,经常住在带着合作者或居住,并给他的钱来解决问题学生奖,使他co-authorships蓬勃发展并帮助构建了惊人的网络在几个数学领域的影响力。为了衡量这种影响asErdos生产,有基于网络的评价工具,使用作者和引文数据来确定影响因素的研究,出版物和期刊。一些科学引文索引,Hfactor、影响因素,特征因子等。谷歌学术搜索也是一个好的数据工具用于网络数据收集和分析影响或影响。ICM 2014你的团队的目标是分析研究网络和其他地区的影响力和影响社会。你这样做的任务包括: 1)构建networkof Erdos1作者合著者(你可以使用我们网站https://files.oak https://www.sodocs.net/doc/bb13905930.html,/users/grossman/enp/Erdos1.htmlor的文件包括Erdos1.htm)。你应该建立一个合作者网络Erdos1大约有510名研究人员的文件,与鄂尔多斯的一篇论文的合著者,他但不包括鄂尔多斯。这将需要一些技术数据提取和建模工作获

美赛-数学建模-写作模版(各部分)

摘要 第一段:写论文解决什么问题 1.问题的重述 a. 介绍重点词开头: 例1:“Hand move” irrigation, a cheap but labor-intensive system used on small farms, consists of a movable pipe with sprinkler on top that can be attached to a stationary main. 例2:……is a real-life common phenomenon with many complexities. 例3:An (effective plan) is crucial to……… b. 直接指出问题: 例1:We find the optimal number of tollbooths in a highway toll-plaza for a given number of highway lanes: the number of tollbooths that minimizes average delay experienced by cars. 例2:A brand-new university needs to balance the cost of information technology security measures with the potential cost of attacks on its systems. 例3:We determine the number of sprinklers to use by analyzing the energy and motion of water in the pipe and examining the engineering parameters of sprinklers available in the market. 例4: After mathematically analyzing the ……problem, our modeling group would like to present our conclusions, strategies, (and recommendations )to the ……. 例5:Our goal is... that (minimizes the time )………. 2.解决这个问题的伟大意义 反面说明。如果没有…… Without implementing defensive measure, the university is exposed to an expected loss of $8.9 million per year. 3.总的解决概述 a.通过什么方法解决什么问题 例:We address the problem of optimizing amusement park enjoyment through distributing Quick Passes (QP), reservation slips that ideally allow an individual to spend less time waiting in line. b.实际问题转化为数学模型 例1 We formulate the problem as a network flow in which vertices are the locations of escorts and wheelchair passengers. 例2 : A na?ve strategy would be to employ the minimum number of escorts to guarantee that all passengers reach their gates on time. c.将问题分阶段考虑 例3:We divide the jump into three phases: flying through the air, punching through the stack, and landing on the ground. 第二、三段:具体分析 1.在什么模型中/ 建立了什么模型 a. 主流模型 例1:We formulate a differential model to account for the rates of change of these uses, and how this change would affect the overall consumption of water within the studied region.

数学建模美赛论文格式中文版

你的论文需要从此开始 请居中 使用Arial14字体 第一作者,第二作者和其他(使用Arial14字体) 1.第一作者的详细地址,包括国籍和email(使用Arial11) 2.第二作者的详细地址,包括国籍和email(使用Arial11) 3.将所有的详细信息标记为相同格式 关键词 列出文章的关键词。这些关键词会被出版方用作关键词索引(使用Arial11字体) 论文正文使用Times New Roman12字体 摘要 这一部分阐述说明了如何为TransTechPublications.准备手稿。最好阅读这些用法说明并且整篇论文都是遵照这个提纲。手稿的正文部分应该是17cm*25cm(宽*高)的格式(或者是6.7*9.8英尺)。请不要在这个区域以外书写。请使用21*29厘米或8*11英尺的质量较好的白纸。你的手稿可能会被出版商缩减20%。在制图和绘表格时候请特别注意这些准则。 引言 所有的语言都应该是英语。请备份你的手稿(以防在邮寄过程中丢失)我们收到手稿即默认为原作者允许我们在期刊和书报出版。如果作者在论文中使用了其他刊物中的图表,他们需要联系原作者,获取使用权。将单词或词组倾斜以示强调。除了每一部分的标题(标记部分的标题),不要加粗正文或大写首字母。使用激光打印机,而不是点阵打印机 正文的组织: 小标题 小标题应该加粗并注意字母的大小写。第二等级的小标题被视为后面段落的一部分(就像这一大段的一小部分的开头) 页码 不要打印页码。请用淡蓝色铅笔在每一张纸的左下角(在打印区域以外)标注数字。 脚注 脚注应该单独放置并且和正文分开理想地情况下,脚注应该出现在参考文献页,并且放在文章的末尾,和正文用分割线分开。 表格 表格(如表一,表二,...)应该放在正文当中,是正文的一部分,但是,要避免文本混乱。一个描述性的表格标题要放在图表的下方。标题应该独立的放在表格的下方或旁边。 表中的单位应放在中括号中[兆伏]如果中括号不可用,需使用大括号{兆}或小括号(兆)。1.这就是脚注

如何准备美国大学生数学建模比赛

如何准备美赛 数学模型:数学模型的功能大致有三种:评价、优化、预测。几乎所有模型都是围绕这三种功能来做的。比如,2012年美赛A题树叶分类属于评价模型,B题漂流露营安排则属于优化模型。 对于不同功能的模型有不同的方法,例如 评价模型方法有层次分析、模糊综合评价、熵值法等; 优化模型方法有启发式算法(模拟退火、遗传算法等)、仿真方法(蒙特卡洛、元胞自动机等); 预测模型方法有灰色预测、神经网络、马尔科夫链等。 在数学中国、数学建模网站上有许多关于这些方法的相关介绍与文献。 软件与书籍: 软件一般三款足够:Matlab、SPSS、Lingo,学好一个即可。 书籍方面,推荐三本,一本入门,一本进级,一本参考,这三本足够: 《数学模型》姜启源谢金星叶俊高等教育出版社 《数学建模方法与分析》Mark M. Meerschaert 机械工业出版社 《数学建模算法与程序》司守奎国防工业出版社 入门的《数学模型》看一遍即可,对数学模型有一个初步的认识与把握,国赛前看完这本再练习几篇文章就差不多了。另外,关于入门,韩中庚的《数学建模方法及其应用》也是不错的,两本书选一本阅读即可。如果参加美赛的话,进级的《数学建模方法与分析》要仔细研究,这本书写的非常好,可以算是所有数模书籍中最好的了,没有之一,建议大家去买一本。这本书中开篇指出的最优化模型五步方法非常不错,后面的方法介绍的动态模型与概率模型也非常到位。参考书目《数学建模算法与程序》详细的介绍了多种建模方法,适合用来理解模型思想,参考自学。 分工合作:数模团队三个人,一般是分别负责建模、编程、写作。当然编程的可以建模,建模的也可以写作。这个要视具体情况来定,但这三样必须要有人擅长,这样才能保证团队最大发挥出潜能。 这三个人中负责建模的人是核心,要起主导作用,因为建模的人决定了整篇论文的思路与结构,尤其是模型的选择直接关系到了论文的结果与质量。 对于建模的人,首先要去大量的阅读文献,要见识尽可能多的模型,这样拿到一道题就能迅速反应到是哪一方面的模型,确定题目的整体思路。 其次是接口的制作,这是体现建模人水平的地方。所谓接口的制作就是把死的方法应用到具体问题上的过程,即用怎样的表达完成程序设计来实现模型。比如说遗传算法的方法步骤大家都知道,但是应用到具体问题上,编码、交换、变异等等怎么去做就是接口的制作。往往对于一道题目大家都能想到某种方法,可就是做不出来,这其实是因为接口不对导致的。做接口的技巧只能从不断地实践中习得,所以说建模的人任重道远。 另外,在平时训练时,团队讨论可以激烈一些,甚至可以吵架,但比赛时,一定要保持心平气和,不必激烈争论,大家各让3分,用最平和的方法讨论问题,往往能取得效果并且不耽误时间。经常有队伍在比赛期间发生不愉快,导致最后的失败,这是不应该发生的,毕竟大家为了一个共同的目标而奋斗,这种经历是很难得的。所以一定要协调好队员们之间的关系,这样才能保证正常发挥,顺利进行比赛。 美赛特点:一般人都认为美赛比国赛要难,这种难在思维上,美赛题目往往很新颖,一时间想不出用什么模型来解。这些题目发散性很强,需要查找大量文献来确定题目的真正意图,美赛更为注重思想,对结果的要求却不是很严格,如果你能做出一个很优秀的模型,也许结果并不理想也可能获得高奖。另外,美赛还难在它的实现,很多东西想到了,但实现起来非常困难,这需要较高的编程水平。 除了以上的差异,在实践过程中,美赛和国赛最大的区别有两点: 第一点区别当然是美赛要用英文写作,而且要阅读很多英文文献。对于文献阅读,可以安装有道词典,

2016年数学建模美赛A题题面及翻译

2016 MCM Problem A A Hot Bath A person fills a bathtub with hot water from a single faucet and settles into the bathtub to cleanse and relax. 一个人用一个水龙头让浴缸装满了热水,(然后?)睡进去来清洗和放松。 //那就先放到一定的程度,泡进去,然后边加水这样。 Unfortunately, the bathtub is not a spa-style tub with a secondary heating system and circulating jets, but rather a simple water containment vessel. 不幸的是,这个浴缸没有温泉热水模式,就是没有另外的加热系统和循环的喷嘴,而是个简单的水密闭容器。 After a while, the bath gets noticeably cooler, so the person adds a constant trickle of hot water from the faucet to reheat the bathing water. 不一会儿,这个水池明显的变冷了,所以这个人打开水龙头,加入了持续的细细的水,来加热这个浴缸里面的水。 The bathtub is designed in such a way that when the tub reaches its capacity, excess water escapes through an overflow drain. 这个浴缸设计成一种形式,当这个池子到达了它的容量,多余的水会通过一个溢出排水系统排出。 Develop a model of the temperature of the bathtub water in space and time to determine the best strategy the person in the bathtub can adopt to keep the temperature even throughout the bathtub and as close as possible to the initial temperature without wasting too much water. 设计一个浴缸里面的水温度关于空间和时间上的模型,去决定最好的策略,让这个人在浴缸里能够在不浪费太多的水的前提下,去尽量的靠近初始的温度。 Use your model to determine the extent to which your strategy depends upon the shape and volume of the tub, the shapeolume/temperature of the person in the bathtub, and the motions made by the person in the bathtub. 用你的模型去决定你的策略对以下因素的依赖程度(依赖关系)。因素为:缸的形状和容量,这个浴缸里面的人的形状,体积,温度,还有这个人在浴缸里面的动作。 If the person used a bubble bath additive while initially filling the bathtub to assist in cleansing, how would this affect you r model’s results? 如果这个人在一开始装满这个浴缸的时候,就加入了泡泡添加剂去帮助清洗,这个会如何影响你的模型的结果呢? In addition to the required one-page summary for your MCM submission, your report must include a one-page non-technical explanation for users of the bathtub that describes your strategy while explaining why it is so difficult to get an evenly maintained temperature throughout the bath water. 除了已经要求的一页的总结,你的报告必须含有一页的对浴缸使用者的非技术性的解释,去描述你的策略,同时解释为什么如此难以做到保持整个洗澡水的水温是均匀的。

2019数学建模美赛论文

2019 MCM/ICM Summary Sheet (Your team's summary should be included as the first page of your electronic submission.) Type a summary of your results on this page. Do not include the name of your school, advisor , or team members on this page. Ecosystems provide many natural processes to maintain a healthy and sustainable environment after human life. However, over the past decades, rapid industrial development and other anthropogenic activities have been limiting or removing ecosystem services. It is necessary to access the impact of human activities on biodiversity and environmental degradation. The main purpose of this work is to understand the true economic costs of land use projects when ecosystem services are considered. To this end, we propose an ecological service assessment model to perform a cost benefit analysis of land use development projects of varying sites, from small-scale community projects to large national projects. We mainly focus on the treatment cost of environmental pollution in land use from three aspects: air pollution, solid waste and water pollution. We collect pollution data nationwide from 2010 to 2015 to estimate economic costs. We visually analyze the change in economic costs over time via some charts. We also analyze how the economic cost changes with time by using linear regression method. We divide the data into small community projects data (living pollution data) and large natural data (industrial pollution data). Our results indicate that the economic costs of restoring economical services for different scales of land use are different. For small-scale land, according to our analysis, the treatment cost of living pollution is about 30 million every year in China. With the rapid development of technology, the cost is lower than past years. For large-scale land, according to our analysis, the treatment cost of industrial pollution is about 8 million, which is lower than cost of living pollution. Meanwhile the cost is trending down due to technology development. The theory developed here provides a sound foundation for effective decision making policies on land use projects. Key words: economic cost , ecosystem service, ecological service assesment model, pollution. Team Control Number For office use only For office use only T1 ________________ F1 ________________ T2 ________________ F2 ________________ T3 ________________ Problem Chosen F3 ________________ T4 ________________ F4 ________________ E

相关主题