搜档网
当前位置:搜档网 › 线性代数基础解系求法举例.pdf

线性代数基础解系求法举例.pdf

线性代数 基础和常考知识点

线性代数基础知识点 (),n T A r A n A A Ax x Ax A Ax A A A E οοοββ==??≠≠≠??∈=?可逆 的列(行)向量线性无关 的特征值全不为0 只有零解 , 0总有唯一解 是正定矩阵 R 12,s i A p p p p n B AB E AB E ?? ??? ??????? ??=????==?? 是初等阵 存在阶矩阵使得 或 ○ 注:全体n 维实向量构成的集合n R 叫做n 维向量空间. ()A r A n A A A Ax A ολ<=?==不可逆 0的列(行)向量线性相关 0是的特征值 有非零解,其基础解系即为关于0的?? ?? ?????特征向量 ○ 注 ()()a b r aE bA n aE bA aE bA x οολ+

√ 行列式的计算: ①行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零. ②若A B 与都是方阵(不必同阶),则 = =()mn A O A A O A B O B O B B O A A A B B O B O * = =* *=-1(拉普拉斯展开式) ③上三角、下三角、主对角行列式等于主对角线上元素的乘积. ④关于副对角线: (1)2 1121 21 1211 1 ()n n n n n n n n n n n a O a a a a a a a O a O ---* ==-K N N 1 (即:所有 取自不同行不同列的n 个元素的乘积的代数和) ⑤范德蒙德行列式:()1 22 22 12111112 n i j n j i n n n n n x x x x x x x x x x x ≤<≤---=-∏L L L M M M L 111 由m n ?个数排成的m 行n 列的表111212122212n n m m mn a a a a a a A a a a ?? ? ? = ? ??? L L M M M L 称为m n ?矩阵.记作:() ij m n A a ?=或m n A ? () 1121112 222* 12n T n ij n n nn A A A A A A A A A A A ?? ? ? == ? ??? L L M M M L ,ij A 为A 中各个元素的代数余子式. √ 逆矩阵的求法: ① 1 A A A * -= ○注: 1 a b d b c d c a ad bc --????= ? ?--???? 1 L L 主换位副变号 ②1()()A E E A -????→M M 初等行变换

大一线性代数的知识点

2009年线性代数必考的知识点 1、行列式 1. n 行列式共有2 n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系: (1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则 (1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90o ,所得行列式为2D ,则 (1)2 2(1) n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则 4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积 (1) 2 (1) n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B = =、 (1)m n C A O A A B B O B C = =-g ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1 (1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶 主子式; 7. 证明0A =的方法: ①、 A A =-; ②、反证法;

零基础数学学高数的方法

零基础数学学高数的方法 零基础数学学高数的方法1、数学基础要打牢 mba数学考试不像高考更不像奥数,要考察某一知识点的延伸,通过研究近几年的真题可以发现,试卷中的大多数题目都是对大纲知识点的直接考察。所以大家一定要把基础打牢,不要盲目追求深度,力争把基础分都拿到。如果连基础分都拿不到,难度分再没搞利索,那就得不偿失了。 那么如何打好数学基础呢?首先要通读教材,整理出大纲要求的知识点,形成知识网络,便于记忆;其次是深究各个知识点,对定义及用法着重分析。最后是对知识点进行融会贯通,通过做习题来巩固。 2、不同阶段,习题量应有所调整 一提起数学,很多人就会想起题海战术,题是需要做,但什么时候做,做多做少都是有讲究的。刚开始复习,基础又不是很好,应该以理论理解为主,先把相关概念弄清楚,可以用少量的习题来辅助理解。习题的选择也要注意,选择一些有针对性的习题来做,真正做到一个题消化一个知识点。 切忌一开始就以做题为主,不但会经常做错,打击信心,还得不到效果,浪费大量的时间。基础打牢之后习题就要多做了。通过做大量的习题来消化和巩固知识点,了解试题考查的维度,熟悉出题规律,另外,还要注意锻炼答题速度。在保证准确性的

基础上,还要提高速度,确实不是一件容易的事,必须通过大量的练习来实现。 3、合理规划复习时间并严格执行有的小伙伴们特别随便......没有一个严格的学习计划,想学了就学点......不想学就就去干别的......甚至学着后面的望着前面的......还有的考生复习之前有一个计划,但一到真正实施就管不住自己了,总是不能保质保量的完成任务。当然,我们也不建议完全脱产学习,但不对自己残忍就是对竞争对手的仁慈,要用对待阶级敌人的态度对待学习任务。 4、心态(老话长谈,但一定要说) 现在大家工作生活上的压力都比较大,每个人在mba复习过程中都会遇到一些困难,情绪上也会出现波动。适当聊聊天喝喝茶散散步是百试不爽的,实在没人聊可以找加油菌,总之要把自己的负面情绪发泄出来。 零基础数学学高数的技巧一、背数学 我曾经有一位学生数学成绩一塌糊涂,甚至都想放弃数学,去参加不要求数学成绩的院校招生。直至一天他想到“背数学”的学习方法,他写到: 这个技巧是:不懂的问题,直接看解答,先背起来再说。如此一来,一题一般只要5分钟便背下来,从量来看,可以追赶得上成绩好的同学。 各位猜猜看看,从开始背数学后,她的成绩变好了吗?结果是,她的成绩进步神速,高中三年级时,数学模拟考试成绩还进入全国排名,并应届考上东京大学医学院。比她小一岁的弟弟采用了

考研数学零基础备考阶段的复习建议

考研数学零基础备考阶段的复习建议考研数学零基础备考阶段的复习建议 第一阶段挑选适合自己的教材 1、高等数学(微积分)。这部分我用的同济大学的高等数学,一 共两册,是很不错的教材。 2、线性代数。这部分的教材我依旧用的同济大学的工程数学, 和经济类的数学差别并不大。只有向量空间和线性空间与线性变换 不用考。线性代数内容比较抽象,逻辑性比较强。但是它是三门中 学起来最简单的一门课,要注意前后知识点的联系,永乐大帝就是 这么教我们的。 3、概率论与数理统计。这部分的书我都没认真看,开始总觉得 时间还多就晃晃悠悠的看,后来觉得该快点看完就赶着看了,其实 也有学数学学疲劳了的原因。概率论这部分学刚开始学起来应该比 较困难,可能觉得比微积分难,因为这是数学中一种全新的研究方法。但是书一定得好好看,这部分内容看明白它的研究方法和明白 它的各种模型后就觉得不是那么难了。 第二阶段挑选一份高质量的复习资料 第三阶段听强化班看复习全书 开始听强化班是想把知识快速过一遍,但看完全书后真是有点脑袋不想想问题了的感觉。后来花了整整三天听了高数的一个强化班,开始感觉还好,后来又不想听课又不想看别的就茫然的撑着把课听 完了,没有多大收获,除了做了点笔记~后来我就主要看别的科目, 减少的数学的时间。对于辅导班吧,我觉得数学强化班还是有一定 的帮助,前提是你复习的还行了但是还觉得有些混。另外对于不同 的人选择是不同的,要看个人的.基础,基础好的话可以自己学,基 础差些老师带着学的效果还是很明显的。

第四阶段临近考试攻克真题 一、高等数学公式 根据考研大纲上的要求,我们要记的公式主要有导数公式,基本积分表,两个重要极限,三角函数公式,高阶导数公式——莱布尼 兹(Leibniz)公式和中值定理公式(很重要)等,有些公式确实是很长的,但也是有记忆技巧的。 二、概率与数理统计公式 根据考研大纲要求,我们需要记住的公式有:条件概率,独立事件,连续型随机变量概率分布,八大分布函数,一维随机变量,二 维随机变量,联合分布函数,大数定律和中心极限定理等。 首先我们对于自己记不住的公式要标明出来,推理一遍是必须的。还有就是把要记忆的数学知识编成歌谣、口诀或顺口溜,也是一种 不错的方法,便于记忆。比如一维、二维随机变量口诀有(自己总结的): 离散问模型,分布列表清,边缘用加乘,条件概率定联合,独立试矩阵; 连续必分段,草图仔细看,积分是关键,密度微分算; 离散先列表,连续后求导,分布要分段,积分画图算。 总之,真正的好方法就是时间,好记性不如烂笔头,实践出真理。考研是个积累的过程,你了解的越多,学习就越好,所以多记忆, 选择自己的记忆方法。预祝大家2018年考研数学考出满意的分数。 一、你的熟练程度怎样? 经过前期大量的题海战术,现阶段要明白自己的熟练程度是怎样的?在做真题中如果遇到陌生知识点或者不熟悉甚至感觉陌生的考点,一定要及时回归课本及参考资料进行巩固,彻底掌握。

线性代数知识点归纳

线性代数复习要点 第一部分 行列式 1. 排列的逆序数 2. 行列式按行(列)展开法则 3. 行列式的性质及行列式的计算 1.行列式的计算: ① (定义法)1212121112121222() 1212()n n n n n j j j n j j nj j j j n n nn a a a a a a D a a a a a a τ= = -∑ L L L L L M M M L 1 ②(降阶法)行列式按行(列)展开定理: 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零. ③ (化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积. ④ 若A B 与都是方阵(不必同阶),则 ==()mn A O A A O A B O B O B B O A A A B B O B O *==* *=-1 ⑤ 关 于 副 对角线: (1)2 1121 21 1211 1 () n n n n n n n n n n n a O a a a a a a a O a O ---* ==-K N N 1

⑥ 范德蒙德行列式:()1 22 22 12111112 n i j n j i n n n n n x x x x x x x x x x x ≤<≤---=-∏L L L M M M L 111 ⑦ a b -型公式:1 [(1)]()n a b b b b a b b a n b a b b b a b b b b a -=+--L L L M M M O M L ⑧ (升阶法)在原行列式中增加一行一列,保持原行列式不变的方法. ⑨ (递推公式法) 对n 阶行列式n D 找出n D 与1n D -或1n D -,2n D -之间的一种关系——称为递推公式,其中 n D ,1n D -,2n D -等结构相同,再由递推公式求出n D 的方法称为递推公式法. (拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和, 使问题简化以例计算. ⑩ (数学归纳法) 2. 对于n 阶行列式A ,恒有:1 (1)n n k n k k k E A S λλ λ-=-=+-∑,其中k S 为k 阶主子式; 3. 证明 0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值. 4. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 第二部分 矩阵 1.矩阵的运算性质 2.矩阵求逆

线性代数知识点归纳,超详细

线性代数复习要点 第一部分行列式 1. 排列的逆序数 2. 行列式按行(列)展开法则 3. 行列式的性质及行列式的计算 行列式的定义 1.行列式的计算: ①(定义法) ②(降阶法)行列式按行(列)展开定理: 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.

③(化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积. ④若都是方阵(不必同阶),则 ⑤关于副对角线: ⑥范德蒙德行列式: 证明用从第n行开始,自下而上依次的由下一行减去它上一行的倍,按第一列展开,重复上述操作即可。 ⑦型公式: ⑧(升阶法)在原行列式中增加一行一列,保持原行列式不变的方法. ⑨(递推公式法) 对阶行列式找出与或,之间的一种关系——称为递推公式,其中 ,,等结构相同,再由递推公式求出的方法称为递推公式法. (拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和,使问题简化以例计算. ⑩(数学归纳法) 2. 对于阶行列式,恒有:,其中为阶主子式;

3. 证明的方法: ①、; ②、反证法; ③、构造齐次方程组,证明其有非零解; ④、利用秩,证明; ⑤、证明0是其特征值. 4. 代数余子式和余子式的关系: 第二部分矩阵 1.矩阵的运算性质 2.矩阵求逆 3.矩阵的秩的性质 4.矩阵方程的求解 1.矩阵的定义由个数排成的行列的表称为矩阵. 记作:或 ①同型矩阵:两个矩阵的行数相等、列数也相等. ②矩阵相等: 两个矩阵同型,且对应元素相等. ③矩阵运算 a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减). b. 数与矩阵相乘:数与矩阵的乘积记作或,规定为. c. 矩阵与矩阵相乘:设, ,则, 其中 注:矩阵乘法不满足:交换律、消去律, 即公式不成立.

线性代数知识点总结

线性代数知识点总结 第一章行列式 (一)要点 1、 二阶、三阶行列式 2、 全排列和逆序数,奇偶排列(可以不介绍对换及有关定理) ,n 阶行列式的定义 3、 行列式的性质 4、 n 阶行列式 ^a i j ,元素a j 的余子式和代数余子式,行列式按行(列)展开定理 5、 克莱姆法则 (二)基本要求 1 、理解n 阶行列式的定义 2、掌握n 阶行列式的性质 3 、会用定义判定行列式中项的符号 4、理解和掌握行列式按行(列)展开的计算方法,即 a 1i A Ij ' a 2i A 2 j ' a ni A nj ^ 5、会用行列式的性质简化行列式的计算,并掌握几个基本方法: 归化为上三角或下三角行列式, 各行(列)元素之和等于同一个常数的行列式, 利用展开式计算 6、 掌握应用克莱姆法则的条件及结论 会用克莱姆法则解低阶的线性方程组 7、 了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件 第二章矩阵 (一)要点 1、 矩阵的概念 m n 矩阵A =(a j )mn 是一个矩阵表。当 m =n 时,称A 为n 阶矩阵,此时由 A 的 元素按原来排列的形式构成的 n 阶行列式,称为矩阵 A 的行列式,记为 A . 注:矩阵和行列式是两个完全不同的两个概念。 2、 几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵 a i 1A j 1 ■ a i2A j 2 ? a in A jn = 〔 D '

3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法 (1矩阵的乘法不满足交换律和消去律,两个非零矩阵相乘可能是零矩阵。如果两矩阵A与B相乘,有AB = BA ,则称矩阵A与B可换。注:矩阵乘积不一定符合交换 (2)方阵的幕:对于n阶矩阵A及自然数k, A k=A A A , 1 k个 规定A° = I ,其中I为单位阵. (3) 设多项式函数(J^a^ k?a1?k^l Z-心律??a k,A为方阵,矩阵A的 多项式(A) = a0A k?a1A k' …-?-a k jA ■ a k I ,其中I 为单位阵。 (4)n阶矩阵A和B ,贝U AB=IAB . (5)n 阶矩阵A ,则∣∕Λ =λn A 4、分块矩阵及其运算 5、逆矩阵:可逆矩阵(若矩阵A可逆,则其逆矩阵是唯一的);矩阵A的伴随矩阵记 * 为A , AA* = A*A = AE 矩阵可逆的充要条件;逆矩阵的性质。 6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价 意义下的标准形;矩阵A可逆的又一充分必要条件:A可以表示成一些初等矩阵的乘积; 用初等变换求逆矩阵。 7、矩阵的秩:矩阵的k阶子式;矩阵秩的概念;用初等变换求矩阵的秩 8、矩阵的等价 (二)要求 1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等 2、了解几种特殊的矩阵及其性质 3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质 4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时,会用伴随矩阵求逆矩阵 5、了解分块矩阵及其运算的方法 (1)在对矩阵的分法符合分块矩阵运算规则的条件下,其分块矩阵的运算在形式上与不分块矩阵的运算是一致的。 (2)特殊分法的分块矩阵的乘法,例如A m n, B nl,将矩

线性代数知识点总结

大学线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??== 、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D等于零 特殊行列式: ①转置行列式:33 23 13 3222123121113332 31 232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式

线性代数基本定理-新版.pdf

线性代数基本定理一、矩阵的运算 1.不可逆矩阵的运算不满足消去律AB=O,A 也可以不等于 O 11-1-1?è???÷1-1-11?è???÷=0000?è?? ? ÷ 2.矩阵不可交换 (A+B)2=A 2+AB+BA+B 2 (AB)k =ABABABAB ...A B 3.常被忽略的矩阵运算规则 (A+B)T =A T +B T (l A)T =l A T

4.反称矩阵对角线元素全为0 4.矩阵逆运算的简便运算 (diag(a 1,a 2 ,...,a n ))-1=diag( 1 a 1 , 1 a 2 ,..., 1 a n ) (kA)-1=1 k A-1 方法 1.特殊矩阵的乘法 A.对角矩阵乘以对角矩阵,结果仍为对角矩阵。且: B.上三角矩阵乘以上三角矩阵,结果为上三角矩阵2.矩阵等价的判断 A@B?R(A)=R(B) 任何矩阵等价于其标准型

3.左乘初等矩阵为行变换,右乘初等矩阵为列变换如:m*n 的矩阵,左乘 m 阶为行变换,右乘 n 阶为列变换 4. 给矩阵多项式求矩阵的逆或证明某个矩阵可逆如:A 2 -A-2I =O ,证明(A+2I)可逆。把2I 项挪到等式右边,左边凑出含有 A+2I 的一个多项式, 在确保A 平方项与 A 项的系数分别为原式的系数情况下,看I 项多加或少加了几个。5.矩阵的分块进行计算加法:分块方法完全相同 矩阵乘法(以A*B 为例):A 的列的分法要与B 行的分法一 致,如: 如红线所示:左边矩阵列分块在第 2列与第3列之间,那么,右边矩阵分 块在第二行与第三行之间 1-1003-1000100002-1 é? êêêêù?úúúú1000-1000013-1021 4 é? ê êêêù? úúúú

最全线性代数知识表

线性代数公式 1-------4 宋利常 线性代数 (),n T A r A n A A Ax x Ax A Ax A A A E οοοββ==??≠≠≠??∈=?可逆 的列(行)向量线性无关 的特征值全不为0 只有零解 , 0总有唯一解 是正定矩阵 R 12,s i A p p p p n B AB E AB E ?? ??? ??????? ??=????==?? 是初等阵 存在阶矩阵使得 或 ○ 注:全体n 维实向量构成的集合n R 叫做n 维向量空间. ()A r A n A A A Ax A ολ<=?==不可逆 0的列(行)向量线性相关 0是的特征值 有非零解,其基础解系即为关于0的?? ?? ?????特征向量 ()A r A n A A A Ax A ολ<=?==不可逆 0的列(行)向量线性相关 0是的特征值 有非零解,其基础解系即为关于0的?? ?? ?????特征向量 √ 行列式的计算: ⑤范德蒙德行列式:()12222 12 11111 2n i j n j i n n n n n x x x x x x x x x x x ≤<≤---=-∏ 1 11 由 m n ?个数排成的m 行n 列的表11 12121 2221 2n n m m mn a a a a a a A a a a ?? ? ? = ? ? ?? 称为 m n ?矩阵.记作:() ij m n A a ?=或 m n A ? () 1121112222*12n T n ij n n nn A A A A A A A A A A A ?? ? ? == ? ? ?? ,ij A 为 A 中各个元素的代数余子式. √ 逆矩阵的求法: ① 1A A A *-= ○注: 1 a b d b c d c a ad bc --????= ? ?--?? ??1 主换位副变号 ②1()()A E E A -????→ 初等行变换 1 2 3111 1 2 13a a a a a -???? ? ?= ? ? ? ? ?? ?? ? 3 2 1 1 1 112 13 a a a a a -???? ? ? = ? ? ? ? ????? √ 矩阵方程的解法(0A ≠):设法化成AX B XA B ==(I) 或 (II) A B E X ????→ 初等行变换 (I)的解法:构造()() T T T T A X B X X =(II)的解法:将等式两边转置化为, 用(I)的方法求出,再转置得 1零向量是任何向量的线性组合,零向量与任何同维实向量正交. 2单个零向量线性相关;单个非零向量线性无关. 3部分相关,整体必相关;整体无关,部分必无关. (向量个数变动)

线性代数知识点全归纳

线性代数知识点 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90o ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==-g ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;

线性代数必考知识点归纳

线性代数必考的知识点 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90 ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、(1)m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解;

线性代数讲义

线性代数讲义 线性代数攻略 线性代数由两部分组成: 第一部分:用矩阵解方程组(判断解的存在性,用有限个解表示所有的解)第二部分:用方程组解矩阵(求特征值,特征向量,对角化,化简实二次型)主观题对策 1. 计算题精解 计算题较之选择题与填空题难度几乎没有增加,但计算量大大增加,故出错的机会大幅增长,因此应力求用简便方法解决问题. 一.行列式的计算: 单纯计算行列式的题目大概永远不会出现.所以需要结合其它的知识点. l 核心内容 范德蒙行列式/余子式/代数余子式/Cramer法则: l 典型方法 降阶法(利用Gauss消元法化为三角矩阵:常常是将所有的行或列加到一起)/特征值法(矩阵的行列式等于其特征值之积)/行列式的其它性质(转置矩阵/逆矩阵/伴随矩阵/矩阵之积) 例1 计算下述三个n阶矩阵的行列式: . 解先算|B|=xn;再算|A|: 故|C|= |A|(-1)(1+?+n)+[(n+1)+…+(2n)] |B-1| =(-1)(1+2n)n(n+x)/x. 例2(2004-4) 设矩阵 ,矩阵B满足ABA*=2BA*+E,则|B|=[ ]. 分析化简可得(A-2E)BA*=E;于是|A-2E||B||A*|=1. 又|A*|=9,|A-2E|=1,所以|B|=1/9. (切忌算B=(A-2E)-1(A*)-1.) 例3 设4×4矩阵A=(x,a,b,g), B=(h,b,g,a). 若|A|=1, |B|=2,则行列式|A+B|=[ ].

正解:|A+B|=|x+h, a+b, b+g, g+a|=|x+h, 2(a+b+g), b+g, g+a|=2|x+h, a+b+g, b+g, g+a| =2|x+h, a, b+g, g+a|=2|x+h, a, b+g, g|=2|x+h, a, b, g|=2(|x, a, b, g|+|h, a, b, g|)=2(|A|+|B|)=6. 巧解:正解令人羡慕,但可能想不起来.于是令A=E,则.但|B|=2,所以取最简单的 .于是 ,故|A+B|=6. 例4 若四阶方阵A的特征值分别为-1,1,2,3,则行列式|A-1+2A*|=[ ]. 解此题考查对特征值的理解.特征值的性质中最重要(也是最简单的)的有两条,即所有特征值的和等于矩阵的迹(=对角线元素之和),而所有特征值的积等于矩阵的行列式.因此|A|= -6!剩余的就是简单的变形了: A-1+2A* = A-1 (E+2A A*) = A-1 (E+2|A|E)=-11A-1. 故|A-1+2A*|=|-11A-1|=(-11)4|A-1|=-114/6. 本题有巧解,你想到了吗?对!就让A是那个满足条件的最简单的矩阵! 例2(上海交大2002) 计算行列式 其中,. 本题只要对特征多项式有一定认识,则易如反掌.所求行列式对应的矩阵A=xE+B, 其中B=(aibj)的任意两行均成比例,故其秩为1(最重要的矩阵类型之一)或0,但由题中所给条件,B10,于是,B至少有n-1个特征值为0,另有一特征值等于trB= a1b1+ a2b2+…+ anbn10. 从而,A有n-1个特征值x,另有一个特征值x+trB.OK 例3(2001) 设A为三阶矩阵,X为三维向量,X,AX, A2X线性无关,A3X=4AX-3A2X.试计算行列式|2A2+3E|. 很多人觉得此题无从下手,实在冤枉了出题人.由A3X=2AX-3A2X可知, A(A2+3A-4E)X=0.由此知, |A|=0:否则,A可逆,X,AX, A2X将线性相关,矛盾!从而(A2+3A-4E)X=0:故X是齐次线性方程组(A2+3A-4E)Y=0的非零解.于是|A2+3A-4E|=0.故A的三个特征值为0,1,-4.于是2A2+3E的三个特征值为3,5,35.所以, |2A2+3E|=3′5′35=525. 例4(1995) 设n阶矩阵A满足AA¢=I,|A|<0,求|A+I|. 解首先, 1=|AA¢|=|A|2,所以|A|=-1. 其次, |A+I|=|A+AA¢|=|A||I+A¢|=|A||I+A|=-|I+A|, 故|A+I|=0. (涉及的知识点: |A|=|A¢|, (A+B)¢=A¢+B¢.) 例5(1999)设A是m′n矩阵,B是n′m矩阵,则

《线性代数》知识点 归纳整理

《线性代数》知识点归纳整理诚毅 学生编 01、余子式与代数余子式 ............................................................................................................................................. - 2 - 02、主对角线 ................................................................................................................................................................. - 2 - 03、转置行列式 ............................................................................................................................................................. - 2 - 04、行列式的性质 ......................................................................................................................................................... - 3 - 05、计算行列式 ............................................................................................................................................................. - 3 - 06、矩阵中未写出的元素 ............................................................................................................................................. - 4 - 07、几类特殊的方阵 ..................................................................................................................................................... - 4 - 08、矩阵的运算规则 ..................................................................................................................................................... - 4 - 09、矩阵多项式 ............................................................................................................................................................. - 6 - 10、对称矩阵 ................................................................................................................................................................. - 6 - 11、矩阵的分块 ............................................................................................................................................................. - 6 - 12、矩阵的初等变换 ..................................................................................................................................................... - 6 - 13、矩阵等价 ................................................................................................................................................................. - 6 - 14、初等矩阵 ................................................................................................................................................................. - 7 - 15、行阶梯形矩阵与行最简形矩阵 ......................................................................................................................... - 7 - 16、逆矩阵 ..................................................................................................................................................................... - 7 - 17、充分性与必要性的证明题 ..................................................................................................................................... - 8 - 18、伴随矩阵 ................................................................................................................................................................. - 8 - 19、矩阵的标准形: ..................................................................................................................................................... - 9 - 20、矩阵的秩: ............................................................................................................................................................. - 9 - 21、矩阵的秩的一些定理、推论 ................................................................................................................................. - 9 - 22、线性方程组概念 ................................................................................................................................................... - 10 - 23、齐次线性方程组与非齐次线性方程组(不含向量)........................................................................................ - 10 - 24、行向量、列向量、零向量、负向量的概念 ....................................................................................................... - 11 - 25、线性方程组的向量形式 ....................................................................................................................................... - 11 - 26、线性相关与线性无关的概念 ......................................................................................................................... - 12 - 27、向量个数大于向量维数的向量组必然线性相关.............................................................................................. - 12 - 28、线性相关、线性无关;齐次线性方程组的解;矩阵的秩这三者的关系及其例题...................................... - 12 - 29、线性表示与线性组合的概念 ......................................................................................................................... - 12 - 30、线性表示;非齐次线性方程组的解;矩阵的秩这三者的关系其例题.......................................................... - 12 - 31、线性相关(无关)与线性表示的3个定理 ....................................................................................................... - 12 - 32、最大线性无关组与向量组的秩 ........................................................................................................................... - 12 - 33、线性方程组解的结构 ........................................................................................................................................... - 12 -

相关主题