搜档网
当前位置:搜档网 › ANSYS WORKBENCH提供的六种接触类型

ANSYS WORKBENCH提供的六种接触类型

ANSYS WORKBENCH提供的六种接触类型
ANSYS WORKBENCH提供的六种接触类型

ANSYS WORKBENCH提供了6种接触类型,这些接触类型大多只对面接触使适用。

(1)bonded.使用绑定以后,在接触面或者接触边之间不存在切向的相对滑动或者法向的相对分离。这是缺省的接触类型,适用于所有的接触区域(实体接触,面接触,线接触)。

(2)no separation.这与绑定类似。在接触面或者接触线之间不允许发生法向的相对分离,但是允许发生少量的切向无摩擦滑动。

(3)frictionless:用于模拟无摩擦的单边接触。所谓单边接触,就是说,一旦两个物体之间出现了分离,则法向力就为零。因此当外力发生改变时,接触面之间可能会分开,也可能会闭合。这种情况下假设摩擦系数为零,即当发生切向相对滑动时,没有摩擦力。

(4)rough:与无摩擦接触类型相似。它模拟非常粗糙的接触,保证两个物体之间只是发生静摩擦,而不会发生切向的滑移,从而不会产生滑动摩擦。它相当于在两个物体之间施加了无限大的摩擦系数。

(5)frictional:有摩擦的接触。这是最实际的情况,两个接触面之间既可以法向分离,也可以切向滑动。当切向外力大于最大静摩擦力后,发生切向滑动。一旦发生切向滑动后,会在接粗面之间出现滑动摩擦力,该滑动摩擦力要根据正压力和摩擦系数来计算。此时需要用户输入摩擦系数。

(6)forced frictional sliding:该选项只对刚体动力学适用。它与frictional类型类似,只是没有静摩擦阶段。此时,系统会在每个接触点上施加一个切向的阻力。该切向阻力正比于法向接触力。

到底使用哪种接触类型,取决于你需要解决的问题。如果(1)需要模拟两个物体之间轻微的分离(2)要获得接接触面附近的应力,那么可以考虑下列三种接触类型:frictionless,rough和frictional.它们可以模拟间隙,并能更精确的建模真实的接触区域。不过使用这三种接触会导致更长的求解时间,也可能会导致收敛问题。如果出现了收敛问题,那么可以对接触区域使用更细的网格。

笔者的点评如下:

装配体的分析中,如何对两个物体之间的连接关系进行建模是一个关键技术问题。对于连接关系,总体考虑如下:

(1)如果两个相邻物体在分析中始终不会有相对运动,最好直接在DM中用多体部件来表达,这最省事。

(2)如果两个相邻物体在分析中存在相对运动,而我们并不关注其连接点附近的应力情况,那么用运动副来表述更简单。

(3)如果相邻两物体在分析中有相对运动,而且我们对这种相对运动的接触面及其附近点的应力情况感兴趣,那么使用接触。

关于接触类型的分类问题。

实际上,接触就是依据两个物体之间是否有切向和法向的相对分离来进行划分的。在两个相互接触的物体之间,也只能发生这两种运动。要么,在法线方向上可以分开;要么在切线方向上可以发生相对移动。

如果

(1)法线方向不可分开,切线方向也不可发生相对滑动,则使用boneded。

(2)法线方向不可分开,切线方向可以发生轻微的无摩擦滑动,则使用no separation.

(3) 法线方向可以分开,切线方向不可以发生相对滑动,则用rough.

(4) 法线方向可以分开,切线方向可以发生相对滑动,且没有摩擦力。则是frictionless。

(5) 法线方向可以分开,切线方向可以发生相对滑动,存在摩擦力。则是frictional。

ansys_接触定义

接触问题是一种高度非线性行为,需要较大的计算资源,为了进行实为有效的计算,理解问题的特性和建立合理的模型是很重要的。 接触问题存在两个较大的难点:其一,在你求解问题之前,你不知道接触区域,表面之间是接触或分开是未知的,突然变化的,这随载荷、材料、边界条件和其它因素而定;其二,大多的接触问题需要计算摩擦,有几种摩擦和模型供你挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。 一般的接触分类 接触问题分为两种基本类型:刚体─柔体的接触,半柔体─柔体的接触,在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触,另一类,柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。 ANSYS接触能力 ANSYS支持三种接触方式:点─点,点─面,平面─面,每种接触方式使用的接触单元适用于某类问题。 为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个结点。如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元,有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元,至于ANSTS使用的接触单元和使用它们的过程,下面分类详述。 点─点接触单元 点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,你需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下) 如果两个面上的结点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─与的接触问题的典型例子。 点─面接触单元 点─面接触单元主要用于给点─面的接触行为建模,例如两根梁的相互接触。 如果通过一组结点来定义接触面,生成多个单元,那么可以通过点─面的接触单元来模拟面─面的接触问题,面即可以是刚性体也可以是柔性体,这类接触问题的一个典型例子是插头到插座里。 使用这类接触单元,不需要预先知道确切的接触位置,接触面之间也不需要保持一致的网格,并且允许有大的变形和大的相对滑动。 Contact48和Contact49都是点─面的接触单元,Contact26用来模拟柔性点─刚性面的接触,对有不连续的刚性面的问题,不推荐采用Contact26因为可能导致接触的丢失,在这种情况下,Contact48通过使用伪单元算法能提供较好的建模能力。 面─面的接触单元 ANSYS支持刚体─柔体的面─面的接触单元,刚性面被当作“目标”面,分别用Targe169和Targe170 来模拟2─D和3—D的“目标”面,柔性体的表面被当作“接触”面,用 Conta171,Conta172,Conta173,Conta174来模拟。一个目标单元和一个接单元叫作一个“接触对”程序通过一个共享的实常号来识别“接触对”,为了建立一个“接触对”给目标单元和接触单元指定相同的实常的号。

ansys模态分析及详细过程

压电变换器的自振频率分析及详细过程 1.模态分析的定义及其应用 模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。 ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。 ANSYS提供的模态提取方法有:子空间法(subspace)、分块法(block lancets),缩减法(reduced/householder)、动态提取法(power dynamics)、非对称法(unsymmetric),阻尼法(damped), QR阻尼法(QR damped)等,大多数分析都可使用子空间法、分块法、缩减法。 ANSYS的模态分析是线形分析,任何非线性特性,例如塑性、接触单元等,即使被定义了也将被忽略。 2.模态分析操作过程 一个典型的模态分析过程主要包括建模、模态求解、扩展模态以及观察结果四个步骤。 (1).建模 模态分析的建模过程与其他分析类型的建模过程是类似的,主要包括定义单元类型、单元实常数、材料性质、建立几何模型以及划分有限元网格等基本步骤。 (2).施加载荷和求解 包括指定分析类型、指定分析选项、施加约束、设置载荷选项,并进行固有频率的求解等。 指定分析类型,Main Menu- Solution-Analysis Type-New Analysis,选择Modal。 指定分析选项,Main Menu-Solution-Analysis Type-Analysis Options,选择MODOPT(模态提取方法〕,设置模态提取数量MXPAND. 定义主自由度,仅缩减法使用。 施加约束,Main Menu-Solution-Define Loads-Apply-Structural-Displacement。 求解,Main Menu-Solution-Solve-Current LS。 (3).扩展模态 如果要在POSTI中观察结果,必须先扩展模态,即将振型写入结果文件。过程包括重新进入求解器、激话扩展处理及其选项、指定载荷步选项、扩展处理等。 激活扩展处理及其选项,Main Menu-Solution-Load Step Opts-Expansionpass-Single Expand-Expand modes。 指定载荷步选项。 扩展处理,Main Menu-solution-Solve-Current LS。 注意:扩展模态可以如前述办法单独进行,也可以在施加载荷和求解阶段同时进行。本例即采用了后面的方法 (4).查看结果 模态分析的结果包括结构的频率、振型、相对应力和力等

ANSYS高级分析-子结构

1 引言 在ANSYS平台上,所谓子结构技术就是将一组单元用矩阵凝聚为一个单元过程的技术,切吧这个单一的矩阵单元称为超单元。在ANSYS分析中,超单元可以象其他单元类型一样使用。唯一的区别就是必须先进行结构生成分析以生成能够利用的超单元。但子结构并非在所有ANSYS模块中都能利用,目前ANSYS子结构技术可以在ANSYS/Mutiphysics,ANSYS/Mechanical和ANSYS/Structural中使用。 在ANSYS平台上,使用子结构的目的主要是为了节省机时,并且允许在比较有限的计算机设备资源的基础上求解超大规模的问题。比如进行非线性分析和带有大量重复几何结构的分析。在非线性分析中,可以将模型线性部分作成子结构,这部分的单元矩阵就不用在非线性迭代过程中重复计算。而在有重复几何结构的模型中(如有四条腿的桌子),可以对于重复的部分生成超单元,然后将它拷贝到不同的位置,这样做可以节省大量的计算时间和计算机资源。 子结构还用于模型有大转动的情况下。对于这些模型,ANSYS假定每个结构都是围绕其质心转动的。在三维情况下,子结构有三个转动自由度和三个平动自由度。在大转动模型中,用户在使用部分之前无须对子结构施加约束,因为每个子结构都是作为一个单元进行处理,是允许刚体位移的。 对于大型三维问题的分析而言,需用磁盘空间相对于一个普通计算机系统来说太庞大了,在这种情况下,用户可以通过子结构将问题分块进行分析,从而使得每一块对于计算机系统来说都是可以计算和承受的。 2 ANSYS子结构使用步骤 ANSYS子结构使用过程分为以下三个步骤: 1)ANSYS子结构生成部分 生成部分就是将普通的有限元单元凝聚为一个超单元。凝聚是通过定义一组主自由度来实现的。主自由度用于定义超单元与模型中其他单元的边界,提取模型的动力学特性。图1是一个板状构件用接触单元分析的示意。由于接触单元需要迭代计算,将板状构件形成子结构将显著地节省机时。本例中,主自由度是板与接触单元相连的自由度。 图1 子结构使用示例 2)ANSYS子结构使用部分 用部分就是将超单元与模型整体相连进行分析的部分。整个模型可以是一个超单元,也可以象上例一样是超单元与非超单元相连的。使用部分的计算只是超单元的凝聚(自由度计算仅限于主自由度)和非超单元的全部计算。

基于Ansys Workbench的圆柱销接触分析

前面一篇基于Ansys经典界面得接触分析例子做完以后,不少朋友希望了解该例子在Workbench中就是如何完成得。我做了一下,与大家共享,不一定正确。毕竟这种东西,教科书上也没有,我只就是按照自己得理解在做,有错误得地方,恳请指正。 1.问题描述 一个钢销插在一个钢块中得光滑销孔中。已知钢销得半径就是0、5 units, 长就是2、5units,而钢块得宽就是4 Units,长4 Units,高为1Units,方块中得销孔半径为0、49units,就是一个通孔。钢块与钢销得弹性模量均为36e6,泊松比为0、3、由于钢销得直径比销孔得直径要大,所以它们之间就是过盈配合。现在要对该问题进行两个载荷步得仿真。 (1)要得到过盈配合得应力。 (2)要求当把钢销从方块中拔出时,应力,接触压力及约束力。 2.问题分析 由于该问题关于两个坐标面对称,因此只需要取出四分之一进行分析即可。 进行该分析,需要两个载荷步:

第一个载荷步,过盈配合。求解没有附加位移约束得问题,钢销由于它得几何尺寸被销孔所约束,由于有过盈配合,因而产生了应力。 第二个载荷步,拔出分析。往外拉动钢销1、7 units,对于耦合节点上使用位移条件。打开自动时间步长以保证求解收敛。在后处理中每10个载荷子步读一个结果。 本篇只谈第一个载荷步得计算。 3.生成几何体 上述问题就是ANSYS自带得一个例子。对于几何体,它已经编制了生成几何体得命令流文件。所以,我们首先用经典界面打开该命令流文件,运行之以生成四分之一几何体;然后导出为一个IGS文件,再退出经典界面,接着再到WORKBENCH中,打开该IGS文件进行操作。 (3、1)首先打开ANSYSAPDL14、5、 (3、2)然后读入已经做好得几何体。从【工具菜单】-->【>【Read Input From】打开导入文件对话框

ansys-workbench-接触的总结

①下面对非对称行为接触表面的正确选择给出选择指导: –如果一凸的表面要和一平面或凹面接触,应该选取平面或凹面为目标面. –如果一个表面有粗糙的网格而另一个表面网格细密,则应选择粗糙网格表面为目标面. –如果一个表面比另一个表面硬,则硬表面应为目标面. –如果一个表面为高阶而另一个为低阶,则低阶表面应为目标面. –如果一个表面大于另一个表面,则大的表面应为目标面. ②法向刚度WB-Mechanical系统默认自动设定。 –用户可以输入“法向刚度因子Normal Stiffness Factor” (FKN) 它是计算刚度代码的乘子.因子越小,接触刚度就越小。 ?默认 FKN =10 (对于绑定和不分离的接触) ?默认 FKN=10(其他形式接触) 默认 FKN1.0 (其他形式接触) ?接触问题法向刚度选择一般准则: –体积为主的问题: 用“Program Controlled”或手动输入“Normal Stiffness Factor”为“1” –弯曲为主的问题: 手动输入“Normal Stiffness Factor”为“0.01”到“0.1”之 间的数值。 -在大变形问题的无摩擦或摩擦接触中建议使用“Augmented Lagrange” 法向接触刚度 knormal是影响精度和收敛行为最重要的参数. –刚度越大,结果越精确,收敛变得越困难. –如果接触刚度太大,模型会振动,接触面会相互弹开。 - 其中update stifness 设置可以控制计算收敛与否。

③ -刚度增加, 渗透减少,而最大压力增加. 并且通常会有更多的迭代和更长运行时间 ④ 不管使用了何种接触行为 (对称或反对称), 模型的变形和等效应力本质 是相同的. 对称行为可以提高收敛. 但对称接触结果不容易解释,为接触面与目标面结果的平均值。 0.0032902 0.0033033 0.0033052 0.0033055 0.0033053 565.05Mp a 774.12Mp a 811.34Mp a 816.26Mp a 812.78Mp a 0.011864 0.0016253 0.0017035 0.000017138 0.000019984 17 17 20 24 57

Ansys非线性接触分析和设置

Ansys非线性接触分析和设置 5.4.9 设置实常数和单元关键选项 程序使用20个实常数和数个单元关键选项,来控制面─面接触单元的接触。参见《ANSYS Elements Reference》中对接触单元的描述。 5.4.9.1 实常数 在20个实常数中,两个(R1和R2)用来定义目标面单元的几何形状。剩下的用来控制接触面单元。 R1和R2 定义目标单元几何形状。 FKN 定义法向接触刚度因子。 FTOLN 是基于单元厚度的一个系数,用于计算允许的穿透。 ICONT 定义初始闭合因子。 PINB 定义“Pinball"区域。 PMIN和PMAX 定义初始穿透的容许范围。 TAUMAR 指定最大的接触摩擦。 CNOF 指定施加于接触面的正或负的偏移值。 FKOP 指定在接触分开时施加的刚度系数。 FKT 指定切向接触刚度。 COHE 制定滑动抗力粘聚力。 TCC 指定热接触传导系数。 FHTG 指定摩擦耗散能量的热转换率。 SBCT 指定 Stefan-Boltzman 常数。 RDVF 指定辐射观察系数。 FWGT 指定在接触面和目标面之间热分布的权重系数。

FACT 静摩擦系数和动摩擦系数的比率。 DC 静、动摩擦衰减系数。 命令: R GUI:main menu> preprocessor>real constant 对实常数 FKN, FTOLN, ICONT, PINB, PMAX, PMIN, FKOP 和 FKT,用户既可以定义一个正值,也可以定义一个负值。程序将正值作为比例因子,将负值作为绝对值。程序将下伏单元的厚度作为ICON,FTOLN,PINB,PMAX 和 PMIN 的参考值。例如 ICON = 0.1 表明初始闭合因子是“0.1*下层单元的厚度”。然而,ICON = -0.1 则表示真实调整带是 0.1 单位。如果下伏单元是超单元,则将接触单元的最小长度作为厚度。参见图5-8。 图5-8 下层单元的厚度 在模型中,如果单元尺寸变化很大,而且在实常数如 ICONT, FTOLN, PINB, PMAX, PMIN 中应用比例系数,则可能会出现问题。因为从比例系数得到的实际结果,取决于下层单元的厚度,这就可能引起大、小单元之间的重大变化。如果出现这一问题,请用绝对值代替比例系数。 TCC, FHTG, SBCT, RDVF 和 FWGT 仅用于热接触分析[KEYOPT(1)=1]。 5.4.9.2 单元关键选项 每种接触单元都包括数个关键选项。对大多的接触问题,缺省的关键选项是合适的。而在某些情况下,可能需要改变缺省值。下面是可以控制接触行为的一些关键选项: 自由 度 KEYOPT(1) 接触算法(罚函数+拉格朗日乘子或罚函数) KEYOPT(2) 存在超单元时的应力状态(仅2D) KEYOPT(3)

ansys接触定义

1概述 接触问题是一种高度非线性行为,需要较大的计算资源,为了进行实为有效的计算,理解问题的特性和建立合理的模型是很重要的。 接触问题存在两个较大的难点:其一,在你求解问题之前,你不知道接触区域,表面之间是接触或分开是未知的,突然变化的,这随载荷、材料、边界条件和其它因素而定;其二,大多的接触问题需要计算摩擦,有几种摩擦和模型供你挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。 一般的接触分类 接触问题分为两种基本类型:刚体─柔体的接触,半柔体─柔体的接触。 (1)刚-柔接触 在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触。 (2)柔-柔接触 柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。 2ANSYS接触能力 ANSYS支持三种接触方式:点─点,点─面,平面─面,每种接触方式使用的接触单元适用于某类问题。为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个结点。如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元,有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元,至于ANSYS使用的接触单元和使用它们的过程,下面分类详述。 2.1点─点接触单元 点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,你需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下) 如果两个面上的结点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─面的接触问题的典型例子。

ANSYS—接触单元说明

参考ANSYS的中文帮助文件 接触问题(参考ANSYS的中文帮助文件) 当两个分离的表面互相碰触并共切时,就称它们牌接触状态。在一般的物理意义中,牌接触状态的表面有下列特点: 1、不互相渗透; 2、能够互相传递法向压力和切向摩擦力; 3、通常不传递法向拉力。 接触分类:刚性体-柔性体、柔性体-柔性体 实际接触体相互不穿透,因此,程序必须在这两个面间建立一种关系,防止它们在有限元分析中相互穿过。 ――罚函数法。接触刚度 ――lagrange乘子法,增加一个附加自由度(接触压力),来满足不穿透条件――将罚函数法和lagrange乘子法结合起来,称之为增广lagrange法。 三种接触单元:节点对节点、节点对面、面对面。 接触单元的实常数和单元选项设臵: FKN:法向接触刚度。这个值应该足够大,使接触穿透量小;同时也应该足够小,使问题没有病态矩阵。FKN值通常在0.1~10之间,对于体积变形问题,用值1.0(默认),对弯曲问题,用值0.1。 FTOLN:最大穿透容差。穿透超过此值将尝试新的迭代。这是一个与接触单元下面的实体单元深度(h)相乘的比例系数,缺省为0.1。此值太小,会引起收敛困难。 ICONT:初始接触调整带。它能用于围绕目标面给出一个“调整带”,调整带内任何接触点都被移到目标面上;如果不给出ICONT值,ANSYS根据模型的大小提供一个较小的默认值(<0.03= PINB:指定近区域接触范围(球形区)。当目标单元进入pinball区时,认为它处于近区域接触,pinball区是围绕接触单元接触检测点的圆(二维)或球(三维)。可以用实常数PINB调整球形区(此方法用于初始穿透大的问题是必要的)PMIN和PMAX:初始容许穿透容差。这两个参数指定初始穿透范围,ANSYS把整个目标面(连同变形体)移到到由PMIN和PMAX指定的穿透范围内,而使其成为闭合接触的初始状态。初始调整是一个迭代过程,ANSYS最多使用20个迭代步把目标面调整到PMIN和PMAX范围内,如果无法完成,给出警告,可能需要修改几何模型。 TAUMAX:接触面的最大等效剪应力。给出这个参数在于,不管接触压力值多大,只要等效剪应力达到最大值TAUMAX,就会发生滑动。该剪应力极限值通常用于接触压力会变得非常大的情况。 CNOF:指定接触面偏移。+CNOF增加过盈、-CNOF减少过盈或产生间隙、CNOF能与几何穿透组合应用。 FKOP:接触张开弹簧刚度。针对不分离或绑定接触模型,需要设臵实常数FKOP,该常数为张开接触提供了一个刚度值。FKOP阻止接触面的分离;FKOP默认为1.0,用于建立粘结模型,用一个较小值(1e-5)去建立软弹簧模型。 FKT:切向接触刚度。作为初值,可以采用-FKT=0.01*FKN,这是大多数ANSYS 接触单元的缺省值。 COHE:粘滞力。即没有法向压力时开始滑动的摩擦应力值。 FACT,DC:定义摩擦系数变化规律

ANSYS中文翻译官方手册_接触分析

一般的接触分类 (2) ANSYS接触能力 (2) 点─点接触单元 (2) 点─面接触单元 (2) 面─面的接触单元 (3) 执行接触分析 (4) 面─面的接触分析 (4) 接触分析的步骤: (4) 步骤1:建立模型,并划分网格 (4) 步骤二:识别接触对 (4) 步骤三:定义刚性目标面 (5) 步骤4:定义柔性体的接触面 (8) 步骤5:设置实常数和单元关键字 (10) 步骤六: (21) 步骤7:给变形体单元加必要的边界条件 (21) 步骤8:定义求解和载步选项 (22) 第十步:检查结果 (23) 点─面接触分析 (25) 点─面接触分析的步骤 (26) 点-点的接触 (35) 接触分析实例(GUI方法) (38) 非线性静态实例分析(命令流方式) (42) 接触分析 接触问题是一种高度非线性行为,需要较大的计算资源,为了进行实为有效的计算,理解问题的特性和建立合理的模型是很重要的。 接触问题存在两个较大的难点:其一,在你求解问题之前,你不知道接触区域,表面之间是接触或分开是未知的,突然变化的,这随载荷、材料、边界条件和其它因素而定;其二,大多的接触问题需要计算摩擦,有几种摩擦和模型供你挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。

一般的接触分类 接触问题分为两种基本类型:刚体─柔体的接触,半柔体─柔体的接触,在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触,另一类,柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。 ANSYS接触能力 ANSYS支持三种接触方式:点─点,点─面,平面─面,每种接触方式使用的接触单元适用于某类问题。 为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个结点。如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元,有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元,至于ANSTS使用的接触单元和使用它们的过程,下面分类详述。 点─点接触单元 点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,你需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下) 如果两个面上的结点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─与的接触问题的典型例子。 点─面接触单元 点─面接触单元主要用于给点─面的接触行为建模,例如两根梁的相互接触。 如果通过一组结点来定义接触面,生成多个单元,那么可以通过点─面的接触单元来模拟面─面的接触问题,面即可以是刚性体也可以是柔性体,这类接触问题的一个典型例子是插头到插座里。

ansys面与面接触分析实例

面与面接触实例:插销拨拉问题分析 定义单元类型 Element/add/edit/delete 定义材料属性 Material Props/Material Models Structural/Linear/Elastic/Isotropic 定义材料的摩擦系数 … 建立几何模型 Modeling/Create/Volumes/Block/By Dimensions X1=Y1=0,X2=Y2=2,Z1=,Z2=

Modeling/Create/Volumes/Cylinder/By Dimensions Modeling/Operate/Booleans/Subtract/Volumes 先拾取长方体,再拾取圆柱体。 Modeling/Create/Volumes/Cylinder/By Dimensions 、 划分掠扫网格 Meshing/Size Cntrls/ManualSize/Lines/Picked Lines 拾取插销前端的水平和垂直直线,输入NDIV=3再拾取插座前端的曲线,输入NDIV=4

PlotCtrls/Style/Size and Shape,在Facets/element edge列表中选择2 facets/edge 建立接触单元 : Modeling/Create/Contact pair,弹出Contact Manager对话框,如图所示。 单击最左边的按钮,启动Contact Wizard(接触向导),如图所示。

单击Pick Target,选择目标面。 选择接触面 定义位移约束 施加对称约束,Define Loads/Apply/Structural/Displacement/Symmetric On Areas,选择对称面。 再固定插座的左侧面。 ) 设置求解选项 Analysis Type/Sol’s Control

ANSYS自动接触技术

专题报道 中国航空报/2005年/03月/25日/第004版/ ANSYS自动接触技术 安世亚太林翰 现代CAE技术可以对相当大规模的问题进行分析,这种分析可以是复杂的接触问题(在CAD中称为 装配)。装配体的分析模拟是公认的最尖端的CAD/CAE技术之一,这项技术使得人们得以精确的预测一个多零部件的结构的性能。 传统的,也是最直接的装配方法是先简单的导入装配体的各个零部件,确定它们的空间相对位置,然后人为地确定各零部件在整个装配体中的接触关系,建立接触单元。此过程在其他CAE软件中须采用手工方式完成,不仅需要漫长的虚拟整机建立过程,同时,还需要工程师对结构的各项指标、限制、风险全面的了解。 顾名思义, Contact这个概念只有在几何体相遇的时候才会产生。我们可以将各种载荷,例如结构载荷与热流矢量,转移到边界上从而 连接不同的几何体(零部件)。构成一个装配体的零部件数目是没有限制的。根据接触条件的不同,整个有限元分析的种类也会随之变化,例如线性与非线性。由于求解器需要迭代计算以达收敛,一个非线性问题所需的求解时间将远超一个先行问题的求解时间。 每一个有经验的有限元分析工程师都知道,没有任何两个接触问题是完全一样的,装配问题的复杂性在某种程度上肯定了ANSYS在这个领域的成就 ANSYS可以对各种不同的接触问题进行非常好,而且简便的模拟。一个装配体的ANSYS有限元分析过程可以简单的归纳为: 建立模型并划分网格 识别零部件相互关系 施加边界条件以及环境参量 求解并复查结果 事实上在ANSYS默认的设定中,当一个装配体的CAD模型被倒入的时候,接触关系已经被自动的探测了,而接触区域被指定为面/面关系。这个默认的设定可以在 Simulation Contact设定选项的Option对话框中更改。默认的接触自动探测属性适合于大多数的接触问题。然而,附加的接触关系控制设定拓宽了可以模拟的接触类型。在接触关系控制设定中:全局属性:包括自动接触探测的基本设定,以及高亮显示的接触区域的透明度设定,这些设定将会影响所有的接触区域。 接触区域控制:包括接触属性浏览,区域接触类型设定,以及其他的一些高级控制选项,例如设定接触模拟方程,法向刚度,热传导设定,以及pinball区域设定等等。 更加详细地,自动接触探测的基本设定包含:容差设定(Tolerance setting),即容差类型以及容差值的设定;接触探测的种类设定(例如设定探测面/面接触,面/边接触以及边/边接触)等;接触探测种类优先权设定(例如设定面/面接触优先于其他种类的接触)等。 在接触区域控制的接触类型设定中,AN SYS可以模拟如下的多种接触类型: 固结(Bonded),即完全绑定,无摩擦也无滑动。 不分离(No separation),和固结类似,不过在小范围内允许无摩擦的滑动。 无摩擦(Frictionless),部件之间摩擦系数为0,允许法相分离。 粗糙(Roug h),与无摩擦类型相似,只是部件之间不允许接触滑动。

ansys接触问题!牛人的经验之谈!

接触问题的关键在于接触体间的相互关系(废话,),此关系又可分为在接触前后的法向关系与切向关系。 法向关系: 在法向,必须实现两点:1)接触力的传递。2)两接触面间没有穿透。 ANSYS通过两种算法来实现此法向接触关系:罚函数法和拉格朗日乘子法。 1.罚函数法 是通过接触刚度在接触力与接触面间的穿透值(接触位移)间建立力与位移的线性关系:    接触刚度*接触位移=法向接触力 对面面接触单元17*,接触刚度由实常数FKN来定义。穿透值在程序中通过分离的接触体上节点间的距离来计算。接触刚度越大,则穿透就越小,理论上在接触刚度为无穷大时,可以实现完全的接触状态,使穿透值等于零。但是显而易见,在程序计算中,接触刚度不可能为无穷大(否则病态),穿透也就不可能真实达到零,而只能是个接近于零的有限值。 以上力与位移的接触关系可以很容易地合并入整个结构的平衡方程组K*X=F中去。并不改变总刚K的大小。这种罚函数法有以下几个问题必须解决: 1)接触刚度FKN应该取多大? 2)接触刚度FKN取大些可以减少虚假穿透,但是会使刚度矩阵成为病态。 3)既然与实际情况不符合的虚假穿透既然是不可避免的,那么可以允许有多大为合适? 因此,在ANSYS程序里,通常输入FKN实常数不是直接定义接触刚度的数值,而是接触体下单元刚度的一个因子,这使得用户可以方便地定义接触刚度了,一般FKN取0.1到1中间的值。当然,在需要时,也可以把接触刚度直接定义,FKN输入为负数,则程序将其值理解为直接输入的接触刚度值。 对于接近病态的刚度阵,不要使用迭代求解器,例如PCG等。它们会需要更多的迭代次数,并有可能不收敛。可以使用直接法求解器,例如稀疏求解器等。这些求解器可以有效求解病态问题。 穿透的大小影响结果的精度。用户可以用PLESOL,CONT,PENE来在后处理中查看穿透的数值大小。如果使用的是罚函数法求解接触问题,用户一般需要试用多个FKN值进行计算,可以先用一个较小的FKN值开始计算,例如0.1。因为较小的FKN有助于收敛,然后再逐步增加FKN值进行一系列计算,最后得到一个满意的穿透值。 FKN的收敛性要求和穿透太大产生的计算误差总会是一对矛盾。解决此矛盾的办法是在接触算法中采用扩展拉格朗日乘子法。此方法在接触问题的求解控制中可以有更多更灵活的控制。可以更快的实现一个需要的穿透极限。 2.拉格朗日乘子法与扩展拉格朗日乘子法 拉格朗日乘子法与罚函数法不同,不是采用力与位移的关系来求接触力,而是把接触力作为一个独立自由度。因此这里不需要进行迭代,而是在方程里直接求出接触力(接触压力)来。Kx=F+Fcontact 从而,拉格朗日乘子法不需要定义人为的接触刚度去满足接触面间不可穿透的条件,可以直接实现穿透为零的真实接触条件,这是罚函数法所不可能实现的。使用拉格朗日乘子法有下列注意事项: 1)刚度矩阵中将有零对角元,使有些求解器不克使用。只能使用直接法求解器,例如波前法或系数求解器。而PCG之类迭代求解器是不能用于有零主元问题的。 2)由于增加了额外的自由度,刚度阵变大了。 3)一个可能发生的严重问题,就是在接触状态发生变化时,例如从接触到分离,从分离到接触,此时接触力有个突变,产生chattering(接触状态的振动式交替改变)。如何控制这种chattering,是纯粹拉格朗日法所难以解决的。

ANSYS接触分析_学习手记

◆前提: ◇有限元模型。 ◇已识别接触面及目标面。(*可应用自由度耦合来替代接触。) 选择目标面和接触面的准则: 1.凸面和凹面或平面接触是,选平面或凹面为目标面。2、接触的两个面网格划分有粗细的话,选粗网格所在面为目标面。3两个面刚度不同时,选择刚度大的面为目标面4如果两个面为一个高阶单元,一个为低阶单元,选低阶单元为目标面 5.如果一个面比另一个面大选大的面为目标面。 2. ◆定义接触单元及实常数

◇(刚性)目标单元—— TARGE169 TARGE170 ; ◇(柔性)接触单元—— CONTA171~CONTA172。 ***Commands*** ET,K,169 !K - 指定的单元编号 ET,K+1,172 *** **** ◇实常数——一个接触对对应同一个实常数号。 TARGE单元的实常数包括:R1、R2 —定义目标单元几何形状 CONTA单元的实常数包括: No. Name Description 1 R1 Target circle radius(刚性环半径) 2 R2 Superelement thickness(单元厚度) *3 FKN Normal penalty stiffness factor(法向接触刚度因子) *4 FTOLN Penetration tolerance factor(最大允许的穿透) *5 ICONT Initial contact closure(初始闭合因子) 6 PINB Pinball region(“Pinball”区域) *7 PMAX Upper limit of initial allowable penetration(初始穿透的最大值)*8 PMIN Lower limit of initial allowable penetration(初始穿透的最小值)*9 TAUMAX Maximum friction stress(最大的接触摩擦) *10 CNOF Contact surface offset(施加于接触面的正或负的偏移值) 11 FKOP Contact opening stiffness or contact damping *12 FKT Tangent penalty stiffness factor(切向接触刚度) 13 COHE Contact cohesion(滑动抗力粘聚力) 14 TCC Thermal contact conductance(热接触传导系数) 15 FHTG Frictional heating factor(摩擦耗散能量的热转换率) 16 SBCT Stefan-Boltzmann constant 17 RDVF Radiation view factor 18 FWGT Heat distribution weighing factor 19 ECC Electric contact conductance 20 FHEG Joule dissipation weight factor 21 FACT Static/dynamic ratio(静摩擦系数和动摩擦系数的比率) 22 DC Exponential decay coefficient(摩擦衰减系数) 23 SLTO Allowable elastic slip 24 TNOP Maximum allowable tensile contact pressure 25 TOLS Target edge extension factor 附注: +值作为比例因子,-值作为绝对值; 带*号的实常数比较重要,关乎接触分析的收敛; 一般实常数可为缺省值。

ansys workbench接触分析习题

)间的球形界面的压力形貌。

上机实验报告: 软件版本:ANSYS workbench 19.2 1.主要分析过程及注意事项 分析过程: ●打开workbench,从左侧的“analysis system”中拖入“static structural”到中间空白区域 ●由于材料已经是默认的结构钢,所以我们不用修改,但是单位和它的显示模式我们要改 成像下图中的(Tonne,mm,…)和“display values in project units”。 ●在geometry中导入“ball-socket.x_t ”之前,先在右边的属性栏里,找到analysis type, 将3D改为2D,改完之后再导入“ball-socket.x_t ”。

●双击model进去“mechanical”,选中Geometry,在Definition中把2D Behavior改为 Axisymmetric。同时检查工作单位制是否是Metric (mm,kg,N,s,mV,mA) ●选中“contacts”,插入“Frictional” Frictional Coefficient设为0.4,behavior改为auto asymmetric(自动非对称),formulation改为augmented lagrange(后面的试验结果表明,formulation设为program controlled,结果都一样)

●在analysis setting里把Large Deflection改为ON ●鼠标选中mesh,我们可以在下面的element size 改变网格大小,本上机实验中会分别试验 1.0mm和0.5mm,修改完后右键generate mesh可观看效果 ●选中static structural,插入fixed support ,选中socket的上边线,并apply,然后在插入loads 里的force,这时选择ball的下边线,并apply,在define by里选择component,并在y方向上输入-1000。

ANSYS 中使用接触向导定义多个接触对详细实例(图文)

ANSYS 中如何使用接触向导定义接触对 在ANSYS 中定义接触通常有两种方法: 1. 用户自己手工创建接触单元和目标单元。这种方法,在定义接触和目标单元时还比较简单,但是在设置或修改单元属性和定义实常数时却比较复杂。需要用户对接触有较深刻的理解和通过实践积累丰富的经验。 2. 使用接触管理器中的接触向导定义接触对:使用接触管理器 (接触向导) 定义接触对(即接触单元和目标单元) 时,可以定义除了点-点接触以外的各种接触类型;它可以自动生成接触单元和目标单元,并提供了一组默认的单元属性和实常数值。使用这些默认的设置,加上适当的求解设置,对于多数接触问题都能够获得收敛的结果。而且,如果使用默认设置时,计算不收敛或对结果不太满意,也可以通过接触管理器(接触向导) 对单元属性和实常数方便的进行修改和调整。 因此,我们推荐,在可能的情况下,尽量使用接触管理器(接触向导) 来定义接触。本文将通过一个实例介绍接触管理器的基本使用方法。 所使用的例子如下: 两块平板,中间夹一个圆球。上面平板的上表面承受压力,分析模型的变形和应力随压力的变化。 两块平板,尺寸都是(100*100*20),相距100。中间夹一个半径50 的圆球。两个平板分别与圆球的上下边缘接触。尺寸单位为mm。几何模型如图1。

图 1 中,为了能够划分映射网格,分别对体积进行了切割材料属性为:两块平板: E = 201000 Mpa;μ= 0.3 圆球: E = 70100 Mpa;μ= 0.33 接下来对各个Volumes 划分网格,单元类型采用solid186 (20 节点六面体),单元边长统一取 6 mm。网格划分结果如图 2 所示:

ansysworkbench接触实例分析

前言 WokBench 是众所周知的好东西,以下是自己琢磨的一个小应用,肯定有不对的地方, 欢迎指出,便于大家共同提高。 问题描述 这是一个塑料小卡扣的例子,主要想使用WorkBench 了解在使用中,塑料件的变形是否足够。模型是用ProE 制作的,为了简化,只切取了关于变形的部分,如下图: 其中蓝色的部分是活动的,只有一个方向的运动,红色的部分是固定的。 大体的尺寸如下,单位是毫米:

注意:在模型中,蓝色和红色部件的距离要控制好(这是由ProE 中,模型装配关系 决定的),如果太近,软件将自动计算出一个接触区域,但对于这个例子,还需要手 动扩大接触区域。如果距离太远,在手动设置Pinball 类型的接触区域时,Pinball 的 半径要设得很大,可能导致无法计算。请参考上面的尺寸图纸调节两个部件之间的距 离。 之后,设置接触面(2、3):需要将两个部件在运动过程中,会接触的地方一一标出, 千万不要加无用的面。 将Pinball Region 设置为Radius 方式(4),并将Radius 设置一个合适的值(5),本例设置了3 毫米(如图,会形成一个蓝色的大圆球),求解的时候软件会使用这个PinBall 自动探测接触。 还需要将接触方式设置为无摩擦的(6)。 最后将接触面计算方式设置为Adjust To Touch(7)。也可以尝试其他的方式,不过对 于这个仅研究红色部件变形的例子就无所谓了。

关于单元格 WorkBench 中可以不自行划分单元格(在解算的时候,如果没有手动的设置,软件就会先自动划分),软件帮你自动产生。如果你的其他设置正确,即便是这个自动的值也能很精确了。 添加分析 这个分析用静力学就可以了(1)。 之后要设置Analysis Setting(2)。将Nuber Of Step 设置为2(3)。 注意: 1)蓝色部件在运动的过程中,先压迫红色部件,再逐渐松开,因此必须将这个过 程至少分解为至少两个阶段(阶段指“Step”)。 2)对于一个阶段而言,Ansys 求解时,会先考察它的开始和结束两个点的状态。

ANSYS接触问题的计算方法

ANSYS接触问题的计算方法 接触问题的关键在于接触体间的相互关系(废话,),此关系又可分为在接触前后的法向关系与切向关系。 法向关系: 在法向,必须实现两点:1)接触力的传递。2)两接触面间没有穿透。 ANSYS通过两种算法来实现此法向接触关系:罚函数法和拉格朗日乘子法。 1.罚函数法 是通过接触刚度在接触力与接触面间的穿透值(接触位移)间建立力与位移的线性关系:接触刚度*接触位移=法向接触力 对面面接触单元17*,接触刚度由实常数FKN来定义。穿透值在程序中通过分离的接触体上节点间的距离来计算。接触刚度越大,则穿透就越小,理论上在接触刚度为无穷大时,可以实现完全的接触状态,使穿透值等于零。但是显而易见,在程序计算中,接触刚度不可能为无穷大(否则病态),穿透也就不可能真实达到零,而只能是个接近于零的有限值。 以上力与位移的接触关系可以很容易地合并入整个结构的平衡方程组K*X=F中去。并不改变总刚K的大小。这种罚函数法有以下几个问题必须解决: 1)接触刚度FKN应该取多大? 2)接触刚度FKN取大些可以减少虚假穿透,但是会使刚度矩阵成为病态。 3)既然与实际情况不符合的虚假穿透既然是不可避免的,那么可以允许有多大为合适? 因此,在ANSYS程序里,通常输入FKN实常数不是直接定义接触刚度的数值,而是接触体下单元刚度的一个因子,这使得用户可以方便地定义接触刚度了,一般FKN取0.1到1中间的值。当然,在需要时,也可以把接触刚度直接定义,FKN输入为负数,则程序将其值理解为直接输入的接触刚度值。 对于接近病态的刚度阵,不要使用迭代求解器,例如PCG等。它们会需要更多的迭代次数,并有可能不收敛。可以使用直接法求解器,例如稀疏求解器等。这些求解器可以有效求解病态问题。 穿透的大小影响结果的精度。用户可以用PLESOL,CONT,PENE来在后处理中查看穿透的数值大小。如果使用的是罚函数法求解接触问题,用户一般需要试用多个FKN值进行计算,可以先用一个较小的FKN值开始计算,例如0.1。因为较小的FKN有助于收敛,然后再逐步增加FKN值进行一系列计算,最后得到一个满意的穿透值。 FKN的收敛性要求和穿透太大产生的计算误差总会是一对矛盾。解决此矛盾的办法是在接触算法中采用扩展拉格朗日乘子法。此方法在接触问题的求解控制中可以有更多更灵活的控制。可以更快的实现一个需要的穿透极限。 2.拉格朗日乘子法与扩展拉格朗日乘子法 拉格朗日乘子法与罚函数法不同,不是采用力与位移的关系来求接触力,而是把接触力作为一个独立自由度。因此这里不需要进行迭代,而是在方程里直接求出接触力(接触压力)来。Kx=F+Fcontact 从而,拉格朗日乘子法不需要定义人为的接触刚度去满足接触面间不可穿透的条件,可以直接实现穿透为零的真实接触条件,这是罚函数法所不可能实现的。使用拉格朗日乘子法有下列注意事项: 1)刚度矩阵中将有零对角元,使有些求解器不克使用。只能使用直接法求解器,例如波前法或系数求解器。而PCG之类迭代求解器是不能用于有零主元问题的。

相关主题