搜档网
当前位置:搜档网 › 自适应模糊控制的综述

自适应模糊控制的综述

自适应模糊控制的综述
自适应模糊控制的综述

自适应模糊控制几个基本问题的研究进展

谢振华 程江涛 耿昌茂

(海军航空工程学院青岛分院航空军械系 青岛 266041 )

周德云

(西北工业大学 西安 710072 )

[摘要] 综述了模糊控制系统的稳定性分析、系统设计及系统性能提高三个基本问题的研究 ,简述了应用研究 ,最后对自适应模糊控制的理论和应用进行了展望。

关键词 模糊控制 自适应控制 鲁棒性 稳定性

1 引言

自从 L. A. Zadeh提出模糊集合论以来 ,基于该理论形成一门新的模糊系统理论学科 ,在控制、信号处理、模式识别、通信等领域得到了广泛的应用。近年来 ,有关模糊控制理论及应用研究引起了学术界的极大兴趣 ,取得了一系列成功的应用和理论成果 ,与早期的模糊控制理论和应用相比有了很大的发展。模糊控制理论成为智能控制理论的一个重要分支。

一般来讲 ,模糊控制理论研究的核心问题在于如何解决模糊控制中关于稳定性和鲁棒性分析、系统的设计方法 (包括规则的获取和优化、隶属函数的选取等 )、控制系统的性能 (稳态精度、抖动及积分饱和度等 )的提高等问题 ,这己成为模糊控制研究中的几个公认的基本问题。其中 ,稳定性和鲁棒性问题的研究最为热烈 ,从早期基于模糊控制器的“多值继电器”等价模型的描述函数分析法 ,扩展到相平面法、关系矩阵分析法、圆判据、L yapunov稳定性理论、超稳定理论、基于滑模控制器的比较法、模糊穴 -穴映射及数值稳定性分析方法等非线性理论方法。设计方法的研究也倍受关注 ,主要表现在对规则的在线学习和优化、隶属函数参数的优化修正等应用了多种思想 ,如最优控制的二次型性能指标、自适应、神经网络、遗传算法等思想。稳态性能的改善一直是模糊控制学者所关注。

围绕上述几个基本问题 ,出现了多变量模糊控制[1 ,2 ] 、模糊神经网络技术 [3 ] 、神经模糊技术 [4 ] 、自适应模糊控制 [5] 、模糊系统辨识[6 ] 等热点研究领域。在模糊控制理论与应用方面 ,日本学者取得了很大的成就[7] ,我国学者在这方面也付出了不懈的努力 ,并取得了许多重要的成果。所有这些工作促进了模糊控制的理论和应用的快速发展。

本文拟对近几年自适应模糊控制几个基本问题的研究现状作一总结 ,希望能从这一侧面反映其研究情况和发展动向。主要内容包括 :( 1 )稳定性分析问题的研究 ;( 2 )系统设计方法的研究 ;( 3)系统性能提高的研

究 ;( 4 )应用研究情况。

2 稳定性分析

众所周知 ,任何一个自动控制系统 ,首先必须是稳定的 ,否则这个系统就无法工作。因此 ,在控制系统的分析和设计中 ,系统的稳定性研究占有重要的地

位 ,模糊控制系统也是如此。由于模糊系统本质上的非线性和缺乏统一的系统描述 ,使得人们难以利用现有的控制理论和分析方法对模糊控制系统进行分析和设计 ,因此 ,模糊控制理论的稳定性分析一直是一个难点课题 ,仍未形成较为完善的理论体系 ,还有许多理论问题有待于进一步解决。正因为如此 ,近年来关于模糊系统的稳定性分析已经成为众人关注的焦点 ,发表的论文较 ,采用了各种思想和分析方法 ,主要有 :描述函数分析法、相平面法、关系矩阵分析法、L yapunov稳定性理论、超稳定理论、Popov判据、圆判据、基于滑模控制器的比较法、模糊穴 -穴映射、数值稳定性分析方法以及最近出现的鲁棒控制理论分析方法和 L MI(矩阵不等式 )凸优化方法等。

在模糊控制系统的稳定性分析和设计中 ,采用的模糊逻辑系统大致有三种类型 :( a)纯模糊逻辑系统 ;( b) Takagi- Sugeno(简记为 T- S)模糊逻辑系统 [8] ;( c)具有模糊产生器和模糊消除器的模糊逻辑系统[9] 。

基于纯模糊逻辑系统的分析方法主要有 :描述函数分析法、相平面法、关系矩阵分析法、圆判据等 ,是较早期的稳定性分析方法 ;基于 T- S系统的分析方法主要为 L yapunov稳定性理论、鲁捧控制理论分析方法和 L MI凸优化方法 ;基于类型 ( c)的模糊逻辑系统的分析方法主要为自适应控制理论方法 ;最近还出现了超稳定理论、Popov判据、基于滑模控制器的比较法、模糊穴 -穴映射、数值稳定性分析等方法。其中 ,Lyapunov稳定性理论、自适应控制理论、关系矩阵分析法占有很重要的地位 ,尤其是 L yapunov稳定性理论和自适应控制理论方法 ;数值计算分析方法与模糊穴 -穴映射具有相通之处 ,但是穴 -穴映射借助于新的数学工具正显示出新的研究活力。另外 , [9]提出了一种解决智能多层次复杂系统的建模和稳定性分析的原理和思路。最后要提到的是模糊逻辑控制系统鲁棒稳定性问题的研究[1 0、1 1 ] ,由于其与灵敏度分析和鲁棒多变量反馈控制器的紧密联系 ,可望为模糊逻辑控制的系统设计和稳定性分析、性能评估等提供系统的设计方法。

下面是近几年国内外学者在此领域进行的研究情况。需要指出的是 ,虽然目前的研究成果和文献较多 ,模糊控制的应用十分成功和广泛 ,但是迄今为止模糊控制系统的稳定性分析和控制系统设计仍缺乏一个强有力的数学工具和统一的方法 ,仍未形成较为完善的理论体系 ,还有许多理论问题有待于进一步探索。

2 . 1 关系矩阵分析方法

[1 3]提出利用模糊关系矩阵分析闭环控制系统稳定性方法 ,给出了闭环系统稳定的充分条件。[1 4 ]基于被控对象的规则模型 ,推导出闭环控制系统的语言关系模型 ,用语言关系矩阵讨论了系统的稳定性 ,给出了充分条件。

2 . 2 L yapunov稳定性理论

[1 5]在 T- S模型基础上建立了一类较实用的模糊控制模型 ,对该模型的连续和离散形式下的稳定性给出了各自渐近稳定的充分条件 ,并给出了构造 L yapunov函数 (正定矩阵 )的存在条件。使对复杂时变模糊系统的稳定性研究 ,转变为对每个模糊蕴涵较简单的线性定常子系统的稳定性研究。[1 6 ]提出了非线性系统的模糊建模与控制的分析框架。其设计思想是 :首先用 T- S模糊系统模型逼近非线性对象 ;然后利用了“并

行分布补偿 ( PDC)”的原理设计各子系统的模糊控制器 ,使局部子系统稳定 ;最后根据稳定性充分条件判定全局系统的渐进稳定性。文章认为 :

( 1 )所提出的稳定性充分条件能使用矩阵不等式 ( L MI)凸优化问题来表示 ,因此在所提出的 T- S模型和 PDC模型设计框架下 ,稳定性分析和状态反馈综合

问题能用 L MI凸优化算法进行数值求解。

( 2 )此稳定性条件不但保证了模糊模型和模糊控制系统稳定 ,而且保证了相关的不确定线性时变系统(L DI)和非线性系统稳定 ,并满足某些全局和局部区域的稳定性条件。因此基于模糊模型下设计的控制器能很好地应用于真实系统的控制。

2 .

3 自适应控制理论

模糊自适应系统是另一个普遍关注的焦点[9、1 8] 。 [1 7- 2 1 ]在模糊逻辑系统 ( c)的基础上 ,进行了稳定性分析和自适应控制器设计。[1 7]认为 [9]中的全局模糊控制器的收敛性依赖于模糊系统逼近误差平方可积的条件 ,在实际中很难检验 ;另外 ,不能有效抵消外部干扰对误差输出影响的能力。针对非线性系统的滑模控制 ,其假定非线性函数估计存在 ,且控制器难以用精确的数学表示 ,故很难对闭环系统进行稳定性分析 ,从而提出了用模糊逻辑系统逼近非线性函数 ,并基于滑模原理及李氏函数给出了闭环系统稳定性分析[18]讨论了智能车辆高速系统的车辆侧向自导的模型参考自适应模糊逻辑控制 ( MRAFL C)算法 ,应用 L yapunov函数对系统进行了状态有界稳定研究。该算法使闭环系统在 FL C(模糊逻辑控制 )下跟踪由模糊系统产生的参考输入 ,对王立新 [9] 关于自适应模糊控制的结果进行了扩展。 [19]提出了一种直接自适应模糊滑模控制方法 ,将稳定性基本问题、性能要求及模型变化归为一个简单的框架内。[20]在 [9]的基础上用模糊系统的建模层次系统 ,并设计了层次模型控制器。文章认为层次结构可满足复杂系统的稳定性及鲁捧控制。但很难用统

一的框架表示各层的不同特性。文中研究了三级层次系统。最低层为对象和传统的反馈控制器 ,对象由差分方程建模 ;中层为监督操作以便保证系统的稳定 ;顶层为计划层 ,为下两层提供控制目标 ;中、高层由模糊系统建模。所提出的层次模型控制器的控制策略是保证系统状态有界且跟踪误差以指数级收敛于零。

[2 1]对神经模糊控制器的稳定性进行了分析 ,利用了径向基神经网络的模糊集合表示 ,通过 Popov判据获得了闭环控制系统的非线性稳定性条件 ,文中给出了一个闭环全局渐近稳定的充分条件。[2 4 ]用模糊自适应机构代替常规的自适应机构 ,构成模型参考模糊自适应系统 ,所设计的自适应机构为偏差的非线性函数 ,导出了系统稳定的充要条件。 [2 5]提出了一种模糊自适应 PID控制器及其设计方法 ,导出其闭环系统稳定的充要条件。 [2 6 ]针对一类病态且相当复杂的非线性系统 ,提出了一种自适应鲁棒模糊控制方法。控制目标为自适应地补偿未知对象的非线性 ,它由一个 if- then规则集组成的模糊规则库表示。可自动地更新模糊规则并保证全局稳定且使跟踪误差趋于零。

2 . 4 数值稳定性分析和模糊穴 -穴映射

[2 2 ]在综述了各种稳定性分析方法基础上 ,提出了数值稳定性分析方法 ,可分析任一类对象模型及任一类控制器。对象特性可由 :T- S模型、神经网络模型、特征表面及纯模糊模型加以描述 ,其思想类似于穴 -穴映射方法。[2 3]提出了一种基于模糊穴 -穴映射的多变量模糊系统进行分解的方法 ,其核心在于认为任何复杂系统的动态都是由其隐含的稳定子动态和不稳定子动态聚合而成 ,而系统特性则主要取决于决定性子动态的性质。介绍了确定系统决定性子动态和基于其上的多变量模糊系统渐近分析方法。

2 . 5 鲁棒控制理论

[1 0 ]基于 T- S模糊系统提出了一种不确定性非线性系统的鲁棒稳定性问题解决方法 ,分析了系统前提条件的隶属函数存在不确定性时的情况 ,得到了

基于 Lyapunov稳定性理论的充分条件 ,并在倒车控制中进行了仿真研究。 [1 1 ]提出了模糊逻辑系统的鲁棒稳定性问题。由于模糊控制器被认为具有很强的鲁棒稳定性 ,但仅为定性或仿真验证性讨论 ,尚缺乏系统的定量的分析方法。该文在这方面进行了讨论 ,给出了一些结果 ,并在其 1 993年的博士论文中应用模糊汽车发动机定速控制器阐述了此方法。该方法为一近似的性能分析表示方法 ,其对象为一类由模糊逻辑控制的线性和非线性系统 ,并假定标定对象的近似模型可用 ,考虑了在已知原点存在小的有界参数不确定性和外部干扰时的稳定性。它基于标定对象类似于 L yapunov函数性能测度的近似表示 ,将系统误差灵敏度相对于兴趣参数的启发式测度与此性能表达式相结合 ,使其为最小 ,通过应用 (如 L yapunov)稳定性的条件 ,系统鲁棒性即可由一简单矩阵的正定性来分析。该理论分两部分 :( 1 )假定在特定状态里的参数摄动对其他状态无影响这种意义上为解耦的 ,在此基础上得到主要的鲁棒稳定性结果 ;( 2 )允许某些相互作用的参数变化的结果存在于状态之间 ,估计此相互作用的测度推导出稳定

范围 ,从而得出更一般的鲁棒稳定性结果。稳定性收敛点即为系统的特定目标点 ,而参数摄动及外部固有干扰的存在就说明了闭环系统的鲁棒稳定性。最后 ,文献以模糊量的形式导出了灵敏度、误差偏差和参数偏差的不等式边界 ,然后用奇异值公式表示出一种鲁棒测度。

总的看来 ,模糊系统的稳定性分析的结果仍不够成熟 ,许多研究还仅给出充分条件 ,并且局限于某些系统和特定的方法 ,要建立一套系统而有效的系统分析和设计方法 ,还要在数学工具及严格的数学证明等方面作出不懈的努力。

3 系统设计方法

系统设计方法的研究主要侧重于 :模糊规则的优化和在线学习修正的算法研究 ,修正因子在线学习 ,隶属函数的选取和调节等。目前 ,在模糊控制的发展中 ,多是对传统的模糊控制方法的研究 ,存在的主要问题是 :众多的待定参数 ,控制规则建立困难。因此目前这方面的研究也是一个热点问题 ,应用了多种思想 ,主要有 :自适应神经元学习、单纯形法、专家自学习法、多步预报自学习、遗传算法 ( GA)及 BP网络等。另外 ,还有许多关于增强式学习算法及模糊自适应等思想的研究。研究目标有向高度自适应自动系统 (自动产生隶属函

数及模糊规则并在线修正 )这方面发展的迹象 ,值得注意和重视。下面简单介绍这方面的研究状况。

[2 7]提出基于自适应神经元学习模糊控制规则 ,主要思想是 :学习与当前性能有关的在过去起作用的控制规则 ,使系统可以随过程环境变化自动调节控制规则 ,以改善输出性能。[2 8]针对常规模糊控制的不足 ,采用分层多规则集结构 ,实现了模糊控制的智能化。 [2 9]提出直接优化去模糊过程的控制规则的设计方法 ,应用了误差及其变化率的二次型性能指标。 [30 ]利用专家自学习思想研究模糊控制的修正因子在线自学习方法。 [31 ]针对具纯时滞及非线性的复杂系统 ,提出了基于多步预报的自学习控制算法 ,使控制效果基本不依赖于初始控制表 ,而控制表可在线修正 ,以满足系统的快速性和稳定性的要求。 [32 ]应用单层神经网络学习多变量模糊规则中的未知参数 ,还可以由它来实现多变量模糊推理过程 ,该方法针对解决多变量模糊控制中普遍存在的规则获取困难和难于实现实时自适应等问题。[33]在改进的 GA基础上 ,提出基于最优控制的二次型性能指标的模糊规则优化方法 ,不需要任何被控系统的先验知识 ,因而适合于一大类复杂非线性系统的控制。文中对 GA的改进有两点 :a)增加“杂

交”算子 ;b)主动“优生”描述改善生物群体的质量 ,使 GA由被

动进化变成主动进化。 [34 ]利用具有动态结构的 BP网络进行模糊推理 ,实现模糊控制的最优化推理过程 ;用另一类具动态结构 BP网络修正现有的控制规

则 ,实现规则的自组织 ,在控制过程中不断优化控制性能 ,使控制效果更理想。

[35]研究了控制规则自适应问题 ,提出在给定比例因子条件下 ,由两组关于控制规则自生成与自校正的元规则组成规则自适应机构。用这两组规则 ,系统可在某时刻同时调整由系统两种状态激活的控制规则。[36 ]有机集成了信任分配 ( BB:Bucket- Brigade)和 GA组成增强式学习的模糊控制系统 ,在缺少输入输出样本集的情况下 ,自动学习生成模糊控制规则调节隶属函数。 [37]提出基于 ART的模糊自适应学习控制网络的增强式学习算法。包括两个模糊自适应逻辑控制网络 ,一个为模糊预测 ,一个为模糊控制器 ,同时进行学习。具有两个特点 :降低了自适应线性化系统标准方法的复合要求 ;高度自动系统 ,初始化时也不要隶属函数和模糊规则 ,随着学习过程的进行 ,开始产生、成长 ,同时 ,可动态划分输入输出空间 ,调节隶属函数 ,划分合适的网络连接类型 (即模糊规则 )。

[38]利用 Nelde- Mead单纯形法自动优化误差变化率的隶属函数 ,因为此类隶属函数表征了速度的反馈。

4 模糊控制系统性能的提高

常规模糊控制系统的性能主要存在着下列问题 :稳态精度 (存在余差 )、抖动和积分饱和等。前几年人们尝试了用论域缩小的方法来消除余差 ,用该变控制规则的数量或规则本身的方法、改变量化曲线、以及改变隶属函数的形式等来改善控制系统的控制性能 [1 2 ]。上一节所采用的许多方法其实也是为得到好的控制效果 ,这在实际应用和仿真分析结果中也可得到证实。

近几年来 ,许多学者对此进行了多种方法的研究 ,主要思想有 :分挡控制、论域缩小逼近法、加入积分作用、切换 PI模糊控制器、引入智能积分、直接测辨模糊控制决策表等方法 ,部分结果在工程实践中得到了应用检验 ,其它的在仿真结果中得以验证。总的来看这方面的研究作为模糊控制理论和实践中的重要目标已经渗透到模糊控制的其它研究领域 ,而从系统分析和设计的角度保证模糊控制系统稳定性、稳态性能及其鲁棒性成为研究发展的必然。

[39]对时变对象提出两种提高模糊控制精度的方法。一种是分档控制 ,暂态时用粗调控制器加快响应速度 ,稳态时用细调控制器以提高稳态精度 ;另一种方法是通过推知被控对象的慢变规律 ,然后根据此规律补偿对象增益的慢变得到恒定的输出 ,对参数慢时变二阶被控对象的仿真验证了不得上述方法的有效性 ,稳态精度大为提高 ,抗干扰性增强 ,当对象含纯滞后环节时 ,易使整个系统发生振荡 ,可引入 Smith预估计器。

[40]提出用论域缩小逼近法来消除模糊控制器的余差。能在控制过程中自始至终按规则调整被控过程 ,不存在其他方法普遍存在的积分饱和现象 ,适用于任何特点的模糊控制系统。仿真及纸张水分控制的实际应用研究证明了该方法的正确和优越性。[41]分析了传统的模糊控制存在的缺陷引入了智能积分以减少稳态误差 ,避免积分饱和。设计了一个参数自调整模糊控制器 ,实现了快速响应和小的超调。 [42]在水轮机模糊调速器研究中提出直接测辨模糊控制决策表的方法 ,为克服常规模糊控制器存在较大静差的缺陷 ,设计了一种带选

择开关的双积分并联复合控制结构 ,此方法在克服积分饱和和缩短调节时间、消除静差、改善动态品质方面是很有效的。其直接测辨决策表的方法为 :应用多变量最小二乘回归方法拟和成功控制系统输入输出间的函数关系 ,然后对量测数

据组模糊化 ,再对控制函数离散化 (模糊化 )建立模糊控制决策表。 [43]以串联下三级模糊调节器为基础 ,引入反馈模糊调节器作为并联校正 ,对几个典型的工业用金属热处理炉的温度控制模型进行仿真实验 ,得到很好的控制效果 ,在阶跃响应中 ,上升时间短 ,无超调 ,稳态精度优于普通的二维模糊控制系统。其第三维为误差变化率的变化。

5 应用研究

从 80年代开始 ,模糊控制应用的研究一直就是十分活跃的一个领域 ,日

本学者在这方面处于领先地位 [7] ,我国学者在此领域也付出了巨大的努力 ,取得了丰硕的成果。其特点是 :

( 1 )多应用于工业过程控制领域 [12]

[44]采用参数自调整与积分的混合控制实现焊熔宽的自动控制 ,把模糊积分改为精确量积分。[42]用直接测辨模糊控制决策表的方法研究了水轮机调速器。 [45]设计了发动机调速系统的模糊逻辑控制器。 [40]用论域缩小逼近法进行了纸张水分控制的实际应用。[46]提出模糊控制加前馈补偿的复杂模糊控制器的方法 ,应用于 MCS- 51单片机控制的异步电动机轻载降压节能器上 ,取得了较好的控制效果。 [47]提出一类最优模糊控制器的系统设计方法 ,所研制的造纸机计算机控制系统成功地投入了使用 ,效果满意。

( 2 )结合许多新思想得到的算法正较多地应用于实际

[48]提出一种模糊逻辑神经网络自适应控制方法 ,在伺服直流电机调速系统中进行了实验研究 ,其系统响应和鲁棒性优于常规控制器。[49]对过程控制对象为复杂非线性系统 ,常规控制策略难以控制而依赖于人的智能经验 ,采用神经学习机制模糊推理集成的思想实现此控制器 ,提出一种隐节点较正学习算法 ,在此思想上优化的模糊系统已试运行于茂名石化公司的二重装置上 ,初步的记录数据表明此方案可行。[50]综合模糊控制系统与人工神经网络的优点 ,提出了一种多变量系统的模糊神经控制模型 ,建立了渣贫化电炉生产过程的模糊神经网络控制模型 ,并开发出相应的决策支持系统 ,该系统自 1992年 6月投入使用 ,一直稳定可靠地正常运行 ,效果好 ,经济和社会效益显著。[28]采用分层多规则集结构实现了模糊控制的智能化 ,应用于立窑水泥燃烧过程控制 ,运行结果表明该法有效 ,鲁棒性强。

( 3 )应用范围正向高一级的新领域扩展 ,如机器人定位系统、汽车定位系统、智能车辆高速公路系统等。[51]报告了用模糊自调整因子方法在机器人定位系统中的应用。 [52]提出了三层的层次预测模糊控制方法 ,对汽车停车控制进行了应用仿真研究 ,而 [53]在 1987年、1991年用预测模糊控制实现了列车系统的停车控制系统。 [18]讨论了智能车辆高速公路系统的车辆侧向自导模型参考模糊逻辑控制算法。

另外 ,还有许多文献将提出的新算法应用于单级倒立摆、球板系统、二级倒立摆等进行仿真实验研究。

6 总结

综上所述 ,近年来 ,国内外学者在自适应模糊系统研究中付出了很大的热情和努力 ,在加强系统的稳定性和鲁棒性分析、系统的设计方法、控制系统性能的提高等几个基本问题的研究的同时 ,利用神经网络、自适应、遗传算法、变结构等思想进行交叉学科的结合研究 ,研究对象从单变量系统扩展到多变量系统 ,并扩展了应用范围 ,取得了许多重要的理论和应用成果。总之 ,本文认为以下几点值得关注 :

( 1 )基于辨识模型的模糊系统稳定性和鲁棒性研究 ,由于其与灵敏度分析和鲁棒多变量反馈控制器的紧密联系 ,可望为模糊逻辑控制的系统设计和稳定性分析、性能评估等提供统一系统的设计方法 ,是模糊系统研究的一大难点 ,也正是目前及今后研究的一个热点问题。

( 2 )自适应模糊神经网络思想的研究 ,体现了模糊系统具有很强的自适应能力的智能化发展倾向。由于神经网络的万能逼近学习能力 ,达到模糊控制众多参数的优化和在线自学习的目标 ;并且由于模糊系统本质上是非线性的 ,使得有很强非线性处理能力的神经网络和自适应思想的研究成为自然。但需要解决适时、简单易实现等问题。

( 3 )传统的 PID控制方法在工程实践中已获得广泛的应用 ,由于模糊控制具有很强的自适应鲁棒性 ,因此用模糊推理 PID参数的在线自整定 ,以解决非线性对象不确定条件下工作点的最佳动态控制问题 ,在工程应用方面显示出很大的潜力。应是值得关注的重要发展方向。

( 4 )在模糊控制技术中引入了许多新的概念 ,诸如 GA,最优控制 ,滑模控制 ,预测及多变量解耦等 ,这对模糊控制技术的进一步拓展也提供了广阔的想象空间。但是也应当看到 ,所有这些工作 ,最根本的一点还在于模糊系统的建模、辨识和系统分析的解决上。

( 5 )综合利用数据信息和语言模糊信息构成的自适应模糊系统的研究 ,正在成为解决和发展新的智能控制理论的基础。这种思想具有新颖而很强的优越性 ,文 [9]对此进行了较系统的分析 ,并提出了许多算法 ,所提出的未来研究课题 ,值得进一步关注和研究。

参考文献

1 张化光 ,杨英旭 ,柴天佑 .多变量模糊控制的现状与发展 (I) .控制与决

策 ,Vo1 . 1 0,№ . 3 ,1995. 5:193~ 203

2 张化光 ,杨英旭 ,柴天佑 .多变量模糊控制的现状与发展 (II) .控制与决策 ,Vo1 . 1 0,№ . 4,1995. 7;289~ 295

3 沈建强 ,李平 .神经模糊技术的研究现状与展望 .控制与决策 ,Vo1 . 1

1 ,№ . 5,1 996 . 9:527~ 532

4 张良杰 ,李衍达 .模糊神经网络技术的新近发展 .信息与控制 ,Vo1 . 2

4 ,№ . 1 ,1 995. 2 :39~ 46

5 金晓明 ,荣冈 ,王骥程 .自适应模糊控制的新进展 .信息与控制 ,Vo1 . 2 5,№ . 4,1 99

6 . 8:217~ 223 ,251

6 李人厚 ,张平安 .关于模糊辨识的理论与应用实际问题 .控制理论与应

用 ,Vo1 . 1 2 ,№ . 2 ,1995. 4:129~ 137

7 周景振 ,韩曾晋 .日本模糊控制理论与应用研究的进展 .控制理论与应

用 ,Vo1 . 1 4 ,№ . 4,1 997. 8:4 53~ 4 58

8 T. Takagi and M. Sugeno,Fuzzy Identification of Systems and its Applications to Modeling and Control,IEEE Trans.

Syst. ,Man,and Cyber. ,Vol. 1 5,1 985:1 1 6~ 1 3 2 .

9 王立新 .自适应模糊系统与控制——设计与稳定性分析 .国防工业出版

社 ,1 995. 9

1 0 K. Tanaka and M. Sano,A Robust Stabilization Problem of Fuzzy Control Systems and its Applications to Backing up

Control of a Truck- trailer,IEEE Trans. Fuzzy Systems,Vol. 2 ,№ . 2 ,1 994 :1 1 9~ 1 3 4 .

1 1 Shehu S. ,George Vachtsevanos,Robust Stability of Fuzzy Logic Control Systems,America Control Conference,1 995

1 2 李友善 ,李军 .模糊控制理论及其在过程控制中的应用 .国防工业出版

社 ,1 993

1 3 陈建勤 ,吕剑虹 ,陈来九 .利用关系矩阵分析模糊控制系统的稳定性 .控制理论与应用 ,Vol. 1

2 ,№ . 5,1 995. 1 0.

1 4 睢刚 ,陈来九 .模糊闭环系统的语言分析方法 .控制理论与应用 ,Vol. 1

2 ,№ . 6 ,1 995. 1 2 :71 9~ 72 6 .

1 5 王意冈 ,王浣尘 .一类模糊系统模式的稳定性研究 .控制理论与应

用 ,Vol. 1 2 ,№ . 3 ,1 995. 6 :3 3 5~ 4 3 1 .

1 6 Hua O. Wang,Kazuo Tanka and Mike Griffin,An Analytical Framework of Fuzzy Modeling and Control of Nonlinear

System :Stability and Design Issues,America Control Conference,1 995:2 2 72~ 2 2 76 .

1 7 格绍成 ,柴天佑 .一种非线性系统的模糊自适应控制 .信息与控制 ,Vo1 .

2 6 ,№ . 2 ,1 997. 4:87~ 91 .

1 8 Thomas Hessburg,Masayoshi Tomizukao,Model Reference Adaptive Fuzzy Logic Control for Vehicle Guidance,America

Control Conference,1 995:2 2 87~ 2 2 91 .

1 9 A. Trelsi- Ollenru,B. A. Stacey and B. A. White,A Multivariable Design of an ROV Depth Control System- A Direct

Adaptive Fuzzy SMC Approach,America Control Conference,1 995:3 2 4 4~ 3 2 4 8.

2 0 Li- Xin Wang,Control of Hierarchical Systems with Fuzzy System Models,America Control Conference,1 995.

2 1 Edgar N. Sanchez and Victor Vega,Stability of Neurofuzzy Controllers,America Control Conference,1 995:4 2 51~ 4 2 52 .

2 2 Kai Michels,Numerical Stability Analysis for a Fuzzy or Neural Network Controller,Fuzzy Sets &Systems,Vol. 89,

1 997:3 3 5~ 3 50.

2 3 贾利民 ,张锡第 . I. S. Shao,基于模糊穴 -穴映射的多变量模糊系统分析 ,控制与决策 ,Vol. 1 1 ,No. 6 ,1 996 . 1 1 ;6 4 3~ 6 4 9.

2 4 刘国荣 .模型参考模糊自适应控制 .控制理论与应用 ,Vo1 . 1

3 ,№ . 1 ,1 996 . 2 :92~ 97

2 5 刘国荣 .模糊自适应 PID控制器 .控制与决策 ,Vol. 1 0,№ . 6 ,1 995.

1 1 :558~ 56

2 .

2 6 Feng- Yih Hsu and Li- Chen Fu,A New Design of Adaptive Robust Controller for Nonlinear System s,Am erica Control

Conference,1 995:3 2 4 9~ 3 2 53 .

2 7 陈建勤 ,陈来九 .基于自适应神经元学习模糊控制规则 .控制与决

策 ,Vol. 9,№ . 5,1 994 . 9:3 50~ 3 54 .

2 8 刘立志 ,蒋玉珍 .一种新的智能模糊控制算法及其应用 .控制与决

策 ,Vol. 1 0,№ . 1 ,1 995. 1 :93~ 96 .

2 9 梁天培 ,周其节等 .模糊控制器的优化设计方法 .控制理论与应用 ,Vol.

1 2 ,№ . 4,1 995. 8:4 91~ 4 97.

3 0 费敏锐 ,陈伯时 .专家模糊控制方法 .控制与决策 ,Vol. 1 1 ,№ . 2 ,1 996 . 3 :2 56~ 2 6 0.

3 1 何洪 ,周恩涛等 .滞后复杂系统的多步预报自学习模蝴控制 .控制与决

策 ,Vol. 1 1 ,№ . 2 ,1 996 . 3 :3 00~ 3 03 .

3 2 濮卫东 ,陈来九 .应用单层神经网络设计多变量自适应模糊控制器 .控制与决策 ,Vol. 1 1 ,№ . 3 ,1 996 . 5:3

4 6~ 3 50.

3 3 金耀初 ,蒋静坪 .基于进化计算的模糊控制规则优化 .控制与决策 ,Vol.

1 1 ,№ . 6 ,1 996 . 1 1 :6 72~ 6 76 .

3 4 姚尹武 ,熊金淘 ,毛宗源 .一种神经网络自组织模糊控制 .控制理论与应用 ,Vol. 1 3 ,№ . 6 ,1 996 . 1 2 :73 8~ 752 .

3 5 睢刚 ,陈来九 .规则自适应模糊控制器 .控制理论与应用 ,Vol. 1

4 ,№ . 4,1997. 8:52 0~ 52 5.

3 6 王直杰 ,方建安 ,邵世煌 .一种采用增强式学习的模糊控制系统研究 .控制与决策 ,Vol. 1 2 ,№ . 2 ,1 997. 3 :1 88~ 1 91 .

3 7 Cheng- Jian L in and Chin- Teng L in,Reinforcement Learning for an ART- Based Fuzzy Adaptive Learning Control

Network,IEEE. Trans. On N. N. ,Vol. 7,№ . 3 ,May 1 996 :709~ 73 1 .

3 8 李伟 ,谭群华 . Hartm ut Janocha,利用 Nelder- Mead单纯形法优化模

糊逻辑控制器 ,控制理论与应用 ,Vol. 1 2 ,№ . 5,

1 995. 1 0:6 1 6~ 6

2 2 .

3 9 卢朝曝 ,石光明 .时对象模糊控制稳态性能的提高 .信息与控制 ,Vol. 2

4 ,№ . 1 ,1 995. 2 :59~ 6 3 .

40 贾磊 ,朱摩西等 .用论域缩小逼近法消除模糊控制器的余差 .信息与控

制 ,Vol. 24 ,№ . 4,1995. 8:251~ 256 .

41 吴介一 .提高模糊控制器精度的研究 .控制理论与应用 ,Vol. 1 3 ,№ .

2 ,1996 . 4:264~ 267.

42 刘建业 ,郑玉森 ,张炳达 .水轮机模糊调速器研究 .控制理论与应用 ,Vol.

1 3 ,№ . 1 ,1996 .

2 :47~ 51 .

43 范小英 ,陆培新 ,陈文楷 .一个新型的模糊控制器 .控制理论与应用 ,VOl.

1 2 ,№ . 5,1 995. 1 0:597~ 602 .

44 黄石生 ,贺剑锋 . TIG焊熔宽的参数自调整模糊与积分的混合控制 .控制

理论与应用 ,Vol. 1 2 ,№ . 4,1 995. 8:4 6 4~ 4 70.

45 孙元章等 .发电机调速系统的模糊逻辑控制器 .控制理论与应用 ,Vol. 1

3 ,№ . 5,1 996 . 1 0:6 2 1~ 6 2 5.

46 李树江 ,刘向杰 ,柴天佑 .模糊控制在三相异步电动机轻载降压节能中的

应用 .信息与控制 ,Vol. 2 5,№ . 6 ,1 996 . 1 2

4 7 李平 ,孙优贤 ,周春辉 .最优模糊控制器的系统设计 .控制理论与应

用 ,Vol. 1 2 ,№ . 1 ,1 995. 2 :4 6~ 52 .

48 王南 .一种基于模糊逻辑神经网络的自适应控制及其应用 .控制理论与应

用 ,Vol. 1 2 ,№ . 4,1 995. 8:4 3 7~ 4 44 .

49 卢进 ,徐文立 ,韩曾晋 .神经预测和模糊推理催化重新优化中的应用 .信

息与控制 ,Vol. 2 4 ,№ . 2 ,1 995. 4:71~ 77.

50 彭小奇 ,梅炽等 .多变量系统的模糊神经网络控制模型及其应用 .控制理论与应用 ,Vol. 1 2 ,№ . 3 ,1 995. 6 :3 51~ 3 57.

51 张念祖 ,朱汝辉 ,范懋基 .模糊控制在机器人定位控制中的应用 .控制与决策 ,Vol. 1 0,№ . 2 ,1 995. 3 :1 3 3~ 1 3 6

52 Seiji Yasunobu and Yasuhito Murai,Predictive Fuzzy Control and Parking Control,America Control Conference,1 995

53 S. Yasunobu and S. Miyam oto,Automatic Train Operation System by Predictive Fuzzy Control,(M. Sugeno ed. ) ,North

- Holland,1 985:1~ 1 8.

作者简介 :谢振华 :1965年生 ,讲师 ,现为西北工业大学自动控制系博士生。研究方向 :模糊控制、鲁棒控制、智能测量等。

微型计算机控制技术学习心得

微型计算机控制技术学习心得 转眼间,一个学期又过去了。微机原理与控制技术课程已经结束了。通过从大三下学期的微机原理与接口技术到这学期的微机原理与控制技术的学习,回想起来受益匪浅,主要是加深了对计算机的一些硬件情况和运行原理的理解和汇编语言的编写,期间也听老师讲过,微机原理这门课程是比较偏硬件一点的。正是因为这一点我还是对它比较喜欢的,因为它和我的专业方向“机电工程”有很大的联系,在机电工程领域很多场合要应用到微机,而且是微机原理是考研复试面试时必考问的专业课,因为我要考研,本着一定要考上的心态,因此对该课程的学习还是有浓厚的兴趣和动力的。下面谈谈这期学习该课程的心得与体会:总体介绍下这门课程的轮廓吧(也就是教学大纲): 一、课程性质与设置目的 (一)课程性质 微型计算机控制技术是高等院校计算机应用专业本科教学中的一门选修专业课,是从微型计算机原理到微型计算机控制,从理论到实际的必经桥梁,是着重解决和处理工程实际问题的一门课程。在该课程的教学过程中,将课堂教学与实验教学有机结合,注意培养同学分析问题、解决问题的方法和能力。 该课程主要介绍微型计算机应用在工业控制中的各种技术,重点讲述微型机用于实时控制中的软件、硬件设计方法,以及它们之间的结合问题。课程注重理论联系实际,从工程实际出发,在设计方法,即实验技术、操作运行、系统调试等方面对学生进行训练,为学生的毕业设计及将来的实际工作奠定基础。(二)教学目的 通过本课程的学习,可使我们对微型机在工业过程控制和智能化仪器方面的应用有个比较全面的了解,为以后的工作和毕业设计打下基础。 二、下面我对该门课程的教学内容做了一个详细的总结 1.第1章微型计算机控制系统概述 2.教学要点 1.微型计算机控制系统的组成 2.微型计算机控制系统的分类 3.微型计算机控制系统的发展 3.教学内容 通过对本章的学习,应当对微型计算机控制系统有一个完整的概念,具体掌握以下几方面的内容。 4. 1.了解微型计算机控制系统的组成。 2.学习并掌握微型计算机控制系统的分类 及各系统之间的区别。

关于模糊控制理论的综述

物理与电子工程学院 《人工智能》 课程设计报告 课题名称关于模糊控制理论的综述 专业自动化 班级 11级3班 学生姓名郑艳伟 学号 指导教师崔明月 成绩 2014年6月18日

关于模糊控制理论的综述 摘要:模糊控制方法是智能控制的重要组成部分,本文简要回顾了模糊控 制理论的发展,详细介绍了模糊控制理论的原理和模糊控制器的设计步骤, 分析了模糊控制理论的优缺点以及模糊控制需要完善或继续研究的内容,根 据各种模糊控制器的不同特点,对模糊控制在电力系统中的应用进行了分 类,并分析了各类模糊控制器的应用效能.最后,展望了模糊控制的发展趋 势与动态. 关键词:模糊控制;模糊控制理论;模糊控制系统;模糊控制理论的发展模糊控制是以模糊集理论、模糊语言变量和模糊控制逻辑推理为基础的一种智能控制方法,从行为上模拟人的思维方式,对难建模的对象实施模糊推理和决策的一种控制方法.模糊控制作为智能领域中最具有实际意义的一种控制方法,已经在工业控制领域、电力系统、家用电器自动化等领域中解决了很多的问题,引起了越来越多的工程技术人员的兴趣. 模糊控制系统简介 模糊控制系统是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制技术.1965年美国的扎德[1]创立了模糊集合论, 1973 年, 他给出了模糊逻辑控制的定义和相关的定理.1974 年英国的Mamdani 首先用模糊控制语句组成模糊控制器,并把它用于锅炉和蒸汽机的控制, 在实验室获得成功, 这一开拓性的工作标志着模糊控制论的诞生. 模糊控制系统主要是模拟人的思维、推理和判断的一种控制方法, 它将人的经验、常识等用自然语言的形式表达出来, 建立一种适用于计算机处理的输入输出过程模型, 是智能控制的一个重要研究领域.从信息技术的观点来看, 模糊控制是一种基于规则的专家系统.从控制系统技术的观点来看, 模糊控制是一种普遍的非线性特征域控制器. 相对传统控制, 包括经典控制理论与现代控制理论.模糊控制能避开对象的数学模型(如状态方程或传递函数等) , 它力图对人们关于某个控制问题的成功与失败和经验进行加工, 总结出知识, 从中提炼出控制规则, 用一系列多维模糊条件语句构造系统的模糊语言变量模型, 应用CRI 等各类模糊推理方法,

模糊理论综述

模糊理论综述 引言 模糊理论(Fuzzy Logic)是在美国加州大学伯克利分校电气工程系的L.A.zadeh(扎德)教授于1965年创立的模糊集合理论的数学基础上发展起来的,主要包括模糊集合理论、模糊逻辑、模糊推理和模糊控制等方面的内容.L.A.Zadeh教授在1965年发表了著名的论文,文中首次提出表达事物模糊性的重要概念:隶属函数,从而突破了19世纪末康托尔的经典集合理论,奠定模糊理论的基础。1974年英国的E.H.Mamdani成功地将模糊控制应用于锅炉和蒸汽机的控制,标志着模糊控制技术的诞生。随之几十年的发展,至今为止模糊理论已经非常成熟,主要包括模糊集合理论、模糊逻辑、模糊推理和模糊控制等方面的内容。 模糊理论是以模糊集合为基础,其基本精神是接受模糊性现象存在的事实,而以处理概念模糊不确定的事物为其研究目标,并积极的将其严密的量化成计算机可以处理的讯息,不主张用繁杂的数学分析即模型来解决问题。 二、模糊理论的一般原理 由于客观世界广泛存在的非定量化的特点,如拔地而起的大树,人们可以估计它很重,但无法测准它实际重量。又如一群人,男性女性是可明确划分的,但是谁是“老年人”谁又算“中年人”;谁个子高,谁不高都只能凭一时印象去论说,而实际人们对这些事物本身的判断是带有模糊性的,也就是非定量化特征。因此事物的模糊性往往是人类推理,认识客观世界时存在的现象。虽然利用数学手段甚至精确到小数点后几位,实际仍然是近似的。特别是对某一个即将运行的系统进行分析,设计时,系统越复杂,它的精确化能力越难以提高。当复杂性和精确化需求达到一定阈值时,这二者必将出现不相容性,这就是著名的“系统不相容原理”。由于系统影响因素众多,甚至某些因素限于人们认识方法,水准,角度不同而认识不足,原希望繁荣兴旺,最后导致失败,这些都是客观存在的。这些事物的现象,正反映了我们认识它们时存在模糊性。所以一味追求精确,倒可能是模糊的,而适当模糊以达到一定的精确倒是科学的,这就是模糊理论的一般原理。 三、模糊理论的分支 它可分类为模糊数学、模糊系统,模糊信息,模糊决策,模糊逻辑与人工智能这五个分支,它们并不是完全独立的,它们之间有紧密的联系。例如,模糊控制就会用到模糊数学和模糊逻辑中的概念。从实际应用的观点来看,模糊理论的应用大部分集中在模糊系统上,尤其集中在模糊控制上。也有一些模糊专家系统应用于医疗诊断和决策支持。 模糊逻辑:模糊逻辑指模仿人脑的不确定性概念判断、推理思维方式,对于模型未知或不能确定的描述系统,以及强非线性,大滞后的控制对象,应用模糊集合和模糊规则进行推理,表达过渡性界限或定型知识经验,模拟人脑方式,实行模糊综合判断,推理解决常规方法难于对付的规则型模糊信息问题。模糊逻辑善于表达界限不清晰的定性知识与经验。它借助于隶属度函数概念,区分模糊集合,处理模糊关系,模拟人脑实施规则型推理,解决因“排中律”的逻辑破缺产生的种种不确定问题。模糊逻辑是处理部分真实概念的布尔逻辑扩展。经典逻辑坚持所有事物(陈述)都可以用二元项(0或1,黑或白,是或否)来表达,而模糊逻辑用真实度替代了布尔真值。这些陈述表示实际上接近于日常人们的问题和语意陈述,因为“真实”和结果在多数时候是部分(非二元)的和/或不精确的(不准确的,不清晰的,模糊的)。真实度经常混淆于概率,但是它们在概念上是不一样的;模糊真值表示在模糊定义的集合中的成员归属关系,而不是某事件或条件的可能度(likelihood)。要展示这种区别,考虑下列情节: Bob在有两个毗邻的屋子的房子中:厨房和餐厅。在很多情况下,Bob的状态是在事物“在厨房中”的集合内是完全明确的:他要么“在厨房中”要么“不在厨房中”。但

模糊控制理论外文文献翻译

模糊控制理论 概述 模糊逻辑广泛适用于机械控制。这个词本身激发一个一定的怀疑,试探相当于“仓促的逻辑”或“虚假的逻辑”,但“模糊”不是指一个部分缺乏严格性的方法,而这样的事实,即逻辑涉及能处理的概念,不能被表达为“对”或“否”,而是因为“部分真实”。虽然遗传算法和神经网络可以执行一样模糊逻辑在很多情况下,模糊逻辑的优点是解决这个问题的方法,能够被铸造方面接线员能了解,以便他们的经验,可用于设计的控制器。这让它更容易完成机械化已成功由人执行。 历史以及应用 模糊逻辑首先被提出是有Lotfi在加州大学伯克利分校在1965年的一篇论文。他阐述了他的观点在1973年的一篇论文的概念,介绍了语言变量”,在这篇文章中相当于一个变量定义为一个模糊集合。其他研究打乱了,第二次工业应用中,水泥窑建在丹麦,即将到来的在线1975。 模糊系统在很大程度上在美国被忽略了,因为他们更多关注的是人工智能,一个被过分吹嘘的领域,尤其是在1980年中期年代,导致在诚信缺失的商业领域。 然而日本人对这个却没有偏见和忽略,模糊系统引发日立的Seiji Yasunobu和Soji Yasunobu Miyamoto的兴趣。,他于1985年的模拟,证明了模糊控制系统对仙台铁路的控制的优越性。他们的想法是被接受了,并将模糊系统用来控制加速、制动、和停车,当线于1987年开业。 1987年另一项促进模糊系统的兴趣。在一个国际会议在东京的模糊研究那一年,Yamakawa论证<使用模糊控制,通过一系列简单的专用模糊逻辑芯片,在一个“倒立摆“实验。这是一个经典的控制问题,在这一过程中,车辆努力保持杆安装在顶部用铰链正直来回移动。 这次展示给观察者家们留下了深刻的印象,以及后来的实验,他登上一Yamakawa酒杯包含水或甚至一只活老鼠的顶部的钟摆。该系统在两种情况下,保持稳定。Yamakawa最终继续组织自己的fuzzy-systems研究实验室帮助利用自己的专利在田地里的时候。

神经网络自适应控制

神经网络自适应控制 学院:电气工程与自动化学院 专业:控制科学与工程 姓名:兰利亚 学号: 1430041009 日期: 2015年6月25日

神经网络间接自适应控制 摘要:自适应模糊控制系统对参数变化和环境变化不敏感,能用于非线性和多变 量复杂对象,不仅收敛速度快,鲁棒性好,而且可以在运行中不断修正自己的控制 规则来改善控制性能,因而受到广泛重视。间接自适应控制是通过在线辨识的到 控制对象的模型。神经网络作为自适应控制器,具有逼近任意函数的能力。 关键词:神经网络间接自适应控制系统辨识 一、引言 自适应控制系统必须完成测量性能函数、辨识对象的动态模型、决定控制 器如何修改以及如何改变控制器的可调参数等功能。自适应控制有两种形式: 一种是直接自适应控制,另一种是间接自适应控制。直接自适应控制是根据实 际系统性能与理想性能之间的偏差,通过一定的方法来直接调整控制器的参 数。 二、间接自适应系统分析与建模 2.1系统的分析 系统过程动态方程:y(k+1)= -0.8y(k)/(1+y2(k))+u(k),参考系统模型 由三阶差分方程描述: ym(k+1)=0.8ym(k)+1.2ym(k-1)+0.2ym(k-2)+r(k) 式中,r(k)是一个有界的参考输入。如果输出误差ec(k)定义为 ec(k)=y(k)-ym(k),则控制的目的就是确定一个有界的控制输入u(k),当k趋于 正无穷时,ec(k)=0.那么在k阶段,u(k)可以从y(k)和它的过去值中计算得 到: u(k)=0.8y(k)/(1+y2(k))+0.8y(k)+1.2y(k-1)+0.2y(k-2)+r(k) (1) 于是所造成的误差方程为: ec(k+1)=0.8ec(k)+1.2ec(k-1)+0.2ec(k-2) (2) 因为参考模型是渐进稳定的,所以对任意的初始条件,它服从当k趋于无穷, ec(k)=0。在任何时刻k,用神经元网络N2计算过程的输入控制,即 u(k)=-N[y(k)]+0.8y(k)+1.2y(k-1)+0.2y(k-2)+r(k) (3) 由此产生非线性差分方程:y(k+1)=-0.8y(k)/(1+y2(k))+N[y(k)] +0.8y(k)+ 1.2y(k-1)+0.2y(k-2)+r(k) (4) 故设计的要点是设计一个神经网络来逼近0.8y(k)/(1+y2(k))。 2.2系统的建模设计过程 第一步,用BP神经网络逼近,神经网络的结构包含三层:输入层、隐含层 和输出层。BP网络的训练过程如下:正向传播是输入信号从输入层经隐层传向 输出层,若输出层得到了期望的输出,则学习算法结束;否则,转至反向传 播。 第二步,输入测试样本,对神经网络的逼近程度进行测试,将测试后的期

模糊控制算法的研究

模糊控制算法的研究 0842812128夏中宇 模糊控制概述 “模糊”是人类感知万物,获取知识,思维推理,决策实施的重要特征。“模糊”比“清晰”所拥有的信息容量更大,内涵更丰富,更符合客观世界。 在日常生活中,人们的思维中有许多模糊的概念,如大、小、冷、热等,都没有明确的内涵和外延,只能用模糊集合来描述。人们常用的经验规则都是用模糊条件语句表达,例如,当我们拧开水阀往水桶里注水时,有这样的经验:桶里没水或水较少时,应开大水阀;桶里水较多时,应将水阀关小些;当水桶里水快满时,则应把阀门关得很小;而水桶里水满时应迅速关掉水阀。其中,“较少”、“较多”、“小一些”、“很小”等,这些表示水位和控制阀门动作的概念都具有模糊性。即有经验的操作人员的控制规则具有相当的模糊性。模糊控制就是利用计算机模拟人的思维方式,按照人的操作规则进行控制,实现人的控制经验。 模糊控制理论是由美国著名的学者加利福尼亚大学教授Zadeh·L·A于1965年首先提出,它以模糊数学为基础,用语言规则表示方法和先进的计算机技术,由模糊推理进行决策的一种高级控制策略。 1974年,英国伦敦大学教授Mamdani·E·H研制成功第一个模糊控制器,充分展示了模糊技术的应用前景。 模糊控制概况 模糊逻辑控制(Fuzzy Logic Control)简称模糊控制(Fuzzy Control),是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制技术。1965年,美国的L.A.Zadeh 创立了模糊集合论;1973年他给出了模糊逻辑控制的定义和相关的定理。1974年,英国的E.H.Mamdani首先用模糊控制语句组成模糊控制器,并把它应用于锅炉和蒸汽机的控制,在实验室获得成功。这一开拓性的工作标志着模糊控制论的诞生。 模糊控制实质上是一种非线性控制,从属于智能控制的范畴。模糊控制的一大特点是既具有系统化的理论,又有着大量实际应用背景。模糊控制的发展最初在西方遇到了较大的阻力;然而在东方尤其是在日本,却得到了迅速而广泛的推广应用。近20多年来,模糊控制不论从理论上还是技术上都有了长足的进步,成为自动控制领域中一个非常活跃而又硕果累累的分支。其典型应用的例子涉及生产和生活的许多方面,例如在家用电器设备中有模糊洗衣机、空调、微波炉、吸尘器、照相机和摄录机等;在工业控制领域中有水净化处理、发酵过程、化学反应釜、水泥窑炉等的模糊控制;在专用系统和其它方面有地铁靠站停车、汽车驾驶、电梯、自动扶梯、蒸汽引擎以及机器人的模糊控制等。 模糊控制的基本理论 所谓模糊控制,就是在控制方法上应用模糊集理论、模糊语言变量及模糊逻辑推理的知识来模拟人的模糊思维方法,用计算机实现与操作者相同的控制。该理论以模糊集合、模糊语言变量和模糊逻辑为基础,用比较简单的数学形式直接将人的判断、思维过程表达出来,从而逐渐得到了广泛应用。应用领域包括图像识别、自动机理论、语言研究、控制论以及信号处理等方面。在自动控制领域,以模糊集理论为基础发展起来的模糊控制为将人的控制经验及推理过程纳入自动控制提供了一条便捷途径。 1.知识库

模糊控制综述

模糊控制研究及发展现状综述

模糊控制研究及发展现状综述 摘要:模糊控制是智能控制的重要组成部分。本文主要介绍了模糊控制理论的研究及发展的现状等 ,详细介绍了模糊控制理论的原理、模糊控制的数学基础, 其发展现状中介绍了模糊 PID 控制、自适应模糊控制、神经模糊控制、遗传算法优化的模糊控制、专家模糊控制等 , 还介绍了一些模糊控制的软硬件产品, 对模糊控制系统的稳定性作了简单介绍, 最后对模糊控制的发展作了展望。 关键词:模糊控制;模糊控制器

引言 模糊控制是近代控制理论中的一种基于语言规则与模糊推理的高级控制策略和新颖技术,它是智能控制的一个重要分支,发展迅速,应用广泛,实效显著,引人关注。随着科学技术的进步,现代工业过程日趋复杂,过程的严重非线性、不确定性、多变量、时滞、未建模动态和有界干扰,使得控制对象的精确数学模型难以建立,单一应用传统的控制理论和方法难以满足复杂控制系统的设计要求。而模糊控制则无需知道被控对象的精确数学模型,且模糊算法能够有效地利用专家所提供的模糊信息知识,处理那些定义不完善或难以精确建模的复杂过程。因此,模糊控制成为了近年来国内外控制界关注的热点研究领域。 模糊控制作为智能领域中最具有实际意义的一种控制方法 ,已经在工业控制领域、家用电器自动化领域和其他很多行业中解决了传统控制方法无法或者是难以解决的问题, 取得了令人瞩目的成效, 引起了越来越多的控制理论的研究人员和相关领域的广大工程技术人员的极大兴趣。 一:模糊控制简介 模糊控制是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制技术。 1965 年美国的扎德创立了模糊集合论, 1973 年, 他给出了模糊逻辑控制的定义和相关的定理。 1974 年英国的 Mamdani 首先用模糊控制语句组成模糊控制器,并把它用于锅炉和蒸汽机的控制, 在实验室获得成功, 这一开拓性的工作标志着模糊控制论的诞生。 模糊控制主要是模拟人的思维、推理和判断的一种控制方法, 它将人的经验、常识等用自然语言的形式表达出来, 建立一种适用于计算机处理的输入输出过程模型 , 是智能控制的一个重要研究领域。从信息技术的观点来看 , 模糊控制是一种基于规则的专家系统。从控制系统技术的观点来看, 模糊控制是一种普遍的非线性特征域控制器。 相对传统控制, 包括经典控制理论与现代控制理论。模糊控制能避开对象的数学模型 (如状态方程或传递函数等), 它力图对人们关于某个控制问题的成功与失败和经验进行加工 , 总结出知识 , 从中提炼出控制规则 , 用一系列多维模糊条件语句构造系统的模糊语言变量模型 , 应用 C RI 等各类模糊推理方法,可以得到适合控制要求的控制量, 可以说模糊控制是一种语言变量的控制. 模糊控制具有以下特点:

过程控制考试总结

1.控制系统对检测变送的基本要求是准确、迅速和可靠 2.从理论上讲,干扰通道存在纯滞后不影响系统的控制质量。 3.离心泵的控制方案有直流节流法、改变泵的转速n 改变旁路回流量。效 率最差的是改变旁路回流量。 4.随着控制通道的增益K o的增加,控制作用___增强_______,克服干扰能力 增大,最大偏差减小系统的余差减小 5.控制器的选择包括结构材质的选择、口径的选择、流量特性的选择和 正反作用的选择。 6.防积分饱和的措施有对控制器的输出限幅、限制控制器积分部分的输出 和积分切除法。 7.如果对象扰动通道增益K f增加,扰动作用__增强__,系统的余差__增大__,最 大偏差_增大___。 8.简单控制系统的组成,各部位的作用是什么? 解答: 简单控制系统由检测变送装置、控制器、执行器及被控对象组成。 检测变送装置的作用是检测被控变量的数值并将其转换为一种特定输出信号。 控制器的作用是接受检测装置送来的信号,与给定值相比较得出偏差,并按某种运算规律算出结果送往执行器。 执行器能自动地根据控制器送来的控制信号来改变操纵变量的数值,以达到控制被控变量的目的。 被控对象是指需要控制其工艺参数的生产设备或装置 9.气动执行器由__调节__机构和执行机构两部分组成,常用的辅助装置有 __阀门__定位器和手轮机构。 10.调节系统中调节器正反作用的确定依据是保证控制系统成为负反馈。 11.被控变量是指工艺要求以一定的精度保持__恒定 _或随某一参数的变化而 变化的参数。 12.反应对象特性的参数有放大倍数、时间常数、和纯滞后时间。 13.自动调节系统常用参数整定方法有哪些?常用的参数整定方法有!经验法*衰 减曲线法*临界比例度法*反应曲线法) 动态特性参数法,稳定边界法,衰减曲线法,经验法。 14.检测变送环节对控制系统的影响主要集中在检测元件的滞后和信号传递 的滞后问题上。 15.什么是对象数学模型,获取模型的方法有哪些? 答:对对象特性的数学描述就叫数学模型。 机理建模和实验建模混合建模 16.简述被控量与操纵量的选择原则。. 答:一、(1) 被控量的选择原则: ①必须尽可能选择表征生产过程的质量指标作为被控变量; ②当没有合适的质量指标时,应选择与质量指标由单质对应关系的间接指标作为被控量; ③间接指标必须有足够的灵敏度;

加工过程的复合自适应模糊控制

加工过程的复合自适应模糊控制 3 姚锡凡 副教授 姚锡凡 彭永红 陈统坚 彭 观 李春雄 摘要 设计了一种自适应模糊控制器,采用了模糊规则在线自调整和 输出比例因子在线自适应估计相结合的策略,应用于铣削加工过程的仿真结果表明,该控制器可适用于非最小相位系统,为加工过程的约束型控制提供一条有效途径。 关键词 加工过程 模糊控制 自适应 参数估计 中国图书资料分类法分类号 T P 273 3国家自然科学基金资助项目(59585006)收稿日期:1997—12—22 始于60年代初的加工过程自适应控制,可分为优化型自适应控制(A CO )和约束型自适应控制(A CC )两大类。但由于加工过程的不确定性、时变性和非线性,以及对加工性能要求越来越高,建立于对象的数学模型基础上的自适应控制难以获得满意的控制效果,甚至无能为力,加工过程的 控制至今仍未获得突破性的进展[1],为此发展不依赖或少依赖于数学模型的智能加工控制系统是必要的。但常规的模糊控制不具有自适应性,而且会出现零点极限环振荡现象,为此本文提出了一种复合的自适应模糊控制,对铣削加工过程进行控制。 1 自适应模糊控制 一般常规模糊控制涉及论域有3个,它们是误差E

K U = F r c s K P (4) 式中,c s 为常数(取0.5);F r 为力的设定值;K P 为被控对象的增益。 K P 可由下式估算得到E r (i )=F (i )-K P (i - 1)u (i -1) K P (i )=K P (i -1)+cE r (i ) (5) 式中,E r 为切削力的估计误差;F 为力的测量值;c 为常数(在下面仿真中取0.035);u (i )为进给速度(电压值)。 u (i )=K U (i )[U (i ) 12+0.5] (6) 2 仿真实验 本文以铣削加工为对象,在主轴转速恒定、铣削深度作阶跃变化下,通过检测切削力,自动调节铣削进给速度,使加工过程的切削力恒定。对于铣 削加工过程(包括伺服环节),其二阶模型可以表示为[5] F β+2ΝΞn F α+Ξ2n F =K (2ΝΞn u α+Ξ2n u )(7)式中,F 为实测的切削力;u 为进给速度(电压值)(见图1);Ν为阻尼系数;Ξn 为自然频率。 采用零阶保持器,当Ν<1时,式(7)的离散可表示为 G (z )= F (z ) u (z )=b 0z +b 1z 2 +a 1z +a 2 (8) 式中,a 1、a 2、b 0、b 1可由式(7)求得。 当采样周期T =0.05s,切削深度a p 分别为2.54mm 、1.91mm 、3.81mm 时,传递函数分别 为[6] G 1(z )=F (z )u (z )=1.3907z + 1.3257 z 2 -1.8218z +0.8409G 2(z )=F (z )u (z )=0.8346z + 0.8363z 2 -1.9642z +0.9773G 3(z )=F (z )u (z )=3.0861z + 2.8242z 2 -1.7461z + 0.7655 可以看出,传递函数随切削深度而变化,当切 削深度为1.91mm 时,已变为一个非最小相位系 统,有一个过程零点位于单位圆外(z =-b 1 b 0=-1.0021),此时常规的模型参考自适应控制(M odel R eference A dap tive Con tro l,M RA C )已 不能适用上述的非最小相位系统,要用修正的M RA C 进行控制,但修正算法较为复杂。一些研 究结果表明,模糊控制能较好地适用于非最小相位加工系统,本文采用复合自适应模糊控制(图1)实现铣削加工过程控制。 仿真实验时,取K E =0.4,K C =0.8,K U (0)=5.6338,F r =400N ,T =0.05s,结果见图2。仿 真时,首先取切削深度为2.54mm ,此时采用的加工模型为G 1(z ),在t =200T 时,让加工模型变为G 2 (z ),而在t =400T 时,让加工模型变为G 3(z )。同时对进给速度进行了限制,即0

基于模糊控制的速度跟踪控制问题(C语言以及MATLAB仿真实现)

基于模糊控制的速度控制 ——地面智能移动车辆速度控制系统问题描述 利用模糊控制的方法解决速度跟踪问题,即已知期望速度(desire speed),控制油门(throttle output)和刹车(brake output)来跟踪该速度。已知输入:车速和发动机转速(值可观测)。欲控制刹车和油门电压(同一时刻只有一个量起作用)。 算法思想 模糊控制器是一语言控制器,使得操作人员易于使用自然语言进行人机对话。模糊控制器是一种容易控制、掌握的较理想的非线性控制器,具有较佳的适应性及强健性(Robustness)、较佳的容错性(Fault Tolerance)。利用控制法则来描述系统变量间的关系。不用数值而用语言式的模糊变量来描述系统,模糊控制器不必对被控制对象建立完整的数学模式。 Figure 1模糊控制器的结构图 模糊控制的优点: (1)模糊控制是一种基于规则的控制,它直接采用语言型控制规则,出发点是现场操作人员的控制经验或相关专家的知识,在设计中不需要建立被控对象的精确的数学模型,因而使得控制机理和策略易于接受与理解,设计简单,便于应用。 (2)由工业过程的定性认识出发,比较容易建立语言控制规则,因而模糊控制对那些数学模型难以获取,动态特性不易掌握或变化非常显著的对象非常适用。 (3)基于模型的控制算法及系统设计方法,由于出发点和性能指标的不同,容易导致较大差异;但一个系统语言控制规则却具有相对的独立性,利用这些控制规律间的模糊连接,容易找到折中的选择,使控制效果优于常规控制器。 (4)模糊控制是基于启发性的知识及语言决策规则设计的,这有利于模拟人工控制的过程和方法,增强控制系统的适应能力,使之具有一定的智能水平。 简化系统设计的复杂性,特别适用于非线性、时变、模型不完全的系统上。 模糊控制的缺点

基于simulink的模糊控制仿真

已知系统的传递函数为:1/(10s+1)*e(-0.5s)。假设系统给定为阶跃值r=30,系统初始值r0=0.试分别设计 (1)常规的PID控制器; (2)常规的模糊控制器; (3)比较两种控制器的效果; (4)当通过改变模糊控制器的比例因子时,系统响应有什么变化? 一.基于simulink的PID控制器的仿真及其调试: 调节后的Kp,Ki,Kd分别为:10 ,1,0.05。 示波器观察到的波形为: 二.基于simulink的模糊控制器的仿真及其调试: (1)启动matlab后,在主窗口中键入fuzzy回车,屏幕上就会显现出如下图所示的“FIS Editor”界面,即模糊推理系统编辑器。

(2)双击输入量或输出量模框中的任何一个,都会弹出隶属函数编辑器,简称MF编辑器。

(3)在FIS Editor界面顺序单击菜单Editor—Rules出现模糊规则编辑器。 本次设计采用双输入(偏差E和偏差变化量EC)单输出(U)模糊控制器,E的论域是[-6,6],EC的论域是[-6,6],U的论域是[-6,6]。它们的状态分别是负大(NB)、负中(NM)、负小(NS)、零(ZO)、正小(PS)、正中(PM)、正大(PB)。语言值的隶属函数选择三角形的隶属度函数。推理规则选用Mamdani 控制规则。 该控制器的控制规则表如图所示:

Simulink仿真图如下: 在调试过程中发现加入积分调节器有助于消除静差,通过试凑法得出量化因子,比例因子以及积分常数。Ke,Kec,Ku,Ki分别是: 3 ,2.5 ,3.5 ,0.27

三.实验心得: 通过比较PID控制器和模糊控制器,我们可知两个系统观察到的波形并没有太大的区别。相对而言,对于给出精确数学模型的控制对象,PID控制器显得更具有优势,其一是操作简单,其二是调节三个参数可以达到满意的效果;对于给出给出精确数学模型的控制对象,模糊控制器并没有展现出太大的优势,其一是操作繁琐,其二是模糊控制器调节参数的难度并不亚于PID控制器。 在实验中增大模糊控制器的比例因子Ku会加快系统的响应速度,但Ku过大将会导致系统输出上升速率过快,从而使系统产生较大的超调量乃至发生振荡;Ku过小,系统输出上升速率变小,将导致系统稳态精度变差。

最优控制结课心得体会

最优控制结课心得体会 最优控制理论的形成和发展和整个现代自动控制理论的形成和发展十分不开的。在20世纪50年代初期,就有人开始发表从工程观点研究最短时间控制问题的文章,尽管其最优性的证明多半借助于几何图形,仅带有启发性质,但毕竟为发展现代控制理论提供了第一批实际模型。由于最优控制问题引人注目的严格表述形式,特别是空间技术的迫切需求,从而吸引了大批科学家的密切注意。 非常荣幸今年能够在刘老师班中学习最优控制这门课程,在这门课上,我们了解了最优控制是系统设计的一种方法,研究的中心问题是如何选择控制信号(控制策略),才能保证控制系统的性能在某种意义下最优。而最优控制是现代控制理论的核心,它研究的主要问题是:在满足一定约束条件下,寻求最优控制策略,使得性能指标取极大值或极小值。 使控制系统的性能指标实现最优化的基本条件和综合方法,可概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。这类问题广泛存在于技术领域或社会问题中。例如,确定一个最优控制方式使空间飞行器由一个轨道转换到另一轨道过程中燃料消耗最少。最优控制理论是50年代中期在空间技术的推动下开始形成和发展起来的。美国学者R.贝尔曼1957年提出的动态规划和前苏联学者L.S.庞特里亚金1958年提出的极大值原理,两者的创立仅相差一年左右。对最优控制理论的形成和发展起了重要的作用。线性系统在二次型性能指标下的最优控制问题则是R.E.卡尔曼在60年代初提出和解决的。 从数学上看,确定最优控制问题可以表述为:在运动方程和允许控制范围的约束下,对以控制函数和运动状态为变量的性能指标函数(称为泛函)求取极值(极大值或极小值)。解决最优控制问题的主要方法有古典变分法(对泛函求极值的一种数学方法)、极小值原理和动态规划。最优控制已被应用于综合和设计最速控制系统、最省燃料控制系统、最小能耗控制系统、线性调节器等。解决最优控制问题的主要方法有古典变分法、极小值原理和动态规划。 通过学习我们了解到:最优控制是一门比较新兴的学科,也是一门富有朝气的学说。但是,随着社会科技的不断进步,最优控制理的应用领域十分广泛,如时间最短、能耗最小、线性二次型指标最优、跟踪问题、调节问题和伺服机构问题等。但它在理论上还有不完善的地方,其中两个重要的问题就是优化算法中的鲁棒性问题和最优化算法的简化和实用性问

PID模糊控制器发展现状综述

模糊PID控制器的发展现状综述 1模糊PID控制器研究背景 1.1PID控制器 传统的PID控制器虽然以其结构简单、工作稳定、适应性好、精度高等优点成为过程控制中应用最广泛最基本的一种控制器。PID调节规律一般都能得到比较令人满意的控制效果,尤其是对于线性定常系统的控制是非常有效的,但是它的调节品质取决于PID控制器各个参数的确定。随着工业生产过程的日趋复杂化,系统不可避免地存在非线性、滞后和时变现象,其中有的参数未知或缓慢变化,有的带有延时和随机干扰,有的无法获得较精确的数学模型或模型非常粗糙,如果使用常规的PID控制器,PID参数的整定变得十分困难甚至无法整定,因此并不能得到理想的控制效果。为此,近年来各种改进的PID控制器如自校正、自适应PID[1][2][3]及智能控制器[4]迅速发展起来,但仍存在一定的局限性。 1.2模糊控制器 随着技术的发展,模糊控制理论和模糊技术成为最广泛最有前景的应用分支之一。模糊控制器是一种专家控制系统,它的优点是不需要知道被控对象的数学模型而能够利用专家已有的经验对系统进行建模。与传统的PID控制方式相比,它适合解决一些难以建立精确数学模型、非线性、大滞后和时变的复杂过程的问题,因此得到了很好的发展,尤其是在工业控制、电力系统等领域中解决了许多实际性的问题,引起了越来越多的工程技术人员的兴趣。但是经过深入研究,会发现基本模糊控制存在着其控制品质粗糙和精度低等弊病。而且用的最多的二维输入的模糊控制器是PI或PD型控制器,会出现过渡过程品质不好或不能消除稳态误差的问题。 因此,在许多情况下,将模糊控制和PID控制两者结合起来,扬长避短,既具有模糊控制灵活、适应性强、快速性好的优点,又具有PID控制精度高的特点。把规则的条件、操作用模糊集表示,并把这些模糊控制规则及有关信息作为知识存入计算机知识库中,然后计算机根据控制系统的实际响应情况,运用模糊推理,自动实现对PID参数的最佳整定,实现模糊PID控制。

模糊控制用于机器人避障

北京工业大学 结课论文 课题名称:基于模糊控制的机器人避障 姓名:鑫元 12521121 唐堂 12521130 成绩: 引言

智能小车是移动机器人的一种,可通过计算机编程来实现其对行驶方向、启停以及速度的控制。要想让智能小车在行驶过程中能成功地避开障碍物,必须对其进行路径规划?,路径规划的任务是为小车规划一条从起始点到目标点的无碰路径。路径规划方法有:BP人工神经网络法(Back Propagation)、机器学习(Reinforcement Learning)、以及模糊控制(Fuzzy Control)方法等。模糊技术具有人类智能的模糊性和推理能力,在路径规划中,模糊推理的应用主要体现在基于行为的导航方式上,即将机器人的运动过程分解为避障、边界跟踪、调速、目标制导等基本行为,各基本行为的激活由不同的机构分别控制,机器人的最终操作由高层控制机构对基本行为进行平衡后作出综合反应。模糊控制方法将信息获取和模糊推理过程有机结合,其优点在于不依赖机器人的动力学、运动学模型,系统控制融入了人类经验,同时计算量小,构成方法较为简单,节省系统资源,实时性。本文探讨了模糊控制技术在避障路径规划中的应用,并对其进行了仿真设计。 摘要 基于MATLAB的仿真结果表明模糊逻辑推理方法在智能小车的导航控制中具有良好的效果。 目录

引言,摘要 (1) 1.模糊控制技术基本理 (3) 2模糊控制器设计 (4) 3.避障算法设计 (6) 4 仿真实验 (14) 5.实验截图 (17) 6. 结论 (19) 7.实验心得 (20) 8.参考文献 (22)

1模糊控制技术基本原理 环境中存在障碍物时,路径规划控制系统具有高度不确定性,是一个多输入多输出(MIMO)系统。对于这种具有高度不确定性的MIMO系统,传统的控制方法不能达到很好的控制效果。模糊推理控制方法将人类的驾驶经验融入系统控制之中,因此可以较好地满足系统自适应性、鲁棒性和实时性的要求。模糊控制方式借助模糊数学这一工具通过推理来实现控制。模糊逻辑模拟了人类思维的模糊性,它采用与人类语言相近的语言变量进行推理,因此借助这一工具可将人类的控制经验融人系统控制之中,使得系统可以像有经验的操作者一样去控制复杂、激励不明的系统。总的说来模糊控制具有以下特点: 1)不依赖于被控对象的精确数学模型,易于对不确定性系统进行控制; 2)易于控制、易于掌握的较理想非线性控制器,是一种语言控制器; 3)抗干扰能力强,响应速磨陕,并对系统参数的变化有较强的鲁棒性。 模糊控制器的基本结构由模糊输入接口、模糊推理以及模糊输出接口三个模块组成。模糊输入接口的主要功能是实现精确量的模糊化,即把物理量的精确值转换成语言变量值。语言变量的分档根据实际情况而定,一般分为3—7档,档数越多,控制精度越高,计算量也越大。模糊推理决策机构的主要功能是模仿人的思维特征,根据总结人工控制策略取得的语言控制规则进行模糊推理,并决策出模糊输出控制量。模糊输出接口的主要功能是把输出模糊量转化为精确量,施于被控对象。 2模糊控制器设计

自适应模糊控制几个基本问题的研究进展

自适应模糊控制几个基本问题的研究进展 谢振华程江涛耿昌茂 (海军航空工程学院青岛分院航空军械系青岛 266041 ) 周德云 (西北工业大学西安 710072 ) [摘要] 综述了模糊控制系统的稳定性分析、系统设计及系统性能提高三个基本问题的研究 ,简述了应用研究 ,最后对自适应模糊控制的理论和应用进行了展望。 关键词模糊控制自适应控制鲁棒性稳定性 1 引言 自从 L. A. Zadeh提出模糊集合论以来 ,基于该理论形成一门新的模糊系统理论学科 ,在控制、信号处理、模式识别、通信等领域得到了广泛的应用。近年来 ,有关模糊控制理论及应用研究引起了学术界的极大兴趣 ,取得了一系列成功的应用和理论成果 ,与早期的模糊控制理论和应用相比有了很大的发展。模糊控制理论成为智能控制理论的一个重要分支。 一般来讲 ,模糊控制理论研究的核心问题在于如何解决模糊控制中关于稳定性和鲁棒性分析、系统的设计方法 (包括规则的获取和优化、隶属函数的选取等 )、控制系统的性能 (稳态精度、抖动及积分饱和度等 )的提高等问题 ,这己成为模糊控制研究中的几个公认的基本问题。其中 ,稳定性和鲁棒性问题的研究最为热烈 ,从早期基于模糊控制器的“多值继电器”等价模型的描述函数分析法 ,扩展到相平面法、关系矩阵分析法、圆判据、L yapunov稳定性理论、超稳定理论、基于滑模控制器的比较法、模糊穴 -穴映射及数值稳定性分析方法等非线性理论方法。设计方法的研究也倍受关注 ,主要表现在对规则的在线学习和优化、隶属函数参数的优化修正等应用了多种思想 ,如最优控制的二次型性能指标、自适应、神经网络、遗传算法等思想。稳态性能的改善一直是模糊控制学者所关注。 围绕上述几个基本问题 ,出现了多变量模糊控制[1 ,2 ] 、模糊神经网络技术 [3 ] 、神经模糊技术 [4 ] 、自适应模糊控制 [5] 、模糊系统辨识[6 ] 等热点研究领域。在模糊控制理论与应用方面 ,日本学者取得了很大的成就[7] ,我国学者在这方面也付出了不懈的努力 ,并取得了许多重要的成果。所有这些工作促进了模糊控制的理论和应用的快速发展。 本文拟对近几年自适应模糊控制几个基本问题的研究现状作一总结 ,希望能从这一侧面反映其研究情况和发展动向。主要内容包括 :( 1 )稳定性分析问题的研究 ;( 2 )系统设计方法的研究 ;( 3)系统性能提高的研 究 ;( 4 )应用研究情况。 2 稳定性分析 众所周知 ,任何一个自动控制系统 ,首先必须是稳定的 ,否则这个系统就无法工作。因此 ,在控制系统的分析和设计中 ,系统的稳定性研究占有重要的地位 ,模糊控制系统也是如此。由于模糊系统本质上的非线性和缺乏统一的系统描述 ,使得人们难以利用现有的控制理论和分析方法对模糊控制系统进行分析和

模糊控制系统的应用

模糊控制系统的应用 一、模糊控制系统的应用背景 模糊控制系统是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制技术。1965年美国的扎德创立了模糊集合论, 1973 年, 他给出了模糊逻辑控制的定义和相关的定理。1974 年英国的Mamdani 首先用模糊控制语句组成模糊控制器,并把它用于锅炉和蒸汽机的控制, 在实验室获得成功, 这一开拓性的工作标志着模糊控制论的诞生。 模糊控制系统主要是模拟人的思维、推理和判断的一种控制方法, 它将人的经验、常识等用自然语言的形式表达出来, 建立一种适用于计算机处理的输入输出过程模型, 是智能控制的一个重要研究领域。从信息技术的观点来看, 模糊控制是一种基于规则的专家系统。从控制系统技术的观点来看, 模糊控制是一种普遍的非线性特征域控制器。 相对传统控制, 包括经典控制理论与现代控制理论。模糊控制能避开对象的数学模型(如状态方程或传递函数等) , 它力图对人们关于某个控制问题的成功与失败和经验进行加工, 总结出知识, 从中提炼出控制规则, 用一系列多维模糊条件语句构造系统的模糊语言变量模型, 应用CRI 等各类模糊推理方法,可以得到适合控制要求的控制量, 可以说模糊控制是一种语言变量的控制。 模糊控制具有以下特点: (1) 模糊控制是一种基于规则的控制。它直接采用语言型控制规则, 出发点是现场操作人员的控制经验或相关专家的知识, 在设计中不需要建立被控对象的精确数学模型, 因而使得控制机理和策略易于接受与理解, 设计简单, 便于应用; (2) 由工业过程的定性认识出发, 比较容易建立语言控制规则, 因而模糊控制对那些数学模型难以获取、动态特性不易掌握或变化非常显著的对象非常适用; (3) 基于模型的控制算法及系统设计方法, 由于出发点和性能指标的不同, 容易导致较大差异; 但一个系统的语言控制规则却具有相对的独立性, 利用这些控制规律间的模糊连接, 容易找到折中的选择, 使控制效果优于常规控制器; (4) 模糊控制算法是基于启发性的知识及语言决策规则设计的, 这有利于模拟人工控制的过程和方法, 增强控制系统的适应能力, 使之具有一定的智能

相关主题