搜档网
当前位置:搜档网 › 饮用水除氟技术及其机理

饮用水除氟技术及其机理

饮用水除氟技术及其机理
饮用水除氟技术及其机理

含氟离子废水处理技术经验

含氟离子废水处理技术 如何除氟离子,钙离子,NH4F受热或遇热水即分解成氨和氟化氢,或分解失去氨转化成更稳定的氟化氢铵。,钙离子,镁离子反应生成沉淀。 按照国家工业废水排放标准,氟离子浓度应小于10?mg/L;对于饮用水,氟离子浓度要求在1?mg /L以下。 含氟离子废水如何处理:对于高浓度含氟工业废水,一般采用钙盐沉淀法,即向废水中投加石灰,使氟离子与钙离子生成CaF2沉淀而除去。该工艺具有方法简单、处理方便、费用低等优点,但存在处理后出水很难达标、泥渣沉降缓慢且脱水困难等缺点。 氟化钙在18℃时于水中的溶解度为16.3mg/L,按氟离子计为7.9mg/L,在此溶解度的氟化钙会形成沉淀物。氟的残留量为10~20?mg/L时形成沉淀物的速度会减慢。当水中含有一定数量的盐类,如氯化钠、硫酸钠、氯化铵时,将会增大氟化钙的溶解度。因此用石灰处理后的废水中氟含量一般不会低于20~30?mg/L。 石灰的价格便宜,但溶解度低,只能以乳状液投加,由于生产的CaF2沉淀包裹在Ca(OH)2颗粒的表面,使之不能被充分利用,因而用量大。投加石灰乳时,即使其用量使废水pH达到12,也只能使废水中氟离子浓度下降到15?mg/L左右,且水中悬浮物含量很高。当水中含有氯化钙、硫酸钙等可溶性的钙盐时,由于同离子效应而降低氟化钙的溶解度。含氟废水中加入石灰与氯化钙的混合物,经中和澄清和过滤后,pH为7~8时,废水中的总氟含量可降到10?mg/L左右。 为使生成的沉淀物快速聚凝沉淀,可在废水中单独或并用添加常用的无机盐混凝剂(如三氯化铁)或高分子混凝剂(如聚丙烯酰胺)。为不破坏这种已形成的絮凝物,搅拌操作宜缓慢进行,生成的沉淀物可用静止分离法进行固液分离。在任何pH下,氟离子的浓度随钙离子浓度的增大而减小。在钙离子过剩量小于40 mg/L时,氟离子浓度随钙离子浓度的增大而迅速降低,而钙离子浓度大于100 mg/L时氟离子浓度随钙离子浓度变化缓慢。因此,在用石灰沉淀法处理含氟废水时不能用单纯提高石灰过剩量的方法来提高除氟效果,而应在除氟效率与经济性二者之间进行协调考虑,使之既有较好的除氟效果又尽可能少地投加石灰。这也有利于减少处理后排放的污泥量。 含氟离子废水如何处理:由于氟化物不是废水中唯一要被除去的污染物,因此要根据实际情况选择合适的处理方法。例如含氟废水中溶有碳酸钠、重碳酸钠时,直接投加石灰或氯化钙,除氟效果会降低。这是因为废水中存在着一定量的强电解质,产生盐效应,增加了氟化钙的溶解度,降低除氟效果。其有效的处理方法是先用无机酸将废水pH调到6~8之间,再与氯化钙等反应就可有效地除去氟离子。若废水中含有磷酸根离子,则先用石灰处理至pH大于7,再将沉淀物分离出来。对于成分复杂的含氟废水,可用加酸反调pH法,即首先在废水中加入过量的石灰,使pH=11,当钙离子不足时补加氯化钙,搅拌20 min,然后加盐酸使废水pH反调到7.5~8,搅拌20 min,加入絮凝剂,搅拌后放置30 min,然后底部排泥,上清液排放。 含氟离子废水如何处理:近年来有些研究者提出在投加钙盐的基础上联合使用镁盐、铝盐、磷酸盐等工艺,处理效果比单纯加钙盐效果好。如阎秀芝提出氯化钙与磷酸盐除氟法,其工艺过程是:先在废水中加入氯化钙,调pH至9.8~11.8,反应0.5 h,然后加入磷酸盐,再调pH为6.3~7.3,反应4~5 h,最后静止澄清4~5 h,出水氟质量浓度为5 mg/L左右。钙盐、磷酸盐、氟三者的摩尔比大约为(15~20)∶2∶1。 文献中报道了一种用氯化钙和三氯化铝联合处理含氟水的方法,其工艺过程是:先在废水中投加氯化钙,搅溶后再加入三氯化铝,混合均匀,然后用氢氧化钠调pH至7~8。沉降15 min后砂滤,出水氟离子浓度为4 mg/L。氯化钙、三氯化铝和氟的摩尔比为(0.8~1)∶(2~2.5)∶1。钙盐联合使用镁盐、铝盐、磷酸盐后,除氟效果增加,残氟浓度降低,主要是因为形成了新的更难溶

校园饮水解决方案范本

校园饮水解决方案

校园饮水解决方案 一、健康饮水趋势 随着人们生活水平的提高,对饮用水品质要求越来越高。由于水环境治理滞后,健康饮水成了一个大问题。近年来,因水发生的事故频繁发生,据卫生部门调查,所发生的食物中毒事故大约有50%与水有关。在全国饮水方式多样,存在不少问题:有的供水不及时、不足量,满足不了健康饮水要求;有的水质太差,不能确保饮水的安全、健康。当前直饮水市场参差不齐,在选择安装健康饮水机时,建议一定要充分考虑它的性价比,充分考虑企业的实力、品牌和售后服务,一定要健康饮水建成真正的优质安全健康饮用水! 健康饮水存在不少问题:当前存在的不良饮水习惯,不注意喝水,每日饮水量不足,如今人们对饮水的认识程度远赶不上“吃”,认为吃要讲营养,而饮水只可用来解渴,不渴就不用喝水。在单位大部分时间是在工作中度过,单位饮水设施不完善,不是想喝水就立即能喝到,时间长了,喝水欲望就减弱了。 每日摄入的水主要来源有三个途径:饮水、食物中所含水、固形有机营养物质在体内生物氧化过程中产生的代谢水。其中代谢水来源很少,只占总摄入量的8%左右。60%是靠饮水来补充,饮水对保持每日机体内水的动态平衡,特别是保持血管中血浆稳定,即血液循环稳定起很大作用。

现在很多单位提供的开水往往很难达到100度(煮沸),长期饮用对人体是有很大害处。有些地方水质硬度大即使是开水煮沸也只能起到杀菌作用,对于水中有害离子无法去除;水垢中含有对人体有害的重金属物质有镉CD、铝PB、砷AS、汞HG、这些重金属离子对人体的。特别是水中三氯甲烷、硝酸盐对人体害处很大。 二、市场的占有率及影响力 旭莱特自成立以来,始终把客户的口碑放在首位,使“旭莱特”品牌深入人心。从产品到强大的售后服务团队,公司本着传播环保节能文化、打造中国公共饮水设备第一品牌的发展目标,秉承以人为本,创新发展、合作永续的经营理念,销售业绩和管理水平不断提升,品牌影响力有口皆碑。当前在全国拥有200多家经销代理商、办事处、近30万名稳定的高端客户资源,占全国市场40%以上。 三、企业简介 北京旭莱特科技有限公司是一家专业从事健康环保产业的高科技企业。研发、制造、销售节水设备、空气净化设备、节能饮水器、饮水机、校园饮水设备。同时还致力于提供健康、节能、安全的公共饮水设备与整体服务解决方案;在改进水环境、水资源管理、水量平衡测试等方面提供技术服务。

饮用水中常见的毒害及处理方法

饮用水中常见的毒害及处理方法 水是生命之源,水质的好坏与人们的身体健康密切相关。因水质不好而引起的地方疾病时有发生,因水质污染引起新发病种的情况越来越多。随着经济社会的发展,水资源短缺和水污染日益严重的状况已成为制约经济社会可持续发展和影响人民身体建康的重要因素。饮用水中主要超标物质有总硬度、硝酸盐氮、氟化物、锰、细菌总数和总大肠菌群数等,了解其危害并采取有效的处理措施,可以保障供水水质安全,减少疾病的发生。 一、总硬度 1、危害性 习惯上把总硬度定义为水中钙、镁浓度的总和。硬水对人们的身体健康有较大影响。如果长期饮用硬水,会导致肾结石发病率升高。高硬度水中钙镁离子与硫酸根结合,会使水产生苦涩味。人对水的硬度有一定的适应性,饮用不同硬度的水(特别高硬度的水)可引起胃肠功能的暂时性紊乱,但在短期内即能适应。据国内报道,饮用总硬度为707~935mg/L的水,第二天人们出现不同程度腹胀、腹泻和腹痛等肠道症状,持续一周开始好转,20天后恢复正常。 2、处理方法 硬水软化方法主要有离子交换法、药剂软化法和膜分离法。药剂软化是通过投加化学药剂以提高PH值,使Ca2+和Mg2+分别以CaCO3和Mg(OH)2的形式在水中沉析出来。常用的药剂软化法为石灰法、石灰-碱化法与石灰-石膏法,用石灰碱化法去除水中总硬度的同时,也可以去除不凡溶解性总固体的其他部分,从而达到降低水的总硬度和溶解性总固体的目的。离子交换法是利用离子交换剂,把水中的离子与离子交换剂中可扩散的离子进行交换作用,使水得到化的方法。膜分离法(反渗法)是以压力为驱动力,提高水的压力来克服渗透压,使水穿过功能性的半透膜而除盐净化。 二、氟化物 1、危害性 氟是人体微量元素。可以通过水、食物等多种途径进入人体,成年人每天约摄入0.3~0.5mg,婴儿每天需氟化物0.5mg,儿童则需1mg,以保证牙齿钙化期所必需的氟化物离子。人体中的氟35%来自食物,65%来自饮水,适宜的饮水含氟量0.6~1.0mg/L。饮水含氟量低

农村生活饮用水净化处理设计方案

农村生活饮用水处理设计方案 我国南方一些农村地区,由于地处山区,受自然条件、地理环境和交通情况的影响很大,部分地区存在人口聚集规模较小、饮水规模小和水源分散等问题,大规模的村镇集中供水建设方案无法在这些地区实行,导致部分农村安全饮用水供给存在困难。 “十三五”期间,国家加大了对农村地区的扶贫力度和农村饮水改造资金的投入,但薄弱的科技力量、运营管理等问题,使得部分中小型集中饮水问题无法得到彻底解决。特别是在一些山区村镇,水处理设备、基础设施配置不完善,普遍存在处理工艺简单、无净化设备配置、投资高、耗能高、占用面积大、操作管理不方便等情况。 农村已设计使用的传统水处理工艺与过滤池,晴时处理水质尚可,一旦遇上大到暴雨,原水迅速恶化,水中泥沙、枯枝腐叶、细菌等大量增加,

依靠传统的自然沉淀、滤池渗透过滤方法处理的水质很难达到生活饮水水质要求,保证不了农村饮用水的卫生、安全与健康。 西安天浩环保针对农村饮用水净化处理中存在的相关问题设计使用 TH-YYA饮用水净化设备,解决了山区有限条件下建设施工困难、设备占地面积大、铁质设备腐蚀生锈、过滤设备自动化程度低、操作复杂、后期维护成本高等烦人问题。

设备将絮凝、沉清、过滤、曝气增氧、自动控制反冲洗等功能集中一体,体积相对于普通的过滤设备缩小了70%以上,运输、安装更加方便,不需要使用吊车等工具;设备过滤净化运行过程不需要电力辅助(当水源地与设备高差>10m,水自流入设备,设备前无需另置水泵提升);不更换滤料,不生锈、不需专人管理维护,使用寿命可长达40年之久。 TH-YYA一体化净水设备现场安装照 工艺流程: 工艺一:(用于水量大、水质较差或用户已建设沉淀/絮凝等设施) 原水(河沟水/山泉水/水库水等)→沉淀池→TH-YYA净水设备→消毒设备→清水池→用户

10T除氟设计及方案

10T/H除氟技术方案 1、设计原则和依据 1.1 设计原则 1.1.1严格执行国家的有关规定,确保系统出水达到设计要求。 1.1.2立足国内,采用技术先进、经济可行的水处理工艺,降低工程一次性投资和运行成本。 1.1.3设计采用的水处理设施高效、节能,运行、管理和维护方便且长期平稳运行。 1.1.4设备配置时力求结构紧凑合理,减少占地面积,降低工程投资。 1.2设计依据 1.2.1《生活饮用水卫生标准》(GB5749-2006); 1.2.2《工业用水软化除盐设计规范》(GB/T50109-2006); 1.2.3《生活饮用水输配水设备及防护材料的安全性评价标准》(GB17219-1998); 1.2.4《给排水工程结构设计规范》(GBJ69-84); 1.2.5《给水用硬聚氯乙烯管件》(GB10002.2-1998); 1.2.6《给水用硬聚氯乙烯(PVC-U)管材》(GB/T10002.1-1996); 1.2.7《水处理设备制造技术条件》(2932—1986); 1.2.8用户的实际生活所需。 2、设计技术指标 2.1进水指标 2.1.1进水压力:0.15~0.3MPa; 2.1.2原水氟含量:≤ 2.1mg/L;

2.1.3水温:5~35℃; 2.1.4 余氯:<0.1mg/L; 2.1.5COD M n:<2.0mg/L; 2.1.6 污染指数(SDI):<3~5。 2.2出水技术指标 2.2.1系统产水量:≥ 10m3/h; 2.2.2出水氟含量:≤ 1.0mg/L; 2.2.3制水方式:连续制水、间断再生; 2.2.4 运行费用:<0.15/m3·水。 3、除氟机理 高氟水与新型除氟滤料——多功能分子筛接触后,滤料表面发生吸附和离子交换双重反应,水中的氟离子吸附于滤料上以及氟离子与滤料表面的OH-离子发生交换,通过双效的物化反应实现除氟的目的。 多功能分子筛的除氟容量约为8~20mg/g,超过目前的常规滤料。除氟容量随着原水氟浓度、当地的水质及水温等因素的变化而变化。 具有以下技术优势: (1)除氟容量高。 (2)接触时间短,相比传统滤料可大大减少设备体积。 (3)安全性高,在使用过程中无任何有毒有害物质溶出。 (4)除氟效率高,使用前期水中氟离子可完全被去除。因此可采取原水与处理后的水混合使用的方法,进一步保护滤料延长使用周期,降低运行成本。 (5)水质适应性强,在恶劣水质情况下,也可以保持较高的除氟容量。 (6)再生成本低,多种再生方式可实现无缝切换,因地制宜,方式灵

除氟方法

含氟废水处理大汇总 氟是一种微量元素,饮用水含氟量在0.4~0.6mg/L的水对人体无害有益,而长期饮用含量大于1.5mg/L的高氟水则会给人体带来不利影响,严重的会引起氟斑牙和氟骨病。我国某些地区特殊的地球化学特征使该区域水源含氟量大于1.0mg/L,从而造成地方性氟中毒。我国有将近l亿人生活在高氟水地区,目前在我国氟受害者多达几千万人。除个别地区自然因素外,大量的高氟工业废水的排放是主要因素之一。随着我国工业的迅猛发展,含氟废水的排放量将会增加,因此.含氟废水的排放必须受到严格控制。 某些高浓度含氟工业废水的排放,更对人们身体健康造成很大威胁,所以必须对含氟工业废水加以处理。 1973年颁布的《工业三废排放试行标准》(GBJ4-73)中规定,氟的无机化合物排放标准为10mg/L(以F-计)。1988年颁布的《污水综合排放标准》(GB8789-88)中规定,新扩改企业对外排放含氟废水,氟化物不得超过10mg/L(向二级污水处理厂排放除外)。此废水带出物是以氟化钙计,那么1988年的标准比1973年的标准严格了一倍以上。 目前含氟废水的主要处理方法是化学沉淀法和吸附法,这两种方法存在处理后出水很难达标、泥渣沉降缓慢且脱水困难等缺点。冷冻法、离子交换树脂法、超滤法、电渗析等,因为处理成本高,除氟效率低,多停留在实验阶段,很少推广应用于工业含氟废水治理。笔者认为,应围绕沉淀法吸附法为主体工艺,后续深处理工艺,提高效率,节约成本,应对含氟废水的特点,开发合理工艺。 化学沉淀法

一、Ca(OH)2+PAC+PAM+ 吸收塔法 污水处理工艺流程

对于高浓度含氟工业废水,一般采用钙盐沉淀法,即向废水中投加石灰,使氟离子与钙离子生成CaF2沉淀而除去。该工艺具有方法简单、处理方便、费用低等优点,但存在处理后出水很难达标、泥渣沉降缓慢且脱水困难等缺点。 氟化钙在18 ℃时于水中的溶解度为16.3 mg/L,按氟离子计为7.9 mg/L,在此溶解度的氟化钙会形成沉淀物。氟的残留量为10~20 mg/L时形成沉淀物的速度会减慢。当水中含有一定数量的盐类,如氯化钠、硫酸钠、氯化铵时,将会增大氟化钙的溶解度。因此用石灰处理后的废水中氟含量一般不会低于20~30 mg/L。石灰的价格便宜,但溶解度低,只能以乳状液投加,由于生产的CaF2沉淀包裹在Ca(OH)2颗粒的表面,使之不能被充分利用,因而用量大。投加石灰乳时,即使其用量使废水pH达到12,也只能使废水中氟离子浓度下降到15 mg/L左右,且水中悬浮物含量很高。当水中含有氯化钙、硫酸钙等可溶性的钙盐时,由于同离子效应而降低氟化钙的溶解度。含氟废水中加入石灰与氯化钙的混合物,经中和澄清和过滤后,pH 为7~8时,废水中的总氟含量可降到10 mg/L左右。 为使生成的沉淀物快速聚凝沉淀,可在废水中单独或并用添加常用的无机盐混凝剂(如三氯化铁)或高分子混凝剂(如聚丙烯酰胺)。为不破坏这种已形成的絮凝物,搅拌操作宜缓慢进行,生成的沉淀物可用静止分离法进行固液分离。在任何pH下,氟离子的浓度随钙离子浓度的增大而减小。在钙离子过剩量小于40 mg/L时,氟离子浓度随钙离子浓度的增大而迅速降低,而钙离子浓度大于100 mg/L时氟

水处理除氟方案

技术文件 1、设计制造方案 1、设计原则 ?依据招标方的招标文件的要求而设计; ?系统出力:8000m3/d,出水氟含量:小于1mg/L; ?水处理系统保证出水水质稳定; ?因设备布置在潮湿的场所,因此,设备具有较好的防腐能力; ?设备技术系统是先进的、可靠的;后期日常运行成本保证在 低限范围内; 2、设计标准 ?出水水质达到生活饮用水水质卫生规范GB5749-2006,氟含 量低于1mg/L; ?低压水箱ISO、GB或JB标准; ?水泵ISO、GB标准; ?管道、管件、法兰及阀门采用公制; ?电气:IEC、GB标准; ?进口材料:ASTM标准; ?安全:OSHA;

3、制造标准 ?除氟滤池材质采用钢砼结构浇筑;内部防腐采用卫生级环氧 煤沥青漆;保证过水不会被污染;具有北京市卫生局颁发的 涉水产品卫生批件(附件1); ?管道、阀门(双由令的便于后期维护)材质为不锈钢材质; 有国家省级部门颁发的卫生批件(附件2); ?除氟滤料采用活性氧化铝,滤料经过再生,可多次使用,滤 料寿命长; ?产品设计寿命30年;保证需方的使用效果和应用效益; ?设备操作便捷性高,无需专业人员维护;节约需方未来人员 管理成本; 4、执行标准 ?处理后达到GB5749—2006《生活饮用水卫生标准》,氟含量 ≤1.0mg/L; ?设备接触水的材料应符合《生活饮用水输配水设备及防护材 料卫生安全评价规范》【2001年】; ?污水排放应符合GB8978-1996《污水综合排放标准》一级排 放标准设备操作便捷性高,无需专业人员维护;节约需方未 来人员管理成本; ?企业标准Q/FTYJ002—2010;

生活饮用水处理项目设计方案

羚山泵站生活饮用水处理项目 设 计 方 案 2011年8月

目录 1项目概况 (1) 2工程设计依据及原则 (1) 2.1设计依据 (1) 2.2设计原则 (1) 3项目范围 (2) 4进水水质和出水要求、处理水量 (2) 4.1进水水质 (2) 4.2出水要求 (2) 4.3设计处理水量 (3) 5处理方案选择及工艺流程 (3) 5.1处理方案选择 (3) 5.2原则流程 (3) 5.3工艺说明 (4) 6设备参数 (4) 6.1高效过滤器系统 (4) 6.1.1原水提升泵(兼反洗水泵) (4) 6.1.2絮凝加药装置 (4) 6.1.3高效过滤器技术参数 (5) 6.1.4配套反洗设备 (7) 6.2中间水池 (7) 6.3锰砂过滤器 (8) 6.4消毒水池 (8) 6.5消毒加药装置 (9) 6.6电控系统 (9) 7电气及自控 (10) 7.1电气 (10) 7.2自动控制 (10) 8主要设备(材料)及报价 (11)

1项目概况 本处理项目为新建工程。该项目处理水量为3m3/d, 原水为井水,要求经处理后,达国家生活饮用水标准。 2工程设计依据及原则 2.1设计依据 1)《室外给水设计规范》(GBJ13-86); 2)《室外排水设计规范》(GBJ14-87); 3)《生活饮用水卫生规范》(GB5749-2006); 4)《供配电系统设计规范》(GB50052-95); 5)《水处理设备技术条件》(JB/T2932-1999); 6)建设方提供的原始水质、水量等基础资料。 2.2设计原则 1)严格执行国家和地方环保、卫生和安全等法规,经处理后主要水质指标均符合建设方提出的要求; 2)设计中坚持科学态度,采用的水处理工艺既要体现技术先进、经济合理,又要成熟、安全可靠,并具有操作简单、运行管理方便等特点; 3)处理单元相对紧凑、占地尽可能少,在确保运行稳定、出水水质达标的前提下,尽量降低工程造价及运行成本。

地下水除氟的净化 技术研究现状

Sustainable Development 可持续发展, 2019, 9(1), 17-24 Published Online January 2019 in Hans. https://www.sodocs.net/doc/be6140923.html,/journal/sd https://https://www.sodocs.net/doc/be6140923.html,/10.12677/sd.2019.91004 Research Status of Purification Technology for Fluoride Removal from Groundwater Lue Xiong, Kai Huang* School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing Received: Nov. 30th, 2018; accepted: Dec. 18th, 2018; published: Dec. 27th, 2018 Abstract Due to natural reasons and the increase in the production of fluorine industry in China in recent years, the fluoride content of groundwater in some areas exceeds the standard, leading to fre-quent occurrence of endemic fluorosis, which is harmful to people’s health, especially in remote rural areas. At present, some of the main methods for treating fluoride ions in water include coa-gulation sedimentation, lime precipitation, ion exchange, electrocoagulation, reverse osmosis, and adsorption. Compared with other methods, the adsorption method has advantages in terms of in-dustrial cost, fluorine removal efficiency, and process operation. This paper emphatically introduces the defluoridation by biosorption and briefly discusses its mechanism, which shows the feasibility of biosorption for defluoridation. Several suggestions for the treatment of high-fluorine groundwater are proposed, and the further development of biosorption in the future is expected. Keywords High Concentration of Fluoride Groundwater, Methods of Purification, Biosorption, Mechanism of Defluorination 地下水除氟的净化 技术研究现状 熊略,黄凯* 北京科技大学,冶金与生态环境工程学院,北京 收稿日期:2018年11月30日;录用日期:2018年12月18日;发布日期:2018年12月27日 *通讯作者。

除氟技术汇总

处理方法 优点缺点 化学沉淀法石灰操作简单、方便、成本低出水15-20 mg/L(CaF2溶解度16.3 mg/L @18 o C)——不适用于饮水处理中性钙盐反应慢 混凝沉淀法铝盐药剂量小,处理量大,可达废水排放标 准(10 mg/L)单独处理出水难低于10 mg/L,废渣;适用于工业 铁盐 聚硅酸氯化物PAM 吸附法Al型活性氧化铝-传统除F剂,主要方法 OH->F->TOC>SO42->Cl->HCO3-技术成熟,适于大规模除氟处理,在我 国许多地区均有较大规模的活性氧化铝 除氟装置 pH值高、磷酸根(0.01 mg/L)、硫酸根等 阴离子影响吸附;Al易流失,Al对人体有 害;吸附容量小(0.8-2.0mg/g),导致再生 频繁、复杂;滤料易板结 氢氧化铝(pH 6.5-7.5)阴离子影响吸附,最佳pH 6.5-7.5 磷酸盐型羟基磷灰石(HAP)降氟容量大,不需调节pH值,易再生, 无二次污染 骨炭(主要成分为:碳酸磷灰石[Ca3(PO4)2·CaCO3]和羟基磷灰石[Ca10(PO4)6·(OH)2])价格较便宜,吸附容量较活性氧化铝高, 可达到2~3mg/g,吸附饱和后可用5% NaOH溶液再生;我国在70-80年代有很 多水厂采用 机械强度不如活性氧化铝,机械损耗率每 年可达5%,操作不当易造成骨炭流失, 且出水腥臭味 活性氧化镁类活性氧化镁吸附容量较高,约为6~14mg/g;最佳 pH值为6~7,操作简单,除氟后水中 往往残留少量镁离子,对人体预防和治 疗氟中毒有积极作用;在广大农村、厂 矿等一些分散地用作除氟剂使用 再生复杂,要在420-1000℃下进行灼烧

除氟设备原理

一、工作原理: 我国饮用水除氟方法中,应用最多的是吸附过滤法,作为滤料的吸附剂主要是活性氧化铝。 活性氧化铝是白色颗粒状多孔吸附剂,有较大的比表面积,是除氟比较经济有效的方法。活性氧化铝是两性物质,等电点约在9.5,当水的pH值小于9.5时可吸附阴离子,大于9.5时可去除阳离子。 因此,在酸性溶液中活性氧化铝为阴离子交换剂,对氟有极大的选择性。 1.活性氧化铝使用前可用硫酸铝溶液活化,使转化成为硫酸盐型,反应如下: (Al2O3)n?2H2O + SO42-→(Al2O3)n?H2SO4 + 2OH- 2.除氟时的反应为: (Al2O3)n?H2SO4 + 2F -→ (Al2O3)n?2HF + SO42- 3.活性氧化铝失去除氟能力后,可用1%-2%尝试的硫酸铝溶液再生: (Al2O3)n?2HF + SO42-→(Al2O3)n?H2SO4 + 2F- 每克活性氧化铝所能吸附氟的重量,一般为1.2~4.5mg,它取决于:原水的氟浓度、pH值、活性氧化铝的颗粒大小等。 二、应用范围: 我国地下水含氟地区的分布范围很广,因长期饮用含氟量高的水可引起慢性中毒,特别是对牙齿和骨骼产生严重危害。轻者患氟斑牙,表现为牙釉质损坏,牙齿过早脱落等,重者则骨关节疼痛,甚至骨骼变形,出现弯腰驼背等,完全丧失劳动能力。 所以高氟水的危害是严重的。我国饮用水标准中规定氟的含量不得超过1mg/L。 三、性能特点 1、设备造价低廉,运行费用低,管理简便; 2、滤料经过再生,可多次使用滤料寿命长; 3、除氟效果好,占地面积小。 四、产品结构:

本装置由除氟罐、滤料、再生装置、管路阀门等组成,根据不同的氟含量和处理水量,可选择不同大小的设备。 五、除氟器的选用方法: 除氟器的大小依据水量而定,根据用途不同可选用钢制或玻璃钢。除氟装置有固定床和流动床。固定床的水流一般为升流式,滤层厚度1.1~1.5m,滤速为3~6m/h。移动床滤层厚度为1.8~2.4m,滤速10~12m/h。 六、操作方法: 活性氧化铝在pH = 5~8范围内时,除氟效果较好,而在pH值为5.5时,吸附量最大。为减少酸的消耗和降低成本,我国多将pH控制在6.5~7.0之间,除氟装置的接触时间应在15min以上。 活性氧化铝失效后,出水含氟量超过标准时,运行周期即千结束须进行再生。再生时,活性氧化铝柱首先反冲洗10~15min,膨胀率为30~50%,以去除滤层中的悬浮物。 再生液浓度和用量应通过试验,一般采用Al2(SO4)2再生时为1~2%,采用NaOH时为1.0%。再生后用除氟水反冲洗8~10min,再生时间约1.0~1.5h。采用NaOH溶液时,再生后的滤层呈碱性,须再转变为酸性,以便去除F-离子和其它阴离子。 新型除氟设备的原理与工艺流程 含氟水经过比表面积较大的活性氧化铝吸附过滤层。在PH值5~6的条件下,水中氟离子被吸附生成难溶解的氟化物而被除去,其反应式如下:R2SO4+2F -=R2F2+SO42- 吸附剂失效后,用硫酸铝溶液进行再生,以恢复其吸附能力。当原水PH值大于7时,一般用二氧化碳气体进行调节。 除氟设备工艺特点:1、造价低、投资省;2、运行费用低,制水成本低;3、设备操作简便:实行自动化、半自动化操作不用调节pH值;4、设备安装和使用便利,该设备可以直接与深井中的变频泵连接,设备出水直接进入管网入户,无需原水池和出水池,无需二次加压;5、新型除氟设备的水利用率高,为98-99%以上;6、设备占地面积小。

除氟设备原理

一、工作原理: 我国饮用水除氟方法中,应用最多的是吸附过滤法,作为滤料的吸附剂主要是活性氧化铝。 活性氧化铝是白色颗粒状多孔吸附剂,有较大的比表面积,是除氟比较经济有效的方法。活性氧 化铝是两性物质,等电点约在 9.5 ,当水的 pH 值小于 9.5 时可吸附阴离子,大于 9.5 时可去除阳离子。 因此,在酸性溶液中活性氧化铝为阴离子交换剂,对氟有极大的选择性。 1. 活性氧化铝使用前可用硫酸铝溶液活化,使转化成为硫酸盐型,反应如下: (AI 2Q ) n?2H0 + SO 42- T (AI 2Q ) n?HSO + 2OH - 2. 除氟时的反应为: - 2- (Al 2C 3) n?HSQ + 2F — ( Al 2^) n?2HF + SO 。 3. 活性氧化铝失去除氟能力后,可用 1%-2%尝试的硫酸铝溶液再生: 2- - ( Al 2O 3) n?2HF + SO 42- —( Al 2O 3) n?H 2SO 4 + 2F - 每克活性氧化铝所能吸附氟的重量,一般为 1.2?4.5mg ,它取决于:原水的氟浓度、 pH 值、活性 氧化铝的颗粒大小等。 二、应用范围: 我国地下水含氟地区的分布范围很广,因长期饮用含氟量高的水可引起慢性中毒,特别是对牙齿 和骨骼产生严重危害。轻者患氟斑牙,表现为牙釉质损坏,牙齿过早脱落等,重者则骨关节疼痛,甚至骨 骼变形,出现弯腰驼背等,完全丧失劳动能力。 所以高氟水的危害是严重的。我国饮用水标准中规定氟的含量不得超过 1mg/L 。 三、 性能特点 设备造价低廉,运行费用低,管理简便; 滤料经过再生,可多次使用滤料寿命长; 除氟效果好,占地面积小。 四、 产品结构: 本装置由除氟罐、滤料、再生装置、管路阀门等组成,根据不同的氟含量和处理水量,可选择不同 大小的设 备。 五、除氟器的选用方法: 除氟器的大小依据水量而定,根据用途不同可选用钢制或玻璃钢。除氟装置有固定床和流动床。固 定床的水流一般为升流式, 滤层厚度1.1?1.5m ,滤速为3?6m/h 。移动床滤层厚度为1.8?2.4m ,滤速10? 1、 2、 3、

直饮水系统设计方案

直饮水系统 设 计 方 案 项目单位:

项目名称: 设计单位: 设计日期: 一、商务场所饮用水简介 目前,绝大部分商务场所,如办公室、机关办公楼、大型企事单位、工厂、餐厅等,均采用饮水机+桶装水的方式,由桶装水公司提供日常送水业务,该方式应该是目前采用最为广泛的模式,经过这么多年的运行,有以下一些问题日益显露: (1)终端水质不一定保险,水桶二次污染、水桶不卫生,没有对水桶定期清洗、消毒、甚至回收和使用一些不合格的破旧水桶,部分用社会上廉价的废旧塑料,报废桶装水光碟以及通过各种途径进口的塑料洋垃圾制桶,甚至有些无良的送水公司用普通的自来水来代替桶装水,严重威胁人体健康,危害巨大; (2)大量的桶装水在单位堆积,周转不方便,送水的人多,管理不便,并且还需要占用一定面积堆放,难以管理; (3)虽然每桶水不贵,但是通过几年的时间累计计算的话,整体成本仍然

不容忽视(根据统计,一个150人以的办公场所,一年仅购买桶装水需花费约5万元; (4)饮水机使用时间一长,由于缺乏维护清洗,必然导致二次污染严重,甚至会出现长“青苔”等现象,这是由于细菌杂质长期积累,导致水机里面水质超标,长期饮用对人体健康不利。 二、项目状况介绍 1.项目概况 我们以一个30人的办公场所为例,该办公室日用水量大约3-5桶左右,因此,基本每天有5桶水要做周转,费用大概为50元左右,估算一年水费需要大约1.8万元,并且每天需要有人送水,倘若采用净水机方案,详见下图所示:

与采用水机方案进行比较,具体如下: 桶装水方案净水机方案 1、终端水质不一定保险,水桶二次污染、水桶不卫生,没有对水桶定期清洗、消毒、甚至回收和使用一些不合格的破1、采用国际顶尖逆渗透技术,产水符合《生活饮用水水质处理器卫生安全与功能评价规---逆渗透装置》(2001)的要

除氟工艺

6 吨小时除氟设备

2019 年8 月

一、设备主要技术参数描述 二、工艺流程及简介 三、设备报价 四、成本核算 五、除氟设备照片

一、设备主要技术参数描述等相关技术资料 (一)除氟设备 1.1 目的和依据 氟是人体生命必不可少的微量元素之一。适量的氟能使骨、牙坚固,减少龋齿发病率。 饮用水适宜的氟质量浓度为0.5?1 mg/L。当饮用水中氟含量不足时,易患龋齿病;但若长期饮用氟质量浓度高于1 mg/L的水,则会引起氟斑牙病;长期饮用氟质量浓度为2?6 mg/L 的水会引起氟骨病。氟长期积累于人体时能深入骨骼生成CaF 2 ,造成骨质松脆,牙齿斑釉,韧带钙化,关节僵硬甚至瘫痪,严重者丧失劳动能力。氟慢性中毒还可产生软组织损害,甚至肿瘤发生,并有致白血病的危险性。据近年的资料报道,长期摄入过量的氟化物还有致癌、致畸变反应。为了防止和减少氟病发生率,控制饮用水中的氟含量是十分必要的。 我国不少地区饮用水源的氟含量较高,目前,全国农村约有7000多万人饮用高氟水(氟 含量>1mg/L),水中含氟量最高可达2?12mg/L,导致不同程度的氟中毒。如山西南部.山西北部. 东北克山地区,安徽北部、宁夏大部、河北部分地区、天津等。 有效降低饮水中的氟含量,其途径一是选用适宜水源,二是采取饮水除氟,使含量降到适于饮用的范围。选取适宜水源往往受到自然条件限制,多数情况下采用饮水除氟方式获得洁净饮水。饮水除氟是通过物理化学作用,将水中过量的氟除去。 1.2 编制依据《中华人民共和国生活饮用水卫生标准》GB5749-2006 《水处理设备制造技 术条件》JB2932-1999 ;《水处理设备性能试验总则》GB/T13922.1-1992 ; (2)工程概况 1.3 工程说明 1.3.1 厂区情况 1.3.2 厂址地质及气象条件 厂址附近无大的断裂带通过,处于相对稳定地段,适宜建厂。 厂址区域地震基本烈度为切度,地震动峰值加速度为0.05g。 厂址地址为:砂质粘土,抗压强度 1.5kg/cm2以上,无地下水。 厂址地处暖温带季风区大陆性气候。主要的气象特征值: 最冷月平均气温:-20 C 最热月平均气温:28.8 C 极端温度:最高35.5 °C,最低-30.0 °C

氟超标饮用水降氟技术

氟超标饮用水降氟技术 一、 氟是人体生命必不可少的微量元素之一。适量的氟能使骨、牙坚固,减少龋齿发病率。饮用水适宜的氟质量浓度为0.5~1 mg/L。当饮用水中氟含量不足时,易患龋齿病;但若长期饮用氟质量浓度高于1 mg/L的水,则会引起氟斑牙病;长期饮用氟质量浓度为3~6 mg/L的水会引起氟骨病。氟长期积累于人体时能深入骨骼生成 CaF 2 ,造成骨质松脆,牙齿斑釉,韧带钙化,关节僵硬甚至瘫痪,严重者丧失劳动能力。氟慢性中毒还可产生软组织损害,甚至肿瘤发生,并有致白血病的危险性。据近年的资料报道,长期摄入过量的氟化物还有致癌、致畸变反应。为了防止和减少氟病发生率,控制饮用水中的氟含量是十分必要的。 我国不少地区饮用水源的氟含量较高,目前,全国农村约有7000多万人饮用高氟水 ( 氟含量 >1mg/L) ,水中含氟量最高可达 12 ~ 18mg/L,导致不同程度的氟中毒。如内蒙古雅布赖地区,东北克山地区,安徽北部、宁夏大部、河北部分地区、天津等。 有效降低饮水中的氟含量,其途径一是选用适宜水源,二是采取饮水除氟,使含量降到适于饮用的范围。选取适宜水源往往受到自然条件限制,多数情况下采用饮水除氟方式获得洁净饮水。饮水除氟是通过物理化学作用,将水中过量的氟除去。 氟(F)是与人体健康密切相关的微量生命元素,原生环境中氟过量或不足均会导致机体产生疾病。国家规定生活饮用水中适宜的氟含量为0.5~1.0 mg/ L[1]。高氟地下水指氟含量超过饮用水标准,并使人体产生氟中毒现象的地下水体。高氟地下水影响区域在我国广泛分布,我国内陆除上海市外,各省、市、自治区均有病区。全国饮水型地方氟病分布面积约220万km2,据全国重点地方病防治规划(2004—2010年),截至2003年底,全国有氟斑牙患者3 877万人、氟骨症患者284万人[2]。因此探讨我国高氟地下水形成的特点,并提出防止氟中毒方案具有现实意义。 1 我国高氟水形成特点的主要影响因子 氟的富集是长期地质作用和地球化学演变的结果,我国高氟水形成特点主要影响因子概括为背景岩石、蒸发作用、地温环境以及人类活动。 1.1 背景岩石 氟广布于自然界中,地壳岩土中的含氟矿物就在百种以上,绝对不含氟的岩土是很少见的。土壤中黏土矿物为氟源,在风化过程中,这些矿物促使土壤中的元素和循环水中的元素发生离子交换。一般情况黏土矿物土壤中除了云母、角闪石中的F-被氢氧基置换以外,磷灰石、冰晶石和萤石是循环水中F-的主要来源[3]。磷灰石、冰晶石、萤石风化淋溶产物见下式: Ca5(PO4)3F→F-+5Ca2++3PO3-4 Na3AlF6→6F-+3Na++Al3+CaF2→2F-+Ca2+ 以华北平原地下水背景岩石数据为例,作出地下水氟含量与岩石氟含量的相关关系图(如图1所示),显示富含氟的岩石含水层中地下水含氟量高,在地下水-岩石系统中,地下水中氟含量与含水层岩石氟含量呈正相关关系。可见含水层中的富氟岩石为高氟水的形成提供了条件。 1.1.1 地下水的pH值 在pH值低的酸性水中,氟离子与氢离子生成氢氟酸,氢氟酸溶解二氧化硅及硅酸盐岩石生成气态的氟化硅,使地下水中的氟减少,不利于氟的富集;另外由于氟离子(F-)和钙离子(Ca2+)能形成难溶的氟化钙(CaF2)[4],其反应式为2F-+Ca2+→CaF2pH值低的酸性水使反应物F-降低,而促使F-迁移,不利于氟的富集;pH值高的地下水可使铝硅酸盐矿物溶于水。当碱金属水解时,可增强水的碱性,促使含氟硅酸盐矿物的溶解,使岩石中的氟溶出,地下水中的氟含量增大。由此得出,pH值越高的地下水越有利于氟的富集。 1.1.2 水中各种离子 钠质水分布区氟含量高,钙质水分布区则相反。氟的钠盐和钙盐在水中的溶解度极不相同,氟化钙的溶解度为16 mg/L,氟化钠的溶解度为42×103mg/L,氟化钠在水中完全溶解时,氟在地下水中呈离子状态存在。前者在水中溶解度很低,大部分为白色沉淀,大部分氟赋存在矿物中而未游离出来,形成地下水中高钙低氟、高钠高氟的现象[3]。当水中钙离子为主要阳离子时,氟化钙溶解度减小,地下水中氟含量减小;当水中钠离子或者镁离子为主要离子时,氟化钙的溶解度增加。当水中钙离子含量增加时,氟的络合物遭到破坏,钙与氟结合成难溶的氟化钙,减少了地下水中氟含量。另外,由于碳酸根及碳酸氢根会促进氟化钙的溶解,使地下水中的氟含量增加。 1.2 蒸发作用

水处理除氟方案(完整资料).doc

【最新整理,下载后即可编辑】 技术文件 1、设计制造方案 1、设计原则 ?依据招标方的招标文件的要求而设计; ?系统出力:8000m3/d,出水氟含量:小于1mg/L; ?水处理系统保证出水水质稳定; ?因设备布置在潮湿的场所,因此,设备具有较好的防腐 能力; ?设备技术系统是先进的、可靠的;后期日常运行成本保 证在低限范围内; 2、设计标准 ?出水水质达到生活饮用水水质卫生规范GB5749-2006,氟 含量低于1mg/L; ?低压水箱ISO、GB或JB标准; ?水泵ISO、GB标准; ?管道、管件、法兰及阀门采用公制; ?电气:IEC、GB标准; ?进口材料:ASTM标准;

?安全:OSHA; 3、制造标准 ?除氟滤池材质采用钢砼结构浇筑;内部防腐采用卫生级 环氧煤沥青漆;保证过水不会被污染;具有北京市卫生 局颁发的涉水产品卫生批件(附件1); ?管道、阀门(双由令的便于后期维护)材质为不锈钢材 质;有国家省级部门颁发的卫生批件(附件2); ?除氟滤料采用活性氧化铝,滤料经过再生,可多次使用, 滤料寿命长; ?产品设计寿命30年;保证需方的使用效果和应用效益; ?设备操作便捷性高,无需专业人员维护;节约需方未来 人员管理成本; 4、执行标准 ?处理后达到GB5749—2006《生活饮用水卫生标准》,氟 含量≤1.0mg/L;

?设备接触水的材料应符合《生活饮用水输配水设备及防 护材料卫生安全评价规范》【2001年】; ?污水排放应符合GB8978-1996《污水综合排放标准》一级 排放标准设备操作便捷性高,无需专业人员维护;节约 需方未来人员管理成本; ?企业标准Q/FTYJ002—2010; 5、除氟装置的工艺特色与运行原理 5.1除氟设备的工艺流程简介 氟是人体不可缺少的微量元素,氟元素可以通过饮用水、食物和呼吸等各种途径进入人体,其中最主要的途径是饮用水。但是,当饮用水中氟的浓度过高(大于1.5 mg/L)时,反而会损害人体的健康。近年来,我国因饮用水中氟含量超标而造成的氟中毒的现象已较为严重。目前,饮用水除氟的方法有很多,如:吸附法、化学沉淀法、混凝沉降法、电化学法、反渗透法和离子交换法等,其中吸附法对氟的吸附效果显著,是除氟的主要方法。

饮用水处理方案

饮用水处理方案 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

广西**县**村饮用水处理 技 术 方 案 北京***净水科技有限公司 2014年6月

1 项目概况 项目背景 水是生命之源。为了让“生命之水”更洁净安全,崇左市切实把解决全市人民的饮水安全问题作为改善民生的一件大事,从完善规划、加强监管、加大应急储备以及消除污染隐患等多方面入手,逐步建立健全崇左市的饮用水安全保障体系。根据监测数据显示,近几年崇左饮用水源地的水质保护良好,左江沿岸地表水饮用水源水质环境质量标准达II类标准。 崇左市辖区饮用水源包括江河及水库水源两部分,有集中式地表水饮用水源地23个(含乡镇),其中以河流作为集中式饮用水源有19个,以水库为集中式饮用水源的有4个。大多数地表水饮用水源地地处偏僻,远离污染源,饮用水源水质好,左江沿岸的地表水饮用水源水质达到二类标准。2012年,崇左市开展了县级饮用水水源保护区划分工作,目前7个县(市、区)的饮用水水源保护区的划定工作顺利完成。2013年,崇左市还重点开展乡镇集中式饮用水水源保护区划定工作,目前划定工作正在按计划有序推进。 在划定饮用水源保护区和市级水功能区的同时,崇左市注重开展日常水质监测和水源地专项整治行动,加大水污染防治力度。环保、水务部门对全市主要水厂取水口以及供水水库开展经常性水质监测,并在左江河段设立有自动化监测点。着力清除饮用水源保护区内的污染隐患,环保、水务等部门组成联合检查组,开展城市河流型集中饮水水源专项整治行动,对违法排污企业以及非法养殖场进行逐一清理,保障供水安全。 表一为地表水环境质量标准基本项目标准限值,左江水质为II类标准。 项目概述 **村位于广西崇左市**县昌平镇东南方向,距左江仅200米左右,现有人口1752人,目前饮用水主要靠村内的自备井,但在枯水期,出水量不能满足村民的生活用水要求。为了彻底解决**村村民的饮水安全问题,由**县政府出资,**县移民局具体负责,筹建**村饮用水处理项目,水源水为左江水,出水水质要求达到国家《生活饮用水卫生标准》(GB5749-2006)。

相关主题