搜档网
当前位置:搜档网 › 短程硝化反硝化影响因素级控制

短程硝化反硝化影响因素级控制

短程硝化反硝化影响因素级控制
短程硝化反硝化影响因素级控制

短程硝化反硝化影响因素及控制

摘要:硝化过程是将污水中的氨氮转化为硝酸盐的过程,包括由氨氧化菌(AOB)参与的将氨氮转化为亚硝酸盐的反应及由亚硝酸氧化菌(NOB)参与的将亚硝酸盐转化为硝酸盐的两个基本反应。短程硝化是将硝化反应控制在亚硝酸阶段,实现亚硝酸的积累,最终通过反硝化除去亚硝酸。而实现这一过程的关键是亚硝酸的积累。分析影响亚硝酸根积累因素,包括温度、游离氨、pH值、溶解氧、有害物质和泥龄,探讨实现短程硝化反硝化的途径。

关键词:短程硝化反硝化亚硝酸影响因素

随着经济和社会的发展,人们对水资源的需求越来越大,与此同时,对废水的脱氮处理也显得格外重要。传统的废水脱氮工艺存在一些问题,比如硝化细菌增殖速度慢引起总水力停留时间较长,高浓度氨氮进水抑制硝化菌生长等。近几年来人们开始重新审视传统生物脱氮的过程,提出了多种脱氮新工艺,特别对短程硝化反硝化生物脱氮方面进行了深入的研究。

1.短程硝化反硝化原理及优点

短程硝化反硝化生物脱氮就是将硝化过程控制在HNO2阶段,随后在缺氧条件下进行反硝化,也就是不完全硝化反硝化生物脱氮。短程硝化反硝化与传统硝化反硝化生物脱氮相比,具有许多优点:对于活性污泥法,可节省氧供应量约25%,降低能耗;节省反硝化所需碳源,在C/N比一定的情况下提高TN去除率;减少污泥生成量可达50%;减少投碱量;缩短反应时间,相应反应器容积减少。

2.短程硝化反硝化的影响因素

在短程硝化和反硝化过程中,起作用的两种菌为氨氧化菌和亚硝酸氧化菌。因此,对这两种微生物的生命活动产生影响的因素都会影响整个短程硝化反硝化过程的效果。

2.1温度

微生物的最大比增长速率与温度之间的关系可用修正的阿伦尼乌斯方程来描述:

其中μmt为温度为t℃时的微生物最大比增长速率,μ20为标准温度20℃时的微生物最大比增长速率。E为反应活化能,R为气体常数。

在20℃以下,硝化细菌的生产速率大于亚硝化细菌,亚硝化细菌产生的亚硝酸盐很容易被硝化细菌继续氧化成硝酸盐。国内学者王淑莹做过实验表明,水温保持在30℃时水中氨氮的转化类型为短程硝化过程;当水温在20.5—24.5℃时硝化类型由短程硝化转化为全程硝化;随着温度再次升高,硝化类型又逐渐转变为短程硝化;当温度达到29—30℃时,硝化反应为稳定的亚硝酸型硝化。

但在实际中,通过加热提高污水温度会消耗大量的能源,这样,短程硝化工艺的优点将不能得到充分发挥。因此,通过控制温度实现短程硝化脱氮工艺仅适用于某些特种废水(水温在30℃左右)。

2.2 pH值

通常条件下,亚硝化细菌和硝化细菌适宜生长的pH值范围分别是7.0—7.5和6.5—7.5。在混合体系中,亚硝化细菌和硝化细菌的pH分别在8.0和7.0附近。因此,可根据这两种细菌适宜pH的差异来控制反应的类型和消化的产物。国内学者王红武等通过实验对常温下生活废水短程硝化反硝化生物脱氮的研究表明:最佳短程硝化反硝化反应条件为pH值大于8.5,大于该值时会抑制硝化细菌的生长,而不抑制亚硝化细菌的生长。

实际应用中,要控制废水的pH值,很可能需要投加相应的酸或碱,这样势必会增加处理成本。此外,硝酸菌对高pH 值有一个适应过程,当它逐渐适应高pH 值和游离氨时,全程硝化就会出现,因此,依靠pH 值实现短程硝化脱氮过程并不稳定.因此,此工艺仅适合于含高pH值的废水.

2.3 游离氨

废水中氨随pH值不同分别以分子态和离子态形式存在。分子态游离氨(FA)对硝化作用有明显的抑制作用,硝酸菌比亚硝酸菌对FA 更敏感。0.6 mg/L的FA几乎可以抑制硝酸菌的活性,从而使HNO2氧化受阻,出现HNO2积累。只有当FA达到5 mg/L以上时才会对亚硝酸菌活性产生影响,当达到40 mg/L才会严重抑制亚硝酸的形成。进水氨氮浓度低时出水氨氮浓度也低,氨氮去除率高;当提高进水氨氮浓度时,游离氨超过亚硝化菌抑制浓度则会使亚硝化率降低而使得出水氨氮浓度增大,此时为达到较高的氨氮去除率须延长硝化时间。硝化时间增加使亚硝态氮的积累量增加,反硝化时间就会延长。所以,如果

将温度、DO和pH值控制在有利于HNO2积累的条件下,进水氨氮浓度(FA浓度)越低越能促进HNO2的积累.另外实验中还发现,高浓度FA 抑制所造成的HNO2积累并不稳定,时间一长系统中亚硝酸浓度和亚硝化率均下降,HNO2浓度增大。这说明硝酸菌对FA所产生的抑制作用会逐渐适应,而且硝酸菌对FA适应是不可逆转的,即便再进一步提高FA浓度,亚硝化比率也不会增加。

2.4 溶解氧(DO)

低溶解氧下亚硝酸菌增殖速率加快,补偿了由于低氧所造成的代谢活动下降,使得整个硝化阶段中氨氧化未受到很大影响,而低DO对硝酸菌有明显抑制作用,因而低溶解氧有利亚硝酸积累。目前普遍认为,DO浓度在0.5mg/L以上时才能很好地进行硝化反应。

不过,高大文教授的SBR实验结果表明,通过控制溶解氧实现短程硝化脱氮存在这硝化速率低,污泥沉降性变差等不足,所以在实际工作中不宜采用这种工艺。

2.5 泥龄

亚硝酸菌的世代较硝酸菌短,在悬浮处理系统中若泥龄介于硝酸菌和亚硝酸菌的最小停留时间之间时,系统中的硝酸菌会逐渐被/淘洗掉,使亚硝酸菌成为系统中优势硝化菌,硝化产物以HNO2为主。例如SHARON工艺是由荷兰Delft技术大学开发的脱氮新工艺,短程硝化和短程反硝化在同一个装置内。其基本原理是利用在高温(30~35℃)下,亚硝酸菌的最小停留时间小于硝酸菌,可以通过“洗泥”的方式对菌种进行筛选。

2.6 有害物质

硝酸菌对环境较为敏感。废水中酚、氰及重金属等有害物质对硝化过程有明显抑制作用。相对于亚硝酸菌,硝酸菌对环境适应性慢,因而在接触有害物质的初期受抑制,出现亚硝酸积累。Hynens等人发现硝酸菌与亚硝酸菌并存时,在废水中加入5 mmol/L的氯酸钠可抑制硝酸菌,但对亚硝酸菌无影响。

因此,当废水中含有酚,氢等有害物质时,要先将这些有害物质去除后再进行短程硝化反硝化。

2.7 C/N

在反硝化过程中,反硝化细菌属于异养菌,必须在有机碳源下生长。因此对于短程硝化反硝化过程而言,C/N过高,抑制短程硝化速率;C/N过低,降低反硝化的反应速率。国内学者周莉对纯种氨氧化菌所做的正交试验表明,反硝化速率随着C/N的增大有减小趋势,当增加到一定程度(>8)时,变化趋势就不明显了。

3.结语

(1)水温保持在30℃时水中氨氮的转化类型为短程硝化过程。在29—30℃时,将pH值、进水氨氮和DO控制在有利条件下,可以发生稳定的亚硝酸型硝化。

(2)pH值在8.5附近有利于HNO2的积累。pH值一方面是亚硝酸菌生物限制性条件,另一方面影响游离氨浓度,从而影响亚硝酸菌的活性。

(3)FA浓度一般控制在5 mg/L以下,将温度、DO和pH值控制在有利条件下,进水氨氮浓度(FA浓度)不能太高才能促进HNO2的积累。

(4)亚硝酸菌对DO的亲和力较硝酸菌强, DO控制在0.5 mg/L有利于HNO2的积累。

(5)硝酸菌与亚硝酸相比对环境敏感,在硝化过程中可以添加抑制剂,促进HNO2的积累。

(6)亚硝酸菌的世代性比硝酸菌短,选择合适泥龄,可淘洗硝酸菌,促进HNO2的积累。

(7)对控制温度、溶解氧和 pH 值实现的短程硝化脱氮工艺进行比较研究,发现控制溶解氧实现的短程硝化脱氮工艺存在许多问题,无论从硝化时间、硝化速率还是从污泥沉降性能上,该工艺均不如控制温度和pH值实现的短程硝化脱氮工艺.它不但硝化速率低,从而导致硝化时间变长,而且,低溶解氧还易引发丝状菌大量繁殖,严重时引起丝状菌污泥膨胀.

笔者认为,将来在此工艺上的研究重点将会是培育能适应正常水温,且其他要求条件不是很苛刻的AOB和NOB菌种,结合SHARON工艺,可以大大减小运行成本,这样,短程硝化和反硝化会得到更大的推广。

参考文献

1 肖锦.城市污水处理及回用技术.北京:化学工业出版社,2002

2 于德爽,等.中温短程硝化反硝化的影响因素研究.中国给水排

水,2003,1

3 徐冬梅.亚硝酸型硝化的试验研究.给水排水,1999,25(7)

4 唐光临.亚硝化反硝化生物脱氮.工业水处理,2001,11

5 高大文,彭永臻,王淑莹.不同方式实现短程硝化反硝化生物脱氮工艺的比较,2004

6 周莉.纯种氨氧化菌短程反硝化特性.2013.4

7.Picioreanu C,Van Loosdrecht M.C.M.,Heijnen J. J.Modeling of the effect of oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Water Science and Technology,1997, 36( 1) : 147-156

短程硝化反硝化的研究详解

短程硝化反硝化的研究进展 摘要短程硝化反硝化技术主要用于处理高氨氮质量浓度和低C/N比的污水。成功实现短程硝化反硝化技术的关键是将硝化反应控制并维持在亚硝酸盐阶段,不进行亚硝酸盐至硝酸盐的转化。本文探讨了短程硝化反硝化的机理并对氨氧化菌的分子生物学研究进行了分析,同时探讨了A/SBR工艺的应用。 关键词短程硝化反硝化氨氧化菌A/SBR 1 引言 近年来,随着工业化和城市化进程的不断提高,大量氮、磷等营养物质进入水体,水体富营养化的现象日益严重,由于常规的活性污泥工艺硝化作用不完全,反硝化作用则几乎不发生,总氮的去除率仅在10%~30%之间,出水中还含有大量的氮和磷[1]。因此,只有对常规的活性污泥法进行改进,加强其生物脱氮功能,才能解决日益突出的受纳水体“富营养化”问题。目前,各城市污水处理厂均应用新的运行方法和控制策略进行脱氮除磷。随着新的微生物处理技术的介入,污水处理设施的功效得到显著提高。短程硝化反硝化技术对于处理这种污水在经济和技术上均具有较高的可行性。 短程硝化反硝化技术已成为脱氮领域研究的热点。其研究内容主要集中在实现氨氧化菌在反应器的优势积累、构造适于氨氧化菌长期稳定生长并抑制亚硝酸氧化菌的最佳环境因素、优化过程控制模式实现持续稳定的短程硝化等。 2 短程硝化反硝化的机理 生物脱氮包括硝化和反硝化两个反应过程。第一步是由氨氧化菌( ammonium oxidition bacteria,AOB) 将NH4-N氧化NO-2-N的亚硝化过程;第二步是由亚硝酸氧化菌( nitrite oxidition bacteria,NOB) 将NO-2-N氧化为NO-3-N的过程。然后通过反硝化作用将产生的NO-3-N经由NO-2-N、NO或N2O转化为N2,NO-2-N 是硝化和反硝化两个过程的中间产物。V oets等(1975)在处理高浓度氨氮废水的研究中,发现了硝化过程NO-2-N积累的现象,首次提出了短程硝化反硝化生物

同步硝化反硝化

同步硝化反硝化的出路,究竟在何方? 古语云:殊途同归。对于污水脱氮来说,亦是如此。处理方法并不是只有一种。 方法一:依照传统生物脱氮理论,在脱氮过程中需要经过硝化和反硝化两个过程,最终将氨氮转化为氮气而解决污水处理脱氮问题。生物脱氮原理如下:硝化作用是在亚硝酸菌作用下将氨氮转化为NO2-N,然后硝酸菌将NO2-N转化为NO3-N。反硝化作用是指在厌氧或缺氧情况下将NO3-N转化为NO2-N,并最终将NO2-N转化为N2。 方法二:然而,近年来,国内外的不少研究和报告证明存在着同步硝化反硝化现象。同步硝化反硝化又称短程硝化反硝化。是指在同一反应器内同步进行硝化反应和反硝化反应。这样的反应中,反硝化可以直接利用硝化作用转化的NO2-N进行反应,而不必将氨氮转化为NO3-N,可以减少能源的消耗,以及对氧的需求。 条条道路通罗马,那么总有一条是最合适的吧?那么,相对于传统脱氮反应来说,同步硝化反硝化又具有什么样的优势呢? 根据化学计量学统计,与传统硝化反硝化脱氮反应相比,同步硝化反硝化具有以下优势: 1.在硝化阶段可以减少25%左右的需氧量,减少对曝气的需求,就 是减少能耗; 2.在反硝化阶段减少了40%的有机碳源,降低了运行费用; 3.NO2-N的反硝化速率比NO3-N的反硝化速率高63%左右; 4.减少50%左右污泥;

5.反应器容积可以减少30%-40%左右; 6.反硝化产生的OH-可以原地中合硝化作用产生的H+,能有效保持 反应容器内的PH。 (以上数据出自论文:《同步硝化反硝化脱氮机理分析及影响因素研究》) 既然有这么多的优势,那么为什么同步硝化反硝化工艺一直没能得到推广呢?这个,就要用一句古语来解释了:祸兮,福之所倚,福兮,祸之所伏。也就是说,有利就有弊。 同步硝化反硝化工艺进入人们的视线以来,科学家以及相关的研究人员在上面倾注了大量的精力进行研究,对影响同步硝化反硝化反应的因素有了详细的了解。同步硝化反硝化的影响因素总结如下: 1.溶解氧(DO) 控制系统中溶解氧,对获得高效的同步硝化反硝化具有极其重要的意义。对于实现同步硝化反硝化来说,DO浓度不宜太高,一方面,过高的溶解氧具有较强的穿透力,就无法在污泥絮体以及生物膜内部形成缺氧区,第二方面,会使异养好氧菌活性提高,从而加速对有机物的消耗,最终造成反硝化因营养源不足而无法完成。研究表明,溶解氧浓度在0.5mg/L时,硝化速率等于反硝化速率, 2.温度 生物硝化适宜的温度在20到35℃,一般温度低于15℃硝化反应速度降低,但低温对硝化产物以及两种硝酸菌的影响不同,12到14℃活性污泥中硝酸菌的活性受到严重抑制,出现NO2-N的积累。当温度超

常温下AO工艺的短程硝化反硝化

常温下A/O工艺的短程硝化反硝化 1 试验装置与设备 1.1 试验流程及设备 A/O工艺模型主要由合建式缺氧—好氧反应器和竖流沉淀池组成,如图1所示。 合建式反应器分为3个廊道,总有效容积为85L;沿池长方向设置若干成对的竖向插槽,配以相应大小的插板,可以将整个反应器沿池长方向分成若干个小格,在每个插板上开一个25mm的圆孔,安放时使相邻圆孔上下交错以防止发生短流;在反应器顶部布置环状曝气干管,并设置若干个小阀门,由橡胶管连接烧结砂头作为微孔曝气器,气量由转子流量计测量;根据缺氧段所占比例,选择安放若干搅拌器用于保持泥水混合均匀;在距池底20cm的高度上设置若干取样口。进水、污泥回流和内循环流量分别用3台蠕动泵控制。沉淀池的沉淀区呈圆柱形,直径为30cm;污泥斗为截头倒锥体,倾角为60°;采用中心管进水、周边三角堰出水方式。 1.2 原水 采用由黄豆粉、葡萄糖、NH4Cl、KH2PO4和NaHCO3与自来水配制的模拟生活污水。 1.3 分析项目与方法 COD:重铬酸钾法;MLSS:滤纸称重法;DO、温度:WTWDO测定仪及探头;pH值:WTWi nolab pH level2和NTC30电极;NO2--N,:N-(1-萘基)-乙二胺光度法;NO3--N,:麝香草酚分光光度法;NH3-N:纳氏试剂分光光度法。 2 结果及分析 2.1 对NH3-N的去除率和NO2--N的积累率 试验期间测得进水平均NH3-N浓度为40.21mg/L,对NH3-N的平均去除率为90.78%,出水中NO2--N,占TN的比例平均为75.29%。 在前51天,出水中NO2--N,含量占TN的50%以上(平均为87.36%),维持了稳定的NO2--N积累。第50~53天配制原水时以Na2CO3代替NaHCO3来提供碱度,使硝化类型发生显著变化,转化为全程硝化反硝化。从第54天开始配制原水时仍然以NaHCO3提供碱度,又出现了NO2--N,积累现象,但是在其后的试验中NO2--N,

硝化与反硝化

3.7 硝化与反硝化 废水中的氮常以合氮有机物、氨、硝酸盐及亚硝酸盐等形式存在。生物处理把大多数有机氮转化为氨,然后可进一步转化为硝酸盐。一、硝化与反硝化 (一) 硝化 在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。 反应过程如下: 亚硝酸盐菌 NH4++3/2O2 NO2-+2H++H O-△E △E=278.42KJ 第二步亚硝酸盐转化为硝酸盐: 硝酸盐菌 NO-+1/2O2 NO3--△E △E=278.42KJ 这两个反应式都是释放能量的过程,氨氮转化为硝态氮并不是去除氮而是减少它的需氧量。上诉两式合起来写成: NH4++2O2 NO3-+2H++H2O-△E △E=351KJ 综合氨氧化和细胞体合成反应方程式如下: NH4+1.83O2+1.98HCO3- 0.02C5H7O2N+0.98 NO3-+1.04 H2O+1.88H2CO3 由上式可知:(1)在硝化过程中,1g氨氮转化为硝酸盐氮时需氧4.57g;(2)硝化过程中释放出H+,将消耗废水中的碱度,每氧化lg 氨氮,将消耗碱度(以CaCO3计) 7.lg。 影响硝化过程的主要因素有: (1)pH值当pH值为8.0~8.4时(20℃),硝化作用速度最快。

由于硝化过程中pH将下降,当废水碱度不足时,即需投加石灰,维持pH值在7.5以上; (2)温度温度高时,硝化速度快。亚硝酸盐菌的最适宜水温为35℃,在15℃以下其活性急剧降低,故水温以不低于15℃为宜; (3)污泥停留时间硝化菌的增殖速度很小,其最大比生长速率为=0.3~0.5d-1(温度20℃,pH8.0~8.4)。为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。在实际运行中,一般应取>2 ; (4)溶解氧氧是生物硝化作用中的电子受体,其浓度太低将不利于硝化反应的进行。一般,在活性污泥法曝气池中进行硝化,溶解氧应保持在2~3mg/L以上; (5)BOD负荷硝化菌是一类自养型菌,而BOD氧化菌是异养型菌。若BOD5负荷过高,会使生长速率较高的异养型菌迅速繁殖,从而佼白养型的硝化菌得不到优势,结果降低了硝化速率。所以为要充分进行硝化,BOD5负荷应维持在0.3kg(BOD5)/kg(SS).d以下。 (二) 反硝化 在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO2--N和NO3--N还原成N2的过程,称为反硝化。反硝化过程中的电子供体(氢供体)是各种各样的有机底物(碳源)。以甲醇作碳源为例,其反应式为: 6NO3-十2CH3OH→6NO2-十2CO2十4H2O 6NO2-十3CH3OH→3N2十3CO2十3H2O十60H-

短程硝化反硝化生物脱氮技术概述

短程硝化反硝化生物脱氮技术概述 [摘要] 首先阐述了传统硝化反硝化脱氮过程;其次重点介绍了短程硝化反硝化生物脱氮机理,过程实现的控制因素;最后提出了短程硝化反硝化脱氮的研究前景。 [关键词] 短程硝化反硝化;生物脱氮 随着水体受到氮素污染越来越严重,废水脱氮日益受到人们的重视。其中生物脱氮技术将有机氮和氨氮通过硝化反硝化过程去除具有无可比拟的发展前景。其中传统的生物脱氮技术认为要完全去除水中的氨态氮就必须要经过完整的硝化与反硝化过程,即以硝酸盐作为硝化的终点和反硝化的起点,这主要是基于要防止对环境危害较大的亚硝酸盐的积累以及对好氧硝化菌和兼性厌氧反硝化菌不能在同一个反应器里同时大量存在的认识导致的。而现在的大量研究表明,好氧硝化菌和兼性厌氧反硝化菌是可以在同一个反应器里共同起作用的。因为在整体和每一单元填料表面所附着的生物膜上都存在基质和溶解氧的浓度梯度分布,这就为各种生态类型的微生物在生物膜内不同部位占据优势生态位提供了条件。由于短程硝化反硝化脱氮比传统的脱氮技术具有很多的优点,因此引起了国内外研究者的广泛关注,对影响短程硝化反硝化的因素以及实现和维持短程硝化反硝化的工艺控制进行了大量的研究。 1.传统硝化反硝化脱氮机理 1.1 硝化反应 硝化反应是由一类自养耗氧微生物完成的,包括两个步骤:第一步为亚硝化过程,是由亚硝酸菌将氨氮转化为亚硝酸盐;第二步为硝化过程,由硝酸菌将亚硝酸盐进一步氧化为硝酸盐,亚硝酸菌和硝酸菌统称为硝化菌,都利用无机碳化合物如CO32-、HCO3-和CO2作为碳源,从NH3、NH4+或NO2-的氧化反应中获取能量。 亚硝酸菌和硝酸菌的特性大致相似,但前者的世代期较短,生长率较快,因此较能适应冲击负荷和不利的环境条件,当硝酸菌受到抑制时,有可能出现NO2-积累的情况。 1.2反硝化反应 反硝化反应是由一群异养性微生物完成的生物化学过程,它的主要过程是在缺氧的条件下,将硝化过程中产生的亚硝酸盐和硝酸盐还原成气态氮。反硝化细菌多数是兼性细菌,有分子态氧存在时,反硝化氧化分解有机物,利用分子氧作为最终电子受体。在无分子态氧条件下,反硝化菌利用硝酸盐和亚硝酸盐中的N5+和N3-作为电子受体,O2-作为受氢体生成H2O和OH-碱度,有机物则作为碳源和电子供体提供能量,并得到氧化稳定。 反硝化过程中亚硝酸盐和硝酸盐的转化时通过反硝化细菌的同化作用和异化作用来完成的。异化作用就是将NO2-和NO3-还原为NO、N2O、N2等气体物质,主要是N2。而同化作用是反硝化菌将NO2-和NO3-还原成为NH3-N,供新细胞合成使用,使氮成为细胞质的成分,此过程可成为同化反硝化。 反硝化反应一般以有机物为碳源和电子供体。当环境中缺乏有机物时,微生物还可以消耗自身的原生质,进行所谓的内源反硝化。反应式如下:C5H7O2N+4NO3-→5CO2+NH3+2N2+4OH- 可见内源反硝化的结果是细胞原生质的减少,并会有NH3的生成,因此废

一文概括短程硝化反硝化与同步硝化反硝化的区别及影响因素

一文概括!短程硝化反硝化与同步硝化反硝化的区别及影响因素! 一、短程硝化反硝化 1、简介 生物脱氮包括硝化和反硝化两个反应过程,第一步是由亚硝化菌将NH4+-N氧化为NO2--N的亚硝化过程;第二步是由硝化菌将NO2--N氧化为氧化为 NO3--N的过程;然后通过反硝化作用将产生的 NO3—N经由NO2--N转化为N2,NO2--N是硝化和反硝化过程的中间产物。1975年Voets等在处理高浓度氨氮废水的研究中,发现了硝化过程中NO2--N 积累的现象,首次提出了短程硝化反硝化脱氮的概念。如下图所示。 比较两种途径,很明显,短程硝化反硝化比全程硝化反硝化减少了NO2-、NO3-和NO3- 、NO2-两步反应,这使得短程硝化反硝化生物脱氮具有以下优点:

1、可节约供氧量25%。节省了NO2-氧化为NO3-的好氧量。 2、在反硝化阶段可以节省碳源40%。在C/N比一定的情况下提高了TN的去除率。并可以节省投碱量。 3、由于亚硝化菌世代周期比硝化菌短,控制在亚硝化阶段可以提高硝化反应速度和微生物的浓度,缩短硝化反应的时间,而由于水力停留时间比较短,可以减少反应器的容积,节省基建投资,一般情况下可以使反应器的容积减少30%~40%。 4、短程硝化反硝化反应过程在硝化过程中可以减少产泥25%~34%,在反硝化过程中可以减少产泥约50%。 由于以上的优点,使得短程硝化-反硝化反应尤其适应于低C/N比的废水,即高氨氮低COD,既节省动力费用又可以节省补充的碳源的费用,所以该工艺在煤化工废水方面非常可行。 2、影响短程硝化反硝化的因素 2.1温度的影响

温度对微生物影响很大。亚硝酸菌和硝酸菌的最适宜温度不相同,可以通过调节温度抑制硝酸菌的生长而不抑制亚硝酸菌的方法,来实现短程硝化反硝化过程。国内的高大文研究表明:只有当反应器温度超过28℃时,短程硝化反硝化过程才能较稳定地进行。 2.2 pH值的影响 pH较低时,水中较多的是氨离子和亚硝酸,这有利于硝化过程的进行,此时无亚硝酸盐的积累;而当pH较高时,可以积累亚硝酸盐。因此合适的pH环境有利于亚硝化菌的生长。pH对游离氨浓度也产生影响,进而也会影响亚硝酸菌的活性,研究表明:亚硝化菌的适宜pH值在8.0附近,硝化菌的pH值在7.0附近。因此,实现亚硝化菌的积累的pH值最好在8.0左右。 2.3溶解氧(DO)的影响 DO对控制亚硝酸盐的积累起着至关重要的作用。亚硝化反应和硝化反应均是好氧过程,而亚硝酸菌和硝酸菌又存在动力学特征的差异:低DO条件下亚硝酸菌对DO的亲和力比硝酸菌强。可以通过控制DO使硝化过程只进行到氨氮氧化为亚硝态氮阶段,从而淘汰硝酸菌,达到短程硝化的目的。 2.4泥龄的影响

影响硝化反硝化的因素

1、温度:温度愈高,可使硝化作用的活性增加,但这不表示温度越高越好,因为温度越高,溶氧的饱和度会降低,因此硝化作用仅能在温度与溶氧之间取得一个平衡关系以获得最高的效率。一般的建议是以不超过30℃,不低于20℃为原则。 2、PH值:在一般的生物处理程序中,硝化反应系统受pH影响很大。硝化细菌在生长过程中会消耗大量碱度,故pH稍高于7~8,有利于硝化作用(张镇南等,1995)。一般的建议是以介于7.5~8.2之间最佳,若高于9.0或低于6.0都要避免,因为那已超过硝化细菌正常生长的范围,必然会影响硝化作用的效率(Alleman,1992)。 3、溶氧:当溶氧(DO)浓度低时,硝化反应受溶氧浓度影响很大。但在一般的生物处理程中,溶氧则较不容易控制,因此必须作处理水之溶氧测试,并控制至少不低于2~3ppm的范围内(Alleman,1992)。 4、氨和亚硝酸:分子性的氨和游离的亚硝酸均会对硝化反应产生抑制作用(Anthonisen,1976)。分子性的氨浓度如果高于10~150ppm,可能对亚硝酸化作用产生抑制作用,高于0.1~1.0ppm对硝酸化作用即产生抑制作用(Anthonisen,1976)。亚硝酸浓度若大于0.22~2.8ppm亦会抑制硝酸化作用(Anthonisen et al.,1976)。 5、碳氮比:硝化细菌之存在比率取决于污水中含碳物质及含氮物质之相对数量。含氮营养物浓度之测定可利用凯氏法(Kjeldahl method)测得所谓的总凯氏氮(Totol Kjeldahl Nitrogen),简称TKN,其值包含氨及有机氮化物。含碳物质浓度之测定可利用生化需氧量BOD(Biochemical Oxygen Demand)行之,它代表有机污染之程度。BOD/TKN简称碳氮比。碳氮比愈高,异营性氧化菌的活性较大,大量繁殖,消耗溶氧速率快,使硝化细菌无法生存竞争。反之,如果碳氮比愈低,则有利于硝化细菌之增殖。

AO生化的硝化与反硝化原理

2.5 A/O生化处理 2.5.1 基本原理 本系统生化处理段采用缺氧/好氧(A/O)工艺,A/O工艺通常是在常规的好氧活性污泥法处理系统前,增加一段缺氧生物处理过程。在好氧段,好氧微生物氧化分解污水中的BOD5,同时进行硝化反应,有机氮和氨氮在好氧段转化为硝化氮并回流到缺氧段,其中的反硝化细菌利用氧化态氮和污水中的有机碳进行反硝化反应,使化合态氮变成分子态氮,同时获得同时去碳和脱氮的效果。这里着重介绍生物脱氮原理。 1) 生物脱氮的基本原理 传统的生物脱氮机理认为:脱氮过程一般包括氨化、硝化和反硝化三个过程。 ①氨化(Ammonification):废水中的含氮有机物,在生物处理过程中被好氧或厌氧异养型微生物氧化分解为氨氮的过程; ②硝化(Nitrification):废水中的氨氮在硝化菌(好氧自养型微生物)的作用下被转化为NO2-和NO3-的过程; ③反硝化(Denitrification):废水中的NO2-和NO3-在缺氧条件下以及反硝化菌(兼性异养型细菌)的作用下被还原为N2的过程。 其中硝化反应分为两步进行:亚硝化和硝化。硝化反应过程方程式如下所示: ①亚硝化反应:NH4++1.5O2→NO2-+H2O+2H+

②硝化反应:NO2-+0.5O2→NO3- ③总的硝化反应:NH4++2O2→NO3-+H2O+2H+ 反硝化反应过程分三步进行,反应方程式如下所示(以甲醇为电 子供体为例): 第一步:3NO3-+CH3OH→3NO2-+2H2O+CO2 第二步:2H++2NO2-+CH3OH→N2+3H2O+CO2 第三步:6H++6NO3-+5CH3OH→3N2+13H2O+5CO2 2) 本系统脱氮原理 针对本系统生化工艺段而言,除了上述脱氮原理外,还糅合了短程硝化-反硝化,即氨氮在O池中未被完全硝化生成NO3-,而是生成了大量的NO2--N,但在A池NO2-同样被作为受氢体而进行脱氮(上述第二步可知);再者在A池NO2-同样也可和NH4+进行脱氮,即短程硝化-厌氧氨氧化,其表示为:NH4++NO2-→N2+2H2O。 因此针对本系统而言,A/O工艺如在进水水质以及系统控制参数稳定的条件下也可达到理想的出水效果。 2.5.2工艺特征 A/O脱氮工艺主要特征是:将脱氮池设置在去碳硝化过程的前端,一方面使脱氮过程能直接利用进水中的有机碳源而可以省去外加碳源;另一方面,则通过消化池混合液的回流而使其中的NO3-在脱氮池中进行反硝化,且利用了短程硝化-反硝化以及短程硝化-厌氧氨氧化等工艺特点。因此工艺内回流比的控制是较为重要的,因为如内回流比过低,则将导致脱氮池中BOD5/NO3-过高,从而是反硝化菌无足够的

短程与同步硝化反硝化

新型脱氮工艺研究 一、短程硝化反硝化 1、简介 生物脱氮包括硝化和反硝化两个反应过程,第一步是由亚硝化菌将NH4+-N 氧化为NO2--N的亚硝化过程;第二步是由硝化菌将NO2--N氧化为氧化为NO3--N 的过程;然后通过反硝化作用将产生的NO3—N经由NO2--N转化为N2,NO2--N 是硝化和反硝化过程的中间产物。1975年V oets等在处理高浓度氨氮废水的研究中,发现了硝化过程中NO2--N积累的现象,首次提出了短程硝化反硝化脱氮的概念。如图1所示。 NH4+ NO2-NO3-NO2-N2 传统生物脱氮途径 NH+NO-N2 短程硝化-反硝化生物脱氮途径 图1 传统生物脱氮途径和短程 硝化-反硝化生物脱氮途径 比较两种途径,很明显,短程硝化反硝化比全程硝化反硝化减少了NO2- NO3-和NO3-NO2-两步反应,这使得短程硝化反硝化生物脱氮具有以下优点: ⑴可节约供氧量25%。节省了NO2-氧化为NO3-的好氧量。 ⑵在反硝化阶段可以节省碳源40%。在C/N比一定的情况下提高了TN的去除 率。并可以节省投碱量。 ⑶由于亚硝化菌世代周期比硝化菌短,控制在亚硝化阶段可以提高硝化反应速 度和微生物的浓度,缩短硝化反应的时间,而由于水力停留时间比较短,可以减少反应器的容积,节省基建投资,一般情况下可以使反应器的容积减少30%~40%。

⑷短程硝化反硝化反应过程在硝化过程中可以减少产泥25%~34%,在反硝化过 程中可以减少产泥约50%。 由于以上的优点,使得短程硝化-反硝化反应尤其适应于低C/N比的废水,即高氨氮低COD,既节省动力费用又可以节省补充的碳源的费用,所以该工艺在煤化工废水方面非常可行。 2、影响短程硝化反硝化的因素 2.1温度的影响 温度对微生物影响很大。亚硝酸菌和硝酸菌的最适宜温度不相同,可以通过调节温度抑制硝酸菌的生长而不抑制亚硝酸菌的方法,来实现短程硝化反硝化过程。国内的高大文研究表明:只有当反应器温度超过28℃时,短程硝化反硝化过程才能较稳定地进行。 2.2 pH值的影响 pH较低时,水中较多的是氨离子和亚硝酸,这有利于硝化过程的进行,此时无亚硝酸盐的积累;而当pH较高时,可以积累亚硝酸盐。因此合适的pH环境有利于亚硝化菌的生长。pH对游离氨浓度也产生影响,进而也会影响亚硝酸菌的活性,研究表明:亚硝化菌的适宜pH值在8.0附近,硝化菌的pH值在7.0附近。因此,实现亚硝化菌的积累的pH值最好在8.0左右。 2.3溶解氧(DO)的影响 DO对控制亚硝酸盐的积累起着至关重要的作用。亚硝化反应和硝化反应均是好氧过程,而亚硝酸菌和硝酸菌又存在动力学特征的差异:低DO条件下亚硝酸菌对DO的亲和力比硝酸菌强。可以通过控制DO使硝化过程只进行到氨氮氧化为亚硝态氮阶段,从而淘汰硝酸菌,达到短程硝化的目的。 2.4泥龄的影响 氨氮的硝化速率比亚硝态氮的氧化速率快,而亚硝酸菌的世代周期比硝化菌的世代周期短,因此可以通过控制HRT使泥龄在亚硝酸菌和硝酸菌的最小停留时间之间,使亚硝酸菌成为优势菌种,逐步淘汰硝酸菌。 2.5其它因素的影响

短程硝化反硝化工艺

短程硝化反硝化工艺简析 广东石油化工学院化工与环境工程学院环境08-1 冼真文 摘要 :指出短程硝化反硝化工艺是目前国内外生物脱氮技术研究应用的热点 ,通过介绍短程硝化反硝化工艺原理 ,分析了不同工艺稳定亚硝态氮积累实现短程硝化的工艺控制措施 ,对短程硝化反硝化工艺今后的研究和应用进行了展望。 关键词 :短程硝化反硝化;氨氧化细菌;硝化;反硝化 短程硝化反硝化工艺是目前国内外生物脱氮技术研究应用的热点。在生物脱氮硝化过程中,氨氧化细菌将氨氮氧化为亚硝态氮,亚硝酸盐氧化细菌将亚硝态氮氧化为硝态氮。控制硝化反应条件 ,使硝化反应只进行到亚硝态氮阶段并实现稳定的亚硝态氮积累,是各种短程硝化反硝化工艺稳定运行的关键。短程硝化反硝化工艺主要包括SHARON,OLAND 和CANON工艺 ,同时国内外专家学者也对SBR ,A/ O,MBR,曝气生物滤池等工艺的短程硝化反硝化进行了深入研究。 1 短程硝化反硝化原理 传统的脱氮工艺是将NH4+氧化成NO2-,再氧化成NO3-;起作用的分别是亚硝酸菌和硝酸菌,统称为硝化菌,可得如下结论:亚硝化过程产生的能量比硝化过程产生的能量多,因而前者反应速率较后者快;亚硝化过程中产生大量的H+,使系统pH值降低,而硝化过程对系统的pH值无影响;亚硝化过程和硝化过程好氧比为3:1;亚硝酸菌和硝酸菌的生理特性大致相似,但前者的时代周期短,生长较快,因此较能适应冲击负荷和不利的环境条件。当硝酸菌受到抑制的时候,将会出现NO2-的积累。 很显然,在传统的硝化-反硝化脱氮过程中,在反硝化菌的作用下,反硝化过程既可从硝酸盐开始,也可以从亚硝酸盐开始。但由NO2-转化为NO3-,然后由NO3-再转化为NO2-的重复转化过程中,要消耗更多的溶解氧和有机碳源。如果在实际过程中,控制这一转化过程,使NH4+全部或绝大部分转化为NO2-而不是NO3-,由NO2-直接进行反硝化,称此过程为短程硝化-反硝化,经过环境工作者的不懈努力,短程硝化-反硝化过程在许多反应器都得以实现。与传统脱氮工艺过程相比,短程硝化-反硝化体现出以下优势。节能:硝化阶段,供氧量节省近25%,降低能耗;节约外加碳源:从NO2-到N2要比从NO3-到N2的反硝化过程中,减少40%的有机碳源;可以缩短水力停留时间:在高氨环境下,NH4+的硝化速率和NO2-的反硝化速率均比NO2-的氧化速率和NO3-的反硝化速率快,因此水力停留时间可以缩短,反应器的容积也相应减小;可减少剩余污泥产量:亚硝酸菌表观产率系数为0.04~0.13gVSS/gN,硝酸菌的表观产率系数为0.02~0.07 g VSS/g N,NO2-反硝化菌和NO3-反硝化菌的表观产率系数分别为0.345 g VSS/g N和0.765 g VSS/g N,因此短程硝化反硝化过程中可以减少产泥24~33%,在反硝化过程中可少产

短程硝化反硝化工艺

短程硝化反硝化工艺 Final approval draft on November 22, 2020

短程硝化反硝化工艺简析 广东石油化工学院化工与环境工程学院环境08-1冼真文 摘要:指出短程硝化反硝化工艺是目前国内外生物脱氮技术研究应用的热点,通过介绍短程硝化反硝化工艺原理,分析了不同工艺稳定亚硝态氮积累实现短程硝化的工艺控制措施,对短程硝化反硝化工艺今后的研究和应用进行了展望。 关键词:短程硝化反硝化;氨氧化细菌;硝化;反硝化 短程硝化反硝化工艺是目前国内外生物脱氮技术研究应用的热点。在生物脱氮硝化过程中,氨氧化细菌将氨氮氧化为亚硝态氮,亚硝酸盐氧化细菌将亚硝态氮氧化为硝态氮。控制硝化反应条件,使硝化反应只进行到亚硝态氮阶段并实现稳定的亚硝态氮积累,是各种短程硝化反硝化工艺稳定运行的关键。短程硝化反硝化工艺主要包括SHARON,OLAND和CANON工艺,同时国内外专家学者也对SBR,A/O,MBR,曝气生物滤池等工艺的短程硝化反硝化进行了深入研究。 1短程硝化反硝化原理 传统的脱氮工艺是将NH 4+氧化成NO 2 -,再氧化成NO 3 -;起作用的分别是亚硝酸菌和硝酸菌,统 称为硝化菌,可得如下结论:亚硝化过程产生的能量比硝化过程产生的能量多,因而前者反应速率较后者快;亚硝化过程中产生大量的H+,使系统pH值降低,而硝化过程对系统的pH值无影响;亚硝化过程和硝化过程好氧比为3:1;亚硝酸菌和硝酸菌的生理特性大致相似,但前者的时代周期短,生长较快,因此较能适应冲击负荷和不利的环境条件。当硝酸菌受到抑制的时候,将会出现NO 2 -的积累。 很显然,在传统的硝化-反硝化脱氮过程中,在反硝化菌的作用下,反硝化过程既可从硝酸盐 开始,也可以从亚硝酸盐开始。但由NO 2-转化为NO 3 -,然后由NO 3 -再转化为NO 2 -的重复转化过程 中,要消耗更多的溶解氧和有机碳源。如果在实际过程中,控制这一转化过程,使NH 4 +全部或绝 大部分转化为NO 2-而不是NO 3 -,由NO 2 -直接进行反硝化,称此过程为短程硝化-反硝化,经过环境 工作者的不懈努力,短程硝化-反硝化过程在许多反应器都得以实现。与传统脱氮工艺过程相比,短程硝化-反硝化体现出以下优势。节能:硝化阶段,供氧量节省近25%,降低能耗;节约外加碳 源:从NO 2-到N 2 要比从NO 3 -到N 2 的反硝化过程中,减少40%的有机碳源;可以缩短水力停留时间: 在高氨环境下,NH 4+的硝化速率和NO 2 -的反硝化速率均比NO 2 -的氧化速率和NO 3 -的反硝化速率快, 因此水力停留时间可以缩短,反应器的容积也相应减小;可减少剩余污泥产量:亚硝酸菌表观产 率系数为0.04~0.13gVSS/gN,硝酸菌的表观产率系数为0.02~0.07gVSS/gN,NO 2-反硝化菌和NO 3 -反 硝化菌的表观产率系数分别为0.345gVSS/gN和0.765gVSS/gN,因此短程硝化反硝化过程中可以减少产泥24~33%,在反硝化过程中可少产泥50%。 2影响亚硝酸盐积累的因素 由于废水生物处理反应器均未开放的非纯种培养系统,如何控制硝化停止亚硝化阶段是实现短程生物脱氮的关键。传统硝化过程是由亚硝酸菌和硝酸菌协同完成的,由于这两类细菌在开放的生态系统中形成较为紧密的互生关系,将氨氧化为硝酸,因此完全的亚硝酸化是不可能的。短

短程硝化反硝化原理

短程硝化反硝化原理 传统生物脱氮理论认为氨氮是借助两类不同的细菌(硝化菌和反硝化菌)将水中的氨转化为氮气而去除。其中硝化反应又由两类细菌分步完成,首先亚硝酸细菌将氨氮转化为亚硝酸盐(NO2-),之后硝酸细菌将亚硝酸盐转化为硝酸盐(NO3-)。如图1.1。硝化反应过程需在好氧条件下进行。并以氧作为电子受体。反硝化过程为将硝酸盐或亚硝酸盐转化为N2的过程。反硝化细菌可以利用各种有机基质作为电子供体,以硝酸盐或亚硝酸盐作为电子受体,进行缺氧呼吸。 图1.1 传统硝化反硝化过程 传统脱氮技术亚硝氮无法积累的主要原因基于以下两点:从动力学来看,氨氮转化为亚硝氮速率较慢,为整个硝化过程的限速步骤;从热力学看,单位亚硝氮被氧化所能为硝酸菌提供的能量仅为单位氨氮氧化为亚硝酸菌提供能量的 1/4~1/5。因此,必须通过氧化更多的亚硝氮来满足细菌生长所需的能量。 而在不断探索中,发现氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)在生活习性上存在一定差异。如表1.1。通过利用这些差异,可以控制消化过程在N02-

阶段,阻止NO2-进一步氧化为NO3-。之后直接以N02-作为电子最终受氢体进行反硝化。即实现所谓的短程硝化反硝化。 表1.1 AOB与NOB主要差异 项目氨氧化菌(AOB)亚硝酸盐氧化菌(NOB) 菌属亚硝酸盐单胞菌 属 亚硝酸盐球菌属 硝酸盐杆菌属、螺旋菌 属、球菌属 世代周期/h 8~36 12~59 最佳pH 7.5~8.5 6.5~7.5 溶解氧饱和常数 (Ko2 /mg·L) 0.2~0.4 1.2~1.5 温度/℃<15或>30 15~30 FA(游离氨)敏感 性 不敏感 (10~150mg/L) 较敏感(0.1~1mg/L)

反硝化除磷工艺的基本原理和影响因素

水处理生物学期中小综述 题目:反硝化除磷工艺的基本原理和影响因素 学院:建筑工程学院系土木工程系 专业:给水排水工程 班级:给排水111班 学号:6002211023 姓名:张群华 指导教师:黎俊 日期:2013 年11 月23 日

反硝化除磷工艺的基本原理和影响因素 摘要:概述了反硝化除磷工艺的基本原理及反硝化单双污泥系统,介绍了污泥龄、活性污泥浓度、温度、PH值、硝态氮、碳源和溶解氧等影响因素,同时简 单介绍了反硝化除磷技术的运用现状及其发展前景。 关键词:反硝化除磷;DPAOs(反硝化聚磷菌);DPB(反硝化除磷菌) 一、前言 传统的脱氮除磷工艺,如A 2 /O工艺存在很多问题,如二沉池回流污泥中的硝酸盐对厌氧区磷的释放产生的不利影响;反硝化菌与聚磷菌之间存在碳源的竞争,而城市污水的碳源浓度普遍较低,难以满足同时高效脱氮除磷的要求;污泥中硝酸盐氮,亚硝酸盐氮在二沉池中发生反硝化产生的氮气附着在污泥表面而使其上浮,造成污泥沉降性能较差,出水SS升高的问题。【1】 反硝化除磷工艺是一种新型的污水生物脱氮除磷工艺。它是利用DPAOs(反硝化聚磷菌)的生理代谢活动产生的一种能够实现节能降耗的污水脱氮除磷新工艺。DPAOs能够利用在厌氧阶段吸收的有机物在缺氧阶段以硝酸盐为电子受体氧化分解,同时利用此过程产生的能量将污水中的磷过量吸收进入胞内。这样利用同一部分COD(化学需氧量)完成了同步的脱氮和除磷效果。【2】 反硝化除磷技术作为一种新型高效低能耗的技术成为近年来水处理领域的热点。反硝化除磷作用可以在缺氧段无碳源的情况下进行,不仅实现同时除磷脱氮,还克服了生活污水中基质缺乏的问题,尤其适用于高氮磷废水及产生挥发性脂肪酸潜力低的城市污水。应用反硝化除磷工艺处理城市污水时不仅可节省曝气量,而且还可减少剩余污泥量,即可节省投资和运行费用。 二、反硝化除磷工艺基本原理 DPB(反硝化除磷菌)可以利用硝酸盐、亚硝酸盐或O 2 为电子受体,其基于体内的聚β-羟基丁酸酯(PHB)和糖原质生物代谢原理与传统A/O法中的PAOs极为相似。 在厌氧段,COD可被降解为醋酸等低分子脂肪酸被DPB快速吸收之后大量繁 殖,同时水解细胞内的Poly-P,以无机磷酸盐(PO 4 3-)的形式释放出来。利用上 述过程产生的能量ATP和糖原酵解还原性产物NADH 2,DPB以NO 3 --N或NO 2 --N为氧

短程硝化反硝化脱氮技术的研究进展

[收稿日期] 2010-01-13 短程硝化反硝化脱氮技术的研究进展 冯灵芝 (上海农林职业技术学院,上海松江:201600) 摘 要:短程硝化反硝化是一种新型生物脱氮技术,具有降低能耗、节省碳源和减少污泥产量等优点。本文简要介绍了短程硝化反硝化脱氮技术的原理,对亚硝化菌、硝化菌和反硝化菌的研究现状进行了综述,讨论了温度、DO 、pH 值、泥龄等参数对实现短程硝化的影响,并提出了今后的研究方向。 关键词:短程硝化反硝化;生物脱氮;亚硝酸盐 生物脱氮是去除水中氨氮的一种较为经济的方法,其原理就是模拟自然生态环境中氮的循环,利用硝化菌和反硝化菌的联合作用,将水中氨氮转化为氮气以达到脱氮目的。目前应用广泛的A/O 、SBR 、氧化沟等脱氮工艺就是在此理论基础上开发的,但这些脱氮工艺普遍存在氨氮负荷过高而引起的出水不达标、消耗有机物,产生剩余污泥多,消耗能源多等问题。自1975年Voet [1] 发现在硝化过程中HNO 2积累的现象并首次提出短程硝化反硝化脱氮以来,短程硝化反硝化作为一种新型脱氮技术得到广泛的关注。 1 短程硝化反硝化的脱氮机理及优势 生物脱氮包括硝化和反硝化两个阶段,主要涉及亚硝化菌、硝化菌和反硝化菌三类微生物。传统生物脱氮途径如图1所示。 图1 传统生物脱氮途径 短程硝化反硝化是将氨氮氧化控制在亚硝化阶段,然后进行反硝化,省去了传统生物脱氮中由亚硝酸盐氧化成硝酸盐,再还原成亚硝酸盐两个环节。该技术具有很大的优势[2]:①节省25%氧供应量,降低能耗;②减少40%的碳源,在C/N较低的情况下实现反硝化脱氮;③缩短反应历程,节省50%的反硝化池容积;④降低污泥产量,硝化过程可少产污泥33%~35%左右,反硝化阶段少产污泥55%左右。 2 短程硝化反硝化技术的研究进展 亚硝酸盐很不稳定,硝化菌的作用下很快氧化成硝酸盐,一般条件下实现短程硝化反硝化是比较困难的。短程硝化反硝化技术的关键是将硝化控制在亚硝化阶段,也即是对亚硝化菌和硝化菌的控制。因此,如何实现短程硝化成为国内外学者对短程硝化反硝化技术的研究重点,研究方向可概括为两方面:一方面从微生物学角度,筛选培养出高效亚硝化菌和硝化菌,研究其生化特征;另一方面从脱氮工艺的运行效果来研究运行参数对短程硝化的影响。 氨 (NH 3、NH 4+) 硝酸盐 (NO 3—) 亚硝酸盐 (NO 2—) 氮气(N 2) 亚硝化 硝化 反硝化 反硝化

近海沉积物中硝化-反硝化作用影响因素

近海沉积物中硝化-反硝化作用影响因素 郑莉,陈志强 大连水产学院 农业部海洋水产增养殖学与生物技术重点开放实验室,辽宁大连 (116023) 摘 要:硝化作用和反硝化作用是氮在地球化学循环过程中的主要反应之一.本文主要在国内外研究的基础上,综述了影响硝化作用和反硝化作用的因素, 溶解氧(DO ) 、温度、NH +4和NO 3-的浓度、pH 、溶解的二氧化碳浓度、盐度、底栖微动物区系的活性以及大型植物等。 关键词:沉积物;硝化作用;反硝化作用;影响因素 1. 硝化作用-反硝化作用的研究意义 氮在沉积物- 水体界面的迁移和交换是一个复杂的生物化学过程,硝化和反硝化作用是沉积物- 水界面氮迁移和交换的主要形式[1]。近年来,人们越来越关注河口和近海生态系统营养水平,对河口和海洋营养盐的通量,交换速率,存在形态及形态转换进行了大量的研究.海洋中的氮是海洋初级生产力的限制因子,氮的吸收与再生释放对生源要素的生物地球化学循环有重要贡献。N(N 2、NO 3-、NH 4+)从沉积物中向水体的迁移速率是有机氮矿化作用净速率的44%-66%。从沉积物中NO 3-+ NH 4+的同量能提供浮游初级生产者30%-82%的氮的需要[2]。而且海洋的硝化作用对海洋生物生产具有重要影响,它是氮循环过程中重要的反应之一,是NH 4+转化为NO 3-的唯一途径,它改变了氮循环的形式,并且与反硝化作用发生藕合作用, 减轻河口、海岸带地区因氮过多造成的富营养化,对高浓度氨起到解毒作用[3].因此,研究近海沉积物硝化作用-反硝化作用具有重要意义。 2. 影响硝化-反硝化作用的因子 在亚硝化细菌和硝化细菌的作用下,氨被氧化成硝酸盐的过程称为细菌的硝化作用.包括两个反应阶段,第一阶段,在亚硝化细菌的作用下,氨被氧化成亚硝酸,即2NH 3 + 3O 23HNO 2 + 3H 2O ,第二阶段,在硝化细菌作用下,亚硝酸被氧化为硝酸,即3HNO 2 + O 23HNO 3。 ???→?亚硝化细菌???→?硝化细菌异养细菌在呼吸作用中利用硝酸盐为电子接受体, 将其还原为气态的N 2 和N 2O (脱氮) 或氨(硝酸盐氨化) 的过程称为反硝化[4]。 近海岸沉积物的硝化作用-反硝化作用是在多种复杂的环境因子诸如物理、化学、生物等因子控制下进行的.并且上覆水中DO 、NH +4、温度、盐度都是影响硝化作用的主要因子[5] 。 2.1 温度 大量研究表明[6,7],温度高的地方,硝化速率-反硝化速率也高;随温度降低,硝化速率反硝化速率明显变小。但是温度对硝化细菌的抑制比反硝化细菌小,所以温度降低对硝化速率影响更大。 温度对硝化作用的影响具有两重性,一方面随温度升高,硝化细菌的活性增强,另一方面温度升高会导致溶解氧的浓度降低,使硝化速率降低,从而也影响了反硝化反应。许多研究表明[6,8,9],硝化速率有明显的日变化和季节性变化,因为硝化细菌的最适温度为25~ 35℃, 低

反硝化聚磷菌影响因素

反硝化聚磷菌影响因素 本次文献总结主要总结了生物除磷过程中的主要环境影响因素,以及对近期实验的一个最初步想法及简单计划。主要文献来源:镁离子浓度对SBR生物除磷系统的影响,书籍祝贵兵、彭永臻的《生物除磷》等。 一、生物除磷过程中的主要环境影响因素 近年来,随着对生物除磷工艺研究的逐渐深入,发现对于生物除磷有着诸多的限制因子,其中主要有进水中的碳源、污泥龄、温度、PH以及水中的金属离子等等。 碳源的影响 在生物除磷的过程中,每去除一毫克的磷酸盐,需要消耗约20毫克的COD,其中的COD 指可快速生物降解COD和可慢速降解COD之和(废水中的Ss和Xs组分)。 聚磷菌的主要营养底物为挥发性有机酸,包括醋酸盐、丙酸盐和丁酸盐等,在实际污水中挥发性脂肪酸可通过厌氧区发酵COD组分和部分慢速可生物降解COD的发酵作用(水解和酸化)或进行出沉污泥发酵(生物除磷利用的COD是可溶的,在实际中则有必要初沉分离发酵)。 在良好的生物脱氮除磷工艺中,BOD:N的值至少为4~5 。 镁离子对聚磷的影响 在这些影响因素中金属离子(特别是镁离子)被认为是生物除磷工艺启动和稳定运行的重要影响因素。 Rickard等指出镁离子在磷酸盐的胞内运输过程及维持胞内聚磷酸盐的稳定性方面会起到较重要的作用。 通过李幸、高大文等人用SBR系统测试镁离子浓度对生物除磷系统的影响发现,在反应器启动阶段,适量的添加镁离子会加速聚磷菌的富集,并且能够加强整套生物除磷系统的稳定运行。在SBR反应器除磷过程的稳定运行阶段,在镁离子不充足的系统中磷酸盐的去除率会逐渐下降甚至达到50%以下,系统恶化;而镁离子充足的系统中磷酸盐的去除会保持在90%以上,且磷酸盐的变化同镁离子的浓度变化成相似的趋势。通过李幸、高大文等人的试验发现活性污泥体系中,要使得其中磷酸盐达到较好的处理效果,则Mg/P的变化范围应在0.2~0.6之间。并且发现镁离子参与生物除磷中的释磷吸磷过程,随着磷酸盐的释放,污水中镁离子浓度也随之增大;随着磷酸盐的吸收,污水中镁离子浓度也随之降低。 但在以前的研究中,镁离子对生物除磷的影响研究较少,也仅见于李幸、高大文等人用A/O-SBR系统聚磷菌的实验,对于脱氮处理的反硝化聚磷菌则相对研究较少。但镁离子对反

短程硝化反硝化的有点

短程硝化反硝化过程优点及影响因素 发布日期:[2010-7-13] 点击数:[502] [字号大中小] 一般认为要实现生物脱氮就必须使氨氮经历典型的完全硝化反硝化过程才能 被去除。在该过程中NO 3 --N的生成不仅延长了脱氮反应的历程,而且造成了能源和外加碳源的浪费。 从微生物水平上来说,氨氮被氧化成硝酸盐氮由2类独立的细菌催化完成,第一步由氨氧化菌将氨氮氧化成亚硝酸盐氮,第二步由亚硝酸盐氧化菌将亚硝酸盐氮转化为硝酸盐氮,这两类细菌的特征有明显的差异。那对于反硝化菌无论是硝酸盐氮还是亚硝酸盐氮均可以作为最终受氢体。因此整个脱氮过程可以用过 NH4+-N NO 2--N N 2 的途径完成,人们把按此途径进行的脱氮技术定义为亚硝酸型 硝化反硝化,也称短程硝化反硝化。由此整个过程将大大缩短,其标志是有稳定 且较高的NO 2 --N积累。 根据硝化反应的化学计量学,与全程硝化反硝化相比,短程硝化反硝化具有以下优点: 1、1molNH4+-N转化为NO 2--N需要1.5molO 2 ,而氧化到NO 3 --N需要2.0molO 2 , 因而可在氧化段降低能耗。 2、反硝化1g NO 2--N素要有机物1.72g,而反硝化1gNO 3 --N需要有机物2.86g, 短程硝化反硝化可减少所需有机碳源,节约运行费用。 3、NO 2--N的反硝化速率比NO 3 —N快63%左右

4、减少50%产泥量 5、反硝化的容积可减少30~40% 6、减少投加碱度和外加碳源的量。 短程硝化反硝化的两个主要反应步骤中,反硝化技术容易控制,关键在于将 —N阶段,阻止其进一步氧化。短程硝化反应的控制取决于NH4+-N氧化控制在NO 2 对两种硝化菌的控制。两种细菌在生理机制及动力学特征上存在的固有差异,导致了某些影响因素对两种硝化菌存在不同的抑制作用,从而影响硝化形式。经过研究,能够抑制亚硝化氧化菌,造成氨氧化菌在硝化系统中占优势的因素主要有: 浓度、高PH、高温、低DO、从缺氧状态到好氧状态的滞高游离氨浓度、游离HNO 2 后时间、游离羟氨浓度以及投加硝化反应选择性化学抑制剂。 (1)溶解氧 DO是人们在短程硝化工艺中最为关注的因素之一,一是研究短程硝化反硝化的目的就是为了节约能耗,如能在较低的DO条件下获得高氨氮去除率,就意味着可以节约供氧量;二是研究表明,在较低的DO条件下,可获得较高的压硝酸盐积累率。 在低DO条件下,由于亚硝酸菌对DO的亲和力较硝酸菌强,使得亚硝酸氮大量积累;当DO为0.5mg/L时,亚硝酸菌的增值速率为正常的60%,而硝酸菌为30%。因此在低溶解氧条件下,不仅存在对硝酸菌的淘汰还存在对硝酸菌活性的抑制,

相关主题