搜档网
当前位置:搜档网 › 谐波电流检测方法综述

谐波电流检测方法综述

谐波电流检测方法综述
谐波电流检测方法综述

谐波电流检测方法综述

摘要:随着我国工业的迅猛发展,电网中电力电子元件的使用越来越多,如整流器、变频调速装置、电弧炉等,这些电力电子装置由于其非线性、多样性的特点,带来的谐波污染也越来越严重,严重影响了电能质量,而且对各种用电设备的正常运行带来了消极的影响;另一方面现代化工业、商业及居民用户的用电设备对电能质量更加敏感,对电能的使用和需求提出了更高的要求。因此,实时、准确地检测电网中的谐波含量,对于防止谐波的危害,保障电网安全运行具有十分重要的意义。

本文对基于瞬时无功功率理论、有功分离、傅里叶变换、神经网络、小波分析等原理的几种谐波检测方法进行了介绍,讨论了各种检测方法的优缺点,对这些谐波的抑制方法进行了详细的综述。

一、绪言

1.谐波的来源

谐波的定义为:“谐波是一个周期电气量的正弦波分量,其频率为基波频率的整数倍”。当电流流经非线性负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。向公用电网注入谐波电流或在公用电网上产生谐波电压的电气设备被称为谐波源。谐波源的来源很复杂,但主要的谐波源还是来自于具有非线性特性的电气设备,如变频调速装置、整流设备、电子控制照明装备和磁性铁芯设备等等。

目前,应用最为广泛的整流电路都是由晶闸管或二极管组成的。其中以三相桥式和单相桥式最为普遍。直流侧采用电容滤波的二极管整流电路就是一个典型的谐波源。由于其输入电流的谐波成分非常大,会给电网带来严重的污染。变频器中的谐波干扰也是尤为突出,变频器工作时,输出电流的谐波电流会对电源产生干扰。

现在随着电力电子技术的广泛应用,谐波源已经存在于电力的生产、传输、转换和使用的每一个环节中。

2.谐波的危害

谐波的危害可以总结为以下几个方面:

1)电网中的电压与电流波形发生畸变都是由高次谐波引起的,相同频率的谐波电压和电流能产生相同次数谐波的有功和无功功率,降低了电网的电压,引起线路的附加损耗,使得电网容量造成不必要的浪费。

2)谐波对供电系统的无功补偿设备的影响也是不容忽视的,谐波进入电网时会导致变电站高压电容过电流和过负荷,在这种情况下,无功补偿设备不能正常运行,更严重的请况下,还会将电网中的谐波进一步放大。

3)谐波常常会使系统中的电感、电容发生谐振,当谐波引起系统谐振时,谐波电压升高,谐波电流增大,会引起继电保护及熔断器等误动作,损坏系统设备,引发系统事故,威胁电力系统的安全运行。

4)谐波也会增加电力变压器的铜损和铁损,变压器的使用容量和使用效率会受到很大影响;还会增大变压器噪声,变压器的使用寿命也相应缩短。

由于谐波的诸多危害,分析、检测并抑制谐波显得十分重要。传统的抑制谐波的方法

是吸收谐波源产生的谐波电流,这类装置都是由电容器、电抗器和电阻器按照一定的算法组合而成。这种就是我们通常所说的无源滤波,它的缺点显而易见,只能消除特定的几次谐波,而且对某些次谐波还会起到一点的放大作用。随着电力电子技术的不断进步,这些无源设备早已不能满足现在需求,我们需要一种能够检测出谐波含量,然后根据检测的结果进行实时的、针对性的补偿装置,也就是现在广泛应用的有源电力滤波器。由于有源电力滤波器的这种优势,使得有源电力滤波器得到了越来越广泛的应用。然而谐波检测是有源电力滤波器的首要和关键任务,滤波效果很大程度上取决于检测方法,因此准确、实时的检测出电网中瞬态变化的谐波电流是致力于谐波检测方法研究人员的最终目标。

为了准确、实时地检测出电网中瞬时变化的谐波,国内外专家学者提出了各种各样的检测方法。现有的谐波检测方法按照原理可分为模拟滤波器法、基于Fryze 传统功率定义的方法、基于瞬时无功功率理论的方法、基于傅里叶变换的方法、基于神经元网络的方法、基于自适应对消原理的方法、基于小波分析的方法。

二、有源电力滤波器的谐波检测方法

谐波检测方法能够直接影响有源电力滤波器的滤波补偿效果,如果谐波电流检测的越准确,补偿的精度就会越高,谐波电流检测的越快,补偿的动态响应也会越迅速。因此不断的提升谐波检测的准确性和实时性成为了国内外学者致力研究的目标。

下面介绍几种典型的有源电力滤波器的谐波检测方法:

2.1基于瞬时无功理论检测法

日本学者H.Akagi于1984年提出了基于时域的非线性条件下的瞬时无功功率理论,它以瞬时实功率p 和瞬时虚功率q 的定义为基础,故称p-q理论。后又补充定义了瞬时有功电流i p,和瞬时无功电流i q,等物理量,并将其应用于电力系统谐波检测。目前基于瞬时无功功率理论的谐波检测研究已经非常深人,并取得了工程应用成果。在有源电力滤波器中,它是总谐波实时检测的主要方法。以计算p和q为出发点的方法称为p-q法,以计算i p和i q 为出发点的方法称为i p-i q法,它们的优点是都能准确地检测对称三相电路的谐波值,且实时性较好,在只需测量谐波时可以省去锁相环电路,能快速跟踪电流,进行实时补偿,不受电网参数和负载影响,缺点是适应范围小,只适应于对称三相电网。

1)p-q法,该运算方法原理如图1 所示。

图1 p-q运算方法原理图

根据该方法算出的p ,q ,经低通滤波器(LPF)得直流分量p ,q . 电网电压无畸变时,p 为基波有功电流与电压作用所产生,q 为基波无功电流与电压作用所产生。所以由p ,q 可以计算出检测电流i a ,i b ,i c 的基波分量i af ,i bf ,i cf .从i a ,i b ,i c 中减去i af ,i bf ,i cf ,即可得到谐波电流i ah ,i bh ,i ch

.

23011212C ????????=-????-? ??????---?=2/32/302/12/113232C

1

sin cos cos sin pq pq t t C C t t ωωωω--??==??--??

2) i p -i q 法.该运算方法原理如图2所示。

图2 i p -i q 法运算方法原理图

该方法不直接对采样得到的三相系统电压进行变换,而是以与电压矢量同步的单位正序基波矢量来代替电压矢量。根据瞬时无功理论可得

sin cos cos sin i i P t t i i Q t t αβααβαββμμωωμμωω--??????????==?????????????

??????? 图2 中sin cos cos sin t t C t t ωωωω-??=????

,由于电压为单位正序基波矢量,所以i P i Q αβ????=????????.根据定义可计算出i p ,i q ,经LPF 滤波可得直流分量p i , q i .这里p i , q i 是对应于电流基波分

量af i ,bf i ,cf i 的,因此由p i , q i 可以计算出af i ,bf i ,cf i ,进而可以计算出ah i ,bh i ,ch i .

以上2 种方法中i p -i q 法的适用范围更广,更能适应电网电压不对称和电压波形畸变的情况。因为i p ,i q 运算方式中只需读取sin ωt 和cos ωt 参与运算,畸变电压的谐波成分在运算中不出现,所以在电源电压畸变情况下也能准确检测出谐波电流,而p-q 法在这种情况下误差较大。

基于瞬时无功功率理论方法的优点是当电网电压对称且无畸变时,检测基波正序无功分量、不对称分量及高次谐波分量的实现电路比较简单,并且延时小,具有很好的实时性。

2.2 基于有功分离(理想传输量) 的谐波检测方法

目前,谐波抑制的一个重要措施是采用有源电力滤波器APF(Active Power Filter ) . 其基本原理是从补偿对象中检测出谐波电流,由补偿装置产生一个与该谐波电流大小相等而极性相反的补偿电流,从而使电网电流中只含基波分量。 对谐波电流进行检测时,理想传输量分离法是一种行之有效和易于实现的方法,它根据功率的定义,将负荷电流分解成理想传输量和另一分量之和。后一分量即是所需的补偿谐波,它完全包括谐波电流、无功电流和负序电流。

设L i 为负载电流,一般为非正弦波,可展开成傅里叶级数为

()()()()()()112111sin sin sin L km k k lm km k k p q h p i I k t I t I k t i t i t i i t i ω?ω?ω?∞

=∞

==+=

+++=++=+∑

∑∑

式中,1p i 为基波有功电流;1q i 为基波无功电流;h i 为高次谐波电流;i

∑为总检测电

流。

在三相电路中,对负荷端电压电流进行采样,可得到一个工频周期的电压序列和负荷电流序列 (){}011,,an a a a N u u u u -=…, (){}011,,an a a a N i i i i -=…,

(){}011,,bn

b b b N u u u u -=…, (){}011,,bn b b b N i i i i -=…, (){}011,,cn

c c c N u u u u -=…, (){}011,,cn c c c N i i i i -=…,

式中,N 为一个工频周期内的采样点数,取N =64 .则由Fyzre 定义的瞬时有功功率

n n n

p u i =T ,即 []an n an bn cn bn an an bn bn cn cn cn i p u u u i u i u i u i i ????==++??????

从而得到在周期[0,N-1] 内的平均有功功率101N n n p P N

-==∑.又已知三相系统中相电压的

方均根值为U ?=于是得到基波有功电流的方均根值3P I U ??

=

,故理想负荷条件为U R I ?????=.由此可以计算出与系统电压同频率、同相位的有功电流a ap u i R ?=

,a u 为系统电压的瞬时值。至此就从任意波形电流中分离出理想传输量,与实际负荷电流相减即得到总的谐波检测电流。

2.3频率分析法(基于傅立叶变换)

该方法的基础是傅立叶级数分析(FFT ),根据采集到的一个电源周期的电流值进行计算,最终得到所需的谐波和无功功率。FFT 是当今谐波检测中应用最广泛的一种方法,电力系统谐波检测普遍采用快速傅里叶变换及其改进算法仁。 采用傅里叶级数对非正弦连续时间周期函数进行分析时,把连续时间信号的一个周期T 等分成N 个点,在等分点进行采样得到一系列离散时间信号,然后采用FFT 进行谐波分析,最终得出所需要的各次谐波电流的幅值、频率和相位。当测量时间是信号周期的整数倍或采样频率大于Nyquist 频率时,该方法检测精度高、实现简单、功能多且使用方便,在频谱分析和谐波检测中均得到广泛应用。但是由于傅立叶变换需要大量的运算,花费较多的时间,具有较长时间的延迟,实时性不好。

2.4自适应检测方法

该方法利用自适应信号处理中的噪声对消法,将基波分量视作噪声,从负载电流中消除,采用LMS 算法(Least Mean Square 最小均方差)得到补偿电流值。该方法计算量小,精确性高,检测误差小,有较好的自适应性,但其动态响应较慢。如果对谐波动态响应要求不高时,不失为一种很好的谐波检测方法。

2.5基于神经网络的谐波检测方法

该方法是基于神经控制理论的一种新型检测方法。该法自学功能强,可避免补偿电流的一些复杂计算,且有广泛的适应性。许多电力工作者希望利用神经网络控制的自学性和自组织性提高检测精度,但就目前谐波检测方法的实施性来看尚未构成规范的方法,仍需要大量的训练样本,并且神经网络算法的精度对样本有很大依赖性。如此对神经网络的构造和样本数的确定还待进一步的验证研究。

2.6基于小波分析的谐波检测方法

小波分析是一个时间和频率的局域变换,因而能有效地从信号中提取信息,通过伸缩和平移等运算功能对信号进行多尺度细化分析。小波分析能算出某一特定时间的频率分布并将各种不同频率组成的频谱信号分解为不同频率的信号块,因而通过小波变换,不但可以求出基波电流,还能求得各次谐波电流。

2.7带通滤波器或带阻滤波器检测法(模拟滤波器)

使用模拟滤波器(带通或带阻)将被测信号中某个特定频率分量分离出来,实现频域分析。模拟滤波器有两种,一是通过滤波器滤除基波电流分量,得到谐波电流分量。二是用带

通滤波器得出基波分量,再与被检测电流相减后得到谐波电流分量,其原理和电路结构简单,造价低,能滤除一些固有频率的谐波。缺点是:①误差大,实时性差,电网频率变化时尤其明显;②对电路元件参数十分敏感,参数变化时检测效果明显变差。工程实践不能达到理想的性能,电网波动时会影响检测精度,影响后续补偿效果。

2.8基于现代控制理论的检测方法

基于P-I控制、滑模控制、模糊控制等现代控制理论,采集到逆变器直流侧的电压或电流,求出所需电流基波有功分量幅值,计算出所需补偿电流的指令值,进行实时补偿。此方法属于非主流谐波检测方法,使用用户少,可借鉴性差。

为了能够有效的检测电网中的谐波分量和无功电流,减少谐波危害,选择一种易于实现、实时性好、计算量小、可靠性强、精度高等优点的谐波检测方法是有源电力滤波器首要解决的问题。目前,基于瞬时无功功率理论的谐波检测法实时性好,延时小,既能检测谐波又能补偿无功;基于傅立叶快速变换的谐波检测法,在谐波检测、无功补偿和频谱分析方面,均获得较广泛的应用,这两种是目前采用的主要方法。基于神经网络的自适应谐波检测法和基于小波分析的谐波检测法则是极具潜力的新型谐波检测法也是检测方法发展的趋势。

三、谐波检测方法存在的问题

瞬时无功功率理论是基于三相三线制电路提出的,对于三相不平衡负荷所产生的无功和谐波电流,补偿效果不是很理想。而对于单相电路,必须首先将三相电路分解,然后再构造基于瞬时无功功率理论的单相电路谐波检测电路。有功分离法需要计算三相系统的平均有功功率,这样至少需要一个工频周期的时延。 FFT 方法也有其局限性: 1) 从模拟信号中提取全部频谱信息,需要取无限的时间量,使用过去的和将来的信号信息只能计算区域频率的频谱;2)没有反映出随时间变化的频率,当人们需要在任何希望的频率范围内产生频谱信息时,该方法不一定适用; 3) 需要一定时间的采样值,计算量大,计算时间长,致使检测时间较长,检测结果实时性较差;4) 即使信号是稳态的,当信号频率和采样频率不一致时,使用FFT 也会产生频谱泄漏效应和栅栏效应,使计算出的信号参数不准确,尤其是相位的误差很大。基于神经网络的谐波检测方法用于工程实际也存在很多问题,没有规范的NN构造方法,需要大量的训练样本,如何确定需要的样本数也没有规范的方法。小波变换是一种新型的谐波检测方法,该理论和应用研究时间相对较短,应用在谐波测量方面尚处于初始阶段,实现技术还需完善,例如缺乏系统规范的最佳小波基的选取方法,缺乏构造频域行为良好,即分频严格、能量集中的小波函数以改善检测精度的规范方法。

四、有源电力滤波器谐波检测方法的发展趋势

虽然电力工作者对上述这些谐波检测方法都进行了不断的改进,但是每种检测方法都存在不同程度的延时,某些方法还有一定的适用范围和误差,因此,实时、准确、快速的谐波检测方法仍然是APF研究的一项重要内容。

谐波检测方法随着APF的发展具有以下发展趋势:

1.谐波检测对象的随机性、实时性在未来发展中显得是越来越重要了。由于以前的大部分研究都停留在稳态谐波检测上,现在非稳态谐波对电力电子设备的影响也变得不容忽视。

我国对于波动谐波和快速变化的谐波的检测还属于起步阶段。所以开展非稳态谐波检测的研究显得非常的必要。

2.谐波检测的算法也变得复杂化和智能化。小波变换检测法、瞬时无功功率检测法、神经网络检测法等新型的检测方法必定会取代原始的基于简单函数分析的检测方法。这些新的检测方法能够更好地检测非稳态的谐波。但是这些新的方法还需要不断的完善,才能达到理想的检测目的。

3.谐波检测的结果也向着高精度、高速度和高可靠性的方向发展。DSP凭着运算处理能力的优势成为了可编程器件的首选器件,随着DSP的飞速发展,在高精度、高速度和高可靠性方面,DSP都有着无可比拟的优势,所以说DSP的发展会使谐波检测技术提升到一个新的高度。

4.谐波检测及分析与控制目标相结合,测量、分析与控制一体化、集成化,使测量系统低成本、高性能和多功能化。

参考文献:

[1]王兆安,杨君,刘进军.谐波抑制和无功功率补偿(第二版).北京:机械工业出版社,2005

[2]李春文,姜素霞.电网谐波电流检测方法分析, 郑州轻工业学院学报(自然科学版),

2007.Vol.22, No.2/3, pp.88-91

[3]李圣清,朱英浩,周有庆,何立志.电网谐波检测方法的综述, 高电压技术,2004.V ol.30,

No.3, pp.39-42

[4] 戴朝波,林海雪,贾林绪.两种谐波电流检测方法的对比研究, 中国电机工程学报,

2002.Vol.22, No.1, pp.80-84

[5] 尹发根.电力谐波检测方法的比较与研究, 中国高新技术企业,2009.V ol.19, No.2, pp.7-8

[6] 帅定新,谢运祥,王晓刚.电网谐波电流检测方法综述, 电气传动,2008.V ol.38, No.8,

pp.17-24

[7]Akagi H, Kanazawa Y, Nabae A. Generalized theory of the instantaneous reactive power in

three-phase circuits. In: IEEE&JIEE. Proceedings IPEC. Tokyo: IEEE,1983

[8]Pompili M, Mazzetti C and Bartnikas R. Simultaneous ultrawide and narrowband detection of PD pulses in dielectricliquids. IEEE Trans on Diel and Elect Insul 1998, 5(3): 402-407

建筑节能检测方法综述

建筑节能现场检测方法 田斌守 摘要本文综述了几种建筑物围护结构传热系数现场检测方法的原理、操作方法、适用条件,指出各种方法的优缺点及注意事项。 关键词建筑节能检测热流计法热箱法控温箱-热流计法非稳态法当今飞速发展的国民经济活动必然导致前所未有的资源能源消耗速度。而许多资源能源是不可再生的,为了人类的可持续发展,节约能源刻不容缓。据介绍,我国目前单位建筑面积采暖能耗相当于气候条件相近的发达国家的2~3倍,而建筑能耗也占全国能耗总量的27.5%。随着人民生活水平的不断提高、城市化进程的加快以及住房体制改革的深化,建筑能耗在我国增长趋势很大,很可能是我国今后能耗的一个主要增长点。为建设节约型社会,促进经济社会可持续发展,国家发展委员会发布了“节能中长期专项规划”,建筑节能作为三大重点领域中的一项,受到高度重视。建设部也相继发布了一系列建筑节能标准,其中包括若干强制性条款,目前正在建设领域逐步实施。 建筑节能工作从流程上可分为设计审查、现场检测、竣工验收三个大的阶段。对节能建筑的评价,从建设前期对施工图纸审查计算阶段、向现场检测和竣工验收转移是大势所趋。建筑节能现场检测也是落实建筑节能政策的重要保证手段。目前,全国范围内建筑节能检测都执行JGJ132-2001《采暖居住建筑节能检验标准》,它是最具权威性的检测方法,它的发布实施,为建筑节能政策的执行提供了一个科学的依据,使得建筑节能由传统的间接计算、目测定性评判到现在的直接测量,从此这项工作进入了由定性到定量、由间接到直接、由感性判断到科学检测的新阶段。 根据我们对建筑节能影响因素和现场检测的可实施性的分析,我们认为能够在实验室检测的宜在实验室检测(如门窗等作为产品在工程使用前后它的性状不会发生改变),除此之外,只有围护结构是在建造过程中形成的,对它的检测只能在现场进行。因此建筑节能现场检测最主要的项目是围护结构的传热系数,这也是最重要的项目。如何准确测量墙体传热系数是建筑节能现场检测验收的关键。目前对建筑节能现场检测的、围护结构(一般测外墙和屋顶、架空地板)的

无功功率的测量方法

四种相位的测量方法(无功功率) 一、无功功率概念的历史发展 最早的无功功率概念是建立在单相正弦交流信号的基础上。 设某线路的电压 ,电流,则 有功功率为 ,无功功率为。U 、I,分别为电压与电流的有效值。 随着半导体行业和电力工业的发展,各种整流器件、换流设备以及其他非线性负载大量安装与电力系统中,使原有的无功功率定义在工程运用中非常不方便。 现在人们对正弦信号无功功率有了新的理解。 假设某单相线路的电压为 ,电流为,则将按照与平行和垂直两个方向分解为与,那么与的积即为无功功率。 二、无功功率的测量方法 1、替代法 主要使用于无功功率变送器中,用于测量三相平衡电路的无功功率。当三相电路严格平衡对称时,此方法不存在原理性误差。在不对称与存在多谐波的情况下,此方法不适用。 2、电子移相测量法(简称模拟移相法) 多用于比较高级的综合仪器中(多用数字表) 根据三角公式变换??sin 90-cos =?)(,从而把无功功率测量转化为有功功率测量,即转化为求两个向量的内积)(???=??=90-cos U I sin U I Q ??。这已经可以比较方便的测量了。 理想情况下电子移相并不存在原理性误差。但在工程上电容与电阻是实际元件,其值及相应的效应与理想值差距巨大,所以效果并不理想。 3、数字移相测量法 在一个周期内对三相电压、三相电流均匀采样24点至64点(因生产厂家所生产的设备不同而异),然后用电压采样值乘以滞后90度点的电流采样值,做积分运算从而得到一个周期内的平均无功功率 N N N N /)j 4/(i u )j 4/(i u )j 4/(i u Q N 1j C Cj B Bj A Aj ∑=+?++?++?=)( 式中 j ——代表第j 个采样点 N ——代表一个周期的采样点数,N/4代表1/4个周期 从原理上讲,不存在理论误差。该方法的问题主要在于数字移相的适用性。当被测量是单纯的三相正弦信号,可以通过控制采样点数及其均匀的程度来实现精密的数字移相。但是如果被测信号不是严格的正弦波,有谐波含量、则数字移相就要出现误差。原因在于,数字移相90度是按基波计算的,对于三次谐波而言,则相当于移了270度,对于五次谐波而言,相当于移相90度。所以此时的无功功率测量存在着各次谐波造成的误差。 )?+=wt sin(2u U )?+=wt sin(I 2i ?cos UI P =?sin UI Q =→U →I →I →U →1I →2I →U →2I

运动目标检测方法总结报告

摘要 由于计算机技术的迅猛发展,使得基于内容的视频信息的存取、操作和检索不仅成为一种可能,更成为一种需要。同时,基于内容的视频编码标准MPEG-4和基于内容的视频描述标准MPEG-7正在发展和完善。因此提取和视频中具有语义的运动目标是一个急需解决的问题。运动目标提取和检测作为视频和图像处理领域的重要研究领域,有很强的研究和应用价值。运动检测就是将运动目标从含有背景的图像中分离出来,如果仅仅依靠一种检测算法,难以从复杂的自然图像序列中完整地检测出运动的目标。较高的检测精度和效率十分重要,因此融合多种检测方法的研究越来越受到重视。本文介绍了几种国内外文献中的经典的视频运动目标的检测和提取算法,并对各种方法进行了评价和总结。首先介绍了基本的运动目标检测的基本知识和理论,然后介绍了基本的几种目标检测方法及其各种改进方法。对今后的运动目标检测提取的相关研究提供一定的参考。 关键词:运动目标检测光流法帧差法背景建模方法

ABSTRACT Because of the rapid development of computer technology, it is possible to access, operate and retrieve the video information based on the content of the video. At the same time, based on the content of the video coding standard MPEG-4 and content-based video description standard MPEG-7 is developing and improving. Therefore, it is an urgent problem to be solved in the extraction and video. Moving object extraction and detection is a very important field of video and image processing, and has a strong research and application value. Motion detection is to separate moving objects from the image containing background, if only rely on a detection algorithm, it is difficult to from a complex natural image sequences to detect moving target. Higher detection accuracy and efficiency are very important, so the study of the fusion of multiple detection methods is becoming more and more important. In this paper, the detection and extraction algorithms of the classical video moving objects in the domestic and foreign literatures are introduced, and the methods are evaluated and summarized. Firstly, the basic knowledge and theory of basic moving target detection is introduced, and then the basic method of target detection is introduced. To provide a reference for the research on the extraction of moving target detection in the future. Keywords: Visual tracking Optical flow method Frame Difference Background modeling method

谐波及无功电流检测方法对比分析

谐波及无功电流检测方法对比分析 0 引言 APF补偿电流的检测不同于电力系统中的谐波测量。它不须分解出各次谐波分量,而只须检测出除基波和有功电流之外的总的高次谐波和无功畸变电流。难点在于准确、实时地检测出电网中瞬态变化的畸变电流,为有源电力滤波器控制系统进行精确补偿提供电流参考,这是决定APF性能的关键。目前文献已报道运行的三相APF中所使用的几种谐波电流检测方法,除了各自存在的难以克服的缺陷外,共同存在的问题是,由于是开环检测系统,故对元件参数和系统的工作状况变化依赖性都比较大,且都易受电网电压畸变的影响。对单相电路的谐波和无功电流的检测还存在实时性较差的缺点。 本文对目前有源电力滤波器中应用的畸变电流检测与控制方法进行了分析比较,在此基础上,针对APF中只须检测总的畸变电流,反向后注入系统,以抵消或补偿系统中畸变电流,使电网仅提供基波有功电流这一工作特点,从保证APF能最有效地工作出发,综合瞬时无功功率理论检测法的快速性和闭环电路的鲁棒性,提出了基于瞬时无功功率理论的闭环检测方案。从谐波及无功电流开环、闭环检测电路抽象出检测电路的本质(本文称为统一模型),在此基础上,给出了检测电路的优化设计方案,研究了检测系统中等效低通滤波器的阶数与截止频率对检测精度与快速性的影响,推导了统一模型下闭环检测电路的实现。最后,通过实验加以验证。 1 基波幅值检测原理 设单相电路中的电源电压为 u s= U sin t(1) 非线性负荷电流为 i L(t)=i f(t)+i h(t)=i fp(t)+i fq(t)+i h(t)=i fp(t)+i c(t)(2) 式中:i f(t)为i L(t)的基波电流; i h(t)为i L(t)中高次谐波电流; i fp(t),i fq(t)分别为基波电流的有功分量和无功分量; i c(t)为要补偿的谐波和无功电流之和,称为畸变电流。 因为,负荷电流中的基波有功分量必定是一个初相角与电网电压相同,角频率为基波角频率ω的正弦波,所以,我们可以设负荷电流的基波有功分量为 i fp(t)=A sin t(3) 若能求出A的大小,则可由式(3)得出基波有功电流的表达式。

三相无功功率的测量方法

三相无功功率的测量方法 发电机及变压器等电气设备的额定容量为S=UI,单位为伏安。在功率因数较低时,即使设备已经满载,但输出的有功功率却很小(因为P=UIcosφ),不仅设备不能很好利用,而且增加了线路损失。因此提高功率因数是挖掘电力系统潜能的一项重要措施。电力工业中,在发电机、配电设备上进行无功功率的测量,可以进一步了解设备的运行情况,以便改进调度工作,降低线路损失和提高设备利用率。测量三相无功功率主要有如下方法。 1. 一表法 在三相电源电压和负载都对称时,可用一只功率表按图4-1联接来测无功功率。 将电流线圈串入任意一相,注意发电机端接向电源侧。电压线圈支路跨接到没接电流线圈的其余两相。根据功率表的原理,并对照图4-1,可知它的读数是与电压线圈两端的电压、通过电流线圈的电流以及两者间的相位差角的余 弦cosφ的乘积成正比例的,即P Q =U BC I A cosθ (4-1) 其中θ =ψ UBC –ψ iA 图4-1 由于uBC与uA间的相位差等于90度(由电路理论知),故有θ=90o-φ式中φ为对称三相负载每一相的功率因数角。在对称情况下UBC IA 可用线电压U1及线电流I1表示,即 PQ=U1I1cos(90o-φ )=U1I1sinφ (4-2) 在对称三相电路中,三相负载总的无功功率Q =√3 U1I1sinφ (4-3) ∴ 亦即Q=√3PQ (4-4) 可知用上述方法测量三相无功功率时,将有功功率表的读数乘上√3/2 倍即可。 2. 二表法

用两只功率表或二元三相功率表按图4-2联接,从功率表的作用原理可知,这时两个功率表的读数之和为 PQ=PQ1=PQ2=2U1I1sinφ(4-5) 较式(4-3) (4-5) 知(4-6) Q=√3PQ/2 图4-2 从上式可见将两功率表读数之和(或二元三相功率表的读数)乘以√3/2,可得到三相负载的无功功率。 3. 三表法 三表法可用于电源电压对称而负载不对称时,三相电路无功功率的测量,其接线如图4-3所示。当三相负载不对称时,三个线电流IA、IB、IC不相等,三个相的功率因数角φA 、φB 、φC 也不相同. 图4-3 因此,三只功率表的读数P 1、P 2 、P 3 也各不相同,它们分别是:4-3 (1) P 1=U BC I A cos(90o-φ A )=√3U A I A sinφ A (2) P 2=U CA I B cos(90o-φ B )=√3U B I B sinφ B

三种谐波和无功电流检测算法的综合性能比较

三种谐波和无功电流检测算法的综合性能比较 王冲,解大,陈陈 (上海交通大学电子信息与电气工程学院,上海市 200240) 摘要:有关谐波和无功电流的检测方法,学界提出了三种主流算法,即 p-q法、i p -i q 法和自适应电流检测法。一般文献只对算法某些方面的性能进行探 讨,并未就算法的稳态和动态滤波性能进行综合研究。本文将对这三种算法的综合滤波性能对比研究,并给出各种典型的复杂谐波状况下的仿真验证。 关键词:谐波检测;无功补偿;电力有源滤波器 0引言 电力电子技术的快速发展使得非线性装置在工业界广泛使用,随之产生的谐波污染问题也日益严重。高次谐波和无功电流的补偿已成为电力电子学和现代电力系统中亟待解决的问题。目前,有源滤波器(Active Power Filter)技术可视为最有效和最具潜力的方案。而其谐波和无功电流检测技术是整个方案的关键之处,能否快速精确的检测出需补偿的分量,并具有良好的动态跟踪性能,直接决定了装置的整体滤波性能。 谐波和无功电流检测方法一般有: (1)基于频域分析的FFT方法。原理是将谐波分量分解再合成出总的谐波分量,其特点是速度慢,且对高次谐波检测的效果不佳,同时无法检测出无功分量。 (2)用模拟带通滤波器或陷波器检测高次谐波电流。由于滤波器的中心频率固定,当电网频率波动时,滤波器效果将随之变差。此外,滤波器的中心频率对元件的参数十分敏感,这样较难得到理想的幅频特性和相频特性。同样,该法也不能分离出无功电流。 (3)基于“瞬时无功功率理论”的电流检测法。自1983年日本学者赤木泰文 提出该理论[1]以来,已发展出成熟的算法,即p-q法和i p -i q 法。理论上可检测

船舶电力系统中的谐波检测方法综述

船舶电力系统中的谐波检测方法综述 船舶电力系统是一个独立的、小型的完整电力系统,由于整流型,冲击性等非线性负荷的存在,所以对比陆地大电网,船舶电力系统有着更加严重的电能质量问题,而其中最主要的问题就是谐波,谐波会使船舶电网供电质量指标严重下降,同时使得电网各个部件运行情况恶化。所以如何更快速更准确的测量出系统中的谐波与简谐波,成为了全世界的焦点。文章主要介绍了目前流行的谐波检测方法,并详细论述了各种检测方法上的优势与不足,以便在检测过程中选择更加恰当的方法。 标签:船舶电力系统;谐波;检测方法 1 概述 船舶電力系统是一个独立的系统,随着电力技术的飞速发展以及科技的进步,船舶电力系统已经从早期的单一照明供电,逐渐发展成现代的船舶电力。然而,正是由于大量半导变流器的普遍投入使用,以及电力技术的应用,这使得船舶电力系统中的谐波污染日益严重[1]。 谐波会造成电动机的电机和变压器的附加损耗,并且产生噪声、过热现象、谐波过电压以及机械振动,甚至会损坏变压器与电机。同时谐波会引起,电流变化率电压变化率过高或产生过热效应,控制系统误差,会给换流装置带来影响、并且引起晶闸管故障[2]。高次谐波也会对线路以及通讯设备带来干扰,从而产生电力测量仪表中的误差。 而谐波问题涉及面很广,其中包括畸变波形、谐波抑制的分析方法、谐波潮流计算、电网谐波潮流计算、谐波测量、谐波源分析以及谐波限制标准等[2]。谐波检测是谐波问题的一个重要分支,也是研究谐波问题的基础与出发点。 2 基于傅里叶变换的谐波检测算法 虽然加窗插值法能够减小一定的误差,但为了检测出信号中所有的间谐波和谐波分量,窗宽在大多数情况下可能会高达几十个信号周期,并且容易受噪声干扰,这对实时检测是不利的。 3 基于小波变换的谐波检测方法 小波变换是将信号与一个时域和频域均具有局部化性质的平移伸缩小波基函数进行卷积,将信号分解成位于不同频带时段上的各个成分。小波变换是在工程应用中最重要的是最优小波选择,目前主要是通过小波分析处理信号的结果与结论的误差来判定小波的好坏,并由此选择小波基。 特殊地,取a0=2,b0=1,可以得到二进小波(Dyadic Wavelet),相应的变

水中油类测定分析方法的综述

水中油类测定分析方法的综述 李海州 (浙江海洋学院海洋与技术学院,浙江舟山316004) [摘要]:本文对国内外学者有关水中油类的测定方法做了比较系统的综述。对几种水中油类的常用方法,重量法、紫外分光光度法、荧光分光光度法、红外分光光度法和非分散红外光度法做了简要介绍,并对其优劣进行了评价。另外,介绍了测定水中油类含量存在的难点、发展趋势和技术改进等。 关键词:水;油类;测定分析 油类是指任何类型的(矿物油、植物油等)及其炼制品(汽油、柴油、机油、煤油等)、油泥和油渣[1]。油类主要有漂浮油、分散油、乳化油、溶解油和油类附着在固体悬浮物表面而形成油膜---固体物5种形式。全世界每年至少有500—1000吨油类通过各种途径进入水体,由于漂浮于水体表面的油将会影响空气和水体表面氧的交换,而分散于水体中以及吸附于悬浮颗粒上或以乳化状态存在于水体的油易被微生物氧化分解,并将消耗水中的溶解氧,从而使水质恶化;油膜还能附着于鱼鳃上,使鱼类窒息而死;当鱼类产卵期,在含有油类污染物质废水中孵化的鱼苗,多数为畸形,生命力低下,易于死亡;含有油类污染物的废水进入水体后,造成的危害很为严重,不仅影响水生生

物的生长,降低水体的自我净化能力,而且影响水体附近的环境,因此,油类是水体环境中的主要污染物之一,在水质监测中,也是一项重要的监测项目。要消除油类对环境的污染和危害,首先就必须能够准确的测定水中油类的含量。 然而,水中油类含量测定又是比较复杂的,因为水中的油类成分是相当复杂的,此外不同地区、不同行业水体中油类污染的成分也不同,无法有用单一的油标准进行对照,无法准确测定,所以水体中油类物质含量的测定问题是环境分析化学一个古老、重要而又困难的问题。目前水体中油类测定常用的方法有重量法、紫外分光光度法、荧光分光光度法、非分散红外光度和国家最新颁布的国家标准方法红外分光光度法等[2],本文简要介绍以上几种方法的原理和优劣,及人们对水体中油类监测分析方法的创新和改进。 1.重量法 重量法是用有机萃取剂(石油醚或正己烷)提取酸化了的样品中的油类,将溶剂蒸发掉后,称重后计算油类含量。重量法应用范围不受油品的限制,可测定含油量较高的污水,不需要特殊的仪器和试剂,测定结果的准确度较高、重复性较好。缺点是损失了沸点低于提取剂的油类成分,方法操作复杂,灵敏度低,分析时间长,并要耗费大量的提取剂,而且方法的精密度随操作条件和熟练程度不同差异很大。因此,水体中动植物油含量较高的,采用该方法较适合,可以得到比较准确的结果;工业废水、石油开采及炼制行业中含油量较高,此方

无功电流的测试

摘要 随着电力电子设备及非线性负载在电力系统中广泛应用,电网中的电压和电流波形畸变也越来越严重。谐波的抑制和无功电流补偿已成为电力电子学和现代电力系统急需解决的问题。这些非线性负荷在工作中时向电源反馈高次谐波,导致供电系统的电压、电流波形畸变,使电力质量变坏。而由于无功电流的存在,在传送同样能量的情况下,电流比没有无功的情况下增加,会大量增加系统的铜损,降低线路与变压器的利用率。无功电流检测是对电网无功功率补偿必不可少的部分。本文主要介绍了电流的检测基本原理和从检测电流中分解出无功电流的方法和原理。检测电流包括基波分量和谐波分量,基波分量又包含有功电流分量和无功电流分量,通过滤波可以得到基波电流分量,与原有电流相减就可以得到谐波电流,通过坐标变换可以将基波电流分解成有功电流和无功电流。 关键词:基波谐波有功电流无功电流

目录 摘要I 1 电流检测的意义和基本原理 1 2无功电流的分解方法 2 2.1三相对称电路无功电流检测2 2.2单相电路无功电流检测8 3无功电流检测仿真及分析12 3.1三相对称电路无功电流检测仿真及分析12 3.2单相电路无功电流检测仿真及分析 18 总结与体会23

参考文献:25

无功电流检测研究 1 电流检测的意义和基本原理 电力电子技术的快速发展使得非线性装置在工业界广泛应用,随之产生的谐波污染问题也日益严重。谐波抑制及无功补偿的一个重要手段是电力有源滤波器。其基本原理是从补偿对象中检测出谐波或无功电流,由补偿装置产生一个与该电流大小相等而极性相反的补偿电流与其相抵消。其中,谐波和无功电流的正确检测是决定补偿效果的重要环节。无功功率Q是既产生附加线损,又对发,配电系统都有影响的量,分析Q 的物理本质,研究它的正确涮量与补偿的方法,是电工理论与电工技术中尚无定论的一个重要课题。无功功率是无功电流引起的,欲了解无功功率,应先了解无功电流。无功电流是导出量,不是基本量,基本量是有功电流。由有功电流不仅可导出无功电流和无功功率,还可以确定无功补偿所需要达到的目标以及无功补偿应采取的方法等。

基于PO法的谐波电流与无功电流检测方法没计

基于PO法的谐波电流与无功电流检测方法没计 【摘要】抑制谐波和提高功率因数是涉及电力电子技术、电气自动化技术和电力系统的一个重大课题。本文首先对谐波的危害进行了简述,分析了谐波的定义,重点讨论了三相瞬时无功功率理论,并对以此为基础的谐波电流检测法PQ法进行了理论分析和仿真验证。 【关键词】功率因数;谐波抑制;瞬时无功功率 0 引言 电力电子技术在推动电力系统发展,灵活高效地利用电能的同时,其设备又成为电力系统中最主要的谐波源,同时消耗无功功率[1-2]。谐波的危害是多方面的,主要体现在:1)对供配电线路的危害:主要是影响线路的稳定运行和电能质量;2)对电力设备的危害:包括对电力电容器的危害、对电力变压器的危害和对电力电缆的危害;3)对用电设备的危害:包括对电动机的危害、对低压开关设备的危害和对弱电系统设备的干扰。4)对人体和电力测量准确性的影响:目前采用的电力测量仪表当谐波较大时将产生计量混乱,测量不准确。谐波污染对电力系统安全、稳定、经济运行构成潜在的威胁,给周围的电器环境带来极大影响并对人体健康存在潜在危害,被公认为电网的危害和人体生命的杀手。 1 电力谐波的定义 目前国际普遍定义谐波为:谐波是一个周期电气量正弦波分量,其频率为基波频率的整数倍[3]。以正弦波电压为例,可以表示式(1):式中U是电压有效值,θ是初相角,ω是角频率,T为周期;对于周期为T的非正弦波信号,在满足狄里赫利的条件下,可分解为如式(2)的傅立叶级数。 2 基于PQ法的谐波电流和无功电流检测设计 2.1 三相瞬时无功功率理论 2.3 PQ检测仿真设计和验证 3 结论 本文以现代电力生活中大量非线形负荷造成的谐波现象为背景,提出了谐波电流抑制这个现实而急切的问题。本文揭示了谐波的产生原因和危害,重点分析了基于PQ法的谐波电流和无功电流检测法。该方法主要是将三相电流电压通过帕克转换到两相坐标上,利用向量的有关性质,在坐标系中可得到电源电流与两相电流的关系以及电源电压和两相电压的关系,从另一侧面表达出电流与功率的关系,将无功功率与有功功率分开来分析。最后以一三相电轮为实例作出仿真设计,证明了PQ法在同时检测谐波电流和无功电流时具有无延迟性。

电力系统谐波检测方法综述

综述 2019年第9期 1电力系统谐波检测方法综述 陈和洋1,3 吴文宣2 郑文迪1 晁武杰3 唐志军3 (1. 福州大学电气工程与自动化学院,福州 350108; 2. 国网福建省电力有限公司,福州 350003; 3. 国网福建省电力有限公司电力科学研究院,福州 350007) 摘要 电力系统谐波检测为谐波治理提供了方向,同时也是谐波监测系统的核心。本文首先 阐述了电力系统谐波的诸多危害;其次对一些传统检测方法和近期新方法展开讨论和分析,比如瞬时无功功率法、快速傅里叶变换法、小波变换法、希尔伯特-黄变换法等;最后阐述了将来谐波检测领域的发展趋势。 关键词:谐波检测;瞬时无功功率;快速傅里叶变换;小波变换;希尔伯特-黄变换;人工神 经网络;复合检测 Reviews of power system harmonic measurement methods Chen Heyang 1,3 Wu Wenxuan 2 Zheng Wendi 1 Chao Wujie 3 Tang Zhijun 3 (1. College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108; 2. State Grid Fujian Electric Power Co., Ltd, Fuzhou 350003; 3. Electric Power Reserch Institute of State Grid Fujian Electric Power Co., Ltd, Fuzhou 350007) Abstract Power system harmonic detection provides the direction for harmonic control and is also the core of the harmonic monitoring system. This paper first expounds the many hazards of power system harmonics, and then discusses and analyzes some traditional detection methods and recent new methods, such as: instantaneous reactive power method, fast Fourier transform method, wavelet transform method, Hilbert-Hang transformation method, etc., finally pointed out the future development trend and personal outlook in the field of harmonic detection. Keywords :harmonic detection; instantaneous reactive power; fast Fourier transform (FFT); wavelet transform; Hilbert-Huang transform (HHT); artificial neural network (ANN); composite detection 100多年来,随着电力系统的不断发展,以非化石能源为主的新一代电力系统格局已经产生,将来清洁能源和可再生能源将占有很大的比重。在此背景下,电力电子元器件的大量使用导致电力系统不可避免地受到谐波的污染。电力系统中的谐波分量过大将造成诸多危害:①使电能利用率降低,电力系统设备产生附加能耗,同时增加了电气应力,影响设备安全稳定运行[1];②大量分布式电源在公共连接点(point of common coupling, PCC )集中被 接入,可能放大电网的谐波振荡;③在柔性直流输 电运行过程中,直流场持续的谐波扰动可能引发一 系列不稳定现象,从而影响系统的安全稳定运行; ④谐波还可能使得保护误动作,测量装置产生误差,甚至可能会对通信线路产生干扰,影响通信效果。 针对谐波产生的种种危害,我国在20世纪90年代就已经开展了谐波治理的相关研究,并制定了《电能质量:公用电网谐波》(GB/T 14549—93)国家标准对公共电网谐波允许值进行了限制。此后对电力系统进行谐波治理,改善电能质量成为一项持续而长久的工作。有源电力滤波器(active power filter, APF )是一种能够动态抑制谐波、全面改善电能质量的电力电子装置,谐波电流的精确、实时检测直接影响其动态抑制的效果。 对谐波信号进行高精度、实时地检测是谐波治 福建省自然基金项目(2017J01480) 国网福建省电力有限公司科技项目(52130416001P )

目标检测方法简要综述

龙源期刊网 https://www.sodocs.net/doc/c114430126.html, 目标检测方法简要综述 作者:栗佩康袁芳芳李航涛 来源:《科技风》2020年第18期 摘要:目标检测是计算机视觉领域中的重要问题,是人脸识别、车辆检测、路网提取等领域的理论基础。随着深度学习的快速发展,与基于滑窗以手工提取特征做分类的传统目标检测算法相比,基于深度学习的目标检测算法无论在检测精度上还是在时间复杂度上都大大超过了传统算法,本文将简单介绍目标检测算法的发展历程。 关键词:目标检测;机器学习;深度神经网络 目标检测的目的可分为检测图像中感兴趣目标的位置和对感兴趣目标进行分类。目标检测比低阶的分类任务复杂,同时也是高阶图像分割任的重要基础;目标检测也是人脸识别、车辆检测、路网检测等应用领域的理论基础。 传统的目标检测算法是基于滑窗遍历进行区域选择,然后使用HOG、SIFT等特征对滑窗内的图像块进行特征提取,最后使用SVM、AdaBoost等分类器对已提取特征进行分类。手工构建特征较为复杂,检测精度提升有限,基于滑窗的算法计算复杂度较高,此类方法的发展停滞,本文不再展开。近年来,基于深度学习的目标检测算法成为主流,分为两阶段和单阶段两类:两阶段算法先在图像中选取候选区域,然后对候选区域进行目标分类与位置精修;单阶段算法是基于全局做回归分类,直接产生目标物体的位置及类别。单阶段算法更具实时性,但检测精度有损失,下面介绍这两类目标检测算法。 1 基于候选区域的两阶段目标检测方法 率先将深度学习引入目标检测的是Girshick[1]于2014年提出的区域卷积神经网络目标检测模型(R-CNN)。首先使用区域选择性搜索算法在图像上提取约2000个候选区域,然后使用卷积神经网络对各候选区域进行特征提取,接着使用SVM对候选区域进行分类并利用NMS 回归目标位置。与传统算法相比,R-CNN的检测精度有很大提升,但缺点是:由于全连接层的限制,输入CNN的图像为固定尺寸,且每个图像块输入CNN单独处理,无特征提取共享,重复计算;选择性搜索算法仍有冗余,耗费时间等。 基于R-CNN只能接受固定尺寸图像输入和无卷积特征共享,He[2]于2014年参考金字塔匹配理论在CNN中加入SPP-Net结构。该结构复用第五卷积层的特征响应图,将任意尺寸的候选区域转为固定长度的特征向量,最后一个卷积层后接入的为SPP层。该方法只对原图做一

(完整版)视频目标检测与跟踪算法综述

视频目标检测与跟踪算法综述 1、引言 运动目标的检测与跟踪是机器视觉领域的核心课题之一,目前被广泛应用在视频编码、智能交通、监控、图像检测等众多领域中。本文针对视频监控图像的运动目标检测与跟踪方法,分析了近些年来国内外的研究工作及最新进展。 2、视频监控图像的运动目标检测方法 运动目标检测的目的是把运动目标从背景图像中分割出来。运动目标的有效分割对于目标分类、跟踪和行为理解等后期处理非常重要。目前运动目标检测算法的难点主要体现在背景的复杂性和目标的复杂性两方面。背景的复杂性主要体现在背景中一些噪声对目标的干扰,目标的复杂性主要体现在目标的运动性、突变性以及所提取目标的非单一性等等。所有这些特点使得运动目标的检测成为一项相当困难的事情。目前常用的运动目标检测算法主要有光流法、帧差法、背景相减法,其中背景减除法是目前最常用的方法。 2.1帧差法 帧差法主要是利用视频序列中连续两帧间的变化来检测静态场景下的运动目标,假设f k(x, y)和f(k i)(x, y)分别为图像序列中的第k帧和第k+1帧中象素点(x,y)的象素值,则这两帧图像的差值图像就如公式2-1所示: Diff ki f k(x, y) f(k 1)(x, y)(2-1)2-1式中差值不为0的图像区域代表了由运动目标的运动所经过的区域(背景象素值不变),又因为相邻视频帧间时间间隔很小,目标位置变化也很小,所以运动目标的运动所经过的区域也就代表了当前帧中运动目标所在的区域。利用此原理便可以提取出目标。下图给出了帧差法的基本流程:1、首先利用2-1式得到第k帧和第k+1帧的差值图像Diff k 1;2、对所得到的差值图像Diff k 1二值化(如 式子2-2示)得到Qk+1 ;3、为消除微小噪声的干扰,使得到的运动目标更准 确,对Q k 1进行必要的滤波和去噪处理,后处理结果为M k 1。 1

(完整word版)基于图像处理的运动物体的跟踪与检测开题报告

1、课题来源 随着计算机技术的高速发展,运动物体的检测和跟踪在图像处理、计算机视觉、模式识别、人工智能、多媒体技术等领域越来越受到人们的关注。运动跟踪和检测的应用广泛,在智能监控和人机交互中,如:银行、交通、超市等场合常常使用运动跟踪分析技术,通过定位物体并对其行为进行分析,一旦发现物体有异常行为,监控系统就发出警报,提醒人们注意并即时的处理,改善了人工监督注意力分散、反应时间较慢、人力资源浪费等问题。运动目标的跟踪在虚拟现实、工业控制、军事设备、医学研究、视频监控、交通流量观测监控等很多领域也有重要的实用价值。特别在军事上,先进的武器导航、军事侦察和监控中都成功运用了自动跟踪技术。而跟踪的难点在于如何快速而准确的在每一帧图像中实现目标定位。正因如此,对运动目标的跟踪和检测的研究很有价值。 2、研究目的和意义 运动目标检测是图像处理与计算机视觉的一个分支,在理论和实践上都有重大意义,长久以来一直被国内外学者所关注。在实际中,视频监控利用摄像机对某一特定区域进行监视,是一个细致和连续的过程,它可以由人来完成,但是人执行这种长期枯燥的例行监测是不可靠,而且费用也很高,因此引入运动监测非常有必要。它可以减轻人的负担,并且提高了可靠性。概括起来运动监测主要包括三个内容:运动目标检测,方向判断和图像跟踪。运动目标检测是整个监测过程的基础,运动目标的提取准确与否,直接关系到后续高级过程的完成质量。3、国内外研究现状和发展趋势及综述 运动目标检测在国外已经取得了一些的研究成果,许多相关技术已经开始应用到实际系统中,但是国内研究相对落后,与国外还有较大差距。传统的视频目标提取大致可以分两类,一类以空间同性为准则,先用形态学滤波器或其他滤波器对图像作预处理;然后对该图像的亮度、色度或其他信息作空间上的分割以对区域作边缘检测;之后作运动估计,并合并相似的运动区域以得到最终的提取结果。如光流算法、主动轮廓模型算法。此类方法结果较为准确但是运算量相对较大。另一类算法主要以时间变化检测作为准则,这类算法主要通过帧差检测图像上的变化区域和不变区域,将运动物体与静止背景进行分割。此类方法运算量小,提取结果不如前类方法准确。此外,还有时空结合方法、时空亮度梯度信息结合的方法等等。 4、研究方法

建筑节能检测方法综述

建筑节能检测方法综述 The Standardization Office was revised on the afternoon of December 13, 2020

建筑节能现场检测方法 田斌守 摘要本文综述了几种建筑物围护结构传热系数现场检测方法的原理、操作方法、适用条件,指出各种方法的优缺点及注意事项。 关键词建筑节能检测热流计法热箱法控温箱-热流计法非稳态法当今飞速发展的国民经济活动必然导致前所未有的资源能源消耗速度。而许多资源能源是不可再生的,为了人类的可持续发展,节约能源刻不容缓。据介绍,我国目前单位建筑面积采暖能耗相当于气候条件相近的发达国家的2~3倍,而建筑能耗也占全国能耗总量的%。随着人民生活水平的不断提高、城市化进程的加快以及住房体制改革的深化,建筑能耗在我国增长趋势很大,很可能是我国今后能耗的一个主要增长点。为建设节约型社会,促进经济社会可持续发展,国家发展委员会发布了“节能中长期专项规划”,建筑节能作为三大重点领域中的一项,受到高度重视。建设部也相继发布了一系列建筑节能标准,其中包括若干强制性条款,目前正在建设领域逐步实施。 建筑节能工作从流程上可分为设计审查、现场检测、竣工验收三个大的阶段。对节能建筑的评价,从建设前期对施工图纸审查计算阶段、向现场检测和竣工验收转移是大势所趋。建筑节能现场检测也是落实建筑节能政策的重要保证手段。目前,全国范围内建筑节能检测都执行JGJ132-2001《采暖居住建筑节能检验标准》,它是最具权威性的检测方法,它的发布实施,为建筑节能政策的执行提供了一个科学的依据,使得建筑节能由传统的间接计算、目测定性评判到现在的直接测量,从此这项工作进入了由定性到定量、由间接到直接、由感性判断到科学检测的新阶段。 根据我们对建筑节能影响因素和现场检测的可实施性的分析,我们认为能够在实验室检测的宜在实验室检测(如门窗等作为产品在工程使用前后它的性状不会发生改变),除此之外,只有围护结构是在建造过程中形成的,对它的检测只能在现场进行。因此建筑节能现场检测最主要的项目是围护结构的传热系数,这也是最重要的项目。如何准确测量墙体传热系数是建筑节能现场检测验收的关键。目前对建筑节能现场检测的、围护结构(一般测外墙和屋顶、架

目标检测综述

一、传统目标检测方法 如上图所示,传统目标检测的方法一般分为三个阶段:首先在给定的图像上选择一些候选的区域,然后对这些区域提取特征,最后使用训练的分类器进行分类。下面我们对这三个阶段分别进行介绍。 (1) 区域选择这一步是为了对目标的位置进行定位。由于目标可能出现在图像的任何位置,而且目标的大小、长宽比例也不确定,所以最初采用滑动窗口的策略对整幅图像进行遍历,而且需要设置不同的尺度,不同的长宽比。这种穷举的策略虽然包含了目标所有可能出现的位置,但是缺点也是显而易见的:时间复杂度太高,产生冗余窗口太多,这也严重影响后续特征提取和分类的速度和性能。(实际上由于受到时间复杂度的问题,滑动窗口的长宽比一般都是固定的设置几个,所以对于长宽比浮动较大的多类别目标检测,即便是滑动窗口遍历也不能得到很好的区域) (2) 特征提取由于目标的形态多样性,光照变化多样性,背景多样性等因素使得设计一个鲁棒的特征并不是那么容易。然而提取特征的好坏直接影响到分类的准确性。(这个阶段常用的特征有SIFT、HOG等) (3) 分类器主要有SVM, Adaboost等。 总结:传统目标检测存在的两个主要问题: 一是基于滑动窗口的区域选择策略没有针对性,时间复杂度高,窗口冗余; 二是手工设计的特征对于多样性的变化并没有很好的鲁棒性。

二、基于Region Proposal的深度学习目标检测算法 对于传统目标检测任务存在的两个主要问题,我们该如何解决呢? 对于滑动窗口存在的问题,region proposal提供了很好的解决方案。region proposal(候选区域)是预先找出图中目标可能出现的位置。但由于region proposal 利用了图像中的纹理、边缘、颜色等信息,可以保证在选取较少窗口(几千个甚至几百个)的情况下保持较高的召回率。这大大降低了后续操作的时间复杂度,并且获取的候选窗口要比滑动窗口的质量更高(滑动窗口固定长宽比)。比较常用的region proposal算法有selective Search和edge Boxes,如果想具体了解region proposal可以看一下PAMI2015的“What makes for effective detection proposals?” 有了候选区域,剩下的工作实际就是对候选区域进行图像分类的工作(特征提取+分类)。对于图像分类,不得不提的是2012年ImageNet大规模视觉识别挑战赛(ILSVRC)上,机器学习泰斗Geoffrey Hinton教授带领学生Krizhevsky使用卷积神经网络将ILSVRC分类任务的Top-5 error降低到了15.3%,而使用传统方法的第二名top-5 error高达26.2%。此后,卷积神经网络占据了图像分类任务的绝对统治地位,微软最新的ResNet和谷歌的Inception V4模型的top-5 error降到了4%以内多,这已经超越人在这个特定任务上的能力。所以目标检测得到候选区域后使用CNN对其进行图像分类是一个不错的选择。 2014年,RBG(Ross B. Girshick)大神使用region proposal+CNN代替传统目标检测使用的滑动窗口+手工设计特征,设计了R-CNN框架,使得目标检测取得巨大突破,并开启了基

大豆异黄酮的测定方法综述(精)

NANCHANG UNIVERSITY 功能食品学综述论文 学 院:生命科学与食品工程学院专业:食品科学与工程班 级:学号:学生姓名:廖杰 指导教师:王远兴

起讫日期: 2014年 3月至 2014年 4月 大豆异黄酮的测定方法 摘要 本文在参考国内外大量文献的基础上,对大豆异黄酮的测定方法进行了系统的总结和介绍 关键词:大豆异黄酮;测定方法 Abstract: In reference on the basis of a large number of literature at home and abroad, this paper method of the determination of soybean isoflavones were summarized and introduced Keywords:soy isoflavones method 目录 摘 要 ........................................................................................................................................... ........... I Abstract:................................................................................................................................. .............. I 目 录 ........................................................................................................................................... .......... II 1根据紫外吸收特性检测方 法 ......................................................................................................... 1 1.1紫外分光光度法(UV .. (1)

相关主题