搜档网
当前位置:搜档网 › 直吹式制粉系统热力计算方法

直吹式制粉系统热力计算方法

直吹式制粉系统热力计算方法
直吹式制粉系统热力计算方法

直吹式制粉系统热力计算

1.原始数据

1.1锅炉部分

炉型:1025t/h,亚临界、中间再热、控制循环炉;

蒸发量:MCR工况为:D MCR= 1025 t/h;

ECR工况为: D ECR= 907 t/h;

锅炉燃料消耗量:MCR工况为:B B= 140.51 t/h;

空气预热器出口热风温度:一次风为:t〃AH1= 341 ℃;

二次风为:t〃AH2= 348 ℃;

冷风温度: t SF= 20 ℃。

1.2煤质资料

收到基碳:C ar= 53.16 %;收到基氢:H ar = 3.10%;

收到基氧:O ar =5.50% ;收到基氮:N ar = 0.90%;

收到基硫:S ar = 0.80%;收到基水分:M ar= 8.0%;

收到基灰分:A ar= 28.54 %;空干基水分:M ad= 2.4 %;

干燥无灰基挥发分:V daf= 18.8 %;原煤温度:t P.C= 20 ℃;

收到基低位发热量:Q aetar.=20496k J/㎏;

哈氏可磨性指数(哈德可夫法): HGI = 54.36;

全苏热工研究所可磨性指数:K BTN= 1.13 ;

煤粉细度: R90= 18 % ;煤粉水分: M P.C= 1.2 % ;

磨损性指数:K e<3.5 ;煤着火性指数: R W= 4.65~5.0。

2.理论空气量及燃烧产物

V g°=0.0889(C ar +0.375 S ar)+0.265 H ar -0.0333 O ar

=0.0889×(53.16+0.375×0.80)+0.265×3.10-0.0333×5.50 = 5.391 m3/㎏

2.2空气含湿量:(一般设d=10 g/㎏,即每1㎏干空气附加10 g水蒸汽)在测得

空气的干球温度和湿球温度的情况下,可以可以查

【GB10184—88附录G(湿空气线算图)】

(当空气干球温度为28℃湿球温度为22.7℃时,查得d K= 0.01 ㎏/㎏时,则d= 10g/㎏)

V SK°= V g°(1+0.0016 d)

= 5.391×(1+0.0016×10) = 5.477 m3/㎏。

3.磨煤机选型及计算

3.1 磨煤机型式:选用HP型中速磨。

3.2 制粉系统型式:正压直吹式、冷一次风机。

3.3 钢球磨型号:HP843和HP863

3.4 磨煤机台数:5台,运行台数:Z M= 4台,1台备用。

3.5 磨煤机出力计算

3.5.1 磨煤机基本出力:B MO= 45.4 t/h;

3.5.2可磨性修正系数:K H= 0.99 ;

3.5.3 煤粉细度修正系数:K R= 0.918;

3.5.4 原煤水分修正系数

含水去矿物基热值:

Q=100(Q aetar.-116 S ar)/[100-( 1.08 A ar +0.55 S ar)]

=100×(20496-116×0.80)/[100-(1.08×28.54+0.55×0.80)] = 30032 kJ/㎏

去矿物干燥基固定碳:

C daf= 100(C ar -0.15 S ar)/[100-( M ar +1.08 A ar +0.55 S ar)]

= 100×(53.16-0.15×0.80)/[100-(8.0+1.08×28.54+0.55×0.80)]

= 86.9 %

原煤水分修正系数:K M= 1.05 ;

原煤灰分修正系数:K A = 0.957 ;

原煤粒度修正系数:(碗式磨不修正)K L = 1 ;

磨煤机出力修正系数:

K= K H K R K M K A K L

=0.99×0.918×1.05×0.957×1= 0.913 ;

磨煤机碾磨出力:

B M= K B MO = 0.913×45.4 = 41.45 t/h;

碾磨出力裕度计算: B F= Z M B M / B B =4×41.45/140.51 =1.18 3.6 磨煤消耗功率

磨煤机功率: N M= 355 kW;

磨煤电耗: E M= N M / B M = 355/41.45 = 8.56 kW.h/t

4.热力计算

4.1 初始干燥剂量

磨煤机基本通风量: Q s= 18.9 ㎏/s;

磨煤出力相当于设计出力下负荷率:

X M=B B / (K B M )= 140.51/(4×41.45) = 0.8475;

X M下的通风率: K MV= 100(0.6+0.4X M)

= 100×(0.6+0.4×0.8475)=93.90 %

磨煤机密封风量: Q MF= 2.2 ㎏/s;

制粉干燥水分:△M= (M ar - M P.C)/(100- M P.C)

= (8-1.2)/(100-1.2) = 0.0688 ㎏/㎏;

初始干燥剂量:

g1= (3.6 Q s / B MO)[K MV/ (100X M)]-△M-[3.6 Q MF /(K B MO) = (3.6×18.9/45.4)×[93.90/(100×0.8475)]-0.0688 -[3.6×2.2/(0.913×45.4]= 1.399 ㎏/㎏。

4.2 热平衡

4.2.1 输入的总热量

(1)干燥的物理热

干燥剂的初温:(先假定,后核算) t1= 260 ℃;

干燥剂初温下比热容:(查表) C1=1.022 kJ/(㎏. ℃);

干燥剂的物理热: q q1= g1 C1 t1

= 1.399×1.022×260 = 371.74 kJ/㎏。(2)漏入冷风的物理热:(正压q L=0)。

(3)密封风的物理热:

密封风温度: t MF= 20 ℃;

密封风比热容:(查表)C MF= 1.012 kJ/(㎏. ℃);

密封风的物理热: q MF= 3.6C MF Q MF t MF /B M

=3.6×1.012×2.2×20/41.45= 3.9 kJ/㎏。

(4)磨煤机工作时产生的热量

机械热转化系数:(查表) K mae= 0.6 ;

磨煤机工作产生时产生的热量:q mae= 3.6 K mae E M

=3.6×0.6×8.56= 18.5 kJ/㎏。(5)干燥磨制1㎏煤输入的总热量

∑q= q q1+q L+ q MF + q mae =371.74+0+3.9+18.49= 394.14 kJ/㎏。

4.2.2 带出好消耗的总热量

(1)蒸发原煤制水分消耗热量:

制粉系统末端温度:t2= t〃M= 90 ℃;

磨煤机出口粉粉混合物温度: t〃M= 90 ℃;

蒸发原煤水分消耗热量:

q ZFSF=4.187△M [595+0.47(t2- t P.C) (t P.C-----原煤温度)= 4.187×0.0688×(595+0.47×90-20)= 177.8 kJ/㎏。(2)乏气干燥剂带出的热量

漏风系数:(正压 K L=0)

制粉系统末端空气比容热:查表 C2= 1.014 kJ/(㎏. ℃);

乏气干燥剂带出的热量:

q2= [(1+ K L)g1+3.6 Q s /B M] C2 t2

=[(1+0)×1.399+3.6×2.2/41.45]×1.014×90=145.1 kJ/㎏。

(3) 加热燃料消耗的热量

干燥基灰分: A d= 100 A ar /(100- M ar)

= 100×28.54/(100-8) = 31.02 %

燃料平均温度: t PJ= (t1+t2)/2 = (20+90)/2= 55 ℃;

原煤解冻热量: t≧0, q=0 ;

灰的比容热: C A= 0.754+2.93 t PJ 10-4=0.754+2.93×55×10-4

= 0.770 kJ/(㎏. ℃);

纯煤的比热容: C M=0.74+4.1 t PJ 10-3+(0.66+2 t PJ 10-3) V daf /100 =0.74+4.1×55×10-3+(0.66+2×55×10-3)×18.8/100

=1.11 kJ/(㎏. ℃);

干燥煤的比热容:C dC= 0.01[C M (100- A d)+ C A A d]

=0.01 ‰[1.11×(100-31.02)+0.770×31.02]

=1.005 kJ/(㎏. ℃);

加热燃料消耗的热量:

q RL= [(100- M ar)/100]( C dC +4.187 M P.C /100)(t2- t P.C)+q

=[(100-8)/100]×(1.005+4.187×1.2/100)×(90-20)+0

= 67.96 kJ/㎏。

(4)设备散热损失: q5= 0.02 ∑q= 0.02×394.14= 7.9 kJ/㎏。(5)干燥、磨制、1㎏原煤带出和消耗的热量:

q MX= q ZFSF + q2+ q RL + q5=177.8+145.167.96+7.9=398.76 kJ/㎏。

4.3 热平衡方程求初温

干燥剂初温计算: t1=(q MX -q- q MF - q mae)/(g1 C1)

=(398.76-0-3.9-18.5)/(1.399×1.022)

= 263.2 ℃;

计算初温与假定值相对误差:

△t1/ t1=(263.2-260)/263.2=1.216%<1.5% (相符)

4.4 干燥剂成分计算

热风温度: t RF= t〃AH1-10= 341-10=331 ℃;

热风比热容:查表得 C RF= 1.031 kJ/(㎏. ℃);

冷风占干燥剂的份额:r LF=( C RF t RF - C1 t1)/( C RF t RF - C MF t MF)

= (1.031×331-1.022×263.2)/(1.031×331-1.012×20)

= 0.225;

热风占干燥剂的份额:r RF= 1- r LF = 1- 0.225 = 0.775 。

4.5 制粉系统终端干燥剂含湿量和露点计算

干燥剂含湿量:

d2=[g1(1+ Q MF/ Q s)d+1000△M]/{g1[(1+ Q MF/ Q s)-(1+ Q MF/ Q MF)d/1000 = [1.399×(1+2.2/18.9)×10+1000×0.0688/{1.399×[(1+2.2/18.9)-(1+2.2/18.9)×10/1000]}= 54.6 g/㎏;

露点:查表得:t LD= 41.5 ℃;

结论:t2- t LD = 90- 41.5 = 48.5 ℃>2℃;所以不会结露。

4.6 干燥出力核算和制粉系统一次风机容量计算

一次风机台数: Z1F= 2 台;

运行时碾磨出力: B M= B B / Z M =140.51/4 = 35.13 t/h;

一次风机入口绝对压力: P1= 101.3 kPa;(大气压力+静压)

一次风机风量裕度系数: Ka= 1.5;

一次风机容量:

Q1F= Ka (1/ Z1F) (1000 B M Z M g1/1.285+q L )(1.1.3/ P1)(273+t2)/273= 1.5×(1/2)×(1000×35.13×4×1.399/1.285)+0)×(101.3/101.3)×(273+90)/273= 152566 m3/h;

一次风侧空预器漏风系数:△α= 0.4 (取自锅炉热力计算);

一次风机要求容量: Q YQ1F=(1+△α) Q1F

=(1+0.4)×152566= 213592 m3/h

制冷系统设计步骤

制冷系统设计步骤

一、设计任务和已知条件 根据要求,在武汉地区,以风机盘管为末端装置,冷冻水温度为7℃,空调回水温度为11℃,总制冷量为400KW,冷却水系统选用冷却塔使用循环水。 二、制冷压缩机型号及台数的确定 1、确定制冷系统的总制冷量 制冷系统的总制冷量,应该包括用户实际所需要的制冷量,以及制冷系统本身和供冷系统冷损失,可按下式计算: 式中——制冷系统的总制冷量(KW) ——用户实际所需要的制冷量(KW) A——冷损失附加系数。 一般对于间接供冷系统,当空调制冷量小于174KW时,A=0.15~0. 20;当空调制冷量为174~1744KW时,A=0.10~0.15;当空调制冷量大于1744KW时,A=0.05~0.07;对于直接供冷系统,A=0.05~0. 07。 2、确定制冷剂种类和系统形式

根据设计的要求,选用氨为制冷剂而且采用间接供冷方式。 3、确定制冷系统设计工况 确定制冷系统的设计工况主要指确定蒸发温度、冷凝温度、压缩机吸气温度和过冷温度等工作参数。有关主要工作参数的确定参考《制冷工程设计手册》进行计算。 确定冷凝温度时,冷凝器冷却水进、出水温度应根据冷却水的使用情况来确定。 ①、冷凝温度()的确定 从《制冷工程设计手册》中查到武汉地区夏季室外平均每年不保证50h的湿球温度(℃) ℃ 对于使用冷却水塔的循环水系统,冷却水进水温度按下式计算: ℃ 式中——冷却水进冷凝器温度(℃); ——当地夏季室外平均每年不保证50h的湿球温度(℃); ——安全值,对于机械通风冷却塔,=2~4℃。

冷却水出冷凝器的温度(℃),与冷却水进冷凝器的温度及冷凝器的形式有关。 按下式确定: 选用立式壳管式冷凝器=+(2~4)=31.2+3=34.2℃ 注意:一般不超过35℃。 系统以水为冷却介质,其传热温差取4~6℃,则冷凝温度为 ℃ 式中——冷凝温度(℃)。 ②、蒸发温度()的确定 蒸发温度是制冷剂液体在蒸发器中汽化时的温度。蒸发温度的高低取决于被冷却物体的温度及传热温差,而传热温差与所采用的载冷剂(冷媒)有关。 系统以水为载冷剂,其传热温差为℃,即 ℃ 式中——载冷剂的温度(℃)。 一般对于冷却淡水和盐水的蒸发器,其传热温差取=5℃。

发电厂原则性热力系统计算

发电厂原则性热力系统计算: 已知条件 1. 汽轮机形式和参数 制造厂家: 哈尔滨汽轮机厂 型 号: N300—16.7/538/538型 型 式: 亚临界、一次中间再热、单轴、双缸、双排汽、反动凝汽式汽轮 机 额定功率: 300MW 最大功率: 330MW 初蒸汽参数: =0p 16.67MPa ,=0t 538C ο 再热蒸汽参数: 冷段压力==in rh p p 2 3.653MPa ,冷段温度=in rh t 320.6C ο 热段压力=out rh p 3.288MPa ,热段温度=out rh t 538C ο 低压缸排汽参数: =c p 0.0299MPa ,=c t 32.1C ο , =c h 2329.8kJ/kg 给水泵小汽轮机耗汽份额:=st α0.0432 机组发电机实际发出功率:=' e P 300MW 给水泵出口压力: =pu p 20.81MPa 凝结水泵出口压力: 1.78MPa 机组机电效率: ==g m mg ηηη0.98 加热器效率: =h η0.99 额定排汽量: 543.8t/h 给水温度: 273.6℃ 冷却水温度: 20℃ 最高冷却水温度: 34℃ 额定工况时热耗率: (计算)7936.2Kj/KW .h (保证)7955Kj/KW .h 额定工况时汽耗率 3.043Kg/KW .h 主蒸汽最大进汽量: 1025t/h 工作转速: 3000r/min 旋转方向: 顺时针(从汽轮机向发电机看) 最大允许系统周波摆动: 48.5—50.5Hz 空负荷时额定转速波动: ±1r/min 噪音水平: 90db 通流级数: 36级

制冷循环系统的热力计算

制冷循环系统的热力计算是根据确定的蒸发温度,冷凝温度,液态制冷剂的再冷度和压缩机的吸汽温度等已知条件.通过压焓图,求出各状态点的参数以及相关数值. 图1 CO2跨临界循环系统图 图2 跨临界2co 压焓图 1 循环参数 跨临界co 2空调设计工况制冷量为 2.8 kw ,制热量为3kw ,制冷剂为R744,蒸发温度取为0℃,冷却器出口温度取为40℃。指示效率=i η0.75, 机械效率8.0=m η。 查资料(参考文献1)知,根据冷却压力对循环的影响,最佳冷却压力与冷凝器出口温度的关系式为: Pk=-0.71471+0.27243 tk( MPa) 式中:32℃≤tk ≤48℃. 根据冷凝器出口温度为40℃,计算得最佳冷凝压力为10MPa. 根据吸气过热度对循环的影响,利用回热提高点1的过热度使循环的性能系数增大,但是过热度不是任意可以提高的。由于传热温差的存在,点1的温度总是低于点3的温度。由此假定点1的过热度

为15℃。 由回热器热平衡计算,h1-h0=h3-h4,推得h4=296kJ/kg,查压焓图得t4=36℃.过冷度为4℃.点4到点5的过程为等焓节流过程,得点5的状态:t5=0℃,h5=h4=296kJ/kg. 点1到点2s 过程为等熵压缩,p2s=10MPa ,从而确定点2s 的状态:t2s=100℃,h2s=504kJ/kg. 由压缩机指示效率ηi=0.75,得h2=(h2s-h1)/ηi+h1=520.67kJ/kg. 各点参数 2 热力计算 2.1 夏季热力计算 ⑴单位质量制冷量 0q kg kJ h h q /136500=-= ⑵单位理论功0w kg kJ h h w s s /50120=-= 75.01 21 2000=--=== h h h h w w N N s s i i η kg kJ w w i s /67.6600== η kg kJ h /67.5202= ⑶单位容积制冷量v q 3310/3.11333/012 .0136m kJ m kJ v q q v === 单位冷凝热kg kJ h h q s ks /19032=-= ⑷制冷循环质量流量m q s kg kg kJ kw q Q q m /021.0/1368.200=== ⑸压比 π =π p2/p1 = 100/35 = 2.86

磨煤机运行方式对优化锅炉燃烧的应用

磨煤机运行方式对优化锅炉燃烧的应用 发表时间:2019-01-08T10:58:49.153Z 来源:《电力设备》2018年第24期作者:李文杰王志刚李烨[导读] 摘要:由于燃煤电厂面临煤质不稳定、机组参与调峰而造成负荷变化范围大,机组经常在中低负荷下运行、运行人员操作随意性大、多台磨煤机并列运行等相关问题,导致制粉系统的能源消耗高。 (国家电投集团河南电力有限公司平顶山发电分公司河南平顶山 467312) 摘要:由于燃煤电厂面临煤质不稳定、机组参与调峰而造成负荷变化范围大,机组经常在中低负荷下运行、运行人员操作随意性大、多台磨煤机并列运行等相关问题,导致制粉系统的能源消耗高。而当某个运行的磨煤机由于故障或者超负荷工作被迫停机时,将造成炉内燃烧劣化,燃烧动力场失衡,严重影响机组的安全性和经济性,因而对磨煤机运行方式调整有助于优化锅炉的燃烧稳定和经济运行。 关键词:对冲布置;磨煤机运行方式;优化;锅炉燃烧 引言 目前大中型燃煤机组越来越多,而大中型燃煤机组的制粉系统普遍采用中速磨煤机直吹式制粉系统。由于直吹式制粉系统具有系统简单、灵活、操作方便、易实现自动控制、制粉电耗低等特点,因此得到广泛应用。 直吹式制粉系统的特点是制粉系统出力必须随时保持与锅炉燃烧一致。因此锅炉负荷变化时,制粉出力相应变化。变更制粉出力可以均匀的变动各磨煤机的负荷,也可以投、停部分磨煤机。恰当制定制粉系统的运行方式,可以提高制粉系统的经济特性。举例某DG3000/26.15-Ⅱ1型锅炉,超超临界参数、变压直流炉、单炉膛、一次再热、平衡通风、露天岛式布置、固态排渣、全钢构架、全悬吊结构、对冲燃烧方式,Π型锅炉。炉膛尺寸为33973.4×15558.4×64000mm (W×D×H)。锅炉燃烧方式为前后墙对冲旋流燃烧,每台锅炉配6层燃烧器,前后墙各3层,每层各8只,共48只燃烧器。制粉系统为ZGM133N型中速磨煤机冷一次风正压直吹式制粉系统,每台炉配6台磨煤机,BMCR工况下5台运行,一台备用,并配备6台与之相适的电子称重式给煤机。本文通过磨煤机的不同情况对锅炉燃烧的影响,从而指导优化锅炉燃烧调整。 正压直吹式制粉系统每台磨煤机布置有四根出口粉管,每根粉管通过一个煤粉分配器分成两根,分别对应一个燃烧器。煤粉分配器前设计有一个可调缩孔,作用是调节四根粉管的煤粉浓度,从而保证燃烧均匀性。 一、前后墙对冲燃烧对磨煤机运行要求 由于电厂燃用煤质较差,锅炉正常运行基本都是6台磨煤机投运,从布置方式上考虑,主要存在以下三个方面: 1)下层磨煤机煤粉在炉内燃烧升程较大,燃烧比较充分。 2)上层磨煤机煤粉燃烧靠上,火焰中心上移,如果配风不合理将造成燃烧不充分,易造成锅炉内过热器结焦和屛过超温。 3)中间层磨煤机煤粉燃烧情况在另外两层中间,燃烧器浓度分配合理有助于减少水冷壁热偏差。因而对冲燃烧布置锅炉磨煤机在运行时,尽量确保投运下层磨,避免中下层磨全停;同一层标高的前后墙燃烧器应尽量同时运行,应避免同层燃烧器无火现象,不允许长时间出现前后墙燃烧器投运层数差为两层及以上运行方式,比如前墙投1台,后墙投两台;或者前墙没火,后墙投运3台的类似情况。 二、磨煤机运行方式的选择 运行人员在选择磨煤机前应对各磨煤机性能有明确的认识,如单台磨煤机加载压力、进出口温度、分离器运行情况、研磨件性能、燃用煤质、风煤比选择的方面应较为熟悉,在此基础上还应参照以下三个原则: 1)在同样出力的情况下,各磨均匀负荷的结果较各磨高、低悬殊的出力运行更为经济; 2)在设备数量和运行条件允许的情况下,应通过改变磨煤机的运行方式,来避免磨煤机的最低出力; 3)尽可能的使磨煤机在额定负荷附近运行。 三、磨煤机运行中风煤比选择 合理的风煤比是锅炉安全运行的保障。磨煤机的一次风要同时保证煤粉输送和煤粉燃烧,过大过小的风煤比都会影响到锅炉的燃烧,一次风速过低可能会造成煤粉的沉积,造成管道堵塞;一次风速过高,造成系统磨损、煤粉浓度低,不利于燃烧;磨煤机出力过小会造成磨煤机衬板上煤层较薄,碾磨部件直接接触,导致强烈磨损和振动。因而,应根据燃烧需要调整合适的风量。随着磨煤机冷风阀门开度的增加,锅炉效率下降;这是因为一次风总量和二次风总量不变的情况下,磨煤机冷风阀门开度的增加,从而一次风中冷风量的增加,磨煤机的出口温度下降,减少了空气预热其中烟气和一次风的换热量,使排烟温度升高,排烟损失增加,锅炉效率下降。 随着磨煤机进口风量的增加,锅炉效率先增加后减小;这是因为磨煤机进口风量的增加对于缺氧燃烧的一次风而言,有利于煤粉燃尽,未燃尽碳热损失下降,锅炉效率升高;随着磨煤机进口风量的增加,在磨煤机出口风温不变的情况下,未燃尽热损失越来越小,排烟损失越来越大,两者达到平衡时锅炉效率达到最大值,磨煤机进口风量再增加,则锅炉效率下降。 四、其他 磨煤机和是中速磨煤机的主要耗电设备,和一次风机两者耗电量之和占制粉系统总电耗的90%以上。因而在保证锅炉燃烧的同时应结合经济性来选择磨煤机的运行方式。 如在满足机组安全前提下尽可能的提高磨煤机出口风的温度,降低磨煤机进口冷风量,进口风量则根据锅炉的燃烧情况进行调整。另外,在满足负荷的前提下,应该尽可能减少磨煤机的运行台数,多使用能耗较低的磨煤机。磨煤机同时运行的台数越少,制粉单耗就越低,因此合理的调整每台磨煤机的给煤量,调整磨煤机的运行方式是降低制粉单耗,提高锅炉整体经济性的有效途径。结语 针对目前电厂燃烧系统和设备特性,在锅炉燃烧稳定的前提下达到节能降耗的目标,需要运维人员的不断探索创新。本文通过对磨煤机运行方式的研究,合理选择磨煤机的负荷分配,在优化锅炉燃烧方面是有较好的应用。参考文献 [1]张卓林.电厂煤粉锅炉配风优化专家系统[D].济南大学,2013. [2]韦红旗.仲亚飞.大型燃煤电厂制粉系统能耗预测及优化分配[S].东南大学2016:6.

热电厂热力系统计算

热力发电厂课程设计 1.1 设计目的 1. 学习电厂热力系统规划、设计的一般途径和方案论证、优选的原则 2. 学习全面性热力系统计算和发电厂主要热经济指标计算的内容、方法 3. 提高计算机绘图、制表、数据处理的能力 1.2 原始资料 西安 某地区新建热电工程的热负荷包括: 1)工业生产用汽负荷; 2)冬季厂房采暖用汽负荷。 西安 地区采暖期 101 天,室外采暖计算温度 –5℃,采暖期室外平均温度 1.0℃,工业用汽 和采暖用汽热负荷参数均为 0.8MPa 、230℃。通过调查统计得到的近期工业热负荷和采暖热 负荷如下表所示: 1.3 计算原始资料 (1)锅炉效率根据锅炉类别可取下述数值: 锅炉类别 链条炉 煤粉炉 沸腾炉 旋风炉 循环流化床锅炉 锅炉效率 0.72~0.85 0.85~0.90 0.65~ 0.70 0.85 0.85~ 0.90 (2)汽轮机相对内效率、机械效率及发电机效率的常见数值如下: 汽轮机额定功率 750~ 6000 12000 ~ 25000 5000 汽轮机相对内效率 0.7~0.8 0.75~ 0.85 0.85~0.87 汽轮机机械效率 0.95~0.98 0.97~ 0.99 ~ 0.99 发电机效率 0.93~0.96 0.96~ 0.97 0.98~0.985 3)热电厂内管道效率,取为 0.96。 4)各种热交换器效率,包括高、低压加热器、除氧器,一般取 0.96~0.98。

5)热交换器端温差,取3~7℃。 2%

6)锅炉排污率,一般不超过下列数值: 以化学除盐水或蒸馏水为补给水的供热式电厂 以化学软化水为补给水的供热式电厂5% 7)厂内汽水损失,取锅炉蒸发量的3%。 8)主汽门至调节汽门间的压降损失,取蒸汽初压的3%~7%。 9)各种抽汽管道的压降,一般取该级抽汽压力的4%~8%。 10)生水水温,一般取5~20℃。 11)进入凝汽器的蒸汽干度,取0.88~0.95。 12)凝汽器出口凝结水温度,可近似取凝汽器压力下的饱和水温度。 2、原则性热力系统 2.1 设计热负荷和年持续热负荷曲线 根据各个用户的用汽参数和汽机供汽参数,逐一将用户负荷折算到热电厂供汽出口,见 表2-1 。用户处工业用汽符合总量:采暖期最大为175 t/h, 折算汇总到电厂出口处为166.65 t/h 。 2-1 折算到热电厂出口的工业热负荷,再乘以0.9 的折算系数,得到热电厂设计工业热负荷,再按供热比焓和回水比焓(回水率为零,补水比焓62.8 kJ/kg)计算出供热量,见表2-2。根据设计热负荷,绘制采暖负荷持续曲线和年热负荷持续曲线图,见图2-1 、图2-2。 表2-2 热电厂设计热负荷

新建电厂正压直吹式制粉系统防爆控制要点

新建电厂正压直吹式制粉系统防爆控制要点 发表时间:2018-08-02T17:40:14.597Z 来源:《电力设备》2018年第12期作者:李含琼1 张冠群2 [导读] 摘要: 制粉系统爆炸主要取决于可燃物的浓度、氧气的浓度、点燃能。 (1辽宁东科电力有限公司辽宁省沈阳市 110179;2国华九江发电有限责任公司江西省九江市湖口县 332500) 摘要: 制粉系统爆炸主要取决于可燃物的浓度、氧气的浓度、点燃能。其爆炸发生的时机和机率则与煤种、制粉系统型式及运行操作管理水平密切相关,其中防止煤粉积存和自燃,是制粉系统防爆的关键。本文分析几起正压直吹式制粉系统爆燃事故案例的原因,并提出控制要点。 关键词:磨煤机;制粉系统;爆燃 1 引言 在火电厂中,制粉系统是锅炉主要辅机之一,一般情况下大容量机组普遍采用正压直吹式制粉系统,其优点是系统简单、布置紧凑、占地少、输送管道短等优点。制粉系统在高温空气及可燃煤粉介质的工况下运行,如果系统设计、安装、调试或运行等环节控制不当,可能产生爆燃等安全隐患。本文分析了正压直吹式制粉系统爆燃原因并针对新建电厂提出控制要点。 3原因分析 制粉系统爆炸主要取决于三大要素:可燃物的浓度、氧气的浓度、点燃能,但其爆炸发生的时机和机率则与煤种、制粉系统型式及运行操作管理水平密切相关,爆炸呈现的方式和结果各不相同。 3.1制粉系统爆炸的三要素 (1)煤粉的浓度 煤粉的爆炸浓度有范围的,即存在上限浓度和下限浓度。对于烟煤而言,气粉混合物浓度只有在0.32~4 kg/m3范围内才会发生爆炸,而浓度在1.2~2 kg/m3范围时爆炸危险性最大。制粉系统在启动或停止的过程中,煤粉浓度变化相对较大,存在爆炸的危险性。 (2)点燃能 在制粉系统运行中,如果局部存在积粉,一旦条件合适会引发自燃,由于制粉系统正常运行工况的风量和煤量较大,积粉自燃的能量被携带释放,不足以形成制粉系统爆炸的点燃能,但如果工况发生变化,尤其是风量减少,会造成积粉自燃能量的聚集,形成制粉系统爆炸的点燃能。 (3)氧气的浓度 制粉系统中氧气来自多方面:作干燥剂的热风、冷风及漏风,输送煤粉的气体都含有一定量的氧气,氧在爆炸过程中起着氧化剂的作用。如果煤粉混合物中氧的含量不足,即使有很强的点燃源,可燃混合物的浓度也在最佳爆炸浓度范围,也不会发生爆炸。 3.2 制粉系统爆炸的实质 制粉系统爆炸的本质,是由于原煤或煤粉滞留、积存在制粉系统内部或者相关部位,在一定的温度环境下氧化自燃,在制粉系统通风、启动、停运、或者风量调节时,造成散热和流动条件变化,为磨煤机内部可燃性杂混物提供了点燃源,发生自燃性爆炸。所以,防煤粉积存和自燃,是防止制粉系统爆炸的关键,而减少和消除积粉是制粉系统防爆的核心工作。 4.控制措施 4.1 制粉系统风粉调平 磨煤机内部工况是不断变化的,很难避免局部煤粉浓度达到爆炸浓度,应尽可能将一次风喷嘴平均分配,尽量使磨内空气均匀分配。磨煤机出口各管风速尽量调平,避免某一管路内煤粉沉积而自燃。 4.2 防止消防蒸汽带水 (1)确保消防蒸汽温度有一定的过热度; (2)消防蒸汽电动门建议集中高位布置,避免在磨消防蒸汽管道入口处布置造成积水; (3)在系统设计阶段设计合理的疏水系统,保证疏水的彻底。 4.3合理设置监测点及保护装置 (1)设计可靠足够的温度、风速测点,保证对制粉系统状态测量准确及全面监控。 (2)增加惰性气体装置 考虑增加煤粉管路的惰性气体消防装置,如二氧化碳或氮气,可根据原煤斗用的二氧化碳气源引出。 (3)设计合理的联锁保护逻辑 合理的联锁保护使制粉系统启动与停止操作按规定的程序进行,防止误操作发生。如煤粉管道温度高、风速低于预定限值报警时能及时调整,当无法恢复正常联锁停止的保护[1]。 4.4 阀门可靠性 确保磨煤机出、入口关断门可靠关闭的严密性和时间,防止多余的空气进入制粉系统中。 4.5 系统优化设计 系统一旦发生煤粉沉积经一段时间后容易发生自燃,甚至爆炸,所以防止煤粉沉积是制粉系统防爆的重要工作。 (1)管道布置 煤粉管道的布置和结构不应存在煤粉在管道内沉积的可能性。送粉管道的配置和布置应防止煤粉沉积和燃烧器回火,不应有停滞区和死端,煤粉管道与水平面的倾角应不小于 50°[2]。 (2)粉管流速 粉管流速应做到整个气粉流动管道的死区和系统死角都能得到充分清理,推荐磨煤机正常运行时出口风速范围是22-28m/s[3]。 4.6 避免磨煤机内部出现明火 (1)避免磨煤机内部煤粉沉积,在停止磨煤机前应将磨煤机内部彻底吹扫干净,防止积粉自燃。该点必须在运行规程及操作票中强调说明,以保证吹扫彻底。

中速磨煤机制粉系统运行优化试验

中速磨煤机制粉系统运行优化试验 发表时间:2017-01-19T11:07:17.057Z 来源:《基层建设》2016年32期作者:孙德强 [导读] 摘要:本文主要是针对平盘磨直吹式的制粉系统的煤粉细度大、煤粉的均匀性差、单耗高等问题,采用300MW机组制粉系统进行优化试验。 大唐七台河发电有限公司黑龙江省 154600 摘要:本文主要是针对平盘磨直吹式的制粉系统的煤粉细度大、煤粉的均匀性差、单耗高等问题,采用300MW机组制粉系统进行优化试验。充分地对平盘磨直吹式制粉系统进行分析,对磨煤机各参数开展一系列的优化试验,以求可以改善平盘磨直吹式的制粉系统运行的参数值。通过实验结果能够发现:制粉系统中单耗得到地下降,煤粉的粗细可以完全满足要求,飞灰、大渣的含碳量明显地降低,提高锅炉的运行经济性以及效率。 关键词:中速磨煤机;制粉系统;运行优化试验 1平盘磨直吹式制粉系统介绍 1.1制粉系统工作原理 平盘磨直吹式制粉系统按照平盘磨内气流正压或者负压的状态能够分成平盘磨直吹正压制粉系统以及平盘磨直吹负压制粉系统这两种。本文选择平盘磨直吹制粉系统,特指的是平盘磨直吹负压制粉方法,该系统的组成主要包括原煤仓、平盘磨、给煤机、排粉机、粗粉分离器、锅炉、燃烧器、空气预热器以及送风机,具体的系统图1能够得到充分体现。 图1 平盘磨直吹式制粉系统 平盘磨直吹制粉系统运行的过程: (1)原煤仓中原煤可以通过给煤机送于平盘磨当中。平盘磨当中,原煤需要做好平盘磨中央落煤管下落于磨环之上,利用转动的磨环离心力把原煤送到磨环的边缘磨盘的滚道中,然后经过若干的磨辊碾磨原煤,将原煤的碾磨为煤粉颗粒。 (2)利用送风机送入经过了空气预热器之后热空气干燥处理了煤粉,经过干燥后煤粉送风机中送入空气作用,输送到了平盘磨上粗粉的分离器之中。粗粉分离器当中,合格煤粉会被分离出,然后利用排粉机将其输送锅炉当中,同时在送风机中送入经过了空气的预热器之后热空气、燃烧器作用下做好燃烧;对于质量差的煤粉将被分离出,其中质量差的煤粉中粗粉颗粒将被分离出重新进入到平盘磨碾磨,对于难碾磨煤粉颗粒将被分离出进入到平盘磨下方排渣箱当中做好清理。 因为平盘磨直吹制粉系统中排粉机的安装是在平盘磨出口侧处,所以,平盘磨会在排粉机抽吸作用形成负压情况下运行。优点是平盘磨内煤粉不会轻易向空气当中泄露,环境的污染小并且不会产生污染;缺点是排粉机叶片容易受煤粉等流体磨损以及腐蚀,有着较高的维修频率。 1.2制粉系统各运行参数制约关系 (1)磨煤机通风量和煤粉细度、磨煤机单耗关系。如果磨煤机的通风升高时,碾磨后煤粉会向平盘磨上粗粉分离器的动能增加,导致有更多不合格的煤粉通过粗粉分离器,其中煤粉的细度会相应地变大;因为有更多不合格的煤粉通过了粗粉分离器,进而造成平盘磨重复碾磨率降低,磨煤机的单耗随之降低,不过如果磨煤机的通风量大,会导致磨煤机的碾磨原煤时压力增加,磨煤机的单耗随之而变大。 (2)分离器调节挡板开度同煤粉细度以及磨煤机单耗之间存在的关系。当增大分离器调节挡板开度时,完成碾磨工作之后的煤粉向平盘磨上方的粗粉分离器运动的阻力发生变小的趋势,使得有更多的质量不达标的煤粉通过粗粉分离器,相应的增大了煤粉细度;由于存在更多不合格的煤粉直接通过粗粉分离器,使得平盘磨重复碾磨率下降,随之造成磨煤机单耗变小。 (3)磨辊加载压力同煤粉细度以及磨煤机单耗之间存在的关系。通过增大磨辊加载压力时,原煤碾磨的能力也相应变大,进而就能够使原煤碾磨的更加细小,使得煤粉细度更小;但是增加原煤碾磨能力时,平盘磨电能的消耗明显升高,即磨煤机单耗变得更大。 2平盘磨直吹式制粉系统优化试验 为了将平盘磨直吹式制粉系统的优化试验过程展开具体的说明,文章选择某300MW机组为例展开说明。选择的平盘磨型号为 ZGM95。标准状况下,ZGM95的磨煤机出力为38t/h,转动速度为26.4r/min,气体流量为17.93kg/s,单耗量为6-l0kW?h/t,通风阻力在5740Pa以下。 2.1标定磨煤机的通风量 由磨煤机入口的测风原件测定磨煤机通风量,并准确的显示出风值。但在当前生产过程中,由于不合理的布局测风设备,使得前、后直管存在较短部分,风道转弯节和膨胀节影响了风速,所以表盘风量精确程度往往不够,因此一定要进行标定计算。在煤种稳定、复合稳定在290MW时进行标定试验,磨煤机通风量计算公式如下所示: (1) 公式中Q为磨煤机通风量标定值;K为通风量测量装置总系数(初始值设为66.438,最终值由冷态标定试验判定);t为风道管内温度*单位为℃;P为通风量检测装置输出压差;Px为风道管内总风量压力。 2.2煤粉分配状况及摸底测试 为了将煤粉的分配状况有效分析,在开展平盘磨直吹式制粉系统优化试验工作之前,必须测定该制粉系统的煤粉分配状况。在负荷为240MW下,当该制粉系统中磨煤机单耗为8.31kW?h/t、磨煤机出力为39t/h、磨煤机通风量为65000m3/h,分离器调节挡板开度调整到55°、磨辊加载压力调整到15MPa时,各处煤粉即各一次风道煤粉分配状况如表1所示。从煤粉分配状况可以有效判断出各角落的煤粉细度和煤粉均匀性系数还是比较一致的,说明煤粉能够合理分配。 2.3优化磨煤机通风量参数 在负荷为240MW下,由于不能调制过低的磨煤机通风量,因此应取通风量的数值大于55000m3/h。当调整磨煤机给煤量到39.2t/h、分离器调节挡板开度的大小调整至55°、磨辊加载压力调整至15MPa,磨煤机通风量分别取值为65000,60000,55000m3/h时,测试该制粉

热电厂热力系统计算

热力发电厂课程设计 1.1设计目的 1.学习电厂热力系统规划、设计的一般途径和方案论证、优选的原则 2.学习全面性热力系统计算和发电厂主要热经济指标计算的内容、方法 3.提高计算机绘图、制表、数据处理的能力 1.2原始资料 西安某地区新建热电工程的热负荷包括: 1)工业生产用汽负荷; 2)冬季厂房采暖用汽负荷。 西安地区采暖期101天,室外采暖计算温度–5℃,采暖期室外平均温度1.0℃,工业用汽和采暖用汽热负荷参数均为0.8MPa、230℃。通过调查统计得到的近期工业热负荷和采暖热负荷如下表所示: 热负荷汇总表 1.3计算原始资料 (1)锅炉效率根据锅炉类别可取下述数值: 锅炉类别链条炉煤粉炉沸腾炉旋风炉循环流化床锅炉 锅炉效率0.72~0.85 0.85~0.90 0.65~0.70 0.85 0.85~0.90 (2)汽轮机相对内效率、机械效率及发电机效率的常见数值如下: 汽轮机额定功率750~6000 12000~25000 5000 汽轮机相对内效率0.7~0.8 0.75~0.85 0.85~0.87 汽轮机机械效率0.95~0.98 0.97~0.99 ~0.99 发电机效率0.93~0.96 0.96~0.97 0.98~0.985 (3)热电厂内管道效率,取为0.96。 (4)各种热交换器效率,包括高、低压加热器、除氧器,一般取0.96~0.98。 (5)热交换器端温差,取3~7℃。

(6)锅炉排污率,一般不超过下列数值: 以化学除盐水或蒸馏水为补给水的供热式电厂2% 以化学软化水为补给水的供热式电厂5% (7)厂内汽水损失,取锅炉蒸发量的3%。 (8)主汽门至调节汽门间的压降损失,取蒸汽初压的3%~7%。 (9)各种抽汽管道的压降,一般取该级抽汽压力的4%~8%。 (10)生水水温,一般取5~20℃。 (11)进入凝汽器的蒸汽干度,取0.88~0.95。 (12)凝汽器出口凝结水温度,可近似取凝汽器压力下的饱和水温度。 2、原则性热力系统 2.1设计热负荷和年持续热负荷曲线 根据各个用户的用汽参数和汽机供汽参数,逐一将用户负荷折算到热电厂供汽出口,见表2-1。用户处工业用汽符合总量:采暖期最大为175 t/h,折算汇总到电厂出口处为166.65 t/h。 表2-1 热负荷汇总表 折算到热电厂出口的工业热负荷,再乘以0.9的折算系数,得到热电厂设计工业热负荷,再按供热比焓和回水比焓(回水率为零,补水比焓62.8 kJ/kg)计算出供热量,见表2-2。根据设计热负荷,绘制采暖负荷持续曲线和年热负荷持续曲线图,见图2-1、图2-2。 表2-2 热电厂设计热负荷

直吹式制粉系统调整

中速磨直吹式制粉系统的运行调整 1. 煤粉量的调整 由于直吹式制粉系统出力的大小直接与锅炉蒸发量相匹配,故当锅炉负荷有较大变动时,即需启动或停止一套制粉系统。在确定制粉系统启、停方案时,必须考虑到燃烧工况的合理性,如投运燃烧器应均衡,主、再汽温较易控制及排烟温度控制等。若锅炉的负荷变化不大,可通过调节运行中的制粉系统出力来解决。当锅炉负荷增加,要求制粉系统出力增加时,应先开大冷、热一次风风门或提高一次风压,增加磨的通风量,利用磨煤机内的少量存粉作为增负荷开始时的缓冲调节;然后再增加磨煤机的给煤量,同时开大相应的二次风门,使燃料量适应负荷。反之,当锅炉负荷降低时,则减少给煤量和磨煤机通风量以及二次风量。 运行实践证明,给煤量在20~40 t/h 左右较为经济。 2. 燃烧的调整与运行 保持适当的一、二次风出口速度和风率,是建立良好的炉内动力工况,使风粉混合均匀,保证燃料正常着火和燃烧的必要条件。一次风速过高会推迟着火,空预器漏风加大,过低则可能烧坏喷口,并可能在一次风管造成煤粉沉积,在磨煤机风量满足的前提下,一次风压应维持在9~10.5 kPa(根据具体调试确定)。二次风速过高或过低都可能直接破坏炉内正常动力工况,降低火焰的稳定性,因此应控制好二次风箱与炉膛差压值。一次风率增大,着火热增大,着火时间推迟,显然这对低挥发分燃料是不利的;对高挥发分燃料着火并不困难,为

保证火焰迅速扩散和稳定,要求有较高的一次风率。锅炉运行过程中,保证一定的一次风压对稳定燃烧极其重要,一次风压的波动易造成燃烧不稳,所以运行过程中一次风压是一较重要的监视参数。在自动状态下一次风压随负荷变化,成一曲线关系。一次风压投自动时,负荷大幅变化时应密切监视一次风压的变化,防止一次风压过低导致不出粉,这种情况多出现在机组启动、断煤、负荷偏低停运制粉系统时。运行中判断风速或风量是否适当的标准:第一是燃烧的稳定性,炉膛温度场的合理性和对过热汽温的影响。第二是比较经济指标,主要是看排烟损失和机械未完全燃烧损失的数值大小。一般情况下,调整要结合磨煤机煤量与磨风量关系曲线与锅炉总煤量与总风量关系曲线进行。曲线没找着,担待点! 机组加减负荷实际为每台给煤机转速快慢的调节,即给煤量的调节。因此,其负荷调整有一滞后的过程。加负荷时,随着汽机调门的开大,汽压下降,给煤量增加,燃烧加强,风量加大,受热面吸热加剧,尤其是起动上层制粉系统时,应特别注意受热面的超温。减负荷的过程则相反,可通过预先调整减温水及燃烧器摆角加以控制。制粉系统起动时,由于给煤量短时加大,负荷将有一短暂突升,为了保证机组在负荷通道内运行,起动制粉系统前应降低汽压运行;停运制粉系统时,停运磨的煤量加至其余几台运行磨煤机,使得运行磨煤机的负荷陡然加大,其磨煤出力、干燥出力将由于煤量的突然加大而短时下降,虽然最终制粉系统的总煤量未发生变化,但在磨煤机煤量重新分配的过程中,汽压会短时下降,在汽机调门开度未变化的基础上,机组负荷

制冷系统设计步骤

一、设计任务和已知条件 根据要求,在武汉地区,以风机盘管为末端装置,冷冻水温度为7℃,空调回水温度为11℃,总制冷量为400KW,冷却水系统选用冷却塔使用循环水。 二、制冷压缩机型号及台数的确定 1、确定制冷系统的总制冷量 制冷系统的总制冷量,应该包括用户实际所需要的制冷量,以及制冷系统本身和供冷系统冷损失,可按下式计算: 式中——制冷系统的总制冷量(KW) ——用户实际所需要的制冷量(KW) A——冷损失附加系数。 一般对于间接供冷系统,当空调制冷量小于174KW时,A=0.15~0.20;当空调制冷量为1 74~1744KW时,A=0.10~0.15;当空调制冷量大于1744KW时,A=0.05~0.07;对于直接供冷系统,A=0.05~0.07。 2、确定制冷剂种类和系统形式 根据设计的要求,选用氨为制冷剂并且采用间接供冷方式。 3、确定制冷系统设计工况 确定制冷系统的设计工况主要指确定蒸发温度、冷凝温度、压缩机吸气温度和过冷温度等工作参数。有关主要工作参数的确定参考《制冷工程设计手册》进行计算。 确定冷凝温度时,冷凝器冷却水进、出水温度应根据冷却水的使用情况来确定。 ①、冷凝温度()的确定 从《制冷工程设计手册》中查到武汉地区夏季室外平均每年不保证50h的湿球温度(℃)

℃ 对于使用冷却水塔的循环水系统,冷却水进水温度按下式计算: ℃ 式中——冷却水进冷凝器温度(℃); ——当地夏季室外平均每年不保证50h的湿球温度(℃); ——安全值,对于机械通风冷却塔,=2~4℃。 冷却水出冷凝器的温度(℃),与冷却水进冷凝器的温度及冷凝器的形式有关。 按下式确定: 选用立式壳管式冷凝器=+(2~4)=31.2+3=34.2℃ 注意:通常不超过35℃。 系统以水为冷却介质,其传热温差取4~6℃,则冷凝温度为 ℃ 式中——冷凝温度(℃)。 ②、蒸发温度()的确定 蒸发温度是制冷剂液体在蒸发器中汽化时的温度。蒸发温度的高低取决于被冷却物体的温度及传热温差,而传热温差与所采用的载冷剂(冷媒)有关。 系统以水为载冷剂,其传热温差为℃,即

600MW凝汽式机组原则性热力计算

国产600MV凝汽式机组全厂原则性热力系统计算 (一)计算任务 1.最大计算功率下的汽轮机进汽量D,回热系统各汽水流量D j; 2?计算机组和全厂的热经济性指标(机组汽耗量、机组热耗量、机组热耗率、绝对电效率、 管道效率、全厂热耗率、全厂标准煤耗率、全厂热效率); 3?按《火力发电厂热力系统设计制图规定》绘出全厂原则性热力系统图,并将所计算的全部汽水流量绘制成表格,绘制回热系统计算点汽水参数表格,并进行功率校核。 (二)计算类型:定功率计算 (三)系统简介 国产600MW凝汽式机组,机组为亚临界压力、一次中间再热、单轴、反动式、四缸四排汽机组。汽轮机高、中、低压转子均为有中心孔的整锻转子。汽轮机配HG-2008/18-YM2型 亚临界压力强制循环汽包炉。采用一级连续排污系统,扩容器分离出得扩容蒸汽送入除氧器。 该系统共有八级抽汽。其中第一、二、三级抽汽分别供三台高压加热器,第五、六、七、 八级抽汽分别供四台低压加热器,第四级抽汽作为除氧器的加热汽源。八级回热加热器(除 氧器除外)均装设了疏水冷却器,以充分利用本级疏水热量来加热本级主凝结水。三级高压 加热器均安装了内置式蒸汽冷却器,将三台高压加热器上端差分别减小为-1.7 C、0C、0C, 从而提高了系统的热经济性。四台低压加热器上端差均为 2.8 C,八级加热器下端差(除氧 器除外)均为5.5 Co 汽轮机的主凝结水由凝结水泵送出,依次流过轴封加热器、4台低压加热器,进入除氧 器。然后由汽动给水泵升压,经三级高压加热器加热,最终给水温度达到273.3 C,进入锅 炉。 三台高加疏水逐级自流至除氧器;四台低加疏水逐级自流至凝汽器。凝汽器为双压式凝汽器,汽轮机排汽压力0.0049MPa ,凝汽器压力下饱和水焓h'c=136.2 ( kJ/kg)与单压凝汽器相比,双压凝汽器由于按冷却水温度低、高分出了两个不同的汽室压力,因此它具有更低些的凝汽器平均压力,汽轮机的理想比焓降增大。 给水泵汽轮机(以下简称小汽机)的汽源为中压缸排汽(第4级抽汽),无回热加热, 其排汽亦进入凝汽器。热力系统的汽水损失计有:全厂汽水损失、锅炉排污量(因排污率较 小,未设排污利用系统)。 轴封漏气量D sg =2%D 0全部送入轴封加热器来加热主凝结水,化学补充水量直接送入凝 汽器。 (四)全厂原则性热力系统图如图4-2所示。

制冷系统设计.

课程设计 设计题目:南京市某空调制冷机房 姓名 院系 专业 年级 学号 指导教师 年月日

目录 0设计任务 (1) 1前言 (1) 2课程设计题目及数据 (2) 3制冷机组的类型及条件 (2) 3.1初参数 (2) 3.2确定制冷剂种类和系统形式 (2) 3.3确定制冷系统设计工况 (2) 3.3.1冷凝温度的确定 (2) 3.3.2蒸发温度的确定 (3) 3.3.3过冷温度的确定 (3) 3.3.4过热温度的确定 (3) 3.3.5制冷系统理论循环p-h图 (4) 4制冷系统热力计算 (5) 5制冷压缩机型号及台数 (6) 5.1压缩机形式的选择 (6) 5.2压缩机台数的选择 (7) 5.3压缩机级数的选择 (7) 5.4电机的选择 (7) 6冷凝器的选择计算 (7) 6.1冷凝器的选择 (7) 6.2冷凝器热负荷计算 (7) 6.3冷凝器的已知参数 (8) 6.4计算肋管特性参数 (8) 6.5计算平均传热温差 (8) 6.6冷却水流量 (9) 6.7概算所需传热面积 (9) 6.8初步规划冷凝器结构 (9) 6.9计算水侧的换热系数 (9) 6.10计算制冷剂测得冷凝换热系数 (10) 6.10.1求水平光管管外冷凝换热系数 (10) 6.10.2计算水平肋管外的冷凝换热系数 (10) 6.10.3计算水平肋管束外冷凝换热系 (11) 6.11实际的热流密度 (11) 6.12计算实际传热面积 (11) 6.13冷凝器的类型 (12) 7蒸发器的选择计算 (12)

7.1蒸发器的预选 (12) 7.2蒸发温度与传热温差的确定 (12) 7.3换热面积的计算 (12) 7.4蒸发器风量的确定 (12) 7.5风机的选择 (12) 8冷却水系统的选择 (13) 8.1冷却塔 (13) 8.2水泵的选型 (13) 8.2.1水泵扬程 (13) 8.2.2阻力计算 (13) 9冷冻水系统的选择 (14) 10管径的计算 (14) 11其它辅助膨胀阀的选择计算 (15) 11.1膨胀阀的选择 (15) 11.2贮液器的选择计算 (15) 11.3油氨分离器的选择计算 (15) 11.4气液分离器的选择计算 (15) 11.5集油器的选择计算 (16) 11.6不凝性气体分离器的选择计算 (16) 12制冷机组与管道的保温 (16) 13设备清单及附图 (16) 14参考文献 (17)

发电厂原则性热力系统计算

发电厂原则性热力系统计算: 已知条件 1. 汽轮机形式和参数 制造厂家: 哈尔滨汽轮机厂 型 号: N300—16.7/538/538型 型 式: 亚临界、一次中间再热、单轴、双缸、双排汽、反动凝汽式汽轮 机 额定功率: 300MW 最大功率: 330MW 初蒸汽参数: =0p 16.67MP a ,=0 t 538C 再热蒸汽参数: 冷段压力 ==in rh p p 2 3.653MPa ,冷段温度=in rh t 320.6C 热段压力=out rh p 3.288MP a ,热段温度=out rh t 538C 低压缸排汽参数: =c p 0.0299M Pa ,=c t 32.1C , =c h 2329.8kJ/kg 给水泵小汽轮机耗汽份额:=st α0.0432 机组发电机实际发出功率:=' e P 300MW 给水泵出口压力: =pu p 20.81M Pa 凝结水泵出口压力: 1.78MPa 机组机电效率: ==g m mg ηηη0.98 加热器效率: =h η0.99 额定排汽量: 543.8t/h 给水温度: 273.6℃ 冷却水温度: 20℃ 最高冷却水温度: 34℃ 额定工况时热耗率: (计算)7936.2Kj /KW .h (保证)7955Kj/K W.h 额定工况时汽耗率 3.043K g/KW .h 主蒸汽最大进汽量: 1025t/h 工作转速: 3000r/min 旋转方向: 顺时针(从汽轮机向发电机看) 最大允许系统周波摆动: 48.5—50.5Hz 空负荷时额定转速波动: ±1r/m in 噪音水平: 90db 通流级数: 36级

制冷系统设计步骤

一、设计任务和已知条件 根据要求,在地区,以风机盘管为末端装置,冷冻水温度为7℃,空调回水温度为11℃,总制冷量为400KW,冷却水系统选用冷却塔使用循环水。 二、制冷压缩机型号及台数的确定 1、确定制冷系统的总制冷量 制冷系统的总制冷量,应该包括用户实际所需要的制冷量,以及制冷系统本身和供冷系统冷损失,可按下式计算: 式中——制冷系统的总制冷量(KW) ——用户实际所需要的制冷量(KW) A——冷损失附加系数。 一般对于间接供冷系统,当空调制冷量小于174KW时,A=0.15~0.20;当空调制冷量为174~ 1744KW时,A=0.10~0.15;当空调制冷量大于1744KW时,A=0.05~0.07;对于直接供冷系统,A=0.05~0.07。 2、确定制冷剂种类和系统形式 根据设计的要求,选用氨为制冷剂并且采用间接供冷方式。 3、确定制冷系统设计工况 确定制冷系统的设计工况主要指确定蒸发温度、冷凝温度、压缩机吸气温度和过冷温度等工作参数。有关主要工作参数的确定参考《制冷工程设计手册》进行计算。 确定冷凝温度时,冷凝器冷却水进、出水温度应根据冷却水的使用情况来确定。 ①、冷凝温度()的确定 从《制冷工程设计手册》中查到地区夏季室外平均每年不保证50h的湿球温度(℃)℃

对于使用冷却水塔的循环水系统,冷却水进水温度按下式计算: ℃ 式中——冷却水进冷凝器温度(℃); ——当地夏季室外平均每年不保证50h的湿球温度(℃); ——安全值,对于机械通风冷却塔,=2~4℃。 冷却水出冷凝器的温度(℃),与冷却水进冷凝器的温度及冷凝器的形式有关。 按下式确定: 选用立式壳管式冷凝器=+(2~4)=31.2+3=34.2℃ 注意:通常不超过35℃。 系统以水为冷却介质,其传热温差取4~6℃,则冷凝温度为 ℃ 式中——冷凝温度(℃)。 ②、蒸发温度()的确定 蒸发温度是制冷剂液体在蒸发器中汽化时的温度。蒸发温度的高低取决于被冷却物体的温度及传热温差,而传热温差与所采用的载冷剂(冷媒)有关。 系统以水为载冷剂,其传热温差为℃,即 ℃

直吹式制粉系统出粉管煤粉均匀性对燃烧的影响

直吹式制粉系统出粉管煤粉均匀性对燃烧的影响为确保实现国家“十一五”规划《纲要》建设资源节约型、环境友好型社会目标,按照国家电力发展规划:电力行业要优先安排可再生能源、高效、污染排放低的机组发电,限制能耗高、污染大、违反国家产业政策的机组发电,重点对火电机组进行优化调度,鼓励煤耗低、污染排放少、节水型机组发电。 强化能源节约和高效利用的政策导向,加大节能力度。通过优化产业结构特别是降低高耗能产业比重,实现结构节能;通过开发推广节能技术,实现技术节能。 国内大容量电站锅炉普遍采用直吹式制粉系统,由于锅炉制粉系统中各输粉管道的阻力特性不同,磨煤机出口煤粉和空气分配差等问题,导致锅炉风粉均匀性差,目前大多数电厂的磨煤机出粉口煤粉管粉量的不均衡在30以上,有的甚至超过100。目前没有合适的直吹制粉系统煤粉管内一次风粉浓度的监视及调整手段,很多燃烧优化的数学模型建立后由于缺乏准确的监测数据,并且无法对风粉流量调节,无法获得更佳的优化效果。 国内大容量电站锅炉普遍采用直吹式制粉系统,对于四角切圆燃烧方式,其最基本特征是直流燃烧器的几何轴线与位于炉膛中心的一个或数个假象切圆相切,在炉膛内形成一个总体旋转的火球,达到稳定煤粉燃烧,获得高的燃烧效率的目的,并保持炉内不结渣,同时结合分级燃烧技术,还可获得低的氮氧化物排放浓度。由于粉量偏差造成炉膛内切圆偏斜,产生热负荷偏斜、结渣、炉内燃烧工况恶化,飞灰含碳量高等问题。对于旋流燃烧器,由于以单个燃烧器组织燃烧,各燃烧器一次风量和煤粉浓度的分配不均衡对锅炉安全优化运行也是不利的。 制粉系统各输送管道的煤粉分配的不均衡,各支管粉量偏差大,风煤比偏差大,造成后期风粉得不到充分混合,燃烧状况不理想,负荷响应慢,炉渣可燃物高,严重影响锅炉的安全经济运行。同时,支管内风粉不均匀,出现的绕绳现象,如果分层状态的空气和煤粉进入燃烧器,就会导致,火焰不稳定,燃烧不均匀,未燃碳(LOI)增加,结渣,冲刷炉壁,CO和O2不平衡等现象。因此,改善制粉系统各输送管道的煤粉分配的均衡及支管内风粉均匀性,是提高锅炉燃烧效率,降低煤耗,提高锅炉安全运行的有效手段。 控制燃烧型NOx(不包括再燃烧)采用在燃烧初期限制氧气量,使燃料氮转变成氮气(N2)而不是一氧化氮(NO)。然而,这会伴随燃烧效率降低、导致燃料成本增加、粉煤灰销售收入的损失和静电除尘器除尘效率的降低。改进粉煤的细度和分配能降低灰含碳量而不使NOx 排放量明显地增加。

相关主题