搜档网
当前位置:搜档网 › 直吹式制粉系统及中速磨运行特性分..

直吹式制粉系统及中速磨运行特性分..

直吹式制粉系统及中速磨运行特性分..

直吹式制粉系统及中速磨运行特性分析

近年来,我国引进的大型燃煤电站锅炉中,中速磨直吹式制粉系

统占有一半以上的份额。国内也有几家磨煤机制造厂引进了国外大型磨煤机的制造技术。中速磨直吹式制粉系统在大型火力发电厂中的广

泛应用已成为不可逆转的必然趋势。然而,由于我国火电厂过去多采用钢球磨煤机中间储仓式制粉系统,对中速磨及直吹式制粉系统的运行特性不熟悉,加上国内燃料应用情况的复杂性给运行带来的困难,

致使在运行实践中存在一些问题,有必要从理论上深入研究、分析直吹式制粉系统及中速磨的运行特性,从而用以指导运行实践,使好的设备、好的系统真正发挥其高的经济效益。

1 中速磨正压冷一次风机直吹式制粉系统的特点

直吹式制粉系统的一个重要前提是应保证磨煤机能根据锅炉负

荷的需要,连续、均匀、有调节地供应炉膛质量合格的煤粉。这一性

质使磨煤机及制粉系统的运行与锅炉的运行紧密地联系在一起,其运行性能必须综合考虑锅炉运行的要求,因此中速磨及其直吹式制粉系统已成为锅炉燃烧系统中不可分割的重要组成部分。

目前大型火电厂的中速磨直吹式制粉系统大多采用正压冷一次

风机系统(见图1)。在该系统中,一次风机只输送冷空气,这使风机

可造得较小,通风电耗低且工作可靠性高。风机处于空气预热器之前,需在空气预热器中有独立的一次空气通道,因而采用了三分仓回转式空气预热器,有利于减少空气预热器漏风及保持稳定的一次风温和稳

定的锅炉效率。对输送冷空气的高效能风机来说,可以设计成较大压

磨煤机运行方式对优化锅炉燃烧的应用

磨煤机运行方式对优化锅炉燃烧的应用 发表时间:2019-01-08T10:58:49.153Z 来源:《电力设备》2018年第24期作者:李文杰王志刚李烨[导读] 摘要:由于燃煤电厂面临煤质不稳定、机组参与调峰而造成负荷变化范围大,机组经常在中低负荷下运行、运行人员操作随意性大、多台磨煤机并列运行等相关问题,导致制粉系统的能源消耗高。 (国家电投集团河南电力有限公司平顶山发电分公司河南平顶山 467312) 摘要:由于燃煤电厂面临煤质不稳定、机组参与调峰而造成负荷变化范围大,机组经常在中低负荷下运行、运行人员操作随意性大、多台磨煤机并列运行等相关问题,导致制粉系统的能源消耗高。而当某个运行的磨煤机由于故障或者超负荷工作被迫停机时,将造成炉内燃烧劣化,燃烧动力场失衡,严重影响机组的安全性和经济性,因而对磨煤机运行方式调整有助于优化锅炉的燃烧稳定和经济运行。 关键词:对冲布置;磨煤机运行方式;优化;锅炉燃烧 引言 目前大中型燃煤机组越来越多,而大中型燃煤机组的制粉系统普遍采用中速磨煤机直吹式制粉系统。由于直吹式制粉系统具有系统简单、灵活、操作方便、易实现自动控制、制粉电耗低等特点,因此得到广泛应用。 直吹式制粉系统的特点是制粉系统出力必须随时保持与锅炉燃烧一致。因此锅炉负荷变化时,制粉出力相应变化。变更制粉出力可以均匀的变动各磨煤机的负荷,也可以投、停部分磨煤机。恰当制定制粉系统的运行方式,可以提高制粉系统的经济特性。举例某DG3000/26.15-Ⅱ1型锅炉,超超临界参数、变压直流炉、单炉膛、一次再热、平衡通风、露天岛式布置、固态排渣、全钢构架、全悬吊结构、对冲燃烧方式,Π型锅炉。炉膛尺寸为33973.4×15558.4×64000mm (W×D×H)。锅炉燃烧方式为前后墙对冲旋流燃烧,每台锅炉配6层燃烧器,前后墙各3层,每层各8只,共48只燃烧器。制粉系统为ZGM133N型中速磨煤机冷一次风正压直吹式制粉系统,每台炉配6台磨煤机,BMCR工况下5台运行,一台备用,并配备6台与之相适的电子称重式给煤机。本文通过磨煤机的不同情况对锅炉燃烧的影响,从而指导优化锅炉燃烧调整。 正压直吹式制粉系统每台磨煤机布置有四根出口粉管,每根粉管通过一个煤粉分配器分成两根,分别对应一个燃烧器。煤粉分配器前设计有一个可调缩孔,作用是调节四根粉管的煤粉浓度,从而保证燃烧均匀性。 一、前后墙对冲燃烧对磨煤机运行要求 由于电厂燃用煤质较差,锅炉正常运行基本都是6台磨煤机投运,从布置方式上考虑,主要存在以下三个方面: 1)下层磨煤机煤粉在炉内燃烧升程较大,燃烧比较充分。 2)上层磨煤机煤粉燃烧靠上,火焰中心上移,如果配风不合理将造成燃烧不充分,易造成锅炉内过热器结焦和屛过超温。 3)中间层磨煤机煤粉燃烧情况在另外两层中间,燃烧器浓度分配合理有助于减少水冷壁热偏差。因而对冲燃烧布置锅炉磨煤机在运行时,尽量确保投运下层磨,避免中下层磨全停;同一层标高的前后墙燃烧器应尽量同时运行,应避免同层燃烧器无火现象,不允许长时间出现前后墙燃烧器投运层数差为两层及以上运行方式,比如前墙投1台,后墙投两台;或者前墙没火,后墙投运3台的类似情况。 二、磨煤机运行方式的选择 运行人员在选择磨煤机前应对各磨煤机性能有明确的认识,如单台磨煤机加载压力、进出口温度、分离器运行情况、研磨件性能、燃用煤质、风煤比选择的方面应较为熟悉,在此基础上还应参照以下三个原则: 1)在同样出力的情况下,各磨均匀负荷的结果较各磨高、低悬殊的出力运行更为经济; 2)在设备数量和运行条件允许的情况下,应通过改变磨煤机的运行方式,来避免磨煤机的最低出力; 3)尽可能的使磨煤机在额定负荷附近运行。 三、磨煤机运行中风煤比选择 合理的风煤比是锅炉安全运行的保障。磨煤机的一次风要同时保证煤粉输送和煤粉燃烧,过大过小的风煤比都会影响到锅炉的燃烧,一次风速过低可能会造成煤粉的沉积,造成管道堵塞;一次风速过高,造成系统磨损、煤粉浓度低,不利于燃烧;磨煤机出力过小会造成磨煤机衬板上煤层较薄,碾磨部件直接接触,导致强烈磨损和振动。因而,应根据燃烧需要调整合适的风量。随着磨煤机冷风阀门开度的增加,锅炉效率下降;这是因为一次风总量和二次风总量不变的情况下,磨煤机冷风阀门开度的增加,从而一次风中冷风量的增加,磨煤机的出口温度下降,减少了空气预热其中烟气和一次风的换热量,使排烟温度升高,排烟损失增加,锅炉效率下降。 随着磨煤机进口风量的增加,锅炉效率先增加后减小;这是因为磨煤机进口风量的增加对于缺氧燃烧的一次风而言,有利于煤粉燃尽,未燃尽碳热损失下降,锅炉效率升高;随着磨煤机进口风量的增加,在磨煤机出口风温不变的情况下,未燃尽热损失越来越小,排烟损失越来越大,两者达到平衡时锅炉效率达到最大值,磨煤机进口风量再增加,则锅炉效率下降。 四、其他 磨煤机和是中速磨煤机的主要耗电设备,和一次风机两者耗电量之和占制粉系统总电耗的90%以上。因而在保证锅炉燃烧的同时应结合经济性来选择磨煤机的运行方式。 如在满足机组安全前提下尽可能的提高磨煤机出口风的温度,降低磨煤机进口冷风量,进口风量则根据锅炉的燃烧情况进行调整。另外,在满足负荷的前提下,应该尽可能减少磨煤机的运行台数,多使用能耗较低的磨煤机。磨煤机同时运行的台数越少,制粉单耗就越低,因此合理的调整每台磨煤机的给煤量,调整磨煤机的运行方式是降低制粉单耗,提高锅炉整体经济性的有效途径。结语 针对目前电厂燃烧系统和设备特性,在锅炉燃烧稳定的前提下达到节能降耗的目标,需要运维人员的不断探索创新。本文通过对磨煤机运行方式的研究,合理选择磨煤机的负荷分配,在优化锅炉燃烧方面是有较好的应用。参考文献 [1]张卓林.电厂煤粉锅炉配风优化专家系统[D].济南大学,2013. [2]韦红旗.仲亚飞.大型燃煤电厂制粉系统能耗预测及优化分配[S].东南大学2016:6.

新建电厂正压直吹式制粉系统防爆控制要点

新建电厂正压直吹式制粉系统防爆控制要点 发表时间:2018-08-02T17:40:14.597Z 来源:《电力设备》2018年第12期作者:李含琼1 张冠群2 [导读] 摘要: 制粉系统爆炸主要取决于可燃物的浓度、氧气的浓度、点燃能。 (1辽宁东科电力有限公司辽宁省沈阳市 110179;2国华九江发电有限责任公司江西省九江市湖口县 332500) 摘要: 制粉系统爆炸主要取决于可燃物的浓度、氧气的浓度、点燃能。其爆炸发生的时机和机率则与煤种、制粉系统型式及运行操作管理水平密切相关,其中防止煤粉积存和自燃,是制粉系统防爆的关键。本文分析几起正压直吹式制粉系统爆燃事故案例的原因,并提出控制要点。 关键词:磨煤机;制粉系统;爆燃 1 引言 在火电厂中,制粉系统是锅炉主要辅机之一,一般情况下大容量机组普遍采用正压直吹式制粉系统,其优点是系统简单、布置紧凑、占地少、输送管道短等优点。制粉系统在高温空气及可燃煤粉介质的工况下运行,如果系统设计、安装、调试或运行等环节控制不当,可能产生爆燃等安全隐患。本文分析了正压直吹式制粉系统爆燃原因并针对新建电厂提出控制要点。 3原因分析 制粉系统爆炸主要取决于三大要素:可燃物的浓度、氧气的浓度、点燃能,但其爆炸发生的时机和机率则与煤种、制粉系统型式及运行操作管理水平密切相关,爆炸呈现的方式和结果各不相同。 3.1制粉系统爆炸的三要素 (1)煤粉的浓度 煤粉的爆炸浓度有范围的,即存在上限浓度和下限浓度。对于烟煤而言,气粉混合物浓度只有在0.32~4 kg/m3范围内才会发生爆炸,而浓度在1.2~2 kg/m3范围时爆炸危险性最大。制粉系统在启动或停止的过程中,煤粉浓度变化相对较大,存在爆炸的危险性。 (2)点燃能 在制粉系统运行中,如果局部存在积粉,一旦条件合适会引发自燃,由于制粉系统正常运行工况的风量和煤量较大,积粉自燃的能量被携带释放,不足以形成制粉系统爆炸的点燃能,但如果工况发生变化,尤其是风量减少,会造成积粉自燃能量的聚集,形成制粉系统爆炸的点燃能。 (3)氧气的浓度 制粉系统中氧气来自多方面:作干燥剂的热风、冷风及漏风,输送煤粉的气体都含有一定量的氧气,氧在爆炸过程中起着氧化剂的作用。如果煤粉混合物中氧的含量不足,即使有很强的点燃源,可燃混合物的浓度也在最佳爆炸浓度范围,也不会发生爆炸。 3.2 制粉系统爆炸的实质 制粉系统爆炸的本质,是由于原煤或煤粉滞留、积存在制粉系统内部或者相关部位,在一定的温度环境下氧化自燃,在制粉系统通风、启动、停运、或者风量调节时,造成散热和流动条件变化,为磨煤机内部可燃性杂混物提供了点燃源,发生自燃性爆炸。所以,防煤粉积存和自燃,是防止制粉系统爆炸的关键,而减少和消除积粉是制粉系统防爆的核心工作。 4.控制措施 4.1 制粉系统风粉调平 磨煤机内部工况是不断变化的,很难避免局部煤粉浓度达到爆炸浓度,应尽可能将一次风喷嘴平均分配,尽量使磨内空气均匀分配。磨煤机出口各管风速尽量调平,避免某一管路内煤粉沉积而自燃。 4.2 防止消防蒸汽带水 (1)确保消防蒸汽温度有一定的过热度; (2)消防蒸汽电动门建议集中高位布置,避免在磨消防蒸汽管道入口处布置造成积水; (3)在系统设计阶段设计合理的疏水系统,保证疏水的彻底。 4.3合理设置监测点及保护装置 (1)设计可靠足够的温度、风速测点,保证对制粉系统状态测量准确及全面监控。 (2)增加惰性气体装置 考虑增加煤粉管路的惰性气体消防装置,如二氧化碳或氮气,可根据原煤斗用的二氧化碳气源引出。 (3)设计合理的联锁保护逻辑 合理的联锁保护使制粉系统启动与停止操作按规定的程序进行,防止误操作发生。如煤粉管道温度高、风速低于预定限值报警时能及时调整,当无法恢复正常联锁停止的保护[1]。 4.4 阀门可靠性 确保磨煤机出、入口关断门可靠关闭的严密性和时间,防止多余的空气进入制粉系统中。 4.5 系统优化设计 系统一旦发生煤粉沉积经一段时间后容易发生自燃,甚至爆炸,所以防止煤粉沉积是制粉系统防爆的重要工作。 (1)管道布置 煤粉管道的布置和结构不应存在煤粉在管道内沉积的可能性。送粉管道的配置和布置应防止煤粉沉积和燃烧器回火,不应有停滞区和死端,煤粉管道与水平面的倾角应不小于 50°[2]。 (2)粉管流速 粉管流速应做到整个气粉流动管道的死区和系统死角都能得到充分清理,推荐磨煤机正常运行时出口风速范围是22-28m/s[3]。 4.6 避免磨煤机内部出现明火 (1)避免磨煤机内部煤粉沉积,在停止磨煤机前应将磨煤机内部彻底吹扫干净,防止积粉自燃。该点必须在运行规程及操作票中强调说明,以保证吹扫彻底。

中速磨煤机制粉系统运行优化试验

中速磨煤机制粉系统运行优化试验 发表时间:2017-01-19T11:07:17.057Z 来源:《基层建设》2016年32期作者:孙德强 [导读] 摘要:本文主要是针对平盘磨直吹式的制粉系统的煤粉细度大、煤粉的均匀性差、单耗高等问题,采用300MW机组制粉系统进行优化试验。 大唐七台河发电有限公司黑龙江省 154600 摘要:本文主要是针对平盘磨直吹式的制粉系统的煤粉细度大、煤粉的均匀性差、单耗高等问题,采用300MW机组制粉系统进行优化试验。充分地对平盘磨直吹式制粉系统进行分析,对磨煤机各参数开展一系列的优化试验,以求可以改善平盘磨直吹式的制粉系统运行的参数值。通过实验结果能够发现:制粉系统中单耗得到地下降,煤粉的粗细可以完全满足要求,飞灰、大渣的含碳量明显地降低,提高锅炉的运行经济性以及效率。 关键词:中速磨煤机;制粉系统;运行优化试验 1平盘磨直吹式制粉系统介绍 1.1制粉系统工作原理 平盘磨直吹式制粉系统按照平盘磨内气流正压或者负压的状态能够分成平盘磨直吹正压制粉系统以及平盘磨直吹负压制粉系统这两种。本文选择平盘磨直吹制粉系统,特指的是平盘磨直吹负压制粉方法,该系统的组成主要包括原煤仓、平盘磨、给煤机、排粉机、粗粉分离器、锅炉、燃烧器、空气预热器以及送风机,具体的系统图1能够得到充分体现。 图1 平盘磨直吹式制粉系统 平盘磨直吹制粉系统运行的过程: (1)原煤仓中原煤可以通过给煤机送于平盘磨当中。平盘磨当中,原煤需要做好平盘磨中央落煤管下落于磨环之上,利用转动的磨环离心力把原煤送到磨环的边缘磨盘的滚道中,然后经过若干的磨辊碾磨原煤,将原煤的碾磨为煤粉颗粒。 (2)利用送风机送入经过了空气预热器之后热空气干燥处理了煤粉,经过干燥后煤粉送风机中送入空气作用,输送到了平盘磨上粗粉的分离器之中。粗粉分离器当中,合格煤粉会被分离出,然后利用排粉机将其输送锅炉当中,同时在送风机中送入经过了空气的预热器之后热空气、燃烧器作用下做好燃烧;对于质量差的煤粉将被分离出,其中质量差的煤粉中粗粉颗粒将被分离出重新进入到平盘磨碾磨,对于难碾磨煤粉颗粒将被分离出进入到平盘磨下方排渣箱当中做好清理。 因为平盘磨直吹制粉系统中排粉机的安装是在平盘磨出口侧处,所以,平盘磨会在排粉机抽吸作用形成负压情况下运行。优点是平盘磨内煤粉不会轻易向空气当中泄露,环境的污染小并且不会产生污染;缺点是排粉机叶片容易受煤粉等流体磨损以及腐蚀,有着较高的维修频率。 1.2制粉系统各运行参数制约关系 (1)磨煤机通风量和煤粉细度、磨煤机单耗关系。如果磨煤机的通风升高时,碾磨后煤粉会向平盘磨上粗粉分离器的动能增加,导致有更多不合格的煤粉通过粗粉分离器,其中煤粉的细度会相应地变大;因为有更多不合格的煤粉通过了粗粉分离器,进而造成平盘磨重复碾磨率降低,磨煤机的单耗随之降低,不过如果磨煤机的通风量大,会导致磨煤机的碾磨原煤时压力增加,磨煤机的单耗随之而变大。 (2)分离器调节挡板开度同煤粉细度以及磨煤机单耗之间存在的关系。当增大分离器调节挡板开度时,完成碾磨工作之后的煤粉向平盘磨上方的粗粉分离器运动的阻力发生变小的趋势,使得有更多的质量不达标的煤粉通过粗粉分离器,相应的增大了煤粉细度;由于存在更多不合格的煤粉直接通过粗粉分离器,使得平盘磨重复碾磨率下降,随之造成磨煤机单耗变小。 (3)磨辊加载压力同煤粉细度以及磨煤机单耗之间存在的关系。通过增大磨辊加载压力时,原煤碾磨的能力也相应变大,进而就能够使原煤碾磨的更加细小,使得煤粉细度更小;但是增加原煤碾磨能力时,平盘磨电能的消耗明显升高,即磨煤机单耗变得更大。 2平盘磨直吹式制粉系统优化试验 为了将平盘磨直吹式制粉系统的优化试验过程展开具体的说明,文章选择某300MW机组为例展开说明。选择的平盘磨型号为 ZGM95。标准状况下,ZGM95的磨煤机出力为38t/h,转动速度为26.4r/min,气体流量为17.93kg/s,单耗量为6-l0kW?h/t,通风阻力在5740Pa以下。 2.1标定磨煤机的通风量 由磨煤机入口的测风原件测定磨煤机通风量,并准确的显示出风值。但在当前生产过程中,由于不合理的布局测风设备,使得前、后直管存在较短部分,风道转弯节和膨胀节影响了风速,所以表盘风量精确程度往往不够,因此一定要进行标定计算。在煤种稳定、复合稳定在290MW时进行标定试验,磨煤机通风量计算公式如下所示: (1) 公式中Q为磨煤机通风量标定值;K为通风量测量装置总系数(初始值设为66.438,最终值由冷态标定试验判定);t为风道管内温度*单位为℃;P为通风量检测装置输出压差;Px为风道管内总风量压力。 2.2煤粉分配状况及摸底测试 为了将煤粉的分配状况有效分析,在开展平盘磨直吹式制粉系统优化试验工作之前,必须测定该制粉系统的煤粉分配状况。在负荷为240MW下,当该制粉系统中磨煤机单耗为8.31kW?h/t、磨煤机出力为39t/h、磨煤机通风量为65000m3/h,分离器调节挡板开度调整到55°、磨辊加载压力调整到15MPa时,各处煤粉即各一次风道煤粉分配状况如表1所示。从煤粉分配状况可以有效判断出各角落的煤粉细度和煤粉均匀性系数还是比较一致的,说明煤粉能够合理分配。 2.3优化磨煤机通风量参数 在负荷为240MW下,由于不能调制过低的磨煤机通风量,因此应取通风量的数值大于55000m3/h。当调整磨煤机给煤量到39.2t/h、分离器调节挡板开度的大小调整至55°、磨辊加载压力调整至15MPa,磨煤机通风量分别取值为65000,60000,55000m3/h时,测试该制粉

中储式制粉系统教学内容

中储式制粉系统

球磨机出力低的原因有: (1)给煤机出力不足,煤质坚硬,可磨性差。 (2)磨煤机内钢球装载量不足或过多。钢球质量差,小钢球未及时清理,波浪瓦磨损严重未及时更换。(3)磨煤机内通风量不足,干燥出力低,或原煤水分增高。如排粉机出力不足,系统风门故障,磨煤机入口积煤或漏风等。(4)回粉量过大,煤粉过细。 提高制粉系统出力的措施有:(1)保持给煤量均匀,防止断煤。在保持磨煤机出口温度不变的情况下,尽量提高磨煤机入口风温。(2)定期添加钢球,保持磨煤机内一定的钢球装载量,并定期清理不合格的钢球及铁件杂物。(3)保持磨煤机内适当的通风量,磨煤机入口负压越小越好,以不漏粉为准。(4)消除制粉系统的漏风,加强粗细粉分离器的维护,保持各锁气器动作灵活。(5)保持合格的煤粉细度,适当调整粗粉分离器折向门,煤粉不应过细。 预防煤粉仓温度高的措施:(l)保持磨煤机出口温度不超过规定值。 (2)按规定进行降粉。(3)经常检查和消除制粉系统及粉仓漏风。 (4)建造和检修粉仓时要保证合理角度。四壁光滑,不应有积粉。煤粉仓温度高应作如下处理: (1)停止制粉系统,进行彻底降粉。(2)关闭吸潮管阀门及绞龙下粉插板。(3)温度超过规定值时可用二氧化碳灭火。(4)待温度正常后,启动制粉系统。(5)消除各处漏风。

影响煤粉粗的原因:(1)制粉系统通风量过大。(2)磨煤机内不合格的钢球太多,使磨碎效率降低。(3)粗粉分离器内锥体磨透,致使煤粉短路或粗粉分离器折向门开得过大。(4)回粉管堵塞或停止回粉,而失去粗粉分离作用。(5)原煤优劣混合不均匀,变化太大。(6)煤质过硬或原煤粒度过大等。 磨煤机空转危害:按规程规定,球磨机空转时间不得大于10min,因为空转时间长了,一方面钢球与钢球之间,钢球与波浪瓦之间的金属磨损增加。磨煤机正常运行和空转时所产生的磨损比是1:50。另一方面磨煤机空转时,钢球与钢球之间,钢球与波浪瓦之间的撞击容易产生火花,产生火花又是制粉系统爆炸的原因之一。起、停注意事项:(1)启动时严格控制磨煤机出口气粉混合物的温度不超过规定值。因为磨煤机在启动过程中,属于变工况运行,此时出口温度若控制不当,很容易使温度超过极限,而导致煤粉爆炸。(2)磨煤机在启动时进行必要的暖管。因中间储仓式制粉系统设备较多。管道较长,启动时煤粉空气混合物中的水蒸气很容易在旋风分离器等管壁上结露,使之增加流动阻力,造成煤粉结块,甚至引起分离器堵塞。(3)磨煤机停运时,必须抽尽余粉,防止自燃和爆炸。为下次启动创造良好的条件。 钢球磨内煤量过多时为什么出力反而会降低?磨煤机内的煤量过多时,使磨煤机内的煤位过高,钢球落差减小,冲击能力也相应减小(从磨煤机电流减小可以看出)。另一方面煤位过高,使钢球之间的煤层加厚,钢球的一部分动能消耗在使煤层的变形上,另一部分

中速磨煤机直吹式制粉系统运行特性分析

增 刊山西焦煤科技 Supple m ent 2008年7月 Shanx iC oking Coal Sc i e nce&Techno l o gy Ju.l2008 试验研究 中速磨煤机直吹式制粉系统运行特性分析 刘德来 (山西兴能发电有限责任公司) 摘 要 介绍了中速磨煤机工作原理和正压直吹式制粉系统组成,结合该系统在古交电厂1号、2号锅炉的成功应用情况,详细分析了该制粉系统的运行特性。 关键词 直吹式系统;中速磨煤机;运行特性;运行方式 古交发电厂一期2台锅炉是哈尔滨锅炉有限公司采用美国燃烧工程公司(CE)的引进技术设计和制造的HG-1025/17.5-YM17型锅炉。制粉系统为冷一次风正压直吹式,配备5台ZG M95G中速辊式磨煤机,燃用山西烟煤。 1 ZGM95中速磨煤机的工作原理及系统组成 ZGM95G中速辊盘式磨煤机,其碾磨部分是由转动的磨环和3个沿磨环滚动的固定且可自转的磨辊组成。原煤由给煤机送入中速辊式磨煤机,从中央落煤管落到磨环上,借助于旋转磨环离心力将原煤运动至碾磨滚道上,通过磨辊进行碾磨。原煤的碾磨和干燥同时进行,一次风通过喷嘴环均匀进入磨环周围,将经过碾磨从磨环上切向甩出的煤粉混合物烘干并输送至磨煤机上部的分离器,在分离器中进行分离,粗粉被分离出来返回磨环重磨,合格的细粉被一次风带出分离器送入炉膛燃烧。石子煤经喷嘴环落入石子煤箱。 2 中速磨正压冷一次风系统的特点 直吹式制粉系统的最大特点是保证磨煤机能根据锅炉负荷的需要,连续、均匀、有调节地供应炉膛质量合格的煤粉。这一性质使磨煤机及制粉系统的运行与锅炉的运行紧密地联系在一起,其运行性能必须综合考虑减少空气预热器漏风及保持稳定的一次风温和稳定的锅炉效率。因此,中速磨及其直吹式制粉系统已成为锅炉燃烧系统中不可分割的重要组成部分。目前,大型火电厂的中速磨直吹式制粉系统大多采用正压冷一次风机系统。在该系统中,一次风机只输送冷空气,这使风机可造得较小,通风电耗低且工作可靠性高。风机处于空气预热器之前,需在空气预热器中有独立的一次风通道,因而采用了三分仓回转式空气预热器,有利于初投资。由于风机的压头较高,无论对于总的一次风量,还是每台磨的空气流量,都可简单地用文氏管或其它方法方便地进行测量,这一点对提高锅炉燃烧自动化控制水平,从而提高锅炉燃烧经济性,也是不可忽视的有利条件。 3 影响中速磨工作的主要因素 评价中速磨煤机工作的指标有:磨煤出力、煤粉细度、与锅炉燃烧系统的配合、系统工作的安全性及运行电耗、碾磨部件的使用寿命等。磨煤出力随锅炉负荷而变化,其变化范围取决于磨煤机的型号、所磨制的燃料性质及所要求的煤粉细度,同时,还与碾磨部件的磨损情况及运行中碾磨压力的设置有关。 煤粉细度的确定取决于锅炉燃用燃料的性质,其应为使锅炉燃烧损失与运行电耗(包括磨煤电耗和通风电耗)及制粉金属损耗之和为最小的经济煤粉细度。 磨煤机与燃烧系统的配合反映在制粉系统的通风量与燃烧要求的一次风量是否匹配。制粉系统的最小通风量决定于两个条件:一是,在运行温度下,水平一次风管内的流速不应低于15m/s,以防止煤粉沉积;二是,保持中速磨煤机最低的风环风速,防止石子煤量骤增及保证必要的煤粉细度,两者中较高的一 作者简介:刘德来 男 1973年出生 1995年毕业于东北电力大学 助理工程师 古交 030206

直吹式制粉系统调整

中速磨直吹式制粉系统的运行调整 1. 煤粉量的调整 由于直吹式制粉系统出力的大小直接与锅炉蒸发量相匹配,故当锅炉负荷有较大变动时,即需启动或停止一套制粉系统。在确定制粉系统启、停方案时,必须考虑到燃烧工况的合理性,如投运燃烧器应均衡,主、再汽温较易控制及排烟温度控制等。若锅炉的负荷变化不大,可通过调节运行中的制粉系统出力来解决。当锅炉负荷增加,要求制粉系统出力增加时,应先开大冷、热一次风风门或提高一次风压,增加磨的通风量,利用磨煤机内的少量存粉作为增负荷开始时的缓冲调节;然后再增加磨煤机的给煤量,同时开大相应的二次风门,使燃料量适应负荷。反之,当锅炉负荷降低时,则减少给煤量和磨煤机通风量以及二次风量。 运行实践证明,给煤量在20~40 t/h 左右较为经济。 2. 燃烧的调整与运行 保持适当的一、二次风出口速度和风率,是建立良好的炉内动力工况,使风粉混合均匀,保证燃料正常着火和燃烧的必要条件。一次风速过高会推迟着火,空预器漏风加大,过低则可能烧坏喷口,并可能在一次风管造成煤粉沉积,在磨煤机风量满足的前提下,一次风压应维持在9~10.5 kPa(根据具体调试确定)。二次风速过高或过低都可能直接破坏炉内正常动力工况,降低火焰的稳定性,因此应控制好二次风箱与炉膛差压值。一次风率增大,着火热增大,着火时间推迟,显然这对低挥发分燃料是不利的;对高挥发分燃料着火并不困难,为

保证火焰迅速扩散和稳定,要求有较高的一次风率。锅炉运行过程中,保证一定的一次风压对稳定燃烧极其重要,一次风压的波动易造成燃烧不稳,所以运行过程中一次风压是一较重要的监视参数。在自动状态下一次风压随负荷变化,成一曲线关系。一次风压投自动时,负荷大幅变化时应密切监视一次风压的变化,防止一次风压过低导致不出粉,这种情况多出现在机组启动、断煤、负荷偏低停运制粉系统时。运行中判断风速或风量是否适当的标准:第一是燃烧的稳定性,炉膛温度场的合理性和对过热汽温的影响。第二是比较经济指标,主要是看排烟损失和机械未完全燃烧损失的数值大小。一般情况下,调整要结合磨煤机煤量与磨风量关系曲线与锅炉总煤量与总风量关系曲线进行。曲线没找着,担待点! 机组加减负荷实际为每台给煤机转速快慢的调节,即给煤量的调节。因此,其负荷调整有一滞后的过程。加负荷时,随着汽机调门的开大,汽压下降,给煤量增加,燃烧加强,风量加大,受热面吸热加剧,尤其是起动上层制粉系统时,应特别注意受热面的超温。减负荷的过程则相反,可通过预先调整减温水及燃烧器摆角加以控制。制粉系统起动时,由于给煤量短时加大,负荷将有一短暂突升,为了保证机组在负荷通道内运行,起动制粉系统前应降低汽压运行;停运制粉系统时,停运磨的煤量加至其余几台运行磨煤机,使得运行磨煤机的负荷陡然加大,其磨煤出力、干燥出力将由于煤量的突然加大而短时下降,虽然最终制粉系统的总煤量未发生变化,但在磨煤机煤量重新分配的过程中,汽压会短时下降,在汽机调门开度未变化的基础上,机组负荷

中储式制粉系统试验及优化调整 李海明

中储式制粉系统试验及优化调整李海明 发表时间:2019-07-08T12:33:01.993Z 来源:《电力设备》2019年第4期作者:李海明 [导读] 摘要:中储式制粉系统是锅炉系统的重要形式之一,通过其试验的开展以及调整过程的优化,则能够实现系统的更好应用,促使锅炉使用质量的提升。 (大唐双鸭山热电有限公司黑龙江双鸭山 155100) 摘要:中储式制粉系统是锅炉系统的重要形式之一,通过其试验的开展以及调整过程的优化,则能够实现系统的更好应用,促使锅炉使用质量的提升。本文就某热电部的锅炉进行系统分析,并探索更好的优化调整策略。 关键词:中储式制粉系统;试验;优化调整 1、设备概况 黑龙江某热电公司1#、2#锅炉为武汉锅炉股份有限责任公司生产的WGZ670/13.7—19型超高压力、自然循环、倒U形布置、单汽包、单炉膛、一次中间再热、直流燃烧器四角切圆燃烧、配钢球磨中储式制粉系统、尾部竖井为双烟道、挡板调温、管式空气预热器、平衡通风、固态排渣、紧身封闭、全悬吊、高强螺栓连接的全钢构架。 现阶段,两台磨煤机制粉出力处于比较低迷状态之中,设计阶段其出力是37t/h,磨煤机制粉的应用出力则与之不同,1#磨煤机制粉出力是25.4t/h,2#磨煤机制粉出力只有19.7t/h。制粉工作开展过程中,电能的消耗处于偏高状态,1#磨煤机制粉系统耗电是30.66kWh/t,2#磨煤机制粉系统耗电是32.08kWh/t。1#磨煤机制粉系统煤粉细度R90是22.8%,2#磨煤机制粉系统煤粉细度R90是8.8%;1#磨煤机制粉系统煤粉细度R200是5.2%,2#磨煤机制粉系统煤粉细度R200是0.4%,由此可以得出,1#磨煤机制粉系统煤粉细度R200处于比较高的状态之中,而2#磨煤机制粉系统煤粉细度R90则处于比较低迷状态之中。 2、中储式制粉系统试验 2.1最佳通风量试验 现阶段,为了避免中储式制粉系统出现积粉闪爆情况,需要调整一次风压与再循环风门至比较较好状态之中,这样能够提高排粉机电流,避免出现排粉机电流较低情况。这就需要最佳通风量试验的开展,对不同的风压与再循环风门开度进行查找,这样能够保证锅炉运行处于安全状态之中,与此同时还能够对制粉电能消耗的最佳通风量起到一定的减少作用。 2.2煤粉细度调整试验 通过试验了解到当前1#磨制粉系统成粉的R200仅仅是5.2%,所生产出来的煤粉比较粗糙,会对煤粉的燃尽率产生一定影响,进而降低整个锅炉的使用效率;2#磨制粉系统成粉的R90只有8.8%,所生产出来的煤粉比较细腻,致使粗细分离器的分离效率明显超出相关标准,分离出许多质量合格的煤粉,并将分离处的合格煤粉输送至回粉管,致使循环倍率处于偏高状态之中,显著降低制粉出力。所以,利用上述相关试验,我们发现:在变频电机转速不同的情况下,制粉系统的阻力会出现相应变化,并且会影响制粉出力与煤粉细度,促使其产生一定变化,进而在保障锅炉处于安全工作状态的同时,又能对制粉系统耗电的最佳煤粉细度起到一定降低作用。当1#磨制粉系统风量为93609m3/h,2#磨制粉系统风量为86403m3/h时,调整粗粉分离器,所作出的调整,包括以下两点: 第一,调整制粉系统两侧粗粉分离器静叶挡板开度,将其由原来的90度调整为60度; 第二,调整2#磨粗粉分离器动叶转动速度,将其由原来的800r/min调整至400r/min。 通过开展上述调整工作,煤粉细度出现了一定变化:对于1#磨而言,其制粉系统成粉的R90由27.8%变为22.8%,制粉系统成粉的 R200由5.2%变为0.84%;对于2#磨而言,其制粉系统成粉的R90由8.8%%变为24.6%,制粉系统成粉的R200由0.1%变为0.48%。 2.3钢球最佳装载量优化试验 对于磨煤机出力与钢球装载量而言,二者不是处于同比例增加状态之中,在对钢球装载量加大的过程中,到达一定数量之后,如果继续对钢球装载量增加,所增加的磨煤机出力就会比较低。然而,磨煤机磨煤单位电能消耗不再处于稳定情况,会出现一定变化,会处于增加状态之中,最佳装载量就是此时的钢球装载量。倘若磨煤机钢球量处于偏高状态之中,就会增加制粉系统电能消耗;如果磨煤机钢球量处于偏高状态之中,就会对制粉系统的出力情况造成影响。除了磨煤机钢球装载量会对制粉出力造成影响之外,煤粉细度还会受到磨煤机大、小钢球装载比例的影响。由此可见,通过进行有关试验,对磨煤机的最佳钢球装载量和大、小钢球装载比例进行明确,具有非常重要的作用。当1#磨制粉系统风量为93609m3/h,2#磨制粉系统风量为86403m3/h时,确保粗粉分离器静叶挡风板角度、动叶变频电机转速与磨煤机出口温度处于固定状态,钢球装载量每加大2t,对制粉出力与制粉电耗进行测量,并在此基础上,将最终制粉电耗计算出来,最佳钢球装载量就是,当制粉电耗处于最低状态时的钢球装载量。 1#磨煤机原来出力为26t/h,2#磨煤机原来出力为19t/h,在增加钢球量的过程中,就会加大制粉出力,此时的1#磨煤机出力调整为36t/h,2#磨煤机出力调整为33t/h,其效果会出现显著变化。1#磨煤机原来制粉电耗为29.01kWh/t,2#磨煤机原来制粉电耗为 34.56kWh/t,伴随着供求量的不断增多,制粉电耗也会出现降低情况,此时的1#磨煤机制粉电耗调整为22.58kWh/t,2#磨煤机出力调整为22.81kWh/t,这样便能够达到良好的节能作用。 2.4调节粗粉分离器挡板 利用相关试验,对粗粉分离器挡板,开展相关的内外开度标定工作,对粗粉分离器内部挡板做出相关调整,使其处于平整状态之中,这样能够确保挡板开度保持一致状态,进而使粗粉分离器内部气流平稳,回粉量比较低,并且确保煤粉细度度的均匀度。倘若粗粉分离器挡板开度处于不一致的情况下,其内部气流就会出现紊乱情况,回粉量就会明显加大,很难使煤粉细度的均匀性得到保障。 3、试验结果分析 通过相关优化调整试验工作的开展,1#炉的1#磨制粉系统与2#磨制粉系统都产生了一系列变化,具体情况如下: 3.1相比较于有关优化试验工作开展之前,二者的制粉出力都得到了明显改善,并且显著减少了制粉电耗。与此同时,也有助于两炉三磨运行工作的顺利开展。除此之外,制粉降耗效果也比较突出,在进行相关优化工作试验前,1#磨制粉电耗为30.661kWh/t,2#磨制粉电耗为32.08kWh/t,经过优化试验都产生了相应改变,出现了明显增加情况,1#磨制粉电耗调整为22.58kWh/t,2#磨制粉出力调整为 22.81kWh/t。 3.2关于煤粉细度方面,针对1#磨制粉系统与2#磨制粉系统的静叶挡板开度作出相关调整,将其由原来的90度调整至60度,当动叶转

中储制粉系统积粉点分析

锅炉制粉系统积粉点分析 滨州市城市公共供热中心郑德龙 制粉系统爆炸的原因很多,有煤粉浓度、风粉混合物中含氧量、磨煤机出口温度、煤粉细度、煤粉的水分、挥发份、原煤中的引火物、积粉或积煤点自燃等。积粉或积煤点自燃往往是引发爆炸的导火索,煤粉爆炸的前期往往是自燃,一定浓度的风粉气流吹向自燃点时,不仅加剧自燃,还会引起燃烧,而接触到明火的风粉气流随时会产生爆炸。引爆的热源主要是磨煤机与排粉机入口热风门不严形成的。 1、排粉机再循环处:在制粉系统停运时,容易积存在排粉机出口的再循环风门,从磨煤机热风门漏过的热风,在系统负压下经再循环流向排粉机,会引起该处积粉自燃。燃烧的焦块掉入排粉机或磨煤机内,就会引起爆炸。 2、磨煤机入口:是较易积煤粉的地方,磨煤机入口管道开口较多,有防爆门、回粉管、再循环管、入风管,在热风与对应过来的风粉进入后容易形成涡流,在煤较湿的情况下从给煤机落下来的湿煤就被冲击粘在下煤管的内壁上。建议:对磨煤机、排粉机热风门不严应严把检修关,作到热风门严密;风管最好能倾斜插入下煤管,煤湿的情况下应勤检查有无积煤,及时清除。 3、粗粉分离器:是防爆的一个重点部位,折向挡板上、入口管与回粉管连接处及两边连接轴上往往会有杂物及煤粉。建议:把内部检查作为一项定期工作来执行。 4、细粉分离器处:主要发生在细粉分离器出入口方形管道下部的较平缓段上。因为此段正上方开有防爆门,因而使该处的通流面积增大,风粉气流的流速下降,增加了积粉的可能性。细粉的积粉处较难检查。 5、输粉机:其四壁也是容易积粉的地方,两侧及两头有刮板拉不到的

死角,以及换向挡板不严造成积粉。粉仓温度高时,热气上升造成输粉机内积粉自燃。建议每次试转时让蛟龙运行一周以上,一般需要15分钟。 6、木块分离器:清理木块工作不及时会造成木块在磨煤机中反复磨,造成木屑增多,增加了粗粉分离器积粉,木块的换向挡板不垂直也会造成积粉。从木块分离器清理出的杂物看,主要有胶皮、塑料袋等,木块并不多。建议每班清理。 7、粉仓:粉仓防爆门不严漏风容易造成煤粉氧化、结块。粉位过高可能会使防爆门积粉,粉仓壁不光滑或仓内横梁设计不合理都容易积粉。建议每星期彻底降粉一次,停炉时尽量烧空粉仓,不能停止对粉仓温度的监视。 8、细粉格筛:细粉格筛长期运行时会有大量的碎纸片、纤维等杂物积存,导致筛孔越来越来小,积粉也就越来越多。停制粉粉仓温度高时,热气起上浮,容易引起自燃。建议每班清理一到两次。 9、排粉机入口弯道处:每次检修排粉机割开此弯道时,都能发现有大量积粉,所以在运行中制粉停运后依然要注意排粉机入口温度,防止此处自燃,检修中在切割此处是也要格外小心,防止切割时产生的高温和火花引起不安全情况. 2

直吹式制粉系统出粉管煤粉均匀性对燃烧的影响

直吹式制粉系统出粉管煤粉均匀性对燃烧的影响为确保实现国家“十一五”规划《纲要》建设资源节约型、环境友好型社会目标,按照国家电力发展规划:电力行业要优先安排可再生能源、高效、污染排放低的机组发电,限制能耗高、污染大、违反国家产业政策的机组发电,重点对火电机组进行优化调度,鼓励煤耗低、污染排放少、节水型机组发电。 强化能源节约和高效利用的政策导向,加大节能力度。通过优化产业结构特别是降低高耗能产业比重,实现结构节能;通过开发推广节能技术,实现技术节能。 国内大容量电站锅炉普遍采用直吹式制粉系统,由于锅炉制粉系统中各输粉管道的阻力特性不同,磨煤机出口煤粉和空气分配差等问题,导致锅炉风粉均匀性差,目前大多数电厂的磨煤机出粉口煤粉管粉量的不均衡在30以上,有的甚至超过100。目前没有合适的直吹制粉系统煤粉管内一次风粉浓度的监视及调整手段,很多燃烧优化的数学模型建立后由于缺乏准确的监测数据,并且无法对风粉流量调节,无法获得更佳的优化效果。 国内大容量电站锅炉普遍采用直吹式制粉系统,对于四角切圆燃烧方式,其最基本特征是直流燃烧器的几何轴线与位于炉膛中心的一个或数个假象切圆相切,在炉膛内形成一个总体旋转的火球,达到稳定煤粉燃烧,获得高的燃烧效率的目的,并保持炉内不结渣,同时结合分级燃烧技术,还可获得低的氮氧化物排放浓度。由于粉量偏差造成炉膛内切圆偏斜,产生热负荷偏斜、结渣、炉内燃烧工况恶化,飞灰含碳量高等问题。对于旋流燃烧器,由于以单个燃烧器组织燃烧,各燃烧器一次风量和煤粉浓度的分配不均衡对锅炉安全优化运行也是不利的。 制粉系统各输送管道的煤粉分配的不均衡,各支管粉量偏差大,风煤比偏差大,造成后期风粉得不到充分混合,燃烧状况不理想,负荷响应慢,炉渣可燃物高,严重影响锅炉的安全经济运行。同时,支管内风粉不均匀,出现的绕绳现象,如果分层状态的空气和煤粉进入燃烧器,就会导致,火焰不稳定,燃烧不均匀,未燃碳(LOI)增加,结渣,冲刷炉壁,CO和O2不平衡等现象。因此,改善制粉系统各输送管道的煤粉分配的均衡及支管内风粉均匀性,是提高锅炉燃烧效率,降低煤耗,提高锅炉安全运行的有效手段。 控制燃烧型NOx(不包括再燃烧)采用在燃烧初期限制氧气量,使燃料氮转变成氮气(N2)而不是一氧化氮(NO)。然而,这会伴随燃烧效率降低、导致燃料成本增加、粉煤灰销售收入的损失和静电除尘器除尘效率的降低。改进粉煤的细度和分配能降低灰含碳量而不使NOx 排放量明显地增加。

中储式制粉系统

球磨机出力低得原因有: (1)给煤机出力不足,煤质坚硬,可磨性差。 (2)磨煤机内钢球装载量不足或过多。钢球质量差,小钢球未及时清理,波浪瓦磨损严重未及时更换。(3)磨煤机内通风量不足,干燥出力低,或原煤水分增高。如排粉机出力不足,系统风门故障,磨煤机入口积煤或漏风等。(4)回粉量过大,煤粉过细。 提高制粉系统出力得措施有:(1)保持给煤量均匀,防止断煤。在保持磨煤机出口温度不变得情况下,尽量提高磨煤机入口风温。(2)定期添加钢球,保持磨煤机内一定得钢球装载量,并定期清理不合格得钢球及铁件杂物。(3)保持磨煤机内适当得通风量,磨煤机入口负压越小越好,以不漏粉为准。(4)消除制粉系统得漏风,加强粗细粉分离器得维护,保持各锁气器动作灵活。(5)保持合格得煤粉细度,适当调整粗粉分离器折向门,煤粉不应过细。 预防煤粉仓温度高得措施:(l)保持磨煤机出口温度不超过规定值。(2)按规定进行降粉。(3)经常检查与消除制粉系统及粉仓漏风。(4)建造与检修粉仓时要保证合理角度。四壁光滑,不应有积粉。 煤粉仓温度高应作如下处理: (1)停止制粉系统,进行彻底降粉。(2)关闭吸潮管阀门及绞龙下粉插板。(3)温度超过规定值时可用二氧化碳灭火。(4)待温度正常后,启动制粉系统。(5)消除各处漏风。 影响煤粉粗得原因:(1)制粉系统通风量过大。(2)磨煤机内不合格得钢球太多,使磨碎效率降低。(3)粗粉分离器内锥体磨透,致使煤粉短路或粗粉分离器折向门开得过大。(4)回粉管堵塞或停止回粉,而失去粗粉分离作用。(5)原煤优劣混合不均匀,变化太大。(6)煤质过硬或原煤粒

度过大等。 磨煤机空转危害:按规程规定,球磨机空转时间不得大于10min,因为空转时间长了,一方面钢球与钢球之间,钢球与波浪瓦之间得金属磨损增加。磨煤机正常运行与空转时所产生得磨损比就是1:50。另一方面磨煤机空转时,钢球与钢球之间,钢球与波浪瓦之间得撞击容易产生火花,产生火花又就是制粉系统爆炸得原因之一。 起、停注意事项:(1)启动时严格控制磨煤机出口气粉混合物得温度不超过规定值。因为磨煤机在启动过程中,属于变工况运行,此时出口温度若控制不当,很容易使温度超过极限,而导致煤粉爆炸。(2)磨煤机在启动时进行必要得暖管。因中间储仓式制粉系统设备较多。管道较长,启动时煤粉空气混合物中得水蒸气很容易在旋风分离器等管壁上结露,使之增加流动阻力,造成煤粉结块,甚至引起分离器堵塞。(3)磨煤机停运时,必须抽尽余粉,防止自燃与爆炸。为下次启动创造良好得条件。钢球磨内煤量过多时为什么出力反而会降低?磨煤机内得煤量过多时,使磨煤机内得煤位过高,钢球落差减小,冲击能力也相应减小(从磨煤机电流减小可以瞧出)。另一方面煤位过高,使钢球之间得煤层加厚,钢球得一部分动能消耗在使煤层得变形上,另一部分动能消耗在磨煤上,再则磨煤机内得煤位高时,使通风阻力增加,因此,使系统内通风量减少与磨煤机内得温度下降.干燥出力降低,所以磨煤机内得煤量过多时,其出力反而会降低,还容易造成磨煤机堵塞。 制粉系统漏风有哪些危害?中间储仓式制粉系统漏风部位一般在磨

制粉系统概述及中速磨煤机简介

制粉系统概述及中速磨煤机简介 制粉系统的作用是将原煤经干燥和碾磨后制成细度合格的煤粉送到锅炉燃烧器,以满足锅炉负荷的需求。制粉系统分为两大类:中间储仓式和直吹式制粉系统。 储仓式制粉系统因有煤粉仓对磨煤机出力与锅炉煤粉消耗量间的缓冲以及邻炉间的调剂作用,制粉系统的运行及出力与锅炉的负荷没有直接的关系,提高了锅炉机组的可靠性。但因其系统复杂、投资和系统的占用的空间大,产生爆燃的可能性也相对较高,因而在现代大容量机组中使用较少。储仓式制粉系统一般采用低速钢球磨煤机。 直吹式制粉系统简单、设备少、输粉管道短、阻力小,从而制粉电耗低,同时因系统简单产生爆燃的可能性也随之减少。但要求磨煤机出力与锅炉负荷相平衡,同时也必须与给煤机出力相平衡,使得磨煤机不能始终运行于其经济出力区。但因目前大容量锅炉通常有几套制粉系统,每套制粉系统对应一组喷燃器,当负荷变化时可以通过停运部分制粉系统来实现,从而使运行磨基本处于经济出力区。因此,近几年来直吹式制粉系统得到广泛应用,尤其是在大容量机组中。直吹式制粉系统采用的磨煤机一般有MPS磨、HP磨、MBF磨以及双进双出钢球磨煤机。 直吹式制粉系统可分为正压式和负压式制粉系统,正压式又可分为冷一次风机直吹式制粉系统和热一次风机直吹式制粉系统。负压式直吹式制粉系统因所有煤粉都经过排粉风机,磨损相当严重,因而较少被采用。热一次风机直吹式制粉系统中一次风机处于高温下工作,成本要求高,而冷一次风机直吹式制粉系统对一次风机只要求常温下工作,但要求空气预热器为三分仓式,比较两者的经济性,冷一次风机直吹式制粉系统得到了更为广泛的应用。我厂亦采用冷一次风机直吹式制粉系统。冷一次风机直吹式制粉系统因磨煤机处于正压下工作,必需为磨煤机提供必要的密封风,以防煤粉进入磨辊轴承等。 第一节中速磨煤机简介 中速磨煤机的工作原理:两组相对运行的研磨部件,在弹簧力、液压力或其它外力的作用下,把它们之间的原煤研磨成煤粉;然后通过研磨部件的旋转运动,把磨碎的煤粉甩到周围的风环室;粗煤粉被分离出来重新再磨,合格的煤粉送往燃烧器;在磨粉过程中,还伴随有热风对煤粉的干燥;同时,被甩出来的原煤中的少量的石块和铁块等杂物落入石子煤箱,被定期排出。中速磨煤机根据其研磨部件的不同可以分为MPS磨、HP磨、MBF磨等。 一. MPS(ZGM)磨煤机 MPS磨煤机是德国Babcock公司60年代为辗磨硬质烟煤而研制的,其研磨部件是三个凸形辊子和具有凹形槽道的磨环,又称为辊-环式磨煤机。沈阳重型机器厂、北京电力设备总厂于1985年分别引进了MPS磨煤机的生产技术。经过对引进技术的消化吸收,两家厂对MPS磨进行了一定的优化,如采用新型分离器、旋转喷嘴等,现已形成了较为完整的产品系列。在目前国内的300MW、600MW机组上已有大量运行实绩。 MPS磨的出力范围一般在40~100%之间,煤粉分配的效果较HP磨差,在采用新型静态分离器后,提高了分离器内部的导流性,分配偏差率减小。对于磨制的煤粉颗粒均匀性指数n,MPS磨要略好于HP磨。 根据Babcock公司的经验,MPS磨对煤种的适应范围见表6-1。

正压直吹式制粉系统的特点

正压直吹式制粉系统的特点: 优点: –系统简单,设备部件少、投资少,占地小,维护量小; –运行电耗低; –正压式煤粉不通过一次风机,可选用高效风机;风机叶轮无磨损,检修量小;润滑油冷却系统简单; –通过控制给煤量可控制制粉出力,利于实现燃水比的自动、精确控制调节; –爆炸危险性小。 缺点: –运行工况直接影响锅炉的运行工况; –漏入系统的风量为零,排烟热损失小,引风机电耗小; –正压运行易造成污染,必须采用密封系统; –响应负荷变化滞后性大,较慢; –磨煤机检修时影响锅炉出力,故要求储备系数大,台数多. 鹤壁电厂2×600MW超临界机组 采用中速磨煤机冷一次风机正压直吹式制粉系统。 每台炉配6台磨煤机。燃烧校核煤种时,5台运行,1台备用。 采用墙式布置燃烧,每台磨煤机带单侧一层燃烧器。 制粉系统主要设备 中速磨的特点 启动迅速,调节灵活; 磨煤单位电耗小;滚动碾磨,摩擦阻力小,金属磨损量小; 转速高,碾磨效果好,效率高; 稳定性好,外壳不受力; 噪音小,传动平稳; 结构紧凑;质量轻,占地面积小,单位投资小, 辅助系统复杂,维护量大; 对杂质敏感,工作条件要求刻苛:a、铁、木块、雷管等必须清除;b、磨出口温度限制要求高,过高自动停磨;c、对振动和煤种要求严格,不能磨制磨损指数高的煤种;d、要求水分低(外在水分≤15%)。 煤粉储备能力小,响应时间长; 磨煤机的结构复杂 中速磨煤机工作原理

水平布置的磨盘以一定的转速不停的转动,磨辊与磨盘之间存在一定间隙。原煤落在磨盘上两组相对运动的碾磨部件表面间,在离心力的作用下沿磨盘径向向外沿运动,在磨辊与磨碗间形成煤床,在压紧力作用下受挤压和碾磨而破碎,继续向外溢出磨盘。一次风从磨下部经磨碗周围环隙流经旋转磨碗的外径,在磨碗外径的细煤粉被气流携带向上流向粗粉分离器,而重的不易磨碎的外来杂物穿过气流落入侧机体区域。这些杂物通过装在转动的裙罩上的刮板装置扫出磨煤机,排入石子煤斗。经过三级分离的合格煤粉被送到炉膛燃烧。 目前超临界锅炉机组中主要应用的中速磨有 ZGM系列 HP型 MPS(ZGM)中速磨 1、工作原理 2、结构特点 ·磨辊直径大,滚动阻力小,故出力特性好,电耗低; ·出力平稳,噪音低,振动小; ·采用固定的铰轴支撑磨辊,使磨辊在磨盘上有一定的倾斜度12~15°,研磨时磨辊单侧磨损,同时具有摆动优势,提高了耐磨件的使用寿命; ·磨辊在水平位置具有一定的自由度,可以摆动,对铁块、木块、石块适应能力强; ·磨辊与磨盘端面形状相配,保证了良好的研磨效果,确保磨煤机的后期出力; ·三个磨辊加载负荷直接传至基础,以静定系统均匀传递研磨力,磨煤机外壳不承受重大载荷,磨煤机稳定性最佳; ·煤粉均匀度高(静态分离器为n=1.1~1.2,动态分离器n=1.2~1.4); ·可带负荷起动,且布置紧凑,检修方便安全。 1)采用行星齿轮减速机 ·结构紧凑,体积更小、重量更轻 因为行星传动机构比传统的定轴线齿轮传动机构,能实现更大的传动比,从而减少了传动副,使齿轮箱的整体体积和重量得到了降低。因此便于磨煤机的整体布置,减少了布置空间,进一步降低了厂房造价。 ·噪音水平更低 因为行星减速机实现了水平输入轴位于箱体的底部的设计,因此噪音得到了进一步的降低。 ·工作更为平稳、可靠性更高 由于行星减速机中间齿型联轴器独特的浮动结构,使齿轮系统与来自磨煤机的冲击振动完

相关主题