搜档网
当前位置:搜档网 › 换元积分法与分部积分法

换元积分法与分部积分法

换元积分法与分部积分法
换元积分法与分部积分法

换元积分法与分部积分法Newly compiled on November 23, 2020

换元积分法与分部积分法(4时)

【教学目的】熟练掌握换元积分法和分步积分法。

【教学重点】换元积分法和分步积分法。

【教学难点】灵活运用换元积分法和分步积分法。

【教学过程】

一 换元积分法

由复合函数求导法,可以导出换元积分法.

定理8.4(换元积分法) 设g(u )在[]βα,上有定义,)(x u ?=在[]b a ,上可导,且[]b a x x ,,)(∈≤≤β?α,并记

(i)若)(u g 在[]βα,上存在原函数)(u G ,则)(x f 在[]b a ,上也存在原函数

C x G x F x F +=))(()(),(?,即

(ii) 又若[],,,0)(b a x x ∈≠'?则上述命题(i)可逆,即当)(x f 在[]b a ,上存在原函数F(x )时,g(u )在[βα,]上也存在原函数G(u ),且G(u )=C u F +-))((1?,即

???='=dx x f dx x x g du u g )()())(()(??.

证 (i ) 用复合函数求导法进行验证:

所以)(x f 以))((x G ?为其原函数,(1)式成立.

( ii ) 在0)(≠'x ?的条件下,)(x u ?=存在反函数)(1u x -=?,且

于是又能验证(2)式成立:

)())((u g x g ==?. 口

上述换元积分法中的公式(1)与(2)反映了正、逆两种换元方式,习惯上分别称为第一换元积分法和第二换元积分法(公式(1)与(2)分别称为第一换元公式与第二换元公式).

下面的例1至例5采用第一换元积分法求解.在使用公式(1)时,也可把它写成如下简便形式:

例1 求?.tan xdx

解 由 ,cos )(cos cos sin tan dx x x dx x x xdx ???

'-== 可令,1)(,cos u

u g x u ==则得 例 2 求).0(2

2>+?a x a dx 解 ????

? ??+??? ??=+2

2211a x a x d a x a dx )(a x u =令 对换元积分法比较熟练后,可以不写出换元变量u ,而直接使用公式)1('.

例 3 求?-22x a dx

)0(>a

解 ?????? ??-=??? ??-=-2222111a x dx a x dx

a x a dx

例 4 求).0(22≠-?

a a x dx 解 ?-22a x dx dx a x a x a ???

? ??+--=1121 例 5 求?.sec xdx

解 [解法一]利用例4的结果可得

[解法二]

?xdx sec =dx x

x x x x ?++tan sec )tan (sec sec C x x ++=tan sec ln .

这两种解法所得结果只是形式上的不同,请读者将它们统一起来.

从以上几例看到,使用第一换元积分法的关键在于把被积表达式dx x f )(凑成()()()dx x x g ??'的形式,以便选取变换)(x u ?=,化为易于积分的()?du u g .最终不要忘记把新引入的变量()u 还原为起始变量()x .

第二换元公式(2)从形式上看是公式(1)的逆行,但目的都是为了化为容易求得原函数的形式(最终同样不要忘记变量还原),以下例6至例9采用第二换元积分法求解. 例6 求?+3u u du

.

解 为去掉被积函数中的根式,取根次数2与3的最小公倍数6,并令6x u =,则可把原来的不定积分化为简单有理式的积分: C u u u u ++-+-=1ln 6632663.

例7 求 )0(22>-?a dx x a

解 令,sin t a x = 2π<

t (这是存在反函数a x t arcsin =的一个单调区间).于是 例8 求()022>-?a a x dx

.

解 令t a x sec =,20π

<

x t =

sec , a a x t 2

2tan -=,故得 例9 求)0()(222>+?a a x dx

解 令t a x tan =,2π

有些不定积分还可采用两种换元方法来计算.

例10 求.122?-x x dx

解 [解法一]采用第一换元积分法:

[解法二] 采用第二换元积分法(令t x sec =):

二 分部积分法

由乘积求导法,可以导出分部积分法.

定理(分部积分法)若()x u 与()x v 可导,不定积分()()dx x v x u ?'存在,则()()dx x v x u '?也存在,并有 ()()dx x v x u '?=()x u ()-x v ()()dx x v x u ?' (3)

证 由 ()()[]()()()()x v x u x v x u x v x u '+'='

或 ()()x v x u '=()()[]'x v x u ()()x v x u '-,

对上式两边求不定积分,就得到(3)式.

公式(3)称为分部积分公式,常简写作??-=vdu uv udv (4)

例11 求?xdx x cos .

解 令x u =,x v cos =',则有.sin ,1x v u =='由公式(3)求得

例12 求?.arctan xdx .

解 令=u x arctan ,1=v ,则211x u +=

',x v =,由公式(3)求得 例13 求?.ln 3xdx x

解 令3,ln x v x u ='=,由公式(4)则有

有时需要接连使用几次分部积分才能求得结果;有些还会出现与原不定积分同类的项,需经移项合并后方能完成求解.现分别示例如下

例14 求.2dx e x x -?

解 ()

???----+-=-=dx xe e x e d x dx e x x x x x 2222

例15 求bxdx e I x cos 1?-=和?=.sin 2bxdx e I ax 解 ()()bxdx e b bx e a

e bxd a I ax ax ax sin cos 1cos 11??+== ()

2cos 1bI bx e a ax +=,

()()

12sin 1sin 1bI bx e a e bxd a I ax ax -==

?. 由此得到 解此方程组,求得

作业:1(2)(5)(7)(10)(16)(20)(27)2(1)(2)(8)(9)

53定积分的换元法和分部积分法习题

1.计算下列定积分: ⑴ 3sin()3x dx π ππ +?; 【解法一】应用牛顿-莱布尼兹公式 3sin()3x dx π ππ +?3sin()()33x d x π πππ=++?3 cos() 3x πππ =-+ [cos()cos()]333π π π π=-+-+[cos (cos )]033 π π =----=。 【解法二】应用定积分换元法 令3 x u π + =,则dx du =,当x 从 3π单调变化到π时,u 从23π单调变化到43 π ,于是有 3sin()3x dx π ππ +?4323 sin udu ππ=? 4323 cos u π π=-42[cos cos ]33 ππ=-- [cos (cos )]033 π π =----=。 ⑵ 1 32(115)dx x -+?; 【解法一】应用牛顿-莱布尼兹公式 1 32(115)dx x -+?13 2 1(115)(115)5x d x --=++?212 11(115)52 x --=?+- 22111 []10(1151)(1152)=- -+?-?211(1)1016 =--51512=。 【解法二】应用定积分换元法 令115x u +=,则1 5 dx du =,当x 从2-单调变化到1时,u 从1单调变化到16,于是有 1 32(115)dx x -+?1631 15u du -=?2 161 1152 u -=?-211 (1)1016 =- -51512=。 ⑶ 32 sin cos d π ???? ; 【解法一】应用牛顿-莱布尼兹公式 3 20sin cos d π????3 2 cos cos d π??=-?420 1cos 4 π?=-441[cos cos 0]42 π =--

换元积分法第一类换元法

§4.2 换元积分法 Ⅰ 授课题目 §4.2 换元积分法(第一类换元法) Ⅱ 教学目的与要求: 1. 理解第一类换元法的基本思想,它实际上是复合函数求导法则的逆过程,其关键是“凑微 分”,dx x x d )()(?'=? . 2. 掌握几种典型的凑微分的方法,熟练应用第一类换元积分法求有关不定积分. Ⅲ 教学重点与难点: 重点:第一换元法的思想, 难点:熟练应用第一换元法计算有关函数的不定积分. Ⅳ 讲授内容: 一、第一类换元积分法 设)(u f 具有原函数)(u F ,()()f u du F u C =+? .若u 是中间变量,()u x ?=,()x ?可微,则根据复合函数求导法则,有 (())()[()]()dF x dF du du f u f x x dx du dx dx ???'===。 所以根据不定积分的定义可得: ()[()]()[()][][()]u x f x x dx F x C F u C f u du ????='=++=?? 以上是一个连等式可以改变顺序从新写一遍,就有 [][]()[()]()][()]()u x f x x dx f u du F u C F x C ????='=+=+? ?. 以上就是第一换元积分法。 从以上可以看出,虽然 [()]()f x x dx ??'?是一个整体记号,但是被积表达式中的dx 可当作变量 x 的微分来对待,从而上式中的()x dx ?'可以看成是()x ?的微分,通过换元()u x ?=,应用到被积表达式中就得到()x dx du ?'=. 定理1 设)(u f 具有原函数)(u F ,)(x u ?=可导,dx x du )(?'=,则 [()()()()[()]f x x dx f u du F u C F x C ???'==+=+?? (1) 如何应用公式(1),在求不定积分积分()g x dx ? 时, 如果被积函数g (x )可以化为一个复合函数与它内函数的导函数的积的形式[()]()f x x ??'的形式, 那么 ()()[()]()[()]x u g x dx f x x dx f u du ???='=??? ()()[()]u x F u C F x C ??==++. 所以第一换元积分法体现了“凑”的思想.把被积函数凑出一个复合函数与其内函数的积

不定积分的第一换元积分法

不定积分的第一换元积分法 不定积分的第一换元积分法也称为凑微分法,这部分内容在解题过程中不易灵活运用。下面我们把这个方法以及在解题过程的一些技巧简单地向大家介绍一下。 一、第一换元积分法运用的前提条件 由于第一换元积分法是由复合函数求导法导出的,所以当被积函数的形式为 f(u(x))·g(x),即被积函数为某个复合函数与某个基本初等函数的乘积时,我们可以想到用第一换元积分法来求此不定积分。 二、第一换元积分法的基本解题思路 首先利用g(x)dx凑出微分形式du(x),然后换元(令u=u(x)) 使复合函数转化为基本初等函数后再利用积分公式来求积分,求出积分后再还原。其中关键的一步是凑成微分形式du(x),也是大家感觉最困难的一步,因为题中需要有u′(x)dx才能凑成微分形式du(x),而u′(x)在题中不易被观察出,也就无法凑出微分形式了。但反过来如已知u(x),那么它的微分很容易被求出:du(x)=u′(x)dx,只要在原题中凑出u′(x)dx,就可以写出它的微分形式了。因此找到u(x)成为灵活运用第一换元积分法的关键。如何找到u(x)呢?u(x)是一个怎么样的函数呢?其实u(x)就是被积函数中复合函数的中间变量。 三、第一换元积分法的具体求解步骤 被积函数一般都可以看成由两部分组成:一部分是一个复合函数f(u(x)),另一部分是某个函数g(x),即求∫f(u(x))g(x)dx。 其次找出复合函数的中间变量u(x),求这个中间变量的微分du(x)=u′(x)dx。 将题中的g(x)写成ku′(x),即 ∫f(u(x))g(x)dx=∫f(u(x))ku′(x)dx=k∫f(u(x))u′(x)dx最后根据第一换元积分法的 公式求出积分: k∫f(u(x))·u′(x)dx=kF(u(x))+c 四、举例 例1、∫x(1-3x2)10dx 解:观察此被积函数有两部分组成:x和(1-3x2)10, 其中(1-3x2)10是一个复合函数,中间变量u(x)=1-3x2,求中间变量的微分du=u′dx=-6xdx,然后就需要在题中凑这个微分, ∫x(1-3x2)10dx =-■∫(1-3x2)10(-6xdx) =-■∫u10du =-■·■u10+1+C =-■u11+C=-■(1-3x2)11+C 例2、∫■dx 解:观察此被积函数有两部分组成:■和ln3x 其中ln3x是一个复合函数,中间变量u(x)=lnx,求中间变量的微分d(lnx)=(lnx)′dx =■dx,然后就需要在题中凑这个微分, ∫■dx=∫ln3x(■dx)=∫u3dx =■u4+C=■(lnx)4+C=■ln4x+C 例3:∫tanxdx 解:此题被积函数为tanx,似乎不能用第一换元积分法来解,但是利用同角三角函数的关系式有tanx=■,就是由两部分组成:sinx和■。其中■是复合函数,中间变量u(x)=cosx,求中间变量的微分d(cosx)

换元积分法(第一类换元法)

§4.2 换元积分法 Ⅰ 授课题目 §4.2 换元积分法(第一类换元法) Ⅱ 教学目的与要求: 1. 理解第一类换元法的基本思想,它实际上是复合函数求导法则的逆过程,其关键是“凑微 分”,dx x x d )()(?'=? . 2. 掌握几种典型的凑微分的方法,熟练应用第一类换元积分法求有关不定积分. Ⅲ 教学重点与难点: 重点:第一换元法的思想, 难点:熟练应用第一换元法计算有关函数的不定积分. Ⅳ 讲授内容: 一、第一类换元积分法 设)(u f 具有原函数)(u F ,()()f u du F u C =+?.若u 是中间变量,()u x ?=,()x ?可微,则 根据复合函数求导法则,有 (())()[()]()dF x dF du du f u f x x dx du dx dx ???'===。 所以根据不定积分的定义可得: ()[()]()[()][][()]u x f x x dx F x C F u C f u du ????='=++=?? 以上是一个连等式可以改变顺序从新写一遍,就有 [][]()[()]()][()]()u x f x x dx f u du F u C F x C ????='=+=+? ?. 以上就是第一换元积分法。 从以上可以看出,虽然 [()]()f x x dx ??'?是一个整体记号,但是被积表达式中的dx 可当作变量 x 的微分来对待从而上式中的()x dx ?'可以看成是()x ?的微分,通过换元()u x ?=,应用到被积 表达式中就得到()x dx du ?'=. 定理1 设)(u f 具有原函数)(u F ,)(x u ?=可导,dx x du )(?'=,则 [()()()()[()]f x x dx f u du F u C F x C ???'==+=+?? (1) 如何应用公式(1),在求不定积分积分()g x dx ? 时 如果被积函数g (x )可以化为一个复合函数与 它内函数的导函数的积的形式[()]()f x x ??'的形式 那么 ()()[()]()[()]x u g x dx f x x dx f u du ???='=??? ()()[()]u x F u C F x C ??==++. 所以第一换元积分法体现了“凑”的思想.把被积函数凑出一个复合函数与其内函数的积

最新定积分的换元积分法与分部积分法

定积分的换元积分法与分部积分法

定积分的换元积分法与分部积分法 教学目的:掌握定积分换元积分法与分部积分法 难点:定积分换元条件的掌握 重点:换元积分法与分部积分法 由牛顿-莱布尼茨公式可知,定积分的计算归结为求被积函数的原函数.在上一章中,我们已知道许多函数的原函数需要用换元法或分部积分法求得,因此,换元积分法与分部积分法对于定积分的计算也是非常重要的.1.定积分换元法 定理假设 (1) 函数?Skip Record If...?在区间?Skip Record If...?上连续; (2) 函数?Skip Record If...?在区间?Skip Record If...?上有连续且不变号的导数; (3) 当?Skip Record If...?在?Skip Record If...?变化时,?Skip Record If...?的值在?Skip Record If...?上变化,且?Skip Record If...?, 则有 ?Skip Record If...?.(1) 本定理证明从略.在应用时必须注意变换?Skip Record If...?应满足定理的条件,在改变积分变量的同时相应改变积分限,然后对新变量积分.例1计算?Skip Record If...?. 仅供学习与交流,如有侵权请联系网站删除谢谢4

仅供学习与交流,如有侵权请联系网站删除 谢谢4 解 令?Skip Record If...?,则?Skip Record If...?.当?Skip Record If...?时,?Skip Record If...?;当?Skip Record If...?时,?Skip Record If...?.于是 ?Skip Record If...? ?Skip Record If...?. 例2 计算?Skip Record If...??Skip Record If...?. 解 令?Skip Record If...?,则?Skip Record If...?.当?Skip Record If...?时,?Skip Record If...?;当?Skip Record If...?时,? ?Skip Record If...??Skip Record If...? ?Skip Record If...? ?Skip Record If...? ?Skip Record If...?. 显然,这个定积分的值就是圆?(图5-8). 例3 计算?Skip Record If...?. 解法一 令?Skip Record If...?,则?Skip Record If...?. 当?Skip Record If...?时,?Skip Record If...?;当?Skip Record If...?时,?Skip Record If...?,于是 ?Skip Record If...?. 解法二 也可以不明显地写出新变量?Skip Record If...?,这样定积分的上、下限也不要改变. 即 ?Skip Record If...? ?Skip Record If...?.

积分换元法解题技巧研究

华北水利水电大学 课题名称:积分换元法解题技巧研究 专业:岩土工程 班级: 小组成员: 联系方式: 2013年6月09日

摘要:换元法是积分应用中的一种重要解题方法,也是一种重要的数学思想。论文主要讨论了第一换元法、第二类换元法、二重积分换元法以及三重积分换元法的解题方式与技巧,同时也介绍了解题中应该注意的事项,以便能够准确而高效地运用积分换元法的解题技巧。关键词:积分换元法、解题技巧、应用举例 英文题目 Reasearch on Problem Solving Skills Change Element Method Integration Abstract:Change element method is an important method of solving the integral application ,also is a kind of important mathematics thought .This paper mainly discuss the first element method ,second kinds of method, the double integral method and the method of three integral problem-solving methods and techniques, and items that should be noticed in problem solving is also introduced, in order to problem-solving skills to accurately and efficiently using integral method. Key words:for example, integral method ,technique,application

最新33第一类换元积分法汇总

33第一类换元积分法

§3.3 第一类换元积分法 教学目的:使学生理解第一类换元积分法,掌握第一类换元积分法的一般步骤及其应用。 重点:第一类类换元积分法及其应用 难点:第一类类换元积分法及其应用 教学过程: 一、问题的提出 不定积分的概念较为简单,但从计算上讲是较为繁杂的,如同数学中一般逆运算比正运算困难一样,不定积分作为微分运算的逆运算,其难易程度却相差甚远,若把求导数比喻为将一根绳子打结,求不定积分则是解结,解结显然比打结难,有时甚至解不开。而且利用直接积分法所能计算的不定积分是非常有限的,因此,有必要进一步研究不定积分的其它计算方法,由复合函数的求导法则可推得一种十分重要的积分方法——换元积分法(通常简称换元法)。该法可分为两类,即第一类和第二类换元法。本节将介绍第一类换元法。 二、第一类换元积分法(凑微分法) 我们将把复合函数的求导法反过来用于求不定积分,即利用变量代换的方法将所要求的不定积分变为基本积分表中所已有的形式或原函数为已知的其他形式来求函数的不定积分,这种方法称为换元积分法。下面先介绍第一类换元积分法。 定理 设)(u f 具有原函数,)(x u ?=可导,则有换元公式 ??=='?)(] )([)()]([x u du u f dx x x f ??? 证明 设)(u f 具有原函数)(u F ,即)(u F '=)(u f ,?du u f )(=C u F +)(. 又因为u 是关于x 的可导函数)(x u ?=,所以有 ???+==='?C x F x dF x d x f dx x x f )]([)]([)]([)]([)()]([?????? 又)(])([x u du u f ?=?)(])([x u C u F ?=+=C x F +=)]([? 从而推得??=='?) (])([)()]([x u du u f dx x x f ??? 证毕 推论 若 ?dx x f )(=C x F +)(成立,则?du u f )(=C u F +)(.也成立,其中u 为x 的任一可导函数 该推论表明:在基本的积分公式中,把自变量x 换为u 的任一可导函数 后,公式仍成立,这就大大的扩大了公式的使用范围。 该方法的关键在于从被积函数?Skip Record If...?中成功地分出一个因子 ?Skip Record If...?与?Skip Record If...?凑成微分?Skip Record If...?,而剩下部分正好表成?Skip Record If...?的函数,然后令?Skip Record If...?,就将所要求的不定积分变为基本积分表中已有的形式。 通过第一类换元积分公式来计算积分的方法叫第一类换元积分法。

高等数学上册教案换元积分法.docx

第 4 章不定积分 第一类换元积分法 【教学目的】: 1. 理解第一类换元积分法; 2. 会用第一类换元积分法计算不定积分。【教学重点】: 1. 用第一类换元积分法计算不定积分。【教学难点】: 1. 凑微分技巧。 【教学时数】: 2 学时 【教学过程】: 我们先看这样一个例子,求不定积分 e 2 x dx ,因为被积函数 e 2x 是 x 的复合 函数,基本积分公式中没有这种公式,但我们可以把原积分变形,化成某个基本积分公式的形式: e 2 x dx 1 e 2x d( 2x) 1 e u du ( 令 2x u ) 1 e 2x 2 2 C ( 将 2 x u 代回 ) 2 因为 ( 1 e 2x C ) e 2 x ,所以 1 e 2 x C 确为 e 2x 的原函数,说明上述解法正 2 2 确. 于是有下述定理: 定理 1(第一类换元积分法)设函数 u (x) 在所讨论的区间上可微,又设 f (u)du F (u) C , 则有 f x ' x dx f x )] d x ) F x )] C . [ ( )] ( ) [ ( ( [ ( 第一类换元积分法的解题步骤: 设要求 g(x)dx, 如果被积函数 g( x) 可化为 g (x) f [ ( x)] ' (x) 的形式,则 g( x)dx = f [ ( x)] ' ( x) dx f [ ( x)]d (x) f (u)du = F (u) C F [ ( x)] C 。 注第一换元积分法的关键是如何选取 (x) ,并将 ' ( x) dx 凑成微分 d ( x) 的 形式,因此,第一换元积分法又称为“凑微分”法. ( 1)利用 1 ( ) 1 , 、 均为常数,且 a 0 凑微分. dx d ax , dx b d( ax b) a a a 例 1 求 sin(2x 1)dx .

换元积分法(第一类换元法)

§4.2 换元积分法 Ⅰ 授课题目 §4.2 换元积分法(第一类换元法) Ⅱ 教学目的与要求: 理解第一类换元法的基本思想,它实际上是复合函数求导法则的逆过程,其关键是“凑微分”, dx x x d )()(?'=? . 掌握几种典型的凑微分的方法,熟练应用第一类换元积分法求有关不定积分. Ⅲ 教学重点与难点: 重点:第一换元法的思想, 难点:熟练应用第一换元法计算有关函数的不定积分. Ⅳ 讲授内容: 一、第一类换元积分法 设)(u f 具有原函数)(u F ,()()f u du F u C =+?.若u 是中间变量,()u x ?=,()x ?可微,则根据 复合函数求导法则,有 (())()[()]()dF x dF du du f u f x x dx du dx dx ???'===。 所以根据不定积分的定义可得: ()[()]()[()][][()]u x f x x dx F x C F u C f u du ????='=++=?? 以上是一个连等式可以改变顺序从新写一遍,就有 [][]()[()]()][()]()u x f x x dx f u du F u C F x C ????='=+=+? ?. 以上就是第一换元积分法。 从以上可以看出,虽然 [()]()f x x dx ??'?是一个整体记号,但是被积表达式中的dx 可当作变量x 的 微分来对待从而上式中的()x dx ?'可以看成是()x ?的微分,通过换元()u x ?=,应用到被积表达式中就得到()x dx du ?'=. 定理1 设)(u f 具有原函数)(u F ,)(x u ?=可导,dx x du )(?'=,则 [()()()()[()]f x x dx f u du F u C F x C ???'==+=+?? (1) 如何应用公式(1),在求不定积分积分()g x dx ? 时 如果被积函数g(x)可以化为一个复合函数与它 内函数的导函数的积的形式[()]()f x x ??'的形式 那么 ()()[()]()[()]x u g x dx f x x dx f u du ???='=??? ()()[()]u x F u C F x C ??==++.

换元积分法(第二类换元法)

§4.2 换元积分法(第二类) Ⅰ 授课题目(章节): §4.2 换元积分法 (第二类换元积分法) Ⅱ 教学目的与要求: 1.了解第二类换元法的基本思想 2.掌握几种典型题的第二类换元积分法解法 Ⅲ 教学重点与难点: 重点:第二换元法中的三角代换及根式代换 难点:积分后的结果进行反代换 Ⅳ 讲授内容: 第一类换元积分法的思想是:在求积分()g x dx ? 时 如果函数g (x )可以化为[()]()f x x ??'的 形式 那么 () ()[()]()[()]() ()u x g x dx f x x dx f x d x f u du ?????='==???? ()F u C =+[()]F x C ?=+ 所以第一换元积分法体现了“凑”的思想.把被积函数凑出形如[()]()f x x ??'函数来.对于某些函数第一换元积分法无能为力,例如? -dx x a 22.对于这样的无理函数的积分我们就得用今天要学 习的第二类换元积分法。 第二类换元的基本思想是选择适当的变量代换)(t x ψ=将无理函数()f x 的积分 ()f x dx ?化为 有理式[()] ()f t t ψψ'的积分[()]()f t t dt ψψ'?。即 ()[()]()f x dx f t t dt ψψ'=?? 若上面的等式右端的被积函数[()] ()f t t ψψ'有原函数()t Φ,则[()]()()f t t dt t C ψψ'=Φ+?, 然后再把()t Φ中的t 还原成1 ()x ψ-,所以需要一开始的变量代换)(t x ψ=有反函数。 定理2 设)(t x ψ=是单调、可导的函数,且0)(≠ψ't ,又设)()]([t t f ψ'ψ有原函数()t Φ,则 ??+ψΦ=+Φ=ψ'ψ=-C x C t dt t t f dx x f )]([)()()]([)(1 分析 要证明 1()[()]f x dx x C ψ-=Φ+? ,只要证明1[()]x ψ-Φ的导数为()f x , 1[()]d d dt x dx dt dx ψ-ΦΦ=? , ?dt dx =

第二节换元积分法

第二节 换元积分法 要求:掌握用第一、二换元积分法求不定积分。 重点:第一、二换元积分法。 难点:选择恰当的变量代换。 作业:习题4-2(252P )***6)8)10)11)14)17)20)23)24)25)28)31)32)33)35)36)38)39)40)1,2 问题提出: 利用不定积分的基本积分表及性质可以求出一些不定积分,但它毕竟是有限的,还有不少积分只靠上述方法是解决不了的,如?xdx 5sin 、? dx xe x 2 2.为了求出更多的不定积分,有必要研究求不定积分的其它方法,换元积分法是本节要介绍的一种方法.换元积分法其意思是用新变量去代换原变量,使原被积函数式变成一个比较简单的或积分表中已有的形式.它实质为复合函数求导运算的逆运算.按引入新变量的方式分第一换元积分法和第二换元积分法. 一、第一换元积分法 复合函数的微分 已知函数)(),(x u u F y ?==,则复合函数)]([x f y ?=, 因此导数 )()]([x x f y ??''=', 微分 du u F dx x x F dy )()()](['=''=??. 如 函数2 sin x y =,令2 x u =,得u y sin =, 导数 x x x u dx du du du dx dy 2cos 2cos 2?=?=?=, 微分 xdx x x d 2cos )(sin 2 2 ?=, 上式两边积分得, 22 2 cos 2(cos sin )sin x u x xdx udu u c x C =?===+=+?? . 再如 22 2 2x u x u u x e xdx e du e c e C =?===+=+? ? . 这里我们的思想方法是与复合函数求导方法一样,引入中间变量u 来化简运算. 定理1 设函数)(u f 具有原函数)(u F ,且)(x u ?=可导,则函数)]([x F ?是函数 )()]([x x f ??'的原函数,即有换元公式 () [()]()[()][()] u u f x x dx F x C f u du ????='=+=??. 这个公式称第一换元公式(或凑微分法). 证明思路,上式两边求导,得[()][()]'()dF x f x x dx ???=. 计算方法

第一换元积分法

课题:换元积分法(一) 指导思想: 第一换元积分法是积分学中的重要方法之一,占有相当重要的地位.第一换元积分法是计算积分的基础,第一换元积分法掌握的熟练程度不仅影响着定积分的计算和应用,而且还影响到今后将要学习的多元函数的积分的计算,以及微分方程的求解。因此,必须重视。 在教学的过程中,考虑到学生的实际情况,结合第一换元积分法的基础性和灵活性,通过比较,分析,作出了一些归纳。然后通过大量的练习,积累经验,熟悉技巧,熟练掌握第一换元积分法。 教学目标: (一)知识目标: 熟练掌握第一换元积分法 (二)能力目标: 1.通过第一换元积分法的学习,能够做到举一反三; 2.培养学生分析问题,解决问题的能力; 3.提高学生自主学习的能力。 (三)情感目标: 通过这节课的学习让学生增强自信心,面对数学学习时不再害怕,提高学习数学的兴趣 教学重点:第一换元积分法 教学难点:凑微分 教学课时:2课时

教学过程: 一.复习引入 引例:计算下列不定积分: 1.223 24(21)(441)23 x dx x x dx x x x c +=++= +++?? 2.10(21)x dx +? =? 二.新课讲解 第一换元积分法: 凑微分 1 ()dx d ax b a =+ x x e dx de = 111x dx dx ααα+= + 1 ln dx d x x = sin cos xdx xdx =- cos sin xdx d x = 三.例题与练习 例1.计算 10(21)x dx +? 解:原积分= 10 1011211(2111(21)22)22 x t x x d t dt t c +=+=++??令 = 111 (21)22 x c ++ 练习1:1)cos3xdx ? 2)x e dx -? 3) 21 14dx x +? 例2.计算2 1x dx x +? 解:原积分= 122 2()111d x x ++?(令21x t +=) =112dt t ?=1ln 2t c +=21 ln(1)2x c ++

换元法在不定积分和定积分中的联系与区别

换元法在不定积分和定积分中的联系与区别 1.第一换元法在不定积分和定积分中的联系与区别 1.1不定积分中第一换元法的定理形式 定理1若,且的原函数容易求出,记 , 则 . 证明若,令,于是有 因而 得证。 1.2定积分中第一换元法的定理形式 定理2若连续,在上一阶连续可导,且,在构成的区间上连续,其中,则 . 证明令,由于在构成的区间上连续,记,则 得证。 1.3 第一换元法在不定积分和定积分中的联系与区别 区别:第一换元法在定积分中对未知量给出了定义范围,要求换元函数在该定义域内一阶连续可导即可,对积分要求变弱。

联系:不定积分的实质是求一个函数的原函数组成的集合,部分定积分的计算可以利用不定积分的第一换元法求出简单函数的任意一个原函数,再用原函数在定义域的上下限的函数值取差值。 例1求. 解因为 即有一个原函数,所以 例2 计算积分. 解由于 于是 2.第二换元法在不定积分和定积分中的联系与区别 2.1不定积分中第二换元法的定理形式 定理3设连续,及都连续,的反函数存在且连续,并且 ,(1)则 (2)

证明将(2)式右端求导同时注意到(1)式,得 , 这便证明了(2)式。 2.2定积分中第二换元法的定理形式 定理 4 设在连续,作代换,其中在构成的区间上有连续导数,且,则 证明设是的一个原函数,则是的一个原函数。于是 , 定理得证。 2.3 第二换元法在不定积分和定积分中的联系与区别 区别:由不定积分中第二换元法的证明过程可知,不定积分中第二换元法要求变换的反函数存在且连续,并且。而在定积分的第二换元法则不这样要求,它通过换元法写出关于新变量的被积函数与新变量的积分上下限后可以直接求职,不像不定积分的计算最终需要对变量进行还原。 例3用第二换元法求解 解令,则

定积分换元法与分部积分法习题.doc

1.计算下列定积分: ⑴ sin( x )dx ; 3 3 【解法一】应用牛顿 - 莱布尼兹公式 sin( x )dx sin( x )d ( x ) cos( x ) 3 3 3 3 3 3 3 [cos( ) cos( )] [ cos( cos )] 0。 3 3 3 3 3 【解法二】应用定积分换元法 令 x 3 u ,则 dx du ,当 x 从 单调变化到 时,u 从 2 单调变化到 4 , 3 3 3 4 4 4 2 sin( x )dx 3 sinudu cosu 23 于是有 2 [cos cos ] 3 3 3 3 3 3 [ cos ( cos )] 0 。 3 3 ⑵ 1 dx ; 2 (11 5x)3 【解法一】应用牛顿 - 莱布尼兹公式 1 dx 1 1 (11 5x) 3 d (11 5x) 1 1 5x) 2 1 2 (11 5x)3 5 5 (11 2 2 2 1 [ 1 2 (11 1 2) 2 ] 1( 1 2 1) 51 。 10 (11 5 1) 5 10 16 512 【解法二】应用定积分换元法 令 11 5x u ,则 dx 1 du ,当 x 从 2 单调变化到 1 时, u 从 1 单调变化到 5 16,于是有 1 dx 1 16 u 3 du 1 1 2 16 1 1 1) 51 2 (11 5x)3 5 5 u 1 ( 。 1 2 10 162 512 ⑶ 2 sin cos 3 d ; 【解法一】应用牛顿 - 莱布尼兹公式

3.3第一类换元积分法

§3.3 第一类换元积分法 教学目的:使学生理解第一类换元积分法,掌握第一类换元积分法的一般步骤及其应用。 重点:第一类类换元积分法及其应用 难点:第一类类换元积分法及其应用 教学过程: 一、问题的提出 不定积分的概念较为简单,但从计算上讲是较为繁杂的,如同数学中一般逆运算比正运 算困难一样,不定积分作为微分运算的逆运算,其难易程度却相差甚远,若把求导数比喻为将一根绳子打结,求不定积分则是解结,解结显然比打结难,有时甚至解不开。而且利用直接积分法所能计算的不定积分是非常有限的,因此,有必要进一步研究不定积分的其它计算方法,由复合函数的求导法则可推得一种十分重要的积分方法——换元积分法(通常简称换元法)。该法可分为两类,即第一类和第二类换元法。本节将介绍第一类换元法。 二、第一类换元积分法(凑微分法) 我们将把复合函数的求导法反过来用于求不定积分,即利用变量代换的方法将所要求的不定积分变为基本积分表中所已有的形式或原函数为已知的其他形式来求函数的不定积分,这种方法称为换元积分法。下面先介绍第一类换元积分法。 定理 设)(u f 具有原函数,)(x u ?=可导,则有换元公式 ??=='?) (])([)()]([x u du u f dx x x f ??? 证明 设)(u f 具有原函数)(u F ,即)(u F '=)(u f ,?du u f )(=C u F +)(. 又因为u 是关于x 的可导函数)(x u ?=,所以有 ???+==='?C x F x dF x d x f dx x x f )]([)]([)]([)]([)()]([?????? 又) (])([x u du u f ?=?)(])([x u C u F ?=+=C x F +=)]([? 从而推得??=='?) (])([)()]([x u du u f dx x x f ? ?? 证毕 推论 若 ?dx x f )(=C x F +)(成立,则?du u f )(=C u F +)(.也成立,其中u 为x 的 任一可导函数 该推论表明:在基本的积分公式中,把自变量x 换为u 的任一可导函数后,公式仍成立,这就大大的扩大了公式的使用范围。 该方法的关键在于从被积函数 )()]([x x f ??'中成功地分出一个因子)(x ?'与 dx 凑成微分)(x d ?,而剩下部分正好表成)(x ?的函数,然后令u x =)(?,就将所要求的 不定积分变为基本积分表中已有的形式。 通过第一类换元积分公式来计算积分的方法叫第一类换元积分法。 三、第一类换元积分法的一般步骤: 若某积分?dx x g )(可化为 ?'?dx x x f )()]([??的形式,且 ?du u f )(比较容易积分,那么 可按下列的方法和步骤来计算所给积分 ⑴凑微分 设法将积分 ?dx x g )(变形为?'?dx x x f )()]([??的形式,从而可得:

第一类换元积分法

§3.3第一类换元积分法 教学目的:使学生理解第一类换元积分法,掌握第一类换元积分法的一般步骤及其应用。 重点:第一类类换元积分法及其应用 难点:第一类类换元积分法及其应用 教学过程: 一、问题的提出 不定积分的概念较为简单,但从计算上讲是较为繁杂的,如同数学中一般逆运算比正运算困难一样,不定积分作为微分运算的逆运算,其难易程度却相差甚远,若把求导数比喻为将一根绳子打结,求不定积分则是解结,解结显然比打结难,有时甚至解不开。而且利用直接积分法所能计算的不定积分是非常有限的,因此,有必要进一步研究不定积分的其它计算方法,由复合函数的求导法则可推得一种十分重要的积分方法——换元积分法(通常简称换元法)。该法可分为两类,即第一类和第二类换元法。本节将介绍第一类换元法。 二、第一类换元积分法(凑微分法) 我们将把复合函数的求导法反过来用于求不定积分,即利用变量代换的方法将所要求的不定积分变为基本积分表中所已有的形式或原函数为已知的其他形式来求函数的不定积分,这种方法称为换元积分法。下面先介绍第一类换元积分法。 定理设)(u f 具有原函数,)(x u ?=可导,则有换元公式 ??=='?) (])([)()]([x u du u f dx x x f ??? 证明设)(u f 具有原函数)(u F ,即)(u F '=)(u f ,?du u f )(=C u F +)(. 又因为是关于的可导函数)(x u ?=,所以有 ???+==='?C x F x dF x d x f dx x x f )]([)]([)]([)]([)()]([?????? 又) (])([x u du u f ?=?)(])([x u C u F ?=+=C x F +=)]([? 从而推得??=='?) (])([)()]([x u du u f dx x x f ? ??证毕 推论若?dx x f )(=C x F +)(成立,则?du u f )(=C u F +)(.也成立,其中为的任一可 导函数 该推论表明:在基本的积分公式中,把自变量换为的任一可导函数后,公式仍成立,这就大大的扩大了公式的使用范围。 该方法的关键在于从被积函数 )()]([x x f ??'中成功地分出一个因子)(x ?'与凑 成微分)(x d ?,而剩下部分正好表成)(x ?的函数,然后令u x =)(?,就将所要求的不定积分变为基本积分表中已有的形式。 通过第一类换元积分公式来计算积分的方法叫第一类换元积分法。 三、第一类换元积分法的一般步骤: 若某积分?dx x g )(可化为 ?'?dx x x f )()]([??的形式,且?du u f )(比较容易积分,那么 可按下列的方法和步骤来计算所给积分 ⑴凑微分设法将积分 ?dx x g )(变形为?'?dx x x f )()]([??的形式,从而可得: )()]([)()]([)(x d x f x x f dx x g ???????='= ⑵作变量代换作变量代换)(x u ?=,则)()(x d dx x du ??='=,从而将积分变为 du u f x x f dx x g ???='=)][)()]([)(??

不定积分换元法例题

【不定积分的第一类换元法】 已知 ()()f u du F u C =+? 求()(())'()(())()g x dx f x x dx f x d x ????= =? ?? 【凑微分】 ()()f u du F u C = =+? 【做变换,令()u x ?=,再积分】 (())F x C ?=+ 【变量还原,()u x ?=】 【求不定积分()g x dx ? 的第一换元法的具体步骤如下:】 (1)变换被积函数的积分形式:()(())'()dx g x f x x dx ??=?? (2)凑微分:()(())((')))(()x g x dx d x dx f x f x ????= =??? (3)作变量代换()u x ?=得:()(())'()()()()g x dx f x x x x dx f d ????==? ??()u f u d =? (4)利用基本积分公式()()f u du F u C =+?求出原函数: ()(())'()(())()g x dx f x x dx f x d x ????==???()()d u u C f u F ==+? (5)将()u x ?=代入上面的结果,回到原来的积分变量x 得: ()(())'()(())()g x dx f x x dx f x d x ????==???()()f u du F u C ==+?(())F x C ?=+ 【注】熟悉上述步骤后,也可以不引入中间变量()u x ?=,省略(3)(4)步骤,这与复合函数的求导法则类似。 __________________________________________________________________________________________ 【第一换元法例题】 1、9 9 9 9 (57)(57)(5711(57)(57)55 )(57)dx d x d x dx x x x x +=+?=+?= +?++? ? ? ? 110091(57)(57)(57)10111 (57)5550 d C x x x x C =?=?+=+++++? 【注】1 (57)'5,(57)5,(57)5 x d x dx dx d x +=+==+?? 2、1ln ln ln ln dx d x x x dx x x x =?=???? 221 (l 1ln ln (ln )2n )2x x x d C x C =?=+=+? 【注】111 (ln )',(ln ),(ln )x d x dx dx d x x x x ===?? 3(1)sin tan cos co si s cos cos n cos cos xdx d x xdx dx x d x x x x x --= ===? ???? cos ln |cos |c ln |co s |o s x x d C x C x =-=-+=-+?

不定积分求解方法及技巧

不定积分求解方法及技巧小汇总 摘要:总结不定积分基本定义,性质和公式,求不定积分的几种基本方法和技巧,列举个别典型例子,运用技巧解题。 一.不定积分的概念与性质 定义1如果F(x)是区间I上的可导函数,并且对任意的x∈I,有F’(x)=f(x)dx则称F(x)是f(x)在区间I上的一个原函数。 定理1(原函数存在定理)如果函数f(x)在区间I上连续,那么f(x)在区间I上一定有原函数,即存在可导函数F(x),使得F(x)=f(x)(x∈I) 简单的说就是,连续函数一定有原函数 定理2设F(x)是f(x)在区间I上的一个原函数,则 (1)F(x)+C也是f(x)在区间I上的原函数,其中C是任意函数; (2)f(x)在I上的任意两个原函数之间只相差一个常数。 定义2设F(x)是f(x)在区间I上的一个原函数,那么f(x)的全体原函数F(x)+C称为f(x)在区间I上的不定积分,记为?f(x)d(x),即?f(x)d(x)=F(x)+C 其中记号?称为积分号,f(x)称为被积函数,f(x)d(x)称为被积表达式,x称为积分 变量,C称为积分常数。 性质1设函数f(x)和g(x)存在原函数,则?[f(x)±g(x)]dx=?f(x)dx±?g(x)dx.性质2设函数f(x)存在原函数,k为非零常数,则?kf(x)dx=k?f(x)dx. 二.换元积分法的定理 如果不定积分?g(x)dx不容易直接求出,但被积函数可分解为g(x)=f[?(x)] ?’(x). 做变量代换u=?(x),并注意到?‘(x)dx=d?(x),则可将变量x的积分转化成变量u的积 分,于是有?g(x)dx=?f[?(x)] ?’(x)dx=?f(u)du. 如果?f(u)du可以积出,则不定积分?g(x)dx的计算问题就解决了,这就是第一类换 元法。第一类换元法就是将复合函数的微分法反过来用来求不定积分。 定理1 设F(u)是f(u)的一个原函数,u=?(x)可导,则有换元公式

相关主题