搜档网
当前位置:搜档网 › 线性代数教案-第一章 线性空间

线性代数教案-第一章 线性空间

线性代数教案-第一章   线性空间
线性代数教案-第一章   线性空间

第一章线性空间

一、教学目标与基本要求

数学的特点之一是抽象.从实数、复数、实值函数、无穷级数、向量等数学对象中,可以抽象出它们的共同特点:同一集合中的元素彼此可以相加,可与数相乘,这些运算还遵从一些共同规律.本章讨论的线性空间,就是针对上述特点建立的一种一般性的数学概念.它包括了所有前面提到的实例,另有许多数学对象也可归属其中.

数学中所谓空间,就是具有某些特性的集合.所谓线性空间,概言之就是这样一个集合:在其上定

义了称为加法和数乘的两种运算,并可在该集合上实施(准确的定义见后详述).在此,既不强调集合元素的本来属性,又不规定这两种运算是如何实施的,只规定运算具有称为公理的某些性质.

1 线性空间的定义及例

定义1.1.1设V是一个非空集合,其元素用x、y、z等表示.V被称为一个线性空间,如果它满足以下被分为三组由10条公理构成的公理体系:

1.1.1封闭公理

公理1(加法封闭公理)在V中定义了加法运算:对于V中任意两个元素x和y,有唯一的V中的元素与之对应并被称为x与y的和,记为x+y.

公理2(数乘封闭公理)在V中定义了实数乘法(简称数乘)运算:对于V中任意元素x和任意实数a,有唯一的V中的元素与之对应并被称为a与x的积,记为a x.

加法运算和数乘运算合称线性运算.

1.1.2加法公理

公理3 (交换律)对于任意x,y∈V,有

x+

+.

=

x

y

y

公理4(结合律) 对于任意x,y,z∈V,有

+

x+

=

+.

+

y

)

)

z

(z

(

y

x

公理5 (零元素存在性)V中存在一个记为θ的零元素,对于任意x∈V,有

+.

x=

x

θ

-的x的负元素,使公理6 (负元素存在性)对于任意x∈V,V中存在记为x

+)

-

(.

θ

x=

x

1.1.3数乘公理

公理7(结合律)对于任意x∈V,任意实数a和b,有

b

(ab

a=.

x)

x

(

)

公理8 (加法分配律)对于任意x ,y ∈V 及任意实数a ,有

y x y x a a a +=+)(.

公理9(实数相加分配律)对于任意x ∈V ,任意实数a 和b ,有

x x x b a b a +=+)(.

公理10(单位元素存在性)对于任意 x ∈V ,有

x x =1.

以上定义的线性空间,有时被称为实线性空间,以强调数乘运算是实数相乘.数乘运算也可以是复数相乘,此时的线性空间被称为复线性空间.线性空间又被称为向量空间,其元素可被称为向量.实数和复数被统称为数.本书主要讨论实线性空间,但所得结果在复线性空间中也成立.

从线性空间的公理体系容易推得以下结论:

(1)零元素是唯一的.

(2)任意元素的负元素是唯一的.将差y x -定义为)(y x -+.

(3)如果θx =a ,则0=a 或θx =.

(4)θx =0;θθ=a ;)()()(x x x -=-=-a a a

(5)若a x =a y 且0≠a ,则x =y .

(6)若a x =b x 且θx ≠,则a =b .

(7)y x y x y x --=-+-=+-)()()(.

(8)x x x 2=+,x x x x 3=++,一般地有:n 个x 相加等于n x .

定义1.1.2设V 是一个线性空间,S 是V 的一个非空子集.如果S 对于V 中定义的加法和数乘也构成一个线性空间,则称S 为V 的子空间.

推论:线性空间V 的非空子集S 成为V 的子空间的充分必要条件是:S 中加法和数乘两种运算满足封闭公理.

定义1.1.3设S 是线性空间V 的一个非空子集.集合

{x =∑=k i i a

1x i ︱k x x ,, 1∈S ;k a a ,, 1∈R ;k 是任意正整数}

被称为S 中元素的有限线性组合.由于这是V 的一个子空间,故又被称为S 生成的子空间,记为L (S )

2 线性空间中的相关集和独立集

定义1.2.1设S 是线性空间V 的一个子集合.如果S 中存在由不同元素构成的有限集

}{1k x x ,, ,以及不全为零的一组数k a a ,,

1,使 ∑=k i i a

1x i θ=(1.2.1)

则S 称是相关集(又称线性相关集).

当k a a ,, 1不全为零时,(1.2.1)式被称为零元素θ的一种非平凡表示.

若S 不是相关集,则被称为独立集(又称线性无关集).等价说法是:对于S 中任意选定的不同元素k x x ,, 1,等式∑=k i i a

1x i θ=蕴涵了01===k a a ,则S 是独立集.

定理1.2.1 设S =}{1k x x ,, 是线性空间V 中k 个元素构成的独立集,L (S )是S 生成的子空间.则L (S )中任何k +1个元素构成的集合是相关的.

3 基 维数与坐标

定义1.3.1 设S 是线性空间V 中的一个有限集.若S 是独立集且V 由S 生成,则称S 是V 的一组有限基.若V 有一组有限基或V 只含零元素,则称V 为有限维空间;否则称为无限维空间.

定理1.3.1 设V 是有限维线性空间,则V 的任何一组有限基与别的有限基所含元素个数相同.

定义1.3.2 若线性空间V 有一组由n 个元素组成的基,则称整数n 为V 的维数,记为dim V n =.若}{θ=V ,则规定dim V 0=.

R n 的维数是n (这是称R n 为n 维向量空间的缘由),}{1n e e ,, 是其一组基,被称为R n 的常用基.

定理1.3.2设V 是n 维线性空间,则

(a )V 中任何独立集必是V 的某组基的子集;

(b )V 中任何由n 个元素组成的独立集必是V 的一组基.

定义1.3.3在n 维线性空间V 中,给定确定了元素顺序的一组基}{1n e e ,, ,则对任意x ∈V ,有

x i

n

i i c e ∑==1. (称x 可表为这组基的线性组合,或称x 可被这组基线性表示)其中系数n c c ,, 2是由元素x 及这组基唯一确定的.这组系数就被称为x 在基}{1n e e ,, 下的坐标,记为)(1n c c ,,

.

4 内积 欧氏空间 范数

定义1.4.1 设V 是实线性空间.如果对于V 中任意元素x 和y ,对应着唯一的实数,记为(x ,y ),满足以下4条公理:

公理1(对称性) )()(x y y x ,,=,

公理2(加性) )()()(z y y x z y x ,,,+=+,任意z ∈V ,

公理3(齐性) )()(y x y x ,,c c =,任意c ∈R ,

公理4(正定性) )(x x ,≥0,当且仅当x =θ时,0)(=x x ,,

则称)(y x ,是x ,y 的内积.并称V 是一个欧几里德(Euclid )空间,简称欧氏空间.

定义1.4.2在欧氏空间中,非负实数)(x x ,被称为元素x 的范数,记为||||x .

为了在欧氏空间中引入两向量间夹角的概念,需要下面的定理.

定理1.4.1(柯西—许瓦兹(Cauchy —Schwarz )不等式) 在欧氏空间中,有

|)(|y x ,≤||||x ||||y .

这里x ,y 是该空间中任意元素.当且仅当x 与y 相关时,上式取等号.

定义1.4.3在欧氏空间中,任意两非零元素x 和y 之间的夹角?(0≤?≤π)按下式定义

|||| |||| )(cos y x y x ,=?. 注意:正是柯西—许瓦兹不等式保证了这个定义的准确性.

关于范数,本书将作较深入的讨论.

定理1.4.2在欧氏空间中,范数具有以下性质:

(1) ||||x ≥0,当且仅当θx =,0||||=x (正定性);

(2) ||||||c c =x ||||x (正齐性);

(3) ||||y x +≤||||x +||||y (三角不等式).

这里, x ,y 是该空间任意元素,c 是任意实数.

5 欧氏空间中的正交性

定义1.5.1 设是V 一个欧氏空间.对于任意x ,y ∈V ,如果0),(=y x ,则称x 与y 正交.又:设S 是V 的一个子集,若对于任意相异的x ,y ∈S 有0),(=y x ,则称是S 一个正交集.若一个正交集中任何元素的范数均为1,则称它是一个标准正交集.

显然,零元素与V 中任何元素正交;零元素是唯一的与自己正交的元素.

下面的定理表明了正交和独立之间的关系.

定理1.5.1 在欧氏空间V 中,一个不含零元素的正交集是独立集.若dim V =n ,则任何一个包含n 个非零元素的正交集是V 的一组基.

定理1.5.2设V 是有限维欧氏空间, dim V =n ,}{1n S e e ,, =是V 的一组正交基.对于任意x ∈V ,若x 关于基S 的坐标是)(1n c c ,, ,则

)()

(j j j j c e e e x ,,=,n j ,, 1=.

若进一步假设S 是一组标准正交基,则

j c =)(j e x ,,n j ,,

1=. 定理1.5.3设V 是一个维欧氏空间,}{1n e e ,, 是V 的一组标准正交基.对于任意x ,y ∈V ,若设x ,y 在这组基下的坐标分别是)(1n a a ,, ,)(1n b b ,, ,则有

)()()(1i n i i e y e x y x ,,,∑==∑==n

i i i b a 1 (1.5.1)

∑∑====n i n

i i i a 112

22|)(|||||e x x ,. (1.5.2) 定理1.5.4 设}{21 ,,x x 是欧氏空间V 中的一个有限或无限序列,)(1k L x x ,, 表示

由该序列前k 个元素生成的子空间.那么,V 中存在序列}{21 ,

,y y ,对于可能取到正整数k ,具有以下性质:

(1) 元素k y 与)(11-y y k L ,, 中任意元素正交;

(2) )()(11k k L L x x y y ,,,, =;

(3)除去数量因子,序列}{21 ,,y y 是唯一的(即若另有序列}{21 ,

,y y ''满足性质(1)和(2),则有实数k c 使k y 'k k c y =, ,,21

=k ). 1y =1x ,∑=+++-=r i i i i i r r r 1111)

()(y y y y x x y ,,,11-=k r ,, . 这里给出的由一组独立集}{1k x x ,, 来构造由非零元素组成的正交集}{1k y y ,, 的过程,称为施密特(Schmidt )正交化过程.而且,}{1k y y ,, 生成的子空间与}{1k x x ,, 生成的子空间完全相同.而当}{1k x x ,, 是有限维欧氏空间的一组基时,}{1k y y ,, 就是一组正交基.而且,每一个i y 除以它的范数,就得到一组标准正交基.

定理1.5.5任何有限维欧氏空间均存在标准正交基.它可由任何一组基经施密特正交化过程然后单位化而得到.

6 同 构

定义1.6.1设V ,W 是两个非空集合.若给定一个法则T ,使V 中任何元素x 都有W 中唯一确定的元素y 与之对应,则称T 是V 至W 的一个映射,记为T :V →W . y 被称为x 在T 下的

像,记为)(x T y =.x 被称为y 在T 下的原像.称V 为T 的定义域.称V 中全体元素在T 下的像集合为T 的值域,记为T (V ).

据此定义知,V 中元素x 在T 下的像是唯一的,但W 中元素y 在T 下未必有原像,若有也未必唯一.

定义1.6.2设T 是V 至W 的映射.若T (V )=W ,则称为满射.

据此定义知,T 为满射的充分必要条件是:对任意y ∈W ,存在x ∈V ,使y =T (x ).但这样的x 未必唯一.

定义1.6.3设T 是V 至W 的映射.若V 中相异的元素在映射T 下的像也相异,即若有21x x ≠,则必有)()(21x T x T ≠,则称T 为单射.

据此定义知,若)()(21x T x T =蕴涵21x x =,则T 为单射.

定义1.6.4若V 至W 的映射T 既是满射又是单射,则称T 为双射,又称为1-1映射. 下面给出两个线性空间同构的定义.

定义1.6.5设V ,V '均是线性空间.如果存在一个V 至V '的1-1映射T ,对任意x ,y ∈V 及任意实数c ,满足性质:

(1))()()(y x y x T T T +=+,

(2))()(x x T c c T =.

则V 和V '是同构的.这样的映射T 被称为V 至V '的同构映射.

通常把满足上述性质(1)和(2)的任何映射称为线性映射.所谓同构映射,就是一个线性1-1映射.

定理1.6.1任何n 维线性空间与n

R 是同构的.

定义1.6.6设V ,V '均是欧氏空间,如果存在V 至V '的线性1-1映射T , 对任意x ,y ∈V ,满足性质 )())()((y x y x ,,=T T , (1.6.1)

则称V 和V '是同构的.这样的映射T 被称为V 至V '的同构映射.

由(1.6.1)式可以推得:对任何x ∈V ,有||||||)(||x x =T .故具有(1.6.1)式性质的映射又称为保范映射.因此,欧氏空间间的同构映射,必是一个保范的线性1-1映射.

由于内积可用坐标表达(见定理1.5.3),故任何n 维欧氏空间与n

R 是同构的.

二、 教学内容及学时分配:

第一节线性空间的定义2课时

第二节线性空间中的相关集和独立集 2课时

第三节基 维数与坐标 2课时

第四节内积 欧氏空间 范数 2课时

第五节欧氏空间中的正交性2课时

三、教学内容的重点及难点:

1.线性空间的概念

2.判定相关集和独立集;

3.判定线性空间的基及维数;

4.了解内积. 欧氏空间. 范数. 及欧氏空间中的正交性。四、教学内容的深化和拓宽:

1.具体三维空间与一般空间的一致性及特别性;

2.空间概念中的抽象几何意义.

五、思考题与习题

1 2 4(3) 5 (2) 6. 8. 9 10(4) 12 14 15 16 18

六、教学方式(手段)

本章主要采用讲授新课的方式。

《线性代数》课程教学大纲

《线性代数》课程教案大纲 课程代码:课程性质:专业基础理论课必修 适用专业:工科类各专业总学分数: 总学时数:修订年月: 编写年月:执笔:韩晓卓、李锋 课程简介(中文): 线性代数是理、工、经管各专业重要的基础课之一。它是以讨论有限维空间线性理论为主,具有较强的抽象性与逻辑性,是数学的一个重要分支,其理论与方法已广泛应用于其它科学领域中。主要包括:矩阵、行列式、线性方程组、秩问题、矩阵的特征值和特征向量、二次型等内容。 课程简介(英文): , . , , . . , , , , , , . 一、课程目的 《线性代数》是高等院校工科专业学生必修的一门基础理论课。它是以讨论有限维空间线性理论为主,具有较强的抽象性与逻辑性。通过本课程的学习,使学生比较系统地获得线性代数中的行列式、矩阵、线性方程组、矩阵和向量组的秩,矩阵的特征值和特征向量等方面的基本概念、基本理论和基本方法,培养学生独特的代数思维模式和解决实际问题的能力,同时使学生了解线性代数在经济方面的简单应用,并为学生学习后继课程及进一步扩大数学知识面奠定必要的数学基础。 二、课程教案内容及学时分配 (一)教案内容 第一章行列式(学时) 教案内容:

二阶三阶行列式;阶行列式的定义;行列式的性质(证明选讲);行列式按行(列)展开(定理证明选讲,行列式按某行(列)展开选讲);克莱姆法则。 本章的重点与难点: 重点:行列式的性质;行列式按一行(列)展开定理;克莱姆法则的应用。 难点:阶行列式的定义的理解;阶行列式计算。 第二章矩阵(学时) 教案内容: 矩阵的概念;矩阵的运算(矩阵的加、减法;数乘;乘法;矩阵转置;方阵的幂;方阵的行列式);几种特殊的矩阵(对角矩阵,数量矩阵,三角形矩阵,单位矩阵,对称矩阵与反对称矩阵);分块矩阵(分块阵及其运算,分块对角阵);逆矩阵(可逆阵的定义;奇异阵,伴随阵与逆阵的关系;逆阵的性质,二阶上三角分块阵的求逆方法);本章的重点与难点: 重点:矩阵的运算规律;逆矩阵的性质以及求法; 难点:矩阵的乘积及分块矩阵的乘积;逆矩阵(抽象矩阵的逆矩阵)的求法。 第三章矩阵的初等变换与线性方程组(学时) 教案内容: 矩阵的初等变换(初等矩阵定义;初等矩阵与矩阵初等变换的关系。用初等变换求矩阵的逆);矩阵的秩(矩阵的秩的定义;矩阵的秩与其子式的关系;初等变换求矩阵的秩)。线性方程组的消元解法(消元解法与初等行变换的关系;线性方程组有唯一解、无穷多组解和无解的讨论;线性方程组有解的判别定理;齐次线性方程组有非零解的充分和必要条件); 本章的重点与难点: 重点:利用初等变换求矩阵的逆矩阵与矩阵的秩;利用初等变换求线性方程组的通解。 难点:利用初等变换求线性方程组的通解。

同济大学线性代数教案第一章线性方程组与矩阵

线性代数教学教案 第一章线性方程组与矩阵 授课序号01 1112121 2 n n m m mn a a a a a a ?? ?? ??? ,有时为了强调矩阵的行数和列数,也记为

n a ???. 212 n n n nn a a a ? ??? . 1112 00n n nn a a a a ?? ?? ? ? ?与上三角矩阵200 n nn a ? ??? . 000 0n a ??? ??? ,或记为100 1? ???? . 负矩阵的定义:对于矩阵()ij m n a ?=A ,称矩阵21 22 n m m m mn mn b a b a b ?? +++? ,

a b+

21 2 n m m mn a a a ????,转置矩阵212.m n n nm a ? ??? 矩阵的转置满足的运算规律(这里k 为常数,A 与B 为同型矩阵)阶方阵()ij a =A 如果满足222n n m mn n a x +21 2 n m m mn a a a ????称为该线性方程组的系数矩阵n x ???,m b = ? ??? β,有:

2221122221 21122n n n m m mn n m m mn n a a a x a x a x a x ??? ? =??? ???? ? ++ +????? . 再根据矩阵相等的定义,该线性方程组可以用矩阵形式来表示:=Ax β.

授课序号02 21 2 t s s st ????A A A ,21 2 t s s st ? = ? ??? B B B B ,的行数相同、列数相同,则有 21 22 t s s s st st ?? ±±±? B A B A B . 111221 2 t s s st ? ? ??? A A A A A ,都有21 2 t s s st k k ? ??? A A A .

线性代数教案设计

线性代数 课程教案 学院、部 系、所 授课教师 课程名称线性代数 课程学时45学时 实验学时 教材名称 年月日 线性代数课程教案

授课类型 理论课 授课时间 3 节 授课题目(教学章节或主题):第一章 行列式 §1 二阶与三阶行列式 §2 全排列及其逆序数 §3 n 阶行列式的定义 §4 对换 本授课单元教学目标或要求: 1. 会用对角线法则计算2阶和3阶行列式。 2. 知道n 阶行列式的定义。 本授课单元教学内容(包括基本内容、重点、难点,以及引导学生解决重点难点的方法、例题等): 基本内容:行列式的定义 1. 计算排列的逆序数的方法 设12n p p p 是1,2,,n 这n 个自然数的任一排列,并规定由小到大为标准次序。 先看有多少个比1p 大的数排在1p 前面,记为1t ; 再看有多少个比2p 大的数排在2p 前面,记为2t ; …… 最后看有多少个比n p 大的数排在n p 前面,记为n t ; 则此排列的逆序数为12n t t t t =+++ 。 2. n 阶行列式 121211 1212122212() 1 2(1)n n n n t p p np p p p n n nn a a a a a a D a a a a a a = = -∑ 其中12n p p p 为自然数1,2,,n 的一个排列,t 为这个排列的逆序数,求和符号∑是对所有排列 12()n p p p 求和。 n 阶行列式D 中所含2n 个数叫做D 的元素,位于第i 行第j 列的元素ij a ,叫做D 的(,)i j 元。 3. 对角线法则:只对2阶和3阶行列式适用 1112 112212212122 a a D a a a a a a = =-

线性代数教学大纲

线性代数Ⅰ课程教学大纲 一课程基本情况 课程名称:线性代数。 课程名称(英文): Linear Algebra。 课程编号:B11071。 课程总学时:40学时(全部为课堂讲授)。 课程学分:2学分。 课程分类:必修,考试课。 开课学期:第3学期。 开课专业:适合对数学类基础课要求较高的理工类本科专业,包括物理学(S)、计算机科学与技术(S)、农业机械化及其自动化、机械设计制造及其自动化、电气工程与自动化、电子信息工程、土木工程、工程管理等专业。 先修课程:无。 后续课程:大学物理等基础课和各专业相应专业课。 二课程的性质、地位、作用和任务 《线性代数》是高等学校上述各专业的重要基础课。由于线性问题广泛存在于科学技术的各个领域,某些非线性问题在一定条件下可以转化为线性问题,尤其是在计算机日益普及的今天,解大型线性方程组、求矩阵的特征值与特征向量等已成为科学技术人员经常遇到的课题,因此学习和掌握线性代数的理论和方法是掌握现代科学技术以及从事科学研究的重要基础和手段,同时也是实现我院上述各专业培养目标的必备前提。本课程的主要任务是学习科学技术中常用的矩阵方法、线性方程组及其有关的基本计算方法。使学生具有熟练的矩阵运算能力及用矩阵方法解决一些实际问题的能力。从而为学生进一步学习后续课程和进一步提高打下必要的数学基础。 三主要容、重点及深度 了解行列式的定义,掌握行列式的性质及其计算。理解矩阵(包括特殊矩阵)、逆矩阵、矩阵的秩的概念。熟练掌握矩阵的线性运算、乘法运算、转置及其运算规律。理解逆矩阵存在的充要条件,掌握矩阵的求逆的方法。掌握矩阵的初等变换,并会求矩阵的秩。理解n维向量的概念。掌握向量组的线性相关和线性无关的定义及有关重要结论。掌握向量组的极大线性无关组与向量组的秩。了解n 维向量空间及其子空间、基、维数等概念。理解克莱姆(Cramer)法则。理解非齐次线性方程组有解的充要条件及齐次线性方程组有非零解的充要条件。理解齐次线性方程组解空间、基础解系、通解等概念。熟练掌握用行初等变换求线性方程组通解的方法。掌握矩阵的特征值和特征向量的概念及其求解方法。了解矩阵相似的概念以及实对称矩阵与对角矩阵相似的结论。了解向量积及正交矩阵的概念和性质。了解二次型及其矩阵表示,会用配方法及正交变换法化二次型为标准形。了解惯性定理、二次型的秩、二次型的正定性及其判别法。

线性代数教案

《线性代数》 授课教案 刘思圆 第一章行列式 本章说明与要求: 行列式的理论是人们从解线性方程组的需要中建立和发展起来的,它在线性代数以及其他数学分支上都有着广泛的应用.在本章里我们主要讨论下面几个问题: (1) 行列式的定义;

(2) 行列式的基本性质及计算方法; (3) 利用行列式求解线性方程组(克莱姆法则). 本章的重点是行列式的计算,要求在理解n 阶行列式的概念,掌握行列式性质的基础上,熟练正确地计算三阶、四阶及简单的n 阶行列式. 计算行列式的基本思路是:按行(列)展开公式,通过降阶来计算.但在展开之前往往先利用行列式性质通过对行列式的恒等变形,使行列式中出现较多的零和公因式,从而简化计算.常用的行列式计算方法和技巧有:直接利用定义法,化三角形法,降阶法,递推法,数学归纳法,利用已知行列式法. 行列式在本章的应用是求解线性方程组(克莱姆法则).要掌握克莱姆法则并注意克莱姆法则应用的条件. 。本章的重点:行列式性质;行列式的计算。 。本章的难点:行列式性质;高阶行列式的计算;克莱姆法则。 §1.1 二阶与三阶行列式 行列式的概念起源于解线性方程组,它是从二元与三元线性方程组的解的公式引出来的.因此我们首先讨论解方程组的问题. 设有二元线性方程组 ?? ?=+=+2 2221211 112111b x a x a b x a x a (1) 用加减消元法容易求出未知量x 1,x 2的值,当a 11a 22–a 12a 21≠0 时,有 ??? ??? ?--=--=2112221121 1211221 1222112122211a a a a a b b a x a a a a b a a b x (2) 这就是一般二元线性方程组的公式解.但这个公式很不好记忆,应用时不方便,因此,我们引进新的符号来表示(2)这个结果,这就是行列式的起源.我们称4个数组成的符号 2112221122 211211a a a a a a a a -= 为二阶行列式.它含有两行,两列.横的叫行,纵的叫列.行列式中的数叫做行列式的元素.从上式知,二阶行列式是这样两项的代数和:一个是从左上角到右下角的对角线(又叫行列式的主对角线)上两个元素的乘积,取正号;另一个是从右上角到左下角的对角线(又叫次对角线)上两个元素的乘积,取负号. 根据定义,容易得知(2) 中的两个分子可分别写成 222 121212221a b a b b a a b = -,2 21 111211211b a b a a b b a = -, 如果记22 21 1211a a a a D = ,22 2 1211a b a b D = ,2 21 1112b a b a D = 则当D ≠0时,方程组(1) 的解(2)可以表示成

线性代数教案

线性代数》 授课教案 刘思圆 第一章行列式 本章说明与要求: 行列式的理论是人们从解线性方程组的需要中建立和发展起来的,它在线性代数以及其他数学分支上都有着广泛的应用.在本章里我们主要讨论下面几个问 题: (1) 行列式的定义; (2) 行列式的基本性质及计算方法; (3) 利用行列式求解线性方程组(克莱姆法则) . 本章的重点是行列式的计算,要求在理解n 阶行列式的概念,掌握行列式性质的基础上,熟练正确地计算三阶、四阶及简单的n 阶行列式. 计算行列式的基本思路是:按行(列) 展开公式,通过降阶来计算.但在展开之前往往先利用行列式性质通过对行列式的恒等变形,使行列式中出现较多的零和公因式,从而简化计算.常用的行列式计算方法和技巧有:直接利用定义法,化三角形法,降阶法,递推法,数学归纳法,利用已知行列式法. 行列式在本章的应用是求解线性方程组(克莱姆法则) .要掌握克莱姆法则并注意克莱姆法则应用的条件. 本章的重点:行列式性质;行列式的计算 本章的难点:行列式性质;高阶行列式的计算;克莱姆法则。

§1.1 二阶与三阶行列式行列式的概念起源于解线性方程组,它是从二元与三元线性方程组的解的公式引出来的.因此我们首先讨论解方程组的问题. 设有二元线性方程组 (1) 用加减消元法容易求出未知量x1,x2 的值,当a11a22 –a12a21≠0 时,有 (2) 这就是一般二元线性方程组的公式解.但这个公式很不好记忆,应用时不方便,因此,我们引进新的符号来表示(2) 这个结果,这就是行列式的起源.我们称4个数组成的符号 为二阶行列式.它含有两行,两列.横的叫行,纵的叫列.行列式中的数叫做行列式的元素.从上式知,二阶行列式是这样两项的代数和:一个是从左上角到右下角的对角线(又叫行列式的主对角线) 上两个元素的乘积,取正号;另一个是从右上角到左下角的 对角线(又叫次对角线) 上两个元素的乘积,取负号. 根据定义,容易得知(2) 中的两个分子可分别写成

线性代数--中国科技大学--典型教案

典型教案 第一章线性方程组的解法 线性方程组就是一次方程组。 先来分析中学数学怎样解二元一次方程组。看它的原理和方法是否可以推广到一般的多元一次方程组。 例1、解方程组 3x+4y=2 (1) 2x-5y=9 (2) 解、用加减消去法消元: 5x(1)式+4x(2)式:23x=46 (3) 2x(1)式-3x(2)式:23y= -23 (4) 由(3)和(4)解出 x=2 ,y= -1。 代入(1),(2)式检验知道它是原方程组的解。 以上解法的基本原理是: 由原方程(1)、(2)分别乘以适当的常数再相加,得到各消去了一个未知数的新方程(3)、(4), 从中容易解出未知数的值来. 将一组方程分别乘以常数再相加,得到的新方程称为原来那一组方程的线性组合。原来那一组方程的公共解一定是它们的任意一个线性组合的解。 新方程(3)、(4)都是原方程(1)、(2)的线性组合, (1)、(2)的公共解一定是(3)、(4)的解. 但反过来, 由(3)、(4)求出的解是否一定是(1)、(2)的解?这却并不显然。 因此需要将(3)、(4)的解代入(1)、(2)检验。 或者说明(1)、(2)也是(3)、(4)的线性组合。从而由(3)、(4)组成的方程组与原方程组同解. 1.1. 方程组的同解变形 1. 线性方程组的定义 2. 方程的线性组合: 方程的加法 方程乘以常数 方程的线性组合: 将m 个方程分别乘以m 个已知常数,再将所得的m 个方程相加, 得到的新方程称为原来那m 个方程的一个线性组合 容易验证: 如果一组数(c_1,c_2,…,c_n) 是原来那些方程的公共解, 那么它也是这些方程的任一个线性组合的解. 注意: 线性组合的系数中可以有些是0, 甚至可以全部是0. 如果某些系数是0, 所得到的线性组合实际上也就是系数不为0 的那些方程的线性组合。 如果方程组(II) 中每个方程其余都是方程组(I) 中的方程的线性组合, 就称方程组(II) 是方程组(I) 的线性组合. 此时方程组(I) 的每一组解也都是方程组(II) 的解。 如果方程组(I) 与方程组(II) 互为线性组合, 就称这两个方程组等价。此时两

线性代数教案 第一章 行列式

第一章 行列式 本章说明与要求: 行列式的理论是从解线性方程组的需要中建立和发展起来的,它在线性代数以及其他数学分支上都有着广泛的应用.在本章里我们主要讨论下面几个问题: (1) 行列式的定义; (2) 行列式的基本性质及计算方法; (3) 利用行列式求解线性方程组(克莱姆法则). 本章的重点是行列式的计算,要求在理解n 阶行列式的概念,掌握行列式性质的基础上,熟练正确地计算三阶、四阶及简单的n 阶行列式. 计算行列式的基本思路是:按行(列)展开公式,通过降阶来计算.但在展开之前往往先利用行列式性质通过对行列式的恒等变形,使行列式中出现较多的零和公因式,从而简化计算.常用的行列式计算方法和技巧有:直接利用定义法,化三角形法,降阶法,递推法,数学归纳法,利用已知行列式法. 行列式在本章的应用是求解线性方程组(克莱姆法则).要掌握克莱姆法则并注意克莱姆法则应用的条件. 。本章的重点:行列式性质;行列式的计算。 。本章的难点:行列式性质;高阶行列式的计算;克莱姆法则。 §1.1 二阶与三阶行列式 行列式的概念起源于解线性方程组,它是从二元与三元线性方程组的解的公式引出来的. 设有二元线性方程组 ???=+=+2 2221211 112111b x a x a b x a x a (1) 用加减消元法知,当a 11a 22 – a 12a 21≠0时,有:211222112122211a a a a b a a b x --=, 21 12221121 12112a a a a a b b a x --= (2) 这是一般二元线性方程组的公式解.但公式很不好记忆,应用时不方便,因此,我们引进新的符号来表示(2)这个结果,这就是行列式的起源.我们称4个数组成的符号 2112221122 211211a a a a a a a a -=为二阶行列式. 它含有两行,两列.横的叫行,纵的叫列.行列式中的数叫做行列式的元素.从上式知,二阶行列式是这样两项的代数和:一个是从左上角到右下角的对角线(又叫行列式的主对角线)上两个元素的乘积,取正号;另一个是从右上角到左下角的对角线(又叫次对角线)上两个元素的乘积,取负号.

线性代数教案(正式打印版)

线性代数教案(正式打印版)

第(1)次课授课时间() 教学章节第一章第一、二、三节学时2学时 教材和 参考书 1.《线性代数》(第4版)同济大学编 1.教学目的:熟练掌握2阶,3阶行列式的计算; 掌握逆序数的定义, 并会计算; 掌握n阶行列式的定义; 2.教学重点:逆序数的计算; 3.教学难点:逆序数的计算. 1.教学内容:二、三阶行列式的定义;全排列及其逆序数;n阶行列式的定义 2.时间安排:2学时; 3.教学方法:讲授与讨论相结合; 4.教学手段:黑板讲解与多媒体演示.

基本内容备注第一节二、三阶行列式的定义 一、二阶行列式的定义 从二元方程组的解的公式,引出二阶行列式的概念。 设二元线性方程组 ? ? ? = + = + 2 2 22 2 21 1 2 12 1 11 b x a x a b x a x a 用消元法,当0 21 12 22 11 ≠ -a a a a时,解得 21 12 22 11 1 21 2 11 2 21 12 22 11 2 12 1 22 1 , a a a a b a b a x a a a a b a b a x - - = - - = 令 21 12 22 11 22 21 12 11a a a a a a a a - =,称为二阶行列式,则 如果将D中第一列的元素 11 a,21a换成常数项1b,2b,则可得到 另一个行列式,用字母 1 D表示,于是有 22 2 12 1 1a b a b D= 按二阶行列式的定义,它等于两项的代数和: 21 2 22 1 a b a b-,这就是公 式(2)中 1 x的表达式的分子。同理将D中第二列的元素a 12,a 22换 成常数项b1,b2 ,可得到另一个行列式,用字母 2 D表示,于是有 2 12 1 11 2b a b a D= 按二阶行列式的定义,它等于两项的代数和: 1 21 2 11 b a b a-,这就是公

线性代数作业第四章(2)讲课教案

线性代数作业第四章 (2)

第四章 向量组的线性相关性(二) 1. 判断下列向量集合在向量加法和数乘运算下是否为向量空间,若是向量空 间,试求其维数,并给出一个基. 1) }0,0,,,,),,,,({322154321543211=+=+∈==x x x x x x x x x x x x x x V ,且R α 2) }1,,,),,,({2121212=-∈==x x x x x x x x V n n ,且R α 3) },,){3213322113R ∈++==k k k k k k V αααα,其中)0,1,1(1=α, )1,0,1(2=α,)1,1,2(3=α

2. 已知三维向量空间3R 的一组基)0,1,1(1-=α,)1,0,1(2=α,)1,1,1(3-=α.试 用施密特正交化方法由321,,ααα构造3R 的一组标准正交基. 3. 已知4维向量空间4R 的两个基 (I) ???????====)0,0,1,2()0,0,2,3()3,2,0,0()4,3,0,0(4321αααα, (II) ???????====) 0,1,2,1()2,1,1,2()2,2,1,0()1,0,1,2(4321ββββ 1) 求由基(I)到基(II)的过渡矩阵; 2) 求)4,3,2,1(=α在基(I)下的坐标; 3) 判断是否存在在两组基下坐标相同的非零向量.

4. 已知向量空间3R 的两个基为(I)321,,ααα和(II) 321,,βββ.设3R ∈α在基(I) 与基(II)下的坐标分别为()T 321,,x x x =x ,()T 321,,y y y =y ,且满足 3211x x x y ++=,212x x y +=,13x y =. 1) 求由基(I)变为基(II)的过渡矩阵; 2) 求31ββα+=在基(I)下的坐标.

线性代数教案正式打印版

线性代数教案正式打印 版 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第(1)次课授课时间()

基本内容备注 第一节二、三阶行列式的定义 一、二阶行列式的定义 从二元方程组的解的公式,引出二阶行列式的概念。 设二元线性方程组 ? ? ? = + = + 2 2 22 2 21 1 2 12 1 11 b x a x a b x a x a 用消元法,当0 21 12 22 11 ≠ -a a a a时,解得 21 12 22 11 1 21 2 11 2 21 12 22 11 2 12 1 22 1 , a a a a b a b a x a a a a b a b a x - - = - - = 令 21 12 22 11 22 21 12 11a a a a a a a a - =,称为二阶行列式 ,则 如果将D中第一列的元素 11 a,21a换成常数项1b,2b ,则可得到 另一个行列式,用字母 1 D表示,于是有 22 2 12 1 1a b a b D= 按二阶行列式的定义,它等于两项的代数和: 21 2 22 1 a b a b-,这就是公 式(2)中 1 x的表达式的分子。同理将D中第二列的元素a 12,a 22 换成常数项b1,b2 ,可得到另一个行列式,用字母 2 D表示,于是有 2 12 1 11 2b a b a D= 按二阶行列式的定义,它等于两项的代数和: 1 21 2 11 b a b a-,这就是公 式(2)中 2 x的表达式的分子。 于是二元方程组的解的公式又可写为 ? ? ? ?? ? ? = = D D x D D x 2 2 1 1 其中0 ≠ D

线性代数教案

《线性代数》 授课教案 代数几何教研室 第一章行列式 本章说明与要求: 行列式的理论是人们从解线性方程组的需要中建立和发展起来的,它在线性代数以及其他数学分支上都有着广泛的应用.在本章里我们主要讨论下面几个问题: (1) 行列式的定义; (2) 行列式的基本性质及计算方法; (3) 利用行列式求解线性方程组(克莱姆法则). 本章的重点是行列式的计算,要求在理解n阶行列式的概念,掌握行列式性质的基础上,熟练正确地计算三阶、四阶及简单的n阶行列式. 计算行列式的基本思路是:按行(列)展开公式,通过降阶来计算.但在展开之前往往先利用行列式性质通过对行列式的恒等变形,使行列式中出现较多的零和公因式,从而简化计算.常用的行列式计算方法和技巧有:直接利用定义法,化三角形法,降阶法,递推法,数学归纳法,利用已知行列式法. 行列式在本章的应用是求解线性方程组(克莱姆法则).要掌握克莱姆法则并注意克莱姆法则应用的条件. 。本章的重点:行列式性质;行列式的计算。 。本章的难点:行列式性质;高阶行列式的计算;克莱姆法则。 1 / 205

2 / 205 §1.1 二阶与三阶行列式 行列式的概念起源于解线性方程组,它是从二元与三元线性方程组的解的公式引出来的.因此我们首先讨论解方程组的问题. 设有二元线性方程组 ?? ?=+=+2 2221211 112111b x a x a b x a x a (1) 用加减消元法容易求出未知量x 1,x 2的值,当a 11a 22–a 12a 21≠0 时,有 ??? ??? ?--=--=2112221121 1211221 1222112122211a a a a a b b a x a a a a b a a b x (2) 这就是一般二元线性方程组的公式解.但这个公式很不好记忆,应用时不方便,因此,我们引进新的符号来表示(2)这个结果,这就是行列式的起源.我们称4个数组成的符号 2112221122 211211a a a a a a a a -= 为二阶行列式.它含有两行,两列.横的叫行,纵的叫列.行列式中的数叫做行列式的元素.从上式知,二阶行列式是这样两项的代数和:一个是从左上角到右下角的对角线(又叫行列式的主对角线)上两个元素的乘积,取正号;另一个是从右上角到左下角的对角线(又叫次对角线)上两个元素的乘积,取负号. 根据定义,容易得知(2) 中的两个分子可分别写成 222 121212221a b a b b a a b = -,2 21 111211211b a b a a b b a = -, 如果记22 21 1211a a a a D = ,22 2 1211a b a b D = ,2 21 1112b a b a D = 则当D ≠0时,方程组(1) 的解(2)可以表示成

线性代数教案-第一章 线性空间

第一章线性空间 一、教学目标与基本要求 数学的特点之一是抽象.从实数、复数、实值函数、无穷级数、向量等数学对象中,可以抽象出它们的共同特点:同一集合中的元素彼此可以相加,可与数相乘,这些运算还遵从一些共同规律.本章讨论的线性空间,就是针对上述特点建立的一种一般性的数学概念.它包括了所有前面提到的实例,另有许多数学对象也可归属其中. 数学中所谓空间,就是具有某些特性的集合.所谓线性空间,概言之就是这样一个集合:在其上定 义了称为加法和数乘的两种运算,并可在该集合上实施(准确的定义见后详述).在此,既不强调集合元素的本来属性,又不规定这两种运算是如何实施的,只规定运算具有称为公理的某些性质. 1 线性空间的定义及例 定义1.1.1设V是一个非空集合,其元素用x、y、z等表示.V被称为一个线性空间,如果它满足以下被分为三组由10条公理构成的公理体系: 1.1.1封闭公理 公理1(加法封闭公理)在V中定义了加法运算:对于V中任意两个元素x和y,有唯一的V中的元素与之对应并被称为x与y的和,记为x+y. 公理2(数乘封闭公理)在V中定义了实数乘法(简称数乘)运算:对于V中任意元素x和任意实数a,有唯一的V中的元素与之对应并被称为a与x的积,记为a x. 加法运算和数乘运算合称线性运算. 1.1.2加法公理 公理3 (交换律)对于任意x,y∈V,有 x+ +. = x y y 公理4(结合律) 对于任意x,y,z∈V,有 + x+ = +. + y ) ) z (z ( y x 公理5 (零元素存在性)V中存在一个记为θ的零元素,对于任意x∈V,有 +. x= x θ -的x的负元素,使公理6 (负元素存在性)对于任意x∈V,V中存在记为x +) - (. θ x= x 1.1.3数乘公理 公理7(结合律)对于任意x∈V,任意实数a和b,有 b (ab a=. x) x ( )

线性代数教案(2015)

线性代数教案(2015)

第一章行列式 1.1 行列式的概念 一、本次课主要内容 介绍行列式的起源,总结学习二阶行列式和三阶行列式,学习全排列和逆序数,归纳n阶行列式的定义。 二、教学目的与要求 掌握二阶、三阶及n阶行列式的概念,掌握逆序数的计算。 三、教学重点难点 1、二阶、三阶行列式的定义、计算; 2、逆序数的计算; 3、n阶行列式的定义。 四、教学方法和手段 课堂讲授、提问、讨论,总结归纳。 五、作业与习题布置 P22 习题1(6)、2(3),3

§1. 1 行列式的概念 对于方程组1111221 2112222 a x a x b a x a x b +=+=?? ?用消元法,当112212210a a a a ≠-方程组有唯一解 122212*********b a b a x a a a a -= -和211121********* b a b a x a a a a -=-。观察上面链各个式子的分母,发现是一 样的。而且两个式子的分子和分母在型式上也是有相似之处的。 一、二阶行列式的概念 设有数表 11 12 2122 a a a a ,两边加上竖线变为 1112 2122 a a a a ,记 1112 112212212122 a a a a a a D a a =-= 注意:2阶的行列式一共能分成2=2!项相加相减(一项加一项减)。每一项里面有2个不同行,不同列的元素相乘。 简单介绍对角线法 其中ij a 表示的是第i 行,第j 列的元素。i 和j 分别称为行坐标和列坐标。D 称为行列式的值,是11221221a a a a -的计算结果。 11 12 2122 a a a a 有两行两列,所以称之为二阶行列式。 如同水有气体,液体,固体三种表现形式一样。一个行列式也可以表现为三种形式:行列式,组成行列式的元素的计算式,和行列式的值。例如: 121122321 =?-?=- 二元一次 方程组的求解公式

线性代数第一章教案

线性代数教案 第一章 行列式 行列式的理论是人们从解线性方程组的需要中建立和发展起来的,它在线性代数以及其他数学分支上都有着广泛的应用.在本章里我们主要讨论下面几个问题: (1) 行列式的定义; (2) 行列式的基本性质及计算方法; (3) 利用行列式求解线性方程组(克莱姆法则). 本章的重点是行列式的计算,要求在理解n 阶行列式的概念,掌握行列式性质的基础上,熟练正确地计算三阶、四阶及简单的n 阶行列式. 计算行列式的基本思路是:按行(列)展开公式,通过降阶来计算.但在展开之前往往先利用行列式性质通过对行列式的恒等变形,使行列式中出现较多的零和公因式,从而简化计算.常用的行列式计算方法和技巧有:直接利用定义法,化三角形法,降阶法,递推法,数学归纳法,利用已知行列式法. 行列式在本章的应用是求解线性方程组(克莱姆法则).要掌握克莱姆法则并注意克莱姆法则应用的条件. 重点:行列式性质;行列式的计算。 难点:行列式性质;高阶行列式的计算;克莱姆法则。 §1.1 二阶与三阶行列式 行列式的概念起源于解线性方程组,它是从二元与三元线性方程组的解的公式引出来的.因此我们首先讨论解方程组的问题. 设有二元线性方程组 ?? ?=+=+22221 211 112111b x a x a b x a x a (1) 用加减消元法容易求出未知量x 1,x 2的值,当a 11a 22 – a 12a 21≠0 时,有 ??? ??? ?--=--=2112221121 1211221 1222112122211a a a a a b b a x a a a a b a a b x (2) 这就是一般二元线性方程组的公式解.但这个公式很不好记忆,应用时不方便,因此,我们引进新的符号来表示(2)这个结果,这就是行列式的起源.我们称4个数组成的符号

线性代数教案 第二章 矩阵及其运算

1 2 m m mn a a a 矩阵。为了表示它是一个整体,总是加一个括号将它界起来,并通常用大写字母表示它。记做 12m m mn a a a ? ?12 m m mn a a a a ??? 。切记不允许使用11 12121 22 212 n n m m mn a a a a a a a a a = A 。 矩阵的横向称行,纵向称列。矩阵中的每个数称为元素,所有元素都是实数的矩阵称为实矩阵,所有元素都是复数的矩阵称为复矩阵。本课中的矩阵除特殊说明外,都指12n n nn a a a ?? 不是方阵没有主对角线。在方阵中,

00nn a ?? 1121 2212000n n nn a a a a a a ?????? (主对角线以上均为零)1122 00000 0nn a a a ????? ???? (既}nn a . 对角元素为1的对角矩阵,记作E 或001???? ()11a ,此时矩阵退化为一个数矩阵的引进为许多实际的问题研究提供方便。 a x +)1(+?n 矩阵: 12 m m mn m a b a a a b ?? 任何一个方程组都可以用这样一个矩阵来描述;反之,一个矩阵也完全刻划了一个方

1 22 m m m mn mn b a b a b ? +++? ? ? ? ???-=4012B ,计算 B A +。 122 m m m mn mn b a b a b ? ---? 与矩阵n m ij a A ?=}{的乘积(称之为数乘),

12 m m mn a a a λλ?? 以上运算称为矩阵的线性运算,它满足下列运算法则:

相关主题