搜档网
当前位置:搜档网 › 二等分功分器设计参数表

二等分功分器设计参数表

二等分功分器设计参数表
二等分功分器设计参数表

二等分功分器设计参数表格

功分器的设计原理

设计资料项目名称:微带功率分配器设计方法 拟制: 审核: 会签: 批准: 二00六年一月

微带功率分配器设计方法 1. 功率分配器论述: 1.1定义: 功率分配器是一种将一路输入信号能量分成两路或多路信号能量输出的器件,也可反过来将多路信号能量合成一路输出,此时也可称为合路器。 1.2分类: 1.2.1功率分配器按路数分为:2路、3路和4路及通过它们级联形成的多路功率分配器。 1.2.2功率分配器按结构分为:微带功率分配器及腔体功率分配器。 1.2.2根据能量的分配分为:等分功率分配器及不等分功率分配器。 1.2.3根据电路形式可分为:微带线、带状线、同轴腔功率分配器。 1.3概述: 常用的功率分配器都是等功率分配,从电路形式上来分,主要有微带线、带状线、同轴腔功率分配器,几者间的区别如下: (1)同轴腔功分器优点是承受功率大,插损小,缺点是输出端驻波比大,而且输出端口间无任何隔离。微带线、带状线功分器优点是价格便宜,输出端口间有很好的隔离,缺点是插损大,承受功率小。(2)微带线、带状线和同轴腔的实现形式也有所不同:同轴腔功分器是在要求设计的带宽下先对输入端进行匹配,到输出端进行分路;而微带功分器先进行分路,然后对输入端和输出端进行匹配。

下面对微带线、带状线功率分配器的原理及设计方法进行分析。 2.设计原理: 2.1分配原理: 微带线、带状线的功分器设计原理是相同的,只是带状线的采用的是对称性空气填充或介质板填充,而微带线的主要采用的是非对称性部分介质填充和部分空气填充。下面我们以一分二微带线功率分配的设计为例进行分析。传输线的结构如下图所示,它是通过阻抗变换来实现的功率的分配。 图1:一分二功分器示意图 在现有的通信系统中,终端负载均为50Ω,也就是说在分支处的阻抗并联后到阻抗结处应为50Ω。如上图匹配网络,从输入端口看Ω==500Z Z in ,而Ω==50//21in in in Z Z Z ,且是等分的,所以1in Z =2in Z ,①处1in Z 、②处2in Z 的输入阻抗应为100Ω,这样由①、②处到输出终端50Ω需要通过阻抗变换来实现匹配。 2.2阶梯阻抗变换: 在微波电路中,为了解决阻抗不同的元件、器件相互连接而又不使其各自的性能受到严重的影响,常用各种形式的阻抗变换器。其中最简单又最常用的四分之一波长传输线阶梯阻抗变换器(图2)。它

【原创】南京邮电大学 课程设计 Wilkinson(威尔金森)功分器的设计

南京邮电大学电子科学与工程学院电磁场与无线技术Wilkinson功分器 课题报告 课题名称 Wilkinson功分器 学院电子科学与工程学院 专业电磁场与无线技术 班级 组长 组员 开课时间 2012/2013学年第一学期

一、课题名称 Wilkinson(威尔金森)功分器的设计 二、课题任务 运用功分器设计原理,利用HFSS软件设计一个Wilkinson功分器,中心工作频率3.0GHz。 ?基本要求 实现一个单阶Wilkinson等功分设计,带内匹配≤-10dB,输出端口隔离≤-10dB,任选一种微波传输线结构实现。 ?进阶要求 多阶(N≥2),匹配良好(S11≤-15dB),不等分,带阻抗变换器(输出端口阻抗 不为50Ω),多种传输线实现。 三、实现方式 自选一种或者多种传输线实现,如微带线,同轴线,带状线等,要求输入输出端口阻抗为50Ω,要求有隔离电阻(通过添加额外的端口实现) 四、具体过程 1.计算基本参数 通过ADS Tool中的Linecalc这个软件来进行初步的计算。 在HFSS中选定版型为Rogers RT/duroid 5880 (tm),如具体参数下图

50Ω微带线计算 得到选取微带线宽度约为0.67mm。 70.7Ω微带线计算 得到选取微带线宽度约为0.34mm,由于微带线电长度与其宽度没有必然联系,所以两个分支微带线的长度根据具体情况进行更改。

2.绘制仿真模型 微带单阶功分器

◆微带参数:w50:阻抗为50Ω的微带线宽度;w2:两分支线宽度; l1,l2,l3,l4:各部分微带线长度; rad1,rad2:各部分分支线长度(即半环半径) ◆在本例中,需要调整的调整关键参数为w2,rad1,空气腔参数随关键参数相应调 整即可。 ◆根据计算,此处的吸收电阻值应该为100Ω,但是在实际情况中,选取97Ω。 微带多阶功分器

电除尘器的选型计算参数(精)

电除尘器的选型计算 电除尘器应用成功与否,是与设计、设备质量、加工和安装水平、操作条件、气体和粉尘性质等多种因素相关联的综合效果。要取得理想的除尘效果,必须了解各有关环节与除尘机理的联系,考虑各种影响因素,正确设计计算。 1.影响除尘器性能的因素 影响电除尘器性能有诸多因素,可大致归纳为3个方面:烟尘性质、设备状况和操作条件。这些因素之间的相互联系如图4-71所示,由图可知,各种因素的影响直接关系到电晕电流、粉尘比电阻、除尘器内的粉尘收集和二次飞扬这3个环节,而最后结果表现为除尘效率的高低。 1)烟尘性质的影响粉尘的比电阻,适用于电除尘器的比电阻为104~1011?·㎝。比电阻低于104?·㎝的粉尘,其导电性能强,在电除尘器电场内被收集时,到达沉降极板后会快速释放其电荷,而变为与沉淀极同性,然后又相互排斥,重新返回气流,可能在往返跳跃中被气流带出,所以除尘效果差;相反,比电阻高于1011?·㎝以上的粉尘,在到达沉降极以后不易释放其电荷,使粉尘层与电极板之间可能形成电场,产生反电晕放电。 对于高比电阻粉尘,可以通过特殊方法进行电除尘器除尘,以达到气体净化,这些方法包括气体调质、采用脉冲供电、改变除尘器本体结构、拉宽电极间距并结合变更电气条件。 2)烟气湿度烟气湿度能改变粉尘的比电阻,在同样湿度条件下,烟气中所含水分越大,其比电阻越小。粉尘颗粒吸附了水分子,粉尘的导电性增大,由于湿度增大,击穿电压上长,这就允许在更高的电场电压下运行。击穿电压与空气含湿量有关,随着空气中含湿量的上升,电场击穿电压相应提高,火花放电较难出现,这种作用对电除尘器来说,是有实用价值的,它可使除尘器能够在提高电压的条件下稳定地运行,电场强度的增高会使降尘效果显著改善。 3)烟气温度气体温度也能改变粉尘的比电阻,而改变的方向却有几种可能:表面比电阻随温度上升而增加(这只在低温度交接处有一段)过渡区,表面和体积比电阻的共同作用区。电除尘工作温度可由粉尘比电阻与气体温度关系曲线来选定。 烟气温度的影响还表现在对气体黏滞性影响,气体黏滞性随着温度的上升而增大,这样影响其驱进速度的下降。气体温度越高队电除尘器的影响是负面的,如果有可能,还是在较低温度条件下运行较好,所以,通常在烟气进入电除尘器之前先要进行气体冷却,降温既能提高净化效率,又可利用烟气余热。然而,对于含湿量较高和有SO3之类成分的烟气,其温度一定要保持在露点温度20~30℃以上作为安全余量,以避免冷凝结露,发生糊板、腐蚀和破坏绝缘。 4)烟气成分烟气成分对负电晕放电特性影响很大,烟气成分不同,在电晕放电中电荷载体的迁移不同。在电场中,电子与中性气体分子相撞而形成负离子的概率在很大程度上取决于烟气成分,据统计,其差别是很大的,氦、氢分子不产生负电晕,氯与二氧化硫分子能产生较强的负电晕,其他气体互有区别;不同的气体成分对电除尘器的伏安特性及火花放电电压影响甚大,尤其是在含有硫酐时,气体对电除尘器运行效果有很大影响。 5)烟气压力有经验公式表明,当其他条件确定后,起晕电压随烟气密度而变化,烟气的温度和压力是影响烟气密度的主要因素。烟气密度对除尘器放电特性和除尘性能都有一定影响,如果只考虑烟气压力的影响,则放电电压和气体压力保持一次(正比)关系。在其他条件相同的情况下,净化高压煤气时电除尘器的压力比净化高压煤气时要高,电压高,其除尘效率也高。 6)粉尘浓度电除尘器对所净化的气体的含尘浓度有一定的适应范围,如果超过一定范围,除尘效果会降低,甚至中止除尘过程,因为在除尘器正常运行时,电晕电流是由气体离子和荷电尘粒(离子)两部分组成的,但前者的趋进速度约为后者的数百倍(气体离子

电除尘器的选型计算参数精

电除尘器的选型计算电除尘器应用成功与否,是与设计、设备质量、加工和安装水平、操作条件、气体和粉尘性质等多种因素相关联的综合效果。要取得理想的除尘效果,必须了解各有关环节与除尘机理的联系,考虑各种影响因素,正确设计计算。 1.影响除尘器性能的因素 影响电除尘器性能有诸多因素,可大致归纳为3个方面:烟尘性质、设备状况和操作条件。这些因素之间的相互联系如图4-71所示,由图可知,各种因素的影响直接关系到电晕电流、粉尘比电阻、除尘器内的粉尘收集和二次飞扬这3个环节,而最后结果表现为除尘效率的高低。 1)烟尘性质的影响粉尘的比电阻,适用于电除尘器的比电阻为104~1011·㎝。比电阻低于104·㎝的粉尘,其导电性能强,在电除尘器电场内被收集时,到达沉降极板后会快速释放其电荷,而变为与沉淀极同性,然后又相互排斥,重新返回气流,可能在往返跳跃中被气流带出,所以除尘效果差;相反,比电阻高于1011·㎝以上的粉尘,在到达沉降极以后不易释放其电荷,使粉尘层与电极板之间可能形成电场,产生反电晕放电。 对于高比电阻粉尘,可以通过特殊方法进行电除尘器除尘,以达到气体净化,这些方法包括气体调质、采用脉冲供电、改变除尘器本体结构、拉宽电极间距并结合变更电气条件。 2)烟气湿度烟气湿度能改变粉尘的比电阻,在同样湿度条件下,烟气 中所含水分 越大,其比电阻越小。粉尘颗粒吸附了水分子,粉尘的导电性增大,由于湿

度增大,击穿电压上长,这就允许在更高的电场电压下运行。击穿电压与空气含湿量有关,随着空气中含湿量的上升,电场击穿电压相应提高,火花放电较难出现,这种作用对电除尘器来说,是有实用价值的,它可使除尘器能够在提高电压的条件下稳定地运行,电场强度的增高会使降尘效果显着改善。 3)烟气温度气体温度也能改变粉尘的比电阻,而改变的方向却有几种可能:表面比电阻随温度上升而增加(这只在低温度交接处有一段)过渡区,表面和体积比电阻的共同作用区。电除尘工作温度可由粉尘比电阻与气体温度关系曲线来选定。 烟气温度的影响还表现在对气体黏滞性影响,气体黏滞性随着温度的上升而增大,这样影响其驱进速度的下降。气体温度越高队电除尘器的影响是负面的,如果有可能,还是在较低温度条件下运行较好,所以,通常在烟气进入电除尘器之前先要进行气体冷却,降温既能提高净化效率,又可利用烟气余热。然而,对于含湿量较高和有SO3之类成分的烟气,其温度一定要保持在露点温度20~30℃以上作为安全余量,以避免冷凝结露,发生糊板、腐蚀和破坏绝缘。 4)烟气成分烟气成分对负电晕放电特性影响很大,烟气成分不同,在电晕放电中电荷载体的迁移不同。在电场中,电子与中性气体分子相撞而形成负离子的概率在很大程度上取决于烟气成分,据统计,其差别是很大的,氦、氢分子不产生负电晕,氯与二氧化硫分子能产生较强的负电晕,其他气体互有区别;不同的气体成分对电除尘器的伏安特性及火花放电电压影响甚大,尤其是在含有硫酐时,气体对电除尘器运行效果有很大影响。

功分器的设计

功分器现在有如下几种系列[11]: 1、400MHz-500MHz 频率段二、三功分器,应用于常规无线电通讯、铁路通 信以及450MHz 无线本地环路系统。 2、800MHz-2500MHz 频率段二、三、四微带系列功分器,应用于GSM / CDMA/PHS/WLAN 室内覆盖工程。 3、800MHz-2500MHz 频率段二、三、四腔体系列功分器,应用于GSM / CDMA/PHS/WLAN 室内覆盖工程。 4、1700MHz-2500MHz 频率段二、三、四腔体系列功分器,应用于PHS/WLAN 室内覆盖工程。 5、800MHz-1200MHz/1600MHz-2000MHz 频率段小体积设备内使用的微带二、三功分器。 这里介绍几种常见的功分器: 一、威尔金森功分器 我们将两分支线长度由原来的4λ变为43λ,这样使分支线长度变长,但作用效果与4λ线相同。在两分支线之间留出电阻尺寸大小的缝隙,做成如图1-1所示结构。 图1-1 威尔金森功分器 二、变形威尔金森功分器 将威尔金森功分器进行变形,做成如图1-2所示结构。两圆弧长度由原来的4λ变为43λ,且将圆伸展开形成一个近似的半圆。每个支路通过2λ传输线与隔离电阻相连,这样做虽然会减小电路的工作带宽,但使输出耦合问题得到了解决,而且可以用于不对称,功分比高的电路,隔离电阻的放置更加容易,且两支路间的距离足够大,在输出口可直接接芯片。

图1-2 变形威尔金森功分器 三、混合环 混合环又称为环形桥路,它也可作为一种功率分配器使用。早期的混合环 是由矩形波导及其4个E-T 分支构成的,由于体积庞大已被微带或带状线环形桥路所取代。图1-3为制作在介质基片上的微带混合环的几何图形,环的平均周长为 23g λ,环上有四个输出端口,四个端口的中心间距均为4g λ。环路各段归一化特性导纳分别为a, b, c ,四个分支特性导纳均为0Y 。这种形式的 功率分配器具有较宽的带宽,低的驻波比和高的输出功率。理论上来说,它的带宽可以同威尔金森功分器相比。混合环功分器相对威尔金森功分器的优点在于,在实际应用中它在高频率上的性能更好一些。 图1-3 混合环 对比以上三种功分器,首先对比威尔金森功分器及变形威尔金森功分器, 变形威尔金森功分器性能与仿真结果相差较大,其原因可能有以下几点:加入两个21波长微带线,引入了T 型接头,使微带线产生不连续性;为了保证两21波长微带线之间的距离正好可以焊接电阻,两微带线均倾斜,使焊接电阻处微带不均匀,另外电阻焊接的非对称性影响了功分器输出两端的功分比[9]。 威尔金森功分器和混合环的插损性能较好,可以满足一般功率合成的要求。在隔离方面,威尔金森功分器隔离较好,混合环的隔离要稍差。 从上述三种功分器分析可以得出:要获得具有良好性能的微波毫米波功分 器,需保证一定的加工精度,对加隔离电阻的功分器,要特别注意选择尺寸较小的电阻,焊接时要求电阻两端对称,且从电阻反面焊接,也可以考虑使用薄膜电阻来实现。这三种功分器都可以串联用作多路功率分配/合成器。 1.3 本课题研究内容 4g λ4g λ4 g λ43g λ对称平面

(整理)微带功率分配器设计

微带功率分配器设计 1. 功率分配器论述: 1.1 定义: 功率分配器是一种将一路输入信号能量分成两路或多路信号能量输出的器件,也可反过来将多路信号能量合成一路输出,此时也可称为合路器。 1.2 分类: 1.2.1 功率分配器按路数分为:2 路、3 路和 4 路及通过它们级联形成的多路功率分配器。 1.2.2 功率分配器按结构分为:微带功率分配器及腔体功率分配器。 1.2.2 根据能量的分配分为:等分功率分配器及不等分功率分配器。 1.2.3 根据电路形式可分为:微带线、带状线、同轴腔功率分配器。 1.3 概述: 常用的功率分配器都是等功率分配,从电路形式上来分,主要有微带线、带状线、同轴腔功率分配器,几者间的区别如下: (1)同轴腔功分器优点是承受功率大,插损小,缺点是输出端驻波比大,而且输出端口间无任何隔离。微带线、带状线功分器优点是价格便宜,输出端口间有很好的隔离,缺点是插损大,承受功率小。 (2)微带线、带状线和同轴腔的实现形式也有所不同:同轴腔功分器是在要求设计的带宽下先对输入端进行匹配,到输出端进行分路;而微带功分器先进行分路,然后对输入端和输出端进行匹配。下面对微带线、带状线功率分配器的原理及设计方法进行分析。 2.相关技术指标: 2.1 概述: 功率分配器的技术指标包括频率范围、承受功率、主路到支路的分配损耗、输入输出间的插入损耗、支路端口间的隔离度、每个端口的电压驻波比等。 2.2 频率范围: 频率范围各种射频/微波电路的工作前提,功率分配器的设计结构与工

作频率密切相关。必须首先明确分配器的工作频率,才能进行下面的设计。 2.3 承受功率: 在大功率分配器/合成器中,电路元件所能承受的最大功率是核心指标,它决定了采用什么形式的传输线才能实现设计任务。一般地,传输线承受功率由小到大的次序是微带线、带状线、同轴线、空气带状线、空气同轴线,要根据设计任务来选择用何种线。 2.4 分配损耗: 主路到支路的分配损耗实质上与功率分配器的功率分配比有关。如理想的两等分功率分配器的分配损耗是3dB,四等分功率分配器的分配损耗6dB,常以S参数S21的dB值表示。 2.5插入损耗: 输入输出间的插入损耗是由于传输线(如微带线)的介质或导体不理想等因素,及端口不是理想匹配所造成的功率反射损耗,常以S参数S21的dB 值表示。 2.6 隔离度: 支路端口间的隔离度是功分器的另一个重要指标。如果从每个支路端口输入功率只能从主路端口输出,而不应该从其他支路输出,这就要求支路之间有足够的隔离度,如两支路端口2和3的隔离度用S23或S32的dB值表示。 2.7 驻波比: 在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax ,形成波腹;在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin ,形成波节。其它各点的振幅值则介于波腹与波节之间。这种合成波称为行驻波。驻波比是驻波波腹处的声压幅值Vmax与波节处的声压Vmin幅值之比。驻波比是表示两端口合理匹配的重要指标,因此每个端口的电压驻波比越小越好。 2.设计原理: 2.1 分配原理: 微带线、带状线的功分器设计原理是相同的,只是带状线的采用

功分器

前言 研究的背景与意义 人类进入二十世纪以来,随着现代电子和通信技术的飞速发展,信息交流越发频繁,各种各样的电子电汽设备已经大大影响到各个领域企业及家庭。无论哪个频段工作的电子设备,都需要各种功能的元器件,既有如电容、电感、电阻、功分器等无源器件,以实现信号匹配、分配、滤波等;又有有源器件共同作用。微波系统不例外地有各种无源、有源器件,它们的功能是对微波信号进行必要的处理或变换。现代无源器件中,微带功分器从质量及重量上都日显重要。功分器的产生与发展 在微波电路中,为了将功率按一定的比例分成两路或者多路,需要使用功率分配器。功率分配器反过来使用就是功率合成器,所以通常功率分配/合成器简称为功分器。在近代微波大功率固态发射源的功率放大器中广泛地使用着功率分配器,而且功率分配器常是成对的使用,先将功率分成若干份,然后分别放大,再合成输出。1960年,Ernest J. Wilkinson发表了名为An N-way Hybird Power Divede的论文中介绍了一种在所有端口均匹配、低损耗、高隔离度、同相的N端口功分器。以后的研究人员便称这种类型的功分器为威尔金森功分器。最初它的原始模型是同轴形式,此后在微带和带状线结构上得到了广泛地应用和发展,工程中大量使用的是微带线形式,大功率情况下也会用到空气带状线或空气同轴线形式。 和其他的微带电路元件一样,功率分配器也有一定的频率特性。当频带边缘频率之比f1/f2=1.44时,输入驻波比(VSWR)<1.22时,输入驻波比(VSWR)下降到1.42,两端口隔离度只有14.7dB。威尔金森功分器的狭窄带宽限制了其在宽带系统中的应用。为了进一步加宽工作带宽,可以用多节的宽频功率分配器,即增加λg/4线段和相应的隔离电阻R的数目。 目前常见的微波功分器是采用微带线或腔体波导等结构的分布参数功分器。腔体波导功分器插损小、平衡度好,但隔离度较差,制作工艺较复杂,微带功分器制作简单,但相对带宽较小。而且以上分布参数功分器仅限于微波波段的窄频带应用,在微波频段以下,小型化、宽带功分器的制作比较困难。 国内研究进展 我国对于微带功分器方面的技术研究报道还比较少,钟哲夫曾在空间合

电除尘器原理、主要参数及结构

一、电收尘器基本原理简述: 1.在不均匀电场中,利用高压直流电(负高压)使气体电离。 2.使含尘的炉气通过含有大量电子、正负离子的电场,使尘颗粒荷电。 3.在高压电场作用下,根据电的基本特性,同性相斥,异性相吸的原理。使大量的带 负电荷的尘粒在收尘电极上(或阳极)沉积,而少量的带正电荷的尘粒在阴极上(或电晕极)沉积。 4.利用机械振打,将收尘极上的尘除去,阴极虽然尘较少,但要保持洁净,以免影响 电晕放电,故采用连续振打。而阳极,一电场连续振打外,其余为间断定时振打,以减少烟尘二次飞扬。 二、主要参数: 1.入口烟气量: 27500Nm3/h 2.入口烟气温度: 330℃ 3.入口气体压力: -1500Pa 4.设备漏气率:<3% 5.入口含尘量≤40g/Nm3 6.电场有效截面积: 31.5m2 7.烟气在电场内流速: 0.56m/s 8.烟气在电场内有效停留时间: 16.1s 9.总的收尘面积 1404m2 10.电晕线总长 1404m 11.除尘效率≥99%或出口含尘量小于200mg/Nm3 12.高压硅整流器:户外式 72KV/300mA 共3台 三、主要结构: 1.采用单室、卧式、三电场钢壳外保温结构。 2.入口气体分布采用三层分布板,使气流均布。 3.阳极为“C”型材质为SPCC,阴极为不锈钢芒刺线(RS线)。 4.同极间距为400mm,共13个通道。 5.阳极振打:挠臂锤侧向旋转振打。

6.阴极振打:双面侧向旋转振打,绝缘采用耐高温、耐高电压瓷转轴(95瓷材质), 并附电加热器1.5KW/只。 7.每电场四点吊挂,支承绝缘采用锥形瓷套管,并附W型电加热器2KW/套。 8.电场出口装有槽形分布板,改善气流分布并减少二次飞扬。 9.排灰:采用溢流螺旋排灰机密封排灰. 四、开车前的检查: 1.检查、清理电场内的杂物。 2.检查阴、阳极的间距。 3.传动机构加满润滑油。 4.检查所有传动机构运转方向,不得反转。 5.启动所有振打机构、排灰阀等,检查运转情况,振打位置是否适中。 6.关闭人孔。 7.通气前8小时开电加热器,加热顶部和侧部绝缘箱。 8.最后空负载送电检查(绝缘电阻≥100兆欧)。 1#电场、2#电场、3#电场≥50KV ~220mA 。 9.送电合格后,等待通气。 五、送电条件: 1.电收尘器出口温度≥250℃先送1#、2#电场, ≥280℃送3#电场。 2.绝缘电阻≥50兆欧(2500V摇表)。 六、正常操作: 1.通气后,检查人孔、法兰连接、排灰等处是否漏气。 2.阴极振打、分布板振打、1#电场阳极振打,为连续运行,阳极2#、3#电场为间断定 时振打。 3.送电要求:(供参考) 1#电场 45~50KV二次电流随负载大小变化 2#电场 40~50KV 3#电场 40~50KV 送电电压不宜太高,以稳定运行,满足收尘指标要求为准。

微带功分器作业-1

功率分配器的设计与仿真 1.功率分配器定义 在微波电路中,为了将功率按一定的比例分成两路或者多路,需要使用功率分配器。功率分配器反过来使用就是功率合成器,所以通常功率分配/合成器简称为功分器。在近代微波大功率固态发射源的功率放大器中广泛地使用着功率分配器,而且功率分配器常是成对的使用,先将功率分成若干份,然后分别放大,再合成输出。1960年,Ernest J. Wilkinson发表了名为An N-way Hybird Power Divede的论文中介绍了一种在所有端口均匹配、低损耗、高隔离度、同相的N 端口功分器。以后的研究人员便称这种类型的功分器为威尔金森功分器。最初它的原始模型是同轴形式,此后在微带和带状线结构上得到了广泛地应用和发展,工程中大量使用的是微带线形式,大功率情况下也会用到空气带状线或空气同轴线形式。 和其他的微带电路元件一样,功率分配器也有一定的频率特性。当频带边缘频率之比f1/f2=1.44时,输入驻波比(VSWR)<1.22时,输入驻波比(VSWR)下降到1.42,两端口隔离度只有14.7dB。威尔金森功分器的狭窄带宽限制了其在宽带系统中的应用。为了进一步加宽工作带宽,可以用多节的宽频功率分配器,即增加λg/4线段和相应的隔离电阻R的数目。 目前常见的微波功分器是采用微带线或腔体波导等结构的分布参数功分器。腔体波导功分器插损小、平衡度好,但隔离度较差,制作工艺较复杂,微带功分器制作简单,但相对带宽较小。而且以上分布参数功分器仅限于微波波段的窄频带应用,在微波频段以下,小型化、宽带功分器的制作比较困难。 功率分配器的技术指标包括频率范围、承受功率、主路到支路的分配损耗、输入输出间的插入损耗。支路端口间的隔离度、每个端口的电压驻波比等。 (1)频率范围。这是各种射频/微波电路的工作前提,功率分配器的设计结构与工作频率密切相关。必须首先明确分配器的工作频率,才能进行下面的设计。 (2)承受功率。在大功率分配器/合成器中,电路元件所能承受的最大功率是核心指标,它决定了采用什么形式的传输线才能实现设计任务。一般地,传输线承受功率由小到大的次序是微带线、带状线、同轴线、空气带状线、空气同轴线,要根据设计任务来选择用何种传输线。 (3)分配损耗。主路到支路的分配损耗实质上与功率分配器的功率分配比

设计仿真微带功分器

实验 设计仿真微带功分器 一、 实验目的: 1. 掌握微带功分器的原理; 2. 掌握用VOLTAIRE 仿真、优化线性电路; 二、 实验原理: 功分器是一种功率分配元件,它是将输入功率分成相等或不相等的几路功率,当然也可以将几路功率合成,而成为功率合成元件。在电路中常用到微带功分器,其基本原理和设计公式如下: 页 1 图2.1 二路功分器的原理图 图2.1是二路功分器的原理图。图中输入线的特性组抗为0Z ,两路分支线的特性阻抗分别为Z 02和Z 03,线长为0e λ/4 , 0e λ/4为中心频率时的带内波长。图中2,3R R 为负载阻抗,R 为隔离阻抗。 对功分器的要求是:两输出口2和3的功率按一定比例分配,并且两口之间相互隔离,当两口接匹配负载时,1口无反射。下面根据上述要求,确定Z 02 、Z 03、R 2、R 3及R 的计算公式。 设2口、3口的输出功率分别为P2、P3 ,对应的电压为V2、V3 .根据对功分器的要求,则有: P 3=K 2P 2 |V 3|2/R 3=K 2|V 2|2/R 2 式中K 为比例系数。为了使在正常工作时,隔离电阻R 上不流过电流,则应 V 3=V 2 于是得 R 2=K 2R 3 若取 R 2=KZ 0 则 R 3=Z 0/K 因为分支线长为λe0/4,故在1口处的输入阻抗为: Z in2=Z 022/R 2 Z in3=Z 032/R 3 为使1口无反射,则两分支线在1处的总输入阻抗应等于引出线的0Z ,即 Y 0=1/Z 0=R 2/Z 022+R 3/Z 032 若电路无损耗,则

|V 1|2/Z in3=k 2|V 1|2/Z in2 式中V1为1口处的电压 所以 Z in =K 2Z 03 Z 02=Z 0[(1+K 2)/K 3]0.5 Z 03=Z 0[(1+K 2)K]0.5 下面确定隔离电阻R 的计算式。 跨接在端口2、3间的电阻R ,是为了得到2、3口之间互相隔离得作用。当信号1口输入,2、3口接负载电阻 时,2、3两口等电位,故电阻R 没有电流流过,相当于R 不起作用;而当2口或3口得外接负载不等于R2或R3时,负载有反射,这时为使2、3两端口彼此隔离,R 必有确定的值,经计算R=Z 0(1+K 2)/K 。图2.1中两路线带之间的距离不宜过大,一般取2~3倍带条宽度。这样可使跨接在两带线之间的寄生效应尽量减小。 三、 实验内容: 用VOLTERRA 设计仿真一个微带功分器,具体指标如下: 中心频率为:02f GHz =; 耦合度: 2k = 引出线: 050Z =Ω 介质基片: 2.55,1r h mm ε=- 四.设计过程 电路图: 局部放大

等分威尔金森功分器的设计

摘要 摘要 本文对一个等分威尔金森功分器进行了仿真,分析了功分器的基本原理,介绍了ADS软件基本使用方法,并选择了频率范围:0.9~1.1GHz,频带内输入端 口的回波损耗:C 11>20dB,频带内的插入损耗:C 21 <3.1dB,C 31 <3.1dB,两个输出端 口间的隔离度:C 23 >25dB为设计指标的等分威尔金森功分器。先进行威尔金森功分器原理图的设计,再用ADS软件进行原理图仿真,得出的结论采用理论计算的结果作为功分器参数时,功分器并没有达到所需设计的指标,所以要对功分器的各个参数进行优化。优化后所得到的最佳数据保存以后再进行功分器版图的仿真,各项指标基本达到设计所需的要求。 关键词:仿真,威尔金森功分器,ADS,优化

ABSTRACT ABSTRACT In this paper a power dividers quintiles Wilkinson is simulated, and analyzes the basic principle of power dividers, introduces the basic use ADS software method, and choose the frequency range: 0.9~GHz, frequency band 1.1 input ports C11 > 20dB return loss:, frequency band insertion loss: C21 < 3.1 dB, C31 < 3.1 dB, between the two output port C23 > 25dB isolation ratio: for the design index equal power dividers Wilkinson. First conducts the power dividers Wilkinson schematic design, reoccupy ADS software simulation principle diagram, the conclusion of the theoretical calculation result as parameters when power dividers power dividers did not reach the required design to index, so the power dividers various parameters were optimized. After optimization of the best data preserves received after power dividers again, and all the indexes of simulation territory to meet the design requirements of basic required. Key words:Simulation Wilkinson Power dividers ADS optimization

微带不等分功分器设计与仿真

微带不等分功分器设计与仿真 一、摘要 功分器全称功率分配器,英文名Power divider,是一种将一路输入信号能量分成两路或多路输出相等或不相等能量的器件,也可反过来将多路信号能量 合成一路输出,此时可也称为合路器。一个功分器的输出端口之间应保证一定 的隔离度。功分器的主要技术参数有功率损耗(包括插入损耗、分配损耗和反 射损耗)、各端口的电压驻波比,功率分配端口间的隔离度、功率容量和频带 宽度等。 二、设计目的和意义 三、设计原理 功分器全称功率分配器,是一种将一路输入信号能量分成两路或多路输出 相等或不相等能量的器件,也可反过来将多路信号能量合成一路输出,此时可 也称为合路器。一个功分器的输出端口之间应保证一定的隔离度。功分器的主 要技术参数有功率损耗(包括插入损耗、分配损耗和反射损耗)、各端口的电 压驻波比,功率分配端口间的隔离度、功率容量和频带宽度等。 功分器也叫过流分配器,分有源,无源两种,可平均分配一路信号变为几路输出, 一般每分一路都有几dB的衰减,信号频率不同,分配器不同衰减也不同,为了补 偿衰减,在其中加了放大器后做出了无源功分器。 功分器的功能是将一路输入的卫星中频信号均等的分成几路输出,通常有 二功分、四功分、六功分等等。功分器的工作频率是950MHz-2150MHz,卫视 烧友想必对功分器是再熟悉不过了。以上三个器件的用途和性能是完全不同的,但在日常使用中往往容易把名称混淆了,使得人们在使用中容易产生困惑.*接 收系统中的多台卫星接收机,共用一面天线,几面天线共用一台卫星接收机, 以及两台以上卫星接收机和两面以上天线共用,它们之间的连接除了依靠电缆 之外,主要是靠切换器的组合编程来实现的。 功分器是接多个卫星接收机用的.如果一套天线要接多个卫星接收机就要用

除尘器常用术语

1、台:具有一个完整的独立外壳的电除尘器称为台。 2、室:在电除尘器内部由壳体所围成的一个气流的通道空间称为室,一般电除尘器设计成单室,有时也将两个单室并联在一起,称为双室电除尘器。 3、场:沿气流流动方向将各室分成若干区:每一区有完整的收尘板和电晕极,并配以相应的一组高压电源装置,称每个独立区为收尘电场,卧式电除尘器一般设有二个、三个或四个电场,有时也可设置四个以上的电场。为了获得更高的除尘效率,也可将每个电场分成二个或三个独立区,每一个区配一组高压电源装置分别供电。 4、电场高度(m):一般将收尘极板的有效高度(即除去上下两端夹持端板的收尘极高度)称为电场高度。 5、电场通道数:电场中两排极板之间的宽度称为通道,电场中的极板总排数减一称为电场通道 6、电场宽度(m):一般将一个室最外两侧收尘极轴线之间的有效距离(减去板阻流宽度),称作电场宽度,它等于电场通数与同极距(相邻两排极板的中心距)的乘积减去每块极板的阻流宽度。 7、电场截面(m2) :一般将电场高度与电场宽度的乘积称为电场截面,它是表示电除尘器规格大小的主要参数之一。 8、电场长度(m):在一个电场中,沿气体流动方向一排收尘极板的宽度(即每排极板第一块极板的前端到最后一块极板末端的距离)称作单电场长度。沿气流方向各个单电场长度之和,称作电除尘器的电场长度。 9、停留时间(s):烟气流电场长度所需要的时间称为停留时间,它等于电场长度与电场风速之比。 10。电场风速(m /s),烟气在电场中的流动速度,称为电场风速。它等于进人电除尘器的烟气流量(m3/s)与电场截面(m2)之比。 11、收尘极面积(m2):收尘极板的有效投影面积,由于极板的两个侧面均起收尘作用,所以两面均应计人,每一排收尘极的收尘面积为单电场长度与电场高度的乘积的二倍,每一个电场的收尘面积为一排极板的收尘面积与电场通道数的乘积,一个室的收尘面积为单电场收尘面积与该室电场数的乘积。一般所说的收尘面积多指室的收尘面积。 12、比收尘面积(m2/s /m3)单位流量的烟气所分配到的收尘面积称为比收尘极面积。它等于收尘极面积(m2)与烟气流量的烟气量(m3/s)之比。比收尘面积的大小,对电收尘器的收尘效果影响很大。它是电收尘器的重要结构参数之一。 13、处理风量(m3/s):即被处理的烟气量。通常指工作状态下电除尘器人口与出口的烟气量的平均值。它等于工作状态下电除尘器人口处的烟气流量与除尘器漏风量的一半之和。

功分器基础知识及市场分析及应用

功分器/合路器基础知识 及泰格功分器产品的性能优势、市场推销分析 本文主要目的之一为针对市场人员的技术培训,有些定义为便于理解并不是很严谨,所有提及概念、计算方法等不能作为产品的通用和专用验收的依据。 本文主要目的另一目的是针对及泰格功分器产品的性能进行分析,指出其优势,并对其应用和市场加以分析,为市场人员的工作提供帮助。 本文中会主要描述以下产品的基本功能,作用和技术指标的定义等。 ● 功分器(功率分配器Power Divider, Power Splitter) ● ) ● 合路器(Combiner) 1. 功分器的原理及一些关键参数说明 功分器是将输入的信号的能量进行分路,并实现多路信号的隔离; 功分器的带宽可以很宽,比如1-12GHz,2-18GHz 等; 分路时可以是等分或不等分; 一般功分器都是等相位(0相位)输出,也就是说功分器的输出相位关系基本是相等的,要求不等输出相位的功分器的一般均只能实现10%左右的带宽。 图1 功分器示意图 理论上,功分器的分路路数可以是无穷多路,很多多路功分器均以2路分路为基础,所以一般为2/4/8/16等2n 分路技术上实现较容易,而3/6/7/9/10/11等技术上实现较难。 Input Output1 相位0o 。。。。。。 Output2 相位0o Output N 相位0o

功分器的国际通用符号 图2 功分器的国际通用符号 1端口输入端(公共端),2和3端口的分配端 本文为理解方便,采用了和实物一致端口画法。 图3 1分8的功分器的实际结构 (1分8功分器设计上是由7个 1分2功分器组成,这7个功分器分为3个层次) 功分器的技术指标 插入损耗(Insert Loss) 图4 功分器的插入损耗 ● 插入损耗为功分器在系统中的实际能量衰减; ● 功分器的插入损耗包含两个部分:功分器的分路损耗和功分器本身对能量的衰减 (损耗); Output Output

影响电除尘器运行参数的主要原因及对策

影响电除尘器运行参数的主要原因及对策摘要:本文通过对影响电除尘运行参数的常见原因分析并结合神头第一发电厂三期电除尘(#5——#8电除尘)多年来运行参数的实际状况和常见故障探讨,找出当前影响神一三期电除尘运行参数的主要原因:电场部分极板极丝腐蚀、变形、间距改变;振大强度不够;高压电缆老化;本体磨损漏风;升压变容量不足等并提出相应的对策:更换部分极板极丝及老化的高压电缆;全部采用宽间距、双侧振打改造;彻底消除漏风;合理调整燃烧、降低排烟温度等,以达到三期电除尘运行参数最佳、除尘效率最佳的目的。 关键词:参数原因分析对策 1.概述: 电除尘器一般是利用直流负高压使气体电离、产生电晕放电,进而使粉尘荷电,并在强电场力的作用下,将粉尘从气体中分离出来的除尘装置,其特点是除尘效率高,普遍在99%以上,设计效率最高可达99.99%,一般能保证除尘器出口含尘浓度为50—100毫克/米3阻力损失小,一般为49—196Pa,因而风机的耗电量少,按每小时处理

1000m3烟气量计算,电能消耗约为0.2—0.8KW.h ,处理烟气量大,对烟气浓度的适应性较好,运行费用低。但其一次性投入与钢材消耗量大,占地面积大,对制造、安装和操作水平要求较高,对烟气温度变化较敏感,应用范围受粉尘比电阻的限制,据资料记载[1]:电除尘器最适合的比电阻范围为104—5×1010(-㎝),若在此范围外,则需采取一定的技术措施。 神一三期四台电除尘器是由捷克的机械部分和东德的电气部分组成,由于设计、制造、安装、均存在不合理因素,投运以来,运行参数一直不佳,从未达到设计参数,经过工程技术人员和有关专家的多次研究探讨,又经过机械、电控系统的技术改造,虽然有所好转,但仍未达到额定运行参数值。特别是近几年来,随着设备的老化,运行参数一直不稳,经常出现:二次电压低甚至接近为零或升至较低电压便发生闪络;二次电流升不起维持在低电流运行或二次电流不稳定急剧摆动等现象。根据我们多年的运行、检修经验和技术分析,对影响我厂三期电除尘器运行参数的原因及对策作以下探讨。 2. 影响运行参数的原因分析: 2.1反电晕对运行参数的影响: 电除尘器最适合的粉尘比电阻范围为104—5×1010(-㎝),而我

等分威尔金森功分器的设计

摘要 本文对一个等分威尔金森功分器进行了仿真,分析了功分器的基本原理,介绍了ADS软件基本使用方法,并选择了频率范围:0.9~1.1GHz,频带内输入端 口的回波损耗:C 11>20dB,频带内的插入损耗:C 21 <3.1dB,C 31 <3.1dB,两个输出端 口间的隔离度:C 23 >25dB为设计指标的等分威尔金森功分器。先进行威尔金森功分器原理图的设计,再用ADS软件进行原理图仿真,得出的结论采用理论计算的结果作为功分器参数时,功分器并没有达到所需设计的指标,所以要对功分器的各个参数进行优化。优化后所得到的最佳数据保存以后再进行功分器版图的仿真,各项指标基本达到设计所需的要求。 关键词:仿真,威尔金森功分器,ADS,优化

ABSTRACT In this paper a power dividers quintiles Wilkinson is simulated, and analyzes the basic principle of power dividers, introduces the basic use ADS software method, and choose the frequency range: 0.9~GHz, frequency band 1.1 input ports C11 > 20dB return loss:, frequency band insertion loss: C21 < 3.1 dB, C31 < 3.1 dB, between the two output port C23 > 25dB isolation ratio: for the design index equal power dividers Wilkinson. First conducts the power dividers Wilkinson schematic design, reoccupy ADS software simulation principle diagram, the conclusion of the theoretical calculation result as parameters when power dividers power dividers did not reach the required design to index, so the power dividers various parameters were optimized. After optimization of the best data preserves received after power dividers again, and all the indexes of simulation territory to meet the design requirements of basic required. Key words:Simulation Wilkinson Power dividers ADS optimization

全解除尘器的各种参数含义

【全解】除尘器的各种参数含义 大气治理中,除尘器是不可缺少的,下面将介绍除尘器的各种参数值的含义: A.处理风量:处理风量是指除尘设备在单位时间内所能净化气体的体积量。单位为每小时立方米(m3/h)或每小时标立方米(Nm3/h)。是袋式除尘器设计中最重要的因素之一。根据风量设计或选择袋式除尘器时,一般不能使除尘器在超过划定风量的情况下运行,否则,滤袋轻易堵塞,寿命缩短,压力损失大幅度上升,除尘效率也要降低;但也不能将风量选的过大,否则增加设备投资和占地面积。公道的选择处理风量经常是根据工艺情况和经验来决定的。 B.使用温度:对于袋式除尘器来说,其使用温度取决于两个因素,第一是滤料的最高承受温度,第二是气体温度必需在露点温度以上。目前,因为玻纤滤料的大量选用,其最高使用温度可达280℃,对高于这一温度的气体必需采取降温措施,对低于露点温度的气体必需采取提温措施。现在用的PPS滤料比较多.温度在170度.对袋式除尘器来说,使用温度与除尘效率关系并不显著,这一点不同于电除尘,对电除尘器来说,温度的变化会影响到粉尘的比电阻等影响除尘效率。 C.压力损失:袋式除尘的压力损失是指气体从除尘器入口到出口的压力降,或称阻力。袋除尘的压力损失取决于下列三个因素:⑴设备结构的压力损失。⑵滤料的压力损失。与滤料的性质有关(如孔隙率等)。⑶滤料上堆积的粉尘层压力损失。 D.出口含尘浓度:出口含尘浓度指除尘器的排放浓度,表示方法同进口含尘浓度,出口含尘浓度的大小应以当地环保要求或用户的要求为准,袋式除尘器的排放浓度一般都能达到50 g/Nm3以下。 E.进口含尘浓度:即进口粉尘浓度,这是由扬尘点的工艺所决定的,在设计或选择袋式除尘器时,它是仅次于处理风量的又一个重要因素。以g/m3或g/Nm3来表示。对于袋式除尘器来说,进口含尘浓度将直接影响下列因素:⑴压力损失和清灰周期。进口浓度增大,统一过滤面积上积灰速度快,压力损失随之增加,结果是不得不增加清灰次数。⑵滤袋和箱体的磨损。在粉尘具有强磨蚀性的情况下,其磨损量可以以为与含尘浓度成正比。⑶预收尘有无必要。预收尘就是在除尘器进口处前再增加一级除尘设备,也称前级除尘。 ⑷排灰装置的排灰能力。排灰装置的排灰能力应以能排出全部收下的粉尘为准,粉尘量即是进口含尘浓度乘以处理风量。 F. 操纵压力:袋式除尘器的操纵压力是根据除尘器前后的装置和风机的静压值及其安装位置而定的,也是袋式除尘器的设计耐压值。 G.过滤速度:过滤速度是设计和选择袋式除尘器的重要因素,它的定义是过滤气体通过滤料的速度,或者是通过滤料的风量和滤料面积的比。单位用m/min来表示。袋除尘器过滤面积确定了,那么其处理风量的大小就取决于过滤速度的选定,公式为:Q = v × s × 60 (m3/h) 式中:Q —处理风量v —过滤风速(m/min) s —总过滤面积(m2)注明:过滤面积(m2)=处理风量(m3/h)/(过滤速度(m/min)x60)袋式除尘器的过滤速度有毛过滤速度和净过滤速度之分,所谓毛过滤速度是指处理风量除以袋除尘器的总过滤面积,而净过滤速度则是指处理风量除以袋除尘器净过滤面积。为了进步清灰效果和连续工作的能力,在设计中将袋除尘器分割成若干室(或区),每个室都有一个主气阀来控制该室处于过滤状态仍是停滤状态(在线或离线状态)。当一个室进行清灰或维修时,必须使其主气阀封闭而处于停滤状态(离线状态),此时处理风量完全由其它室负担,其它室的总过滤面积称为净过滤面积。也就是说,净过滤面积即是总过滤面积减去运行中必须保持的清灰室数和维修室数的过滤面积总和。

相关主题