搜档网
当前位置:搜档网 › (完整版)《同底数幂的除法》典型例题

(完整版)《同底数幂的除法》典型例题

(完整版)《同底数幂的除法》典型例题
(完整版)《同底数幂的除法》典型例题

同底数幂的除法典型例题

例1 判断下列各式是否正确,错误请改正.

(1);(2);

(3);(4);

(5).

解:(1)不正确,应改为,法则中底数不变,指数相减,而不是指数相除.

(2)不正确,应改为,与底数不同,要先化同底,即再计算.

(3)不正确,应改为,与互为相反数,

先化同底便可计算.

(4)不正确,应改为,指数相减应为 .

(5)正确.

例2 计算

(1)x n+2÷x n-2 (2)50×10-2

(3)用小数或分数表示:5.2×10-3.

分析:(1)在运用“同底数幂的除法”公式时,指数若是多项式,指数相减一定要打括号.(2)中用到零指数和负指数的公式,直接套用即可,(3)先将负指数的幂化为小数,再进行乘法运算,得到最后结果.

解:(1)x n+2÷x n-2=x(n+2)-(n-2)=x4

(2)50×10-2=1× =0.01

(3)5.2×10-3=5.2× =5.2×0.001=0.0052

例3 计算:

(1);(2);

(3);(4).

分析:此例都可用同底数幂的除法的性质进行计算,注意运算符号,算出最终结果,如

和都能继续计算.

解:(1);

(2);

(3);

(4).

例4 计算

(1)y10÷y3÷y4 (2)(-ab)5÷(-ab)3

分析:先观察题目,确定运算顺序及可运用的公式,再进行计算.题目(2)中被除数与除数的底数相同,故可先进行同底数幂的除法,再运用积的乘方的公式将计算进行到最后.

解:(1)y10÷y3÷y4=y10-3-4=y3

(2)(-ab)5÷(-ab)3=(-ab)2=a2b2

说明:像(2)这种题目,一定要计算到最后一步.

例5 计算:(1);(2).

分析:(1)题中的两个幂底数不同,一个是16,另一个是4,但,因此可将底数化为4,(2)题处理符号上要细心.

解:(1)

(2)

说明:底数不同的情况下不能运用同底数幂的除法法则计算.

幂函数经典例题

例1、下列结论中,正确的是( ) A.幂函数的图象都通过点(0,0),(1,1) B.幂函数的图象可以出现在第四象限 C.当幂指数α取1,3,1 2 时,幂函数y=xα是增函数 D.当幂指数α=-1时,幂函数y=xα在定义域上是减函数 解析当幂指数α=-1时,幂函数y=x-1的图象不通过原点,故选项A 不正确;因为所有的幂函数在区间(0,+∞)上都有定义,且y=xα (α∈R),y>0,所以幂函数的图象不可能出现在第四象限,故选项B不正确;而当α=-1时,y=x-1在区间(-∞,0)和(0,+∞)上是减函数,但它在定义域上不是减函数. 答案C 例2、已知幂函数f(x)=(t3-t+1)x 1 5 (7+3t-2t2) (t∈Z)是偶函数且在(0,+ ∞)上为增函数,求实数t的值. 分析关于幂函数y=xα(α∈R,α≠0)的奇偶性问题,设p q (|p|、|q|互 质),当q为偶数时,p必为奇数,y=x p q 是非奇非偶函数;当q是奇数时,y= x p q 的奇偶性与p的值相对应. 解∵f(x)是幂函数,∴t3-t+1=1, ∴t=-1,1或0. 当t=0时,f(x)=x 7 5 是奇函数; 当t=-1时,f(x)=x 2 5 是偶函数; 当t=1时,f(x)=x 8 5 是偶函数,且 2 5 和 8 5 都大于0,在(0,+∞)上为增函数.

故t =1且f (x )=x 85或t =-1且f (x )=x 2 5 . 点评 如果题中有参数出现,一定要注意对参数的分类讨论,尤其对题中的条件 t ∈Z 给予足够的重视. 例3、如图是幂函数y =x m 与y =x n 在第一象限内的图象,则( ) A .-11 D .n <-1,m >1 解析 在(0,1)内取同一值x 0,作直线x =x 0,与各图象有交点,则“点低指数大”.如图,0x 1 3,求x 的取值范围. 错解 由于x 2 ≥0,x 1 3∈R ,则由x 2>x 1 3 ,可得x ∈R . 错因分析 上述错解原因是没有掌握幂函数的图象特征,尤其是y =x α 在 α>1和0<α<1两种情况下图象的分布. 正解 作出函数y=x2和y=3 1x 的图象(如右图所示),易得x<0或x>1. 例5、函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且当x ∈(0,+∞)时,f (x )

同底数幂的除法(1)

初三数学专题训练 1 《同底数幂的除法》当堂训练题 班级 姓名 一、选择题: 1.下列各式计算的结果正确的是( ) A .a 4÷(-a )2=-a 2 B .a 3÷a 3=0 C .(-a )4÷(-a )2=a 2 D .a 3÷a 4=a 2.下列各式的计算中一定正确的是( ) A .(2x-3)0=1 B . 0=0 C .(a 2-1)0=1 D .(m 2+1)0=1 3.若a 6m ÷a x =22m ,则x 的值是( ) A .4m B .3m C .3 D .2m 4.若(x-5)0=1成立,则x 的取值范围是( ) A .x≥5 B .x≤5 C .x≠5 D .x=5 二、填空题: 5.________÷m 2=m 3; (-4)4÷(-4)2=________; a 3·_______·a m+1=a 2m+4; 6.若(-5)3m+9=1,则m 的值是__________. (x -1)0=1成立的条件是____ ____. 7.计算(a-b )4÷(b-a )2=_____ ___. 8.计算a 7÷a 5·a 2=____ ____. 2725÷97×812=__ ______. 三、解答题: 9.计算: A 组:①a 5÷a 2 ②-x 4÷(-x )2 ③(mn )4÷(mn )2 ④(-5x )4÷(-5x )2 B 组:①(-y 2)3÷y 6 ②(ab )3÷(-ab )2 ③a m+n ÷a m-n ④(x -y )7÷(x -y )2·(x -y )2 ⑤(b-a )4÷(a-b )3×(a-b ) ⑥(a 3b 3)2÷(-ab ) ⑦a 4÷a 2+a·a -3a 2a 10.计算:(-2006)0÷(- 12 )3-42 四、探究题 11.已知3m =5,3n =2,求32m-3n+1的值.

指对幂函数经典练习题

高一数学期末复习幂函数、指数函数和对数函数 1、若函数x a a a y ?+-=)33(2是指数函数,则有 ( ) A 、21==a a 或 B 、1=a C 、2=a D 、10≠>a a 且 2、下列所给出的函数中,是幂函数的是 ( ) A .3x y -= B .3-=x y C .32x y = D .13-=x y 3、1.指数式b c =a (b >0,b ≠1)所对应的对数式是 ( ) A .log c a =b B .log c b =a C .log a b =c D .log b a =c 4、若210,5100==b a ,则b a +2= ( ) A 、0 B 、1 C 、2 D 、3 5、若0≠xy ,那么等式y xy y x 2432-=成立的条件是 ( ) A 、0,0>>y x B 、0,0<>y x C 、0,0>x 时,函数x a y )8(2-=的值恒大于1,则实数a 的取值范围是_ _____.

指数函数、对数函数、幂函数练习题大全

一、选择题(每小题4分,共计40分) 1.下列各式中成立的一项是 ( ) A .71 7 7)(m n m n = B . 33 39= C .4 343 3 )(y x y x +=+ D .31243)3(-=- 2.化简)3 1 ()3)((65 61 3 12 12 13 2b a b a b a ÷-的结果 ( ) A .a 9- B .a - C .a 6 D .2 9a 3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确... 的是 ( ) A .f (x +y )=f(x )·f (y ) B .) () (y f x f y x f =-) ( C .)()] ([)(Q n x f nx f n ∈= D .)()]([· )]([)]([+∈=N n y f x f xy f n n n 4.函数2 10 ) 2()5(--+-=x x y ( ) A .}2,5|{≠≠x x x B .}2|{>x x C .}5|{>x x D .}552|{><≤-=-0 ,0 ,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( ) A .)1,1(- B . ),1(+∞- C .}20|{-<>x x x 或 D .}11|{-<>x x x 或 9.已知2 )(x x e e x f --=,则下列正确的是 ( ) A .奇函数,在R 上为增函数 B .偶函数,在R 上为增函数 C .奇函数,在R 上为减函数 D .偶函数,在R 上为减函数

整式的加减知识点总结与题型汇总

整式的加减 整式知识点 1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一 类代数式叫单项式. 2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数 不为零时,单项式中所有字母指数的和,叫单项式的次数. 3.多项式:几个单项式的和叫多项式. 4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多 项式里,次数最高项的次数叫多项式的次数; 注意:(若a、b、c、p、q 是常数)ax2+bx+c 和x2+px+q 是常见的两个二次三项式. 5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式. 整式分类为: 单项式 整式. 多项式 6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项. 7.合并同类项法则:系数相加,字母与字母的指数不变. 8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边 是“- ”号,括号里的各项都要变号. 9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并. 10. 多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列). 注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列. 11. 列代数式 列代数式首先要确定数量与数量的运算关系,其次应抓住题中的一些关键词语,如和、差、积、商、平 方、倒数以及几分之几、几成、倍等等. 抓住这些关键词语,反复咀嚼,认真推敲,列好一般的代数式就不太 难了. 12. 代数式的值 根据问题的需要,用具体数值代替代数式中的字母,按照代数式中的运算关系计算,所得的结果是代数 式的值. 13. 列代数式要注意 ①数字与字母、字母与字母相乘,要把乘号省略; ②数字与字母、字母与字母相除,要把它写成分数的形式; ③如果字母前面的数字是带分数,要把它写成假分数。 1

幂函数知识点及典型题

幂函数 知识点 一、幂函数的定义 一般地,形如y x α =(R x ∈)的函数称为幂孙函数,其中x 是自变量,α是常数.如1 12 3 4 ,,y x y x y x -===等 都是幂函数 二、幂函数的图像 幂函数n y x =随着n 的不同,定义域、值域都会发生变化,可以采取按性质和图像分类记忆的方法.熟练掌握n y x =,当11 2,1,,,323 n =±±± 的图像和性质,列表如下. ① 它们都过点()1,1,除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限. ② 11 ,,1,2,332a =时,幂函数图像过原点且在[)0,+∞上是增函数. ③ 1 ,1,22 a =---时,幂函数图像不过原点且在()0,+∞上是减函数. ④ 任何两个幂函数最多有三个公共点. 三、幂函数基本性质 (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1); (2)α>0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数 (3)α<0时,幂函数的图象在区间(0,+∞)上是减函数. 四、解题方法总结 1.在研究幂函数的性质时,通常将分式指数幂化为根式形式,负整指数幂化为分式形式再去进行讨论; 2.对于幂函数y =α x ,我们首先应该分析函数的定义域、值域和奇偶性,由此确定图象的位置,即所在象 限,其次确定曲线的类型,即α<0,0<α<1和α>1三种情况下曲线的基本形状,还要注意α=0,±1三个曲线的形状;对于幂函数在第一象限的图象的大致情况可以用口诀来记忆:“正抛负双,大竖小横”,即α>0(α≠1)时图象是抛物线型;α<0时图象是双曲线型;α>1时图象是竖直抛物线型;0<α<1时图象是横卧抛物线型. 典型题 类型一、求函数解析式 例1.已知幂函数2 223 (1)m m y m m x --=--,当(0)x ∈+, ∞时为减函数,则幂函数y =__________. 类型二、比较幂函数值大小 例2.比较下列各组数的大小. (1)4 3 3.14 -与43 π - (2)35 (- 与35 (- (3)比较0.5 0.8 ,0.5 0.9,0.5 0.9 -的大小 类型三、求参数的范围

初中数学分式方程典型例题讲解

第十六章分式知识点和典型例习题 【知识网络】 【思想方法】 1.转化思想 转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2.建模思想 本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法 本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程. 第一讲 分式的运算 【知识要点】1.分式的概念以及基本性质; 2.与分式运算有关的运算法则 3.分式的化简求值(通分与约分) 4.幂的运算法则 【主要公式】1.同分母加减法则:()0b c b c a a a a ±±=≠ 2.异分母加减法则:()0,0b d bc da bc da a c a c ac ac ac ±±=±=≠≠; 3.分式的乘法与除法: b d bd a c ac ?= ,b c b d bd a d a c ac ÷=?= 4.同底数幂的加减运算法则:实际是合并同类项 5.同底数幂的乘法与除法;a m ● a n =a m+n ; a m ÷ a n =a m -n 6.积的乘方与幂的乘方:(ab)m = a m b n , (a m ) n = a mn 7.负指数幂: a -p = 1p a a 0 =1 8.乘法公式与因式分解:平方差与完全平方式 (a+b)(a-b)= a 2 - b 2 ;(a ±b)2= a 2±2ab+b 2 (一)、分式定义及有关题型 题型一:考查分式的定义(一)分式的概念: 形如 A B (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母. 【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,22π,是分式的有: . 题型二:考查分式有意义的条件:在分式中,分母的值不能是零.如果分母的值是零,则分式没 有意义. 【例2】当x 有何值时,下列分式有意义 (1) 44+-x x (2)232+x x (3)122-x (4)3||6--x x (5)x x 11- 题型三:考查分式的值为0的条件: 1、分母中字母的取值不能使分母值为零,否则分式无意义

同底数幂的除法(2)导学案

班级: 姓名: 小组: 预习分: 订正分: 3.6同底数幂的除法(2) 【学习目标】1.了解零指数幂的概念、负整数指数幂的概念. 2.用科学记数法表示绝对值较小的数,了解幂运算的法则可以推广到整数指数幂. 【学习重点】零指数幂的概念、负整数指数幂的概念 . 【学习难点】认识零指数幂和负整数指数幂的产生过程,是本节课教学难点. 基 础 部 分 1.计算: (4)442)(a a ÷ (5)4263)()(x x -÷- (6))()(239a a a ?÷- ()372- ()08(3)- ()49(3)-- 要 点 部 分 1. 填空: ()33335___1555___??÷===?? ()335 5()3___12333_____3 ??÷===???? ()25()__13_____ a a a ?÷===???? 讨论:(1)同底数幂的除法法则a m ÷a n =a m-n 中,a,m,n 必须满足什么条件? (2)若53÷53=53-3也能适用同底数幂的除法法则,你认为应当规定0 5=_____;更一般地,0_____(0)a a =≠. (3)要使33÷35=33-5和a 2÷a 5=a 2-5也成立,应当规定213() -=, 31() a -= 零指数幂:____________________; 负整数指数幂:_________________________. 36))(2(x x ÷-36)())(1(x x -÷-1 22)3(-+÷m m b b

2.计算下列各式:()011955-?-() ()32 3.610?- ()30310a ÷-() ()564(3)3-÷ 练习:用分数或整数表示下列各负整数指数幂的值: () 3110- ()32(0.5)-- ()213()7- ()24(7)-- ()015()7 - 3.把下列各数表示成a ×10n (1≤a<10,n 为整数)的形式:()151000 ()20.0051 ()30.0000501 练习:用科学记数法表示下列各数:()16840000000 ()20.000129 ()30.00000087- 巩 固 拓 展 1.填空: 011223344101 101010_______1010010_______10100010_______101000010_______ ----========= ()()101000()100.0001n n n -??=???=?? 为正整数 你发现10的负整数指数幂表示0 0.0001个n 这样较小的数有什么规律? 2.计算(1)x m ?(x n )3÷(x m-1?2x n-1) (2) 3.若(x-3)0-2(3x-6)-2有意义,则x 的取值范围是( ) A. x>3 B. x≠3且x≠2 C. x≠3或x≠2 D. x<2 4.(1)1,16 若2则=_____n n =;281,若2则=_____n n -= (2)若3m =6,3n =2,求32m-3n+1的值. 规律:

幂函数的典型例题.doc

经典例题透析 类型一、求函数解析式 例1.已知幕函数y = (nr-m-])x,,,2-2m~3,当xw(0, + 8)时为减函数,则幕函数y二___________________ . 解析:由于丁 =(加2—血—1)#宀2心为幕函数, 所以m2— \ = \,解得m = 2 ,或m = —\. 当ni = 2时,nr -2m-3 = -3 , y = x~3在(0, + 8)上为减函数; 当m = -l时,/7?2-2m-3 = 0, y = %° =1(x^0)在(0, + ?)上为常数函数,不合题意,舍去. 故所求幕函数为y = x-3. 总结升华:求慕函数的解析式,一般用待定系数法,弄明白需函数的定义是关键. 类型二、比较幕函数值大小 例2.比较下列各组数的大小. 4 4 _ 3 _ 3 (1)3」4万与兀了;(2)(-近门与(-73)^. 4 4_4 解:⑴由于幕函数y = ?亍(x>0)单调递减且3」4 <龙,???3.14万 > 兀了. _3 (2)由于y =兀5这个幕函数是奇函数.???f (-x) =-f (x) —_ 3 _ 3 _ 3 _ 3 _ _因此,(一血门二一(血)V,(―巧)V =—(內)V ,而y = (x>0)单调递减,且血 3 3 3 3 3 3 ???(血戸 >"门即(一血门v( 总结升华. (1)各题中的两个数都是“同指数”的幕,因此可看作是同一个幕函数的两个不同的函数值,从而可根据幕函数的单调性做出判断. (2)题(2)中,我们是利用幕函数的奇偶性,先把底数化为正数的幕解决的问题.当然,若直接利用x<0 上幕函数的单调性解决问题也是可以的. 举一反三 【变式一】比较O.805, O.905, 0.9皿的大小. 思路点拨:先利用幕函数)=兀"的增减性比较0?8°5与0.9°"的大小,再根据幕函数的图象比较0.9°"与0.9七5的大小. 解:y = x Q-5^.(0, + oo)上单调递增,且0.8 v 0.9 , .?,0.805 <0.905. 作出函数y = X05与歹=兀七5在第一象限内的图彖, 易知0.严< 0.9心.

幂函数练习题及答案

幂函数练习题及答案 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分). 1.下列函数中既是偶函数又是(,)-∞0上是增函数的是??( ) A .y x =43? B.y x =32 C .y x =-2 ? D.y x =- 14 2.函数2 -=x y 在区间]2,2 1 [ 上的最大值是???( ) A. 4 1 ?B.1-?C.4 D.4- 3.下列所给出的函数中,是幂函数的是? ?( ) A.3 x y -=?B.3 -=x y ? C.3 2x y =?D.13 -=x y 4.函数3 4x y =的图象是? ( ) A. B. C. D . 5.下列命题中正确的是? ? ( ) A.当0=α 时函数αx y =的图象是一条直线 B.幂函数的图象都经过(0,0)和(1,1)点 C.若幂函数αx y =是奇函数,则α x y =是定义域上的增函数 D.幂函数的图象不可能出现在第四象限 6.函数3 x y =和3 1x y =图象满足 ? ( ) A.关于原点对称 B.关于x 轴对称 C .关于y 轴对称 ? D.关于直线x y =对称 7. 函数R x x x y ∈=|,|,满足 ( ) A.是奇函数又是减函数 B.是偶函数又是增函数 C.是奇函数又是增函数 ?D .是偶函数又是减函数 8.函数 2422-+=x x y 的单调递减区间是 ( )

A .]6,(--∞ ? B .),6[+∞- C.]1,(--∞ ? D.),1[+∞- 9. 如图1—9所示,幂函数α x y =在第一象限的图象,比较1,,,,,04321αααα的大小( ) A.102431<<<<<αααα B.104321<<<<<αααα C.134210αααα<<<<< D .142310αααα<<<<< 10. 对于幂函数5 4 )(x x f =,若210x x <<,则 )2( 21x x f +,2 ) ()(21x f x f +大小关系是( ) A.)2( 21x x f +>2)()(21x f x f + ?B. )2(21x x f +<2) ()(21x f x f + C . )2( 21x x f +=2 ) ()(21x f x f + ? D. 无法确定 二、填空题:请把答案填在题中横线上(每小题6分,共24分). 11.函数y x =- 3 2 的定义域是 . 12.的解析式是?? . 13.9 42 --=a a x y 是偶函数,且在),0(+∞是减函数,则整数a 的值是 . 14.幂函数),*,,,()1(互质n m N k n m x y m n k ∈=-图象在一、二象限,不过原点,则n m k ,,的奇偶性为 . 三、解答题:解答应写出文字说明.证明过程或演算步骤(共76分) . 15.(12分)比较下列各组中两个值大小 (1)06072088089611 611 53 53 ..(.)(.).与;()与-- 1α 3α 4α 2α

整式的加减法练习

1、102(2)x y --4(2)x y --112(2)x y -+3(2)x y -,其中x =-1,y =12 . 2、22224546xy x y x y xy +-+,其中3x =,1y =-; 3、223()52()a b b a a b a b +--+-+-,其中2a b -=-; 4、323232195552424 ab a b ab a b ab a b --++-),其中2a =-,5b =. 5、先化简,再求值:22(37)(547)a ab ab a -+--+,其中2a =,13b =. 6、22(52)(51)a a a a ---+; 7、(2)3(2)2(3)x y x y x y --+--+; 8、222(29)3(4)a b a b ---+; 9、132532234 m m m -++-+. 10、求多项式221x x --加上多项式257x x -+的和. 11、已知2321A x x =-+,2321B x x =+-,321C x =+. 求:(1)A B C ++;(2)A B C --.

12、先化简,再求值: 323232(378)(3252)(24)a a a a a a a a --+----+---+,其中12a =. 13、已知1442+--=xy x A ,52-+=xy x B ,且732+=-+xy C B A (1)求代数式C (2)当x=1,y=21时,求C 的值 13、先化简,再求值:3x 2-[x 2-2(3x-x 2)]其中x= -7。 14、已知xy=-2,x+y=3求代数式(3xy+10y)+[5x-(2xy+2y-3x)]的值 16、已知A=a 2+b 2-c 2,B=-4a 2+2b 2+3c 2,且A+B+C=0,求C 。

次函数与幂函数典型例题

二次函数与幂函数 1.求二次函数的解析式. 2.求二次函数的值域与最值. 3.利用幂函数的图象和性质分析解决有关问题. 【复习指导】 本节复习时,应从“数”与“形”两个角度来把握二次函数和幂函数的图象和性质,重点解决二次函数在闭区间上的最值问题,此类问题经常与其它知识结合命题,应注重分类讨论思想与数形结合思想的综合应用. 基础梳理 1.二次函数的基本知识 (1)函数f (x )=ax 2+bx +c (a ≠0)叫做二次函数,它的定义域是R . (2)二次函数f (x )=ax 2+bx +c (a ≠0)的图象是一条抛物线,对称轴方程为x = -b 2a ,顶点坐标是? ?? ?? -b 2a , 4ac -b 2 4a . ①当a >0时,抛物线开口向上,函数在? ????-∞,-b 2a 上递减,在?????? -b 2a ,+∞上递增,当x =-b 2a 时,f (x )min =4ac -b 2 4a ; ②当a <0时,抛物线开口向下,函数在? ????-∞,-b 2a 上递增,在?????? -b 2a ,+∞上递减,当x =-b 2a 时,f (x )max =4ac -b 2 4a . ③二次函数f (x )=ax 2+bx +c (a ≠0)当Δ=b 2-4ac >0时,图象与x 轴有两个交点M 1(x 1,0)、M 2(x 2,0),|M 1M 2|=|x 1-x 2|=Δ |a | . (3)二次函数的解析式的三种形式: ①一般式:f (x )=ax 2+bx +c (a ≠0); ②顶点式:f (x )=a (x -m )2+h (a ≠0); ③两根式:f (x )=a (x -x 1)(x -x 2)(a ≠0). 2.幂函数

100以内整式加减法练习题

100以内整式加减法练习题 1、3-2 2、3a-+b 3、2+3 4、- 5、3x-[7x--2x] 6、- 7、5-2 8、-2+2ab 9、- 10、-4. 11、-3xy+3xy+2xy-2xy; 12、2-+3. 13、-2-[2b-+2ab] 14、-3 15、3x-[7x--2x] 16、a2b-[2-]; 17、-2y3+-2. 22222222222222222222 18、2- 19、-+[a-2]. 20、5m-7n-8p+5n-9m-p;

21、-; 22、3-[a-2-3a]. 23、3a-9a+5-; 24、-3ab--. 25、-; 26、-2-[2b-+2ab] 27、+; 2222222222222222232222 28、-2x2]. 1+3x)-4;2 30、5a+-; 31、+; 32、2a2b+2ab2-[2+2ab2+2]. 33、-3; 34、2-3-2[x-]. 2222222 35、-ab+a2b+ab+-1 36、+; 37、2x--; 38、-+- 39、4x3-+ 40、3-2xy+2yx2+6xy-4x2y 41、 1-3十[1-2].

42、x-[5x+]; 222243、- 44、 45、+ 46、-+3. 47、5-4. 48、4a2+2-. 49、 xy+-2xy2- 50、5a2-[a2--2] 51、5m-7n-8p+5n-9m+8p 52、-222 53、xy-[2xy-3-xy] 222 54、 x2-[5x-4]+5x5、2a3b- a3b-a2b+ a2b-ab2; 56、-3-7. 57、a+2a+++3a; 58、5ab++8ab-++4ab; 59、-; 60、-3+4. 61、+- 62、-3x2y+2x2y+3xy2-2xy2; 63、3-2;

高三数学专题复习总结-(幂函数)经典

高三数学专题复习总结-(幂函数)经典 1 / 1 2 高三数学专题复习 (幂函数)经典 1.设? ????? --∈3,2,1,21,1,2α,则使幂函数a y x =为奇函数且在(0,)+∞上单调递增的a 值的个数为( ) A .0 B .1 C .2 D .3 2.设11,0,,1,2,32a ? ?∈-???? ,则使函数a y x =的定义域为R 且为奇函数的所有a 的值有( ) A .1个 B .2个 C .3个 D .4个 3.对于幂函数f(x)=45x ,若0<x 1<x 2,则12( )2x x f +,12()()2 f x f x +的大小关系是( ) A. 12( )2x x f +>12()()2f x f x + B. 12()2x x f +<12()()2 f x f x + C. 12()2x x f +=12()()2 f x f x + D. 无法确定 4.设函数y =x 3与21()2x y -=的图像的交点为(x 0,y 0),则x 0所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4) 5.下列说法正确的是( ) A .幂函数的图像恒过(0,0)点 B .指数函数的图像恒过(1,0)点 C .对数函数的图像恒在y 轴右侧 D .幂函数的图像恒在x 轴上方 6.若0>>n m ,则下列结论正确的是( ) A. 22m n < B. 22 m n < C. n m 22log log > D. 11m n > 7.若函数32)32()(-+=m x m x f 是幂函数,则m 的值为( ) A .1- B .0 C .1 D .2 8.幂函数y f x =()的图象经过点1 42 (,),则(2)f ( ) A. 14 B. 12 - 9.幂函数35m y x -=,其中m N ∈,且在(0,)+∞上是减函数,又()()f x f x -=, 则m =( ) A.0 B.1 C.2 D.3 10.已知幂函数()m f x x =的图象经过点(4,2),则(16)f =( )

1.3 同底数幂的除法

1.3 同底数幂的除法 一、选择题 1.下列计算正确的是( ) A. x 2+x 5=x 7 B. x 5﹣x 2=3x C. x 2?x 5=x 10 D. x 5÷x 2=x 3 2.计算(﹣2)0+9÷(﹣3)的结果是( ) A. ﹣1 B. ﹣2 C. ﹣3 D. ﹣4 3.已知(2x ﹣3)0=1,则x 的取值范围是( ) A. x > 3 2 B. x < 3 2 C. x= 3 2 D. x≠ 3 2 4.下列各式;①(﹣2)0;②﹣22;③(﹣2)3 , 计算结果为负数的个数是( )个. A. 3 B. 2 C. 1 D. 0 5.计算:( 12 )﹣1﹣(π﹣1)0 , 结果正确的是( ) A. 2 B. 1 C. ﹣ 1 2 D. ﹣ 3 2 6.方程(x 2+x ﹣1)x+3=1的所有整数解的个数是( ) A. 5个 B. 4个 C. 3个 D. 2个 7.若 a ?1+ b a+b ?1 =k ,则 a ?2+b 2a 2+b ?2 =( ) A. k B. 1 2 k C. k 2 D. 1 2 k 2 8.若a=0.32 , b=﹣3﹣2 , c=(﹣1 3)﹣2 , d=(﹣1 3)0 , 则( ) A. a <b <c <d B. b <a <d <c C. a <d <c <b D. c <a <d <b 二、填空题 9.计算x 6÷(﹣x )4的结果等于________ 10.若a x =2,a y =3,则a 3x ﹣2y =________. 11.若(2x ﹣3)x+5=1,则x 的值为________. 12.若(m ﹣2)0无意义,则代数式(﹣m 2)3的值为________. 13.√x ?1 +(y ﹣2016)2=0,则x ﹣2+y 0=________. 14.对于实数a 、b ,定义运算:a ▲b= {a b (a >b,a ≠0)a ?b (a ≤b,a ≠0) ;如:2▲3=2﹣3= 1 8 ,4▲2=42=16.照此定义的 运算方式计算[2▲(﹣4)]×[(﹣4)▲(﹣2)]=________. 三、解答题 15.(p ﹣q )4÷(q ﹣p )3?(p ﹣q )2 .

高中数学幂函数考点及经典例题题型突破

幂函数、二次函数 考纲解读 1.结合函数y =x ,y =x 2,y =x 3,y =1x ,y =x 1 2的图象解决简单的幂函数问题; 2.用待定系数法求二次函数解析式,结合图象解决二次函数问题; 3.用二次函数、方程、不等式之间的关系解决综合问题. [基础梳理] 1.幂函数 (1)定义:一般地,函数y =x α叫作幂函数,其中底数x 是自变量,α是常数. (2)幂函数的图象比较: 2.二次函数 (1)解析式: 一般式:f (x )=ax 2+bx +c (a ≠0). 顶点式:f (x )=a (x -h )2+k (a ≠0). 两根式:f (x )=a (x -x 1)(x -x 2)(a ≠0). (2)图象与性质: (-∞,+∞) (-∞,+∞)

[三基自测] 1.已知幂函数f (x )=k ·x α的图象过点????12,2 2,则k +α=( ) A.1 2 B .1 C.32 D .2 答案:C 2.已知函数f (x )=x 2+4ax 在区间(-∞,6)内单调递减,则a 的取值范围是( ) A .a ≥3 B .a ≤3 C .a <-3 D .a ≤-3 答案:D 3.幂函数f (x )=xa 2-10a +23(a ∈Z )为偶函数,且f (x )在区间(0,+∞)上是减函数,则a 等于( ) A .3 B .4 C .5 D .6 答案:C 4.(必修1·第一章复习参考题改编)若g (x )=x 2+ax +b ,则g (2)与1 2[g (1)+g (3)]的大小关 系为________. 答案:g (2)<1 2 [g (1)+g (3)] 5.(2017·高考全国卷Ⅰ改编)函数y =x 2+1 x 的增区间为__________. 答案:? ?? ??132,+∞ [考点例题] 考点一 幂函数的图象和性质|易错突破 [例1] (1)已知幂函数f (x )=,若f (a +1)

(完整版)1.3《同底数幂的除法》同步练习及答案

1.3同底数幂的除法 1.下列计算正确的是( ) A.a m·a2=a2m B.(a3)2=a3 C.x3·x2·x= x5D.a3n-5÷a5-n= a4n-10 2.若(x -2) 0=1,则( ) A.x≠0 B.x≥2 C.x≤2 D.x≠2 3.在 2 4 3- ? ? ? ? ?,2 5 6 ? ? ? ? ?,0 7 6 ? ? ? ? ?这三个数中,最大的是( ) A. 2 4 3- ? ? ? ? ? B.2 5 6 ? ? ? ? ? C.0 7 6 ? ? ? ? ?D.不能确定 4.下列各式中不正确的是( ) A. 2 9 1 3? ? ? ? ? ? -=1 B. 2 2 1 2? ? ? ? ? - a=1 C.(|a|+1)0=1 D.(-1- a2) 0=1 5.(1)x( )÷( )5=x 3; (2)( ) 5÷y2=y( ); (3) x2m÷x( )=( )m; (4) x m÷x( )=x m-1; (5) 3 2 ? ? ? ? ? -÷(-5)( )=1; 6.求下列各式中m的取值范围. (1)( m+3)0=1; (2) ( m-4)0=1; (3) ( m+5)-3有意义. 7.计算. (1)a24÷[(a2)3)4; (2)( a3·a4)2÷(a3)2÷a; (3)- x12÷(-x4)3;

(4)( x 6÷x 4·x 2) 2; (5)( x-y )7÷(y-x )2÷( x-y )3; (6) 231??? ??-+031??? ??+3 31-?? ? ??; (7)( -2)0- 421-??? ??-+1101-??? ??+231-??? ?? ·021??? ??; (8) a 4m +1÷(-a ) 2m +1 (m 为正整数). 8.用科学记数法表示纯小数,是把纯小数表示为a ×10-p 的形式,其中p 是正整数,a 是大于0小于10的整数,请把下列各数用科学记数法表示出来. (1)0.00000015; (2)-0.00027; (3)(5.2×1.8) ×0.001; (4)1÷(2×105) 2. 9.已知2×5m =5×2m ,求m 的值. 参考答案 1.D[提示:A ,C 两项根据同底数幂相乘性质计算,均不正确;B 项根据幂的乘方性质计算,结果错误;D 项根据同底数幂除法性质计算,正确.故选D .] 2.D[提示:根据零指数幂的性质求解.] 3.A[提示:分别计算求解.] 4.B[提示:计算哪个选项中的零指数幂的底数可能为0,即为答案.] 5.(1)8 x (2) y 3 (3)m x (4)1 (5)0 6.(1)m ≠-3. (2) m ≠4. (3) m ≠-5. 7.(1)1. (2) a 7. (3)1. (4) x 8. (5)(x-y ) 2. (6)289 1. (7)4. (8) –a 2m . 8.(1)1.5×10-7. (2)-2.7×10-4. (3)9.36×10-3. (4) 2.5×10-11. 9.解:由2×5m =5×2m 得5m-1=2m -1,即5m-1÷2m -12=1,125-??? ??m =1,因为底数2 5

同底数幂的除法教案2

15.3.1 同底数幂的除法 一、教学目标: 1、了解同底数幂的除法的运算性质,并会用其解决实际问题。 2、经历探究同底数幂的除法的运算性质的过程,进一步体会幂的意义,发展推理水平和有条件的表达水平。 3、感受数学法则、公式的简洁美、和谐美。 二、教学重、难点: 重点:准确熟练地使用同底数幂的除法运算法则实行计算。 难点:根据乘、除互逆的运算关系得出同底数幂的除法运算法则。 三、教学方法: 观察、分析、合作、探究 四、教学过程: (一)回顾旧知,引入新课 1、同底数幂的乘法法则: m (m、n为正整数),同底数幂相乘,底数不变,指数相加。 a m· b n= a n 2、(1)a5·a2=()(2)m3·m5=() (3)x3·x5·x4=()(4)(-6)3·(-6)2=( ) 3、(1)a5·( )= a7(2)m3·( )= m8 (3)x3·x5·( )= x12(4)(-6)3·( )=(-6)5 (二)探究新知,实行新课 探究1:根据除法的意义填空,看看计算结果有什么规律: (1)55÷53= 5( ) (2)107÷105= 10( ) (3)a6÷a3= a( ) 观察以上的几个计算,它们有什么共同的特点?每个式子底数(),指数()

在学生充分讨论与发言的基础上,教师结合同底数幂的乘法法则归纳出同底数幂的除法法则: 同底数幂的乘法: 同底数幂相乘,底数不变,指数相加。 同底数幂的除法: 同底数幂相除,底数不变,指数相减。 思考:为什么这里规定a ≠ 0? (三)自学例题,应用法则 活动2:例题自学 例1、计算 (1)x 8÷x 2 (2)a 4÷a (3)(a b)5÷(a b)2 解:(1)x 8÷x 2 = x 28-= x 6 (2)a 4÷a = a 14-= a 3 (3)(a b)5÷(a b)2= (a b)25- = (a b)3= a 3b 3 活动3:小试牛刀 下面的计算对不对?如果不对,理应怎样改正? (1)x 6÷x 2= x 3 (2)64÷62= 62 (3)a 3÷a = a 3 (4)(-c)4÷(-c)2= -c 2 探究2:分别根据除法的意义填空,你能得出什么结论? (1)32÷32=( )(2)103÷103=( )(3)a m ÷a m =( )(a ≠0) 根据除法的意义,可知:a m ÷a m = 1 如果依照同底数幂的除法a m ÷a n = a n m -(m >n )来处理,又可得: a m ·b n = a n m +(m 、n 为正整数) a m ÷ b n = a n m -(a ≠0,m 、n 为正整数,并且m >n )

幂函数经典例题(问题详解)

幂函数的概念 例1、下列结论中,正确的是( ) A.幂函数的图象都通过点(0,0),(1,1) B.幂函数的图象可以出现在第四象限 C.当幂指数α取1,3,1 2 时,幂函数y=xα是增函数 D.当幂指数α=-1时,幂函数y=xα在定义域上是减函数 解析当幂指数α=-1时,幂函数y=x-1的图象不通过原点,故选项A不正确;因为所有的幂函数在区间(0,+∞)上都有定义,且y=xα (α∈R),y>0,所以幂函数的图象不可能出现在第四象限,故选项B不正确;而当α=-1时,y=x-1在区间(-∞,0)和(0,+∞)上是减函数,但它在定义域上不是减函数.答案 C 例2、已知幂函数f(x)=(t3-t+1)x 1 5 (7+3t-2t2) (t∈Z)是偶函数且在(0,+ ∞)上为增函数,数t的值. 分析关于幂函数y=xα (α∈R,α≠0)的奇偶性问题,设p q (|p|、|q|互 质),当q为偶数时,p必为奇数,y=x p q 是非奇非偶函数;当q是奇数时,y= x p q 的奇偶性与p的值相对应. 解∵f(x)是幂函数,∴t3-t+1=1, ∴t=-1,1或0. 当t=0时,f(x)=x 7 5 是奇函数; 当t=-1时,f(x)=x 2 5 是偶函数; 当t=1时,f(x)=x 8 5 是偶函数,且 2 5 和 8 5 都大于0,在(0,+∞)上为增函数. 故t=1且f(x)=x 8 5 或t=-1且f(x)=x 2 5 . 点评如果题中有参数出现,一定要注意对参数的分类讨论,尤其对题中的条件t∈Z给予足够的重视.

例3、如图是幂函数y =x m 与y =x n 在第一象限的图象,则( ) A .-11 D .n <-1,m >1 解析 在(0,1)取同一值x 0,作直线x =x 0,与各图象有交点,则“点低指数大”.如图,0x 1 3,求x 的取值围. 错解 由于x 2 ≥0,x 1 3∈R ,则由x 2>x 1 3 ,可得x ∈R . 错因分析 上述错解原因是没有掌握幂函数的图象特征,尤其是y =x α在α>1和0<α<1两种情况下图象的分布. 正解 作出函数y=x2和y=3 1x 的图象(如右图所示),易得x<0或x>1. 例5、函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且当x ∈(0,+∞)时,f (x )是增函数,求f (x )的解析式. 分析 解答本题可严格根据幂函数的定义形式列方程求出m ,再由单调性确定m . 解 根据幂函数定义得 m 2-m -1=1,解得m =2或m =-1, 当m =2时,f (x )=x 3在(0,+∞)上是增函数; 当m =-1时,f (x )=x -3在(0,+∞)上是减函数,不符合要求.故f (x )=x 3. 点评 幂函数y =x α (α∈R ),其中α为常数,其本质特征是以幂的底x 为自变量,指数α为常数(也可以为0).这是判断一个函数是否为幂函数的重要依

相关主题