搜档网
当前位置:搜档网 › linux内核完全剖析

linux内核完全剖析

linux内核完全剖析
linux内核完全剖析

Linux内核解读入门

针对好多Linux 爱好者对内核很有兴趣却无从下口,本文旨在介绍一种解读linux内核源码的入门方法,而不是解说linux复杂的内核机制;

一.核心源程序的文件组织:

1.Linux核心源程序通常都安装在/usr/src/linux下,而且它有一个非常简单的编号约定:任何偶数的核心(例如2.0.30)都是一个稳定地发行的核心,而任何奇数的核心(例如2.1.42)都是一个开发中的核心。

本文基于稳定的2.2.5源代码,第二部分的实现平台为Redhat Linux 6.0。

2.核心源程序的文件按树形结构进行组织,在源程序树的最上层你会看到这样一些

目录:

●Arch :arch子目录包括了所有和体系结构相关的核心代码。它的每一个子目录都

代表一种支持的体系结构,例如i386就是关于intel cpu及与之相兼容体系结构的子目录。PC机一般都基于此目录;

●Include: include子目录包括编译核心所需要的大部分头文件。与平台无关的头文

件在include/linux子目录下,与intel cpu相关的头文件在include/asm-i386子目录下,而include/scsi目录则是有关scsi设备的头文件目录;

●Init:这个目录包含核心的初始化代码(注:不是系统的引导代码),包含两个文

件main.c和Version.c,这是研究核心如何工作的一个非常好的起点。

●Mm :这个目录包括所有独立于cpu 体系结构的内存管理代码,如页式存储管理内存的分配和释放等;而和体系结构相关的内存管理代码则位于arch/*/mm/,例如arch/i386/mm/Fault.c

●Kernel:主要的核心代码,此目录下的文件实现了大多数linux系统的内核函数,

其中最重要的文件当属sched.c;同样,和体系结构相关的代码在arch/*/kernel中;

●Drivers:放置系统所有的设备驱动程序;每种驱动程序又各占用一个子目录:如

,/block 下为块设备驱动程序,比如ide(ide.c)。如果你希望查看所有可能包含

文件系统的设备是如何初始化的,你可以看drivers/block/genhd.c中的

device_setup()。它不仅初始化硬盘,也初始化网络,因为安装nfs文件系统的时候需要网络其他: 如, Lib放置核心的库代码; Net,核心与网络相关的代码; Ipc,这个

目录包含核心的进程间通讯的代码; Fs ,所有的文件系统代码和各种类型的文件操作

代码,它的每一个子目录支持一个文件系统,例如fat和ext2;

Scripts, 此目录包含用于配置核心的脚本文件等。

一般,在每个目录下,都有一个 .depend 文件和一个Makefile 文件,这两个文件都是编译时使用的辅助文件,仔细阅读这两个文件对弄清各个文件这间的联系和依托关系很有帮助;而且,在有的目录下还有Readme 文件,它是对该目录下的文件的一些说明,同样有利于我们对内核源码的理解;

二.解读实战:为你的内核增加一个系统调用

虽然,Linux 的内核源码用树形结构组织得非常合理、科学,把功能相关联的文件都放在同一个子目录下,这样使得程序更具可读性。然而,Linux 的内核源码实在是太大而且非常复杂,即便采用了很合理的文件组织方法,在不同目录下的文件之间还是有很多的关联,分析核心的一部分代码通常会要查看其它的几个相关的文件,而且可能这些文件还不在同一个子目录下。

体系的庞大复杂和文件之间关联的错综复杂,可能就是很多人对其望而生畏的主要原因。当然,这种令人生畏的劳动所带来的回报也是非常令人着迷的:你不仅可以从中学到很多的计算机的底层的知识(如下面将讲到的系统的引导),体会到整个操作系统体系结构的精妙和在解决某个具体细节问题时,算法的巧妙;而且更重要的是:在源码的分析过程中,你就会被一点一点地、潜移默化地专业化;甚至,只要分析十分之一的代码后,你就会深刻地体会到,什么样的代码才是一个专业的程序员写的,什么样的代码是一个业余爱好者写的。

为了使读者能更好的体会到这一特点,下面举了一个具体的内核分析实例,希望能通过这个实例,使读者对Linux的内核的组织有些具体的认识,从中读者也可以学到一些对内核的分析方法。

以下即为分析实例:

【一】操作平台:

硬件:cpu intel Pentium II ;

软件:Redhat Linux 6.0; 内核版本2.2.5【二】相关内核源代码分析:

1.系统的引导和初始化:Linux 系统的引导有好几种方式:常见的有Lilo, Loadin引导和Linux的自举引导

(bootsect-loader),而后者所对应源程序为arch/i386/boot/bootsect.S,它为实模式的汇编程序,限于篇幅在此不做分析;无论是哪种引导方式,最后都要跳转到

arch/i386/Kernel/setup.S,setup.S主要是进行时模式下的初始化,为系统进入保

护模式做准备;此后,系统执行arch/i386/kernel/head.S (对经压缩后存放的内核

要先执行arch/i386/boot/compressed/head.S); head.S 中定义的一段汇编程序setup_idt ,它负责建立一张256项的idt 表(Interrupt Descriptor Table),此表

保存着所有自陷和中断的入口地址;其中包括系统调用总控程序system_call 的入口

地址;当然,除此之外,head.S还要做一些其他的初始化工作;

2.系统初始化后运行的第一个内核程序asmlinkage void __init

start_kernel(void) 定义在

/usr/src/linux/init/main.c中,它通过调用

usr/src/linux/arch/i386/kernel/traps.c 中的一个函数

void __init trap_init(void) 把各自陷和中断服务程序的入口地址设置到idt 表

中,其中系统调用总控程序system_cal就是中断服务程序之一;void __init

trap_init(void) 函数则通过调用一个宏

set_system_gate(SYSCALL_VECTOR,&system_call); 把系统调用总控程序的入口挂在中断0x80上;

其中SYSCALL_VECTOR是定义在/usr/src/linux/arch/i386/kernel/irq.h中的一个常量0x80; 而system_call 即为中断总控程序的入口地址;中断总控程序用汇编语言定

义在/usr/src/linux/arch/i386/kernel/entry.S中;

3.中断总控程序主要负责保存处理机执行系统调用前的状态,检验当前调用是否合法,

并根据系统调用向量,使处理机跳转到保存在sys_call_table 表中的相应系统服

务例程的入口; 从系统服务例程返回后恢复处理机状态退回用户程序;

而系统调用向量则定义在/usr/src/linux/include/asm-386/unistd.h 中;

sys_call_table 表定义在/usr/src/linux/arch/i386/kernel/entry.S 中; 同时在

/usr/src/linux/include/asm-386/unistd.h 中也定义了系统调用的用户编程接口;

4.由此可见, linux 的系统调用也象dos 系统的int 21h 中断服务, 它把0x80 中

断作为总的入口, 然后转到保存在sys_call_table 表中的各种中断服务例程的入口

地址, 形成各种不同的中断服务;

由以上源代码分析可知, 要增加一个系统调用就必须在sys_call_table 表中增加一

项, 并在其中保存好自己的系统服务例程的入口地址,然后重新编译内核,当然,系

统服务例程是必不可少的。

由此可知在此版linux内核源程序中,与系统调用相关的源程序文件就包括以下这些:

1.arch/i386/boot/bootsect.S

2.arch/i386/Kernel/setup.S

3.arch/i386/boot/compressed/head.S

4.arch/i386/kernel/head.S

5.init/main.c

6.arch/i386/kernel/traps.c

7.arch/i386/kernel/entry.S

8.arch/i386/kernel/irq.h

9.include/asm-386/unistd.h

当然,这只是涉及到的几个主要文件。而事实上,增加系统调用真正要修改文件只有include/asm-386/unistd.h和arch/i386/kernel/entry.S两个;

【三】对内核源码的修改:

1.在kernel/sys.c中增加系统服务例程如下:

asmlinkage int sys_addtotal(int numdata)

{

int i=0,enddata=0;

while(i<=numdata)

enddata+=i++;

return enddata;

}

该函数有一个int 型入口参数numdata , 并返回从0 到numdata 的累加值; 当然也可以把系统服务例程放在一个自己定义的文件或其他文件中,只是要在相应文件中

作必要的说明;

2.把asmlinkage int sys_addtotal( int) 的入口地址加到sys_call_table表中:

arch/i386/kernel/entry.S 中的最后几行源代码修改前为:

... ...

.long SYMBOL_NAME(sys_sendfile)

.long SYMBOL_NAME(sys_ni_syscall) /* streams1 */

.long SYMBOL_NAME(sys_ni_syscall) /* streams2 */

.long SYMBOL_NAME(sys_vfork) /* 190 */

.rept NR_syscalls-190

.long SYMBOL_NAME(sys_ni_syscall)

.endr

修改后为: ... ...

.long SYMBOL_NAME(sys_sendfile)

.long SYMBOL_NAME(sys_ni_syscall) /* streams1 */

.long SYMBOL_NAME(sys_ni_syscall) /* streams2 */

.long SYMBOL_NAME(sys_vfork) /* 190 */

/* add by I */

.long SYMBOL_NAME(sys_addtotal)

.rept NR_syscalls-191

.long SYMBOL_NAME(sys_ni_syscall)

.endr

3. 把增加的sys_call_table 表项所对应的向量,在include/asm-386/unistd.h 中进行必要申明,以供用户进程和其他系统进程查询或调用:

增加后的部分/usr/src/linux/include/asm-386/unistd.h 文件如下:

... ...

#define __NR_sendfile 187

#define __NR_getpmsg 188

#define __NR_putpmsg 189

#define __NR_vfork 190

/* add by I */

#define __NR_addtotal 191

4.测试程序(test.c)如下:

#include

#include

_syscall1(int,addtotal,int, num)

main()

{

int i,j;

do

printf("Please input a numbern";

while(scanf("%d",&i)==EOF);

if((j=addtotal(i))==-1)

printf("Error occurred in syscall-addtotal();n"; printf("Total from 0 to %d is %d n",i,j);

对修改后的新的内核进行编译,并引导它作为新的操作系统,运行几个程序后可以发现一切正常;在新的系统下对测试程序进行编译(*注:由于原内核并未提供此系统调用,所以只有在编译后的新内核下,此测试程序才能可能被编译通过),运行情况如下:

$gcc -o test test.c

$./test

Please input a number

36

Total from 0 to 36 is 666

可见,修改成功;

而且,对相关源码的进一步分析可知,在此版本的内核中,从

/usr/src/linux/arch/i386/kernel/entry.S

文件中对sys_call_table 表的设置可以看出,有好几个系统调用的服务例程都是定义在/usr/src/linux/kernel/sys.c 中的同一个函数:

asmlinkage int sys_ni_syscall(void)

{

return -ENOSYS;

}

例如第188项和第189项就是如此:

... ...

.long SYMBOL_NAME(sys_sendfile)

.long SYMBOL_NAME(sys_ni_syscall) /* streams1 */

.long SYMBOL_NAME(sys_ni_syscall) /* streams2 */

.long SYMBOL_NAME(sys_vfork) /* 190 */

... ...

而这两项在文件/usr/src/linux/include/asm-386/unistd.h 中却申明如下: ... ...

#define __NR_sendfile 187

#define __NR_getpmsg 188 /* some people actually want streams */

#define __NR_putpmsg 189 /* some people actually want streams */

#define __NR_vfork 190

由此可见,在此版本的内核源代码中,由于asmlinkage int sys_ni_syscall(void) 函数并不进行任何操作,所以包括getpmsg, putpmsg 在内的好几个系统调用都是不进行任何操作的,即有待扩充的空调用;但它们却仍然占用着sys_call_table表项,估计这是设计者们为了方便扩充系统调用而安排的; 所以只需增加相应服务例程(如增加服务例程getmsg或putpmsg),就可以达到增加系统调用的作用。

结语:当然对于庞大复杂的linux 内核而言,一篇文章远远不够,而且与系统调用

相关的代码也只是内核中极其微小的一部分;但重要的是方法、掌握好的分析方法;所以上的分析只是起个引导的作用,而正真的分析还有待于读者自己的努力。

Linux内核崩溃原因分析及错误跟踪技术

Linux内核崩溃原因分析及错误跟踪技术 随着嵌入式Linux系统的广泛应用,对系统的可靠性提出了更高的要求,尤其是涉及到生命财产等重要领域,要求系统达到安全完整性等级3级以上[1],故障率(每小时出现危险故障的可能性)为10-7以下,相当于系统的平均故障间隔时间(MTBF)至少要达到1141年以上,因此提高系统可靠性已成为一项艰巨的任务。对某公司在工业领域14 878个控制器系统的应用调查表明,从2004年初到2007年9月底,随着硬软件的不断改进,根据错误报告统计的故障率已降低到2004年的五分之一以下,但查找错误的时间却增加到原来的3倍以上。 这种解决问题所需时间呈上升的趋势固然有软件问题,但缺乏必要的手段以辅助解决问题才是主要的原因。通过对故障的统计跟踪发现,难以解决的软件错误和从发现到解决耗时较长的软件错误都集中在操作系统的核心部分,这其中又有很大比例集中在驱动程序部分[2]。因此,错误跟踪技术被看成是提高系统安全完整性等级的一个重要措施[1],大多数现代操作系统均为发展提供了操作系统内核“崩溃转储”机制,即在软件系统宕机时,将内存内容保存到磁盘[3],或者通过网络发送到故障服务器[3],或者直接启动内核调试器[4]等,以供事后分析改进。 基于Linux操作系统内核的崩溃转储机制近年来有以下几种: (1) LKCD(Linux Kernel Crash Dump)机制[3]; (2) KDUMP(Linux Kernel Dump)机制[4]; (3) KDB机制[5]; (4) KGDB机制[6]。 综合上述几种机制可以发现,这四种机制之间有以下三个共同点: (1) 适用于为运算资源丰富、存储空间充足的应用场合; (2) 发生系统崩溃后恢复时间无严格要求; (3) 主要针对较通用的硬件平台,如X86平台。 在嵌入式应用场合想要直接使用上列机制中的某一种,却遇到以下三个难点无法解决: (1) 存储空间不足 嵌入式系统一般采用Flash作为存储器,而Flash容量有限,且可能远远小于嵌入式系统中的内存容量。因此将全部内存内容保存到Flash不可行。

探究linux内核,超详细解析子系统

探究linux内核,超详细解析子系统 Perface 前面已经写过一篇《嵌入式linux内核的五个子系统》,概括性比较强,也比较简略,现在对其进行补充说明。 仅留此笔记,待日后查看及补充!Linux内核的子系统 内核是操作系统的核心。Linux内核提供很多基本功能,如虚拟内存、多任务、共享库、需求加载、共享写时拷贝(Copy-On-Write)以及网络功能等。增加各种不同功能导致内核代码不断增加。 Linux内核把不同功能分成不同的子系统的方法,通过一种整体的结构把各种功能集合在一起,提高了工作效率。同时还提供动态加载模块的方式,为动态修改内核功能提供了灵活性。系统调用接口用户程序通过软件中断后,调用系统内核提供的功能,这个在用户空间和内核提供的服务之间的接口称为系统调用。系统调用是Linux内核提供的,用户空间无法直接使用系统调用。在用户进程使用系统调用必须跨越应用程序和内核的界限。Linux内核向用户提供了统一的系统调用接口,但是在不同处理器上系统调用的方法

各不相同。Linux内核提供了大量的系统调用,现在从系统 调用的基本原理出发探究Linux系统调用的方法。这是在一个用户进程中通过GNU C库进行的系统调用示意图,系 统调用通过同一个入口点传入内核。以i386体系结构为例,约定使用EAX寄存器标记系统调用。 当加载了系统C库调用的索引和参数时,就会调用0x80软件中断,它将执行system_call函数,这个函数按照EAX 寄存器内容的标示处理所有的系统调用。经过几个单元测试,会使用EAX寄存器的内容的索引查system_call_table表得到系统调用的入口,然后执行系统调用。从系统调用返回后,最终执行system_exit,并调用resume_userspace函数返回用户空间。 linux内核系统调用的核心是系统多路分解表。最终通过EAX寄存器的系统调用标识和索引值从对应的系统调用表 中查出对应系统调用的入口地址,然后执行系统调用。 linux系统调用并不单层的调用关系,有的系统调用会由

Linux操作系统源代码详细分析

linux源代码分析:Linux操作系统源代码详细分析 疯狂代码 https://www.sodocs.net/doc/c48459403.html,/ ?:http:/https://www.sodocs.net/doc/c48459403.html,/Linux/Article28378.html 内容介绍: Linux 拥有现代操作系统所有功能如真正抢先式多任务处理、支持多用户内存保护虚拟内存支持SMP、UP符合POSIX标准联网、图形用户接口和桌面环境具有快速性、稳定性等特点本书通过分析Linux内核源代码充分揭示了Linux作为操作系统内核是如何完成保证系统正常运行、协调多个并发进程、管理内存等工作现实中能让人自由获取系统源代码并不多通过本书学习将大大有助于读者编写自己新 第部分 Linux 内核源代码 arch/i386/kernel/entry.S 2 arch/i386/kernel/init_task.c 8 arch/i386/kernel/irq.c 8 arch/i386/kernel/irq.h 19 arch/i386/kernel/process.c 22 arch/i386/kernel/signal.c 30 arch/i386/kernel/smp.c 38 arch/i386/kernel/time.c 58 arch/i386/kernel/traps.c 65 arch/i386/lib/delay.c 73 arch/i386/mm/fault.c 74 arch/i386/mm/init.c 76 fs/binfmt-elf.c 82 fs/binfmt_java.c 96 fs/exec.c 98 /asm-generic/smplock.h 107 /asm-i386/atomic.h 108 /asm- i386/current.h 109 /asm-i386/dma.h 109 /asm-i386/elf.h 113 /asm-i386/hardirq.h 114 /asm- i386/page.h 114 /asm-i386/pgtable.h 115 /asm-i386/ptrace.h 122 /asm-i386/semaphore.h 123 /asm-i386/shmparam.h 124 /asm-i386/sigcontext.h 125 /asm-i386/siginfo.h 125 /asm-i386/signal.h 127 /asm-i386/smp.h 130 /asm-i386/softirq.h 132 /asm-i386/spinlock.h 133 /asm-i386/system.h 137 /asm-i386/uaccess.h 139 //binfmts.h 146 //capability.h 147 /linux/elf.h 150 /linux/elfcore.h 156 /linux/errupt.h 157 /linux/kernel.h 158 /linux/kernel_stat.h 159 /linux/limits.h 160 /linux/mm.h 160 /linux/module.h 164 /linux/msg.h 168 /linux/personality.h 169 /linux/reboot.h 169 /linux/resource.h 170 /linux/sched.h 171 /linux/sem.h 179 /linux/shm.h 180 /linux/signal.h 181 /linux/slab.h 184 /linux/smp.h 184 /linux/smp_lock.h 185 /linux/swap.h 185 /linux/swapctl.h 187 /linux/sysctl.h 188 /linux/tasks.h 194 /linux/time.h 194 /linux/timer.h 195 /linux/times.h 196 /linux/tqueue.h 196 /linux/wait.h 198 init/.c 198 init/version.c 212 ipc/msg.c 213 ipc/sem.c 218 ipc/shm.c 227 ipc/util.c 236 kernel/capability.c 237 kernel/dma.c 240 kernel/exec_do.c 241 kernel/exit.c 242 kernel/fork.c 248 kernel/info.c 255 kernel/itimer.c 255 kernel/kmod.c 257 kernel/module.c 259 kernel/panic.c 270 kernel/prk.c 271 kernel/sched.c 275 kernel/signal.c 295 kernel/softirq.c 307 kernel/sys.c 307 kernel/sysctl.c 318 kernel/time.c 330 mm/memory.c 335 mm/mlock.c 345 mm/mmap.c 348 mm/mprotect.c 358 mm/mremap.c 361 mm/page_alloc.c 363 mm/page_io.c 368 mm/slab.c 372 mm/swap.c 394 mm/swap_state.c 395 mm/swapfile.c 398 mm/vmalloc.c 406 mm/vmscan.c 409

linux内核IMQ源码实现分析

本文档的Copyleft归wwwlkk所有,使用GPL发布,可以自由拷贝、转载,转载时请保持文档的完整性,严禁用于任何商业用途。 E-mail: wwwlkk@https://www.sodocs.net/doc/c48459403.html, 来源: https://www.sodocs.net/doc/c48459403.html,/?business&aid=6&un=wwwlkk#7 linux2.6.35内核IMQ源码实现分析 (1)数据包截留并重新注入协议栈技术 (1) (2)及时处理数据包技术 (2) (3)IMQ设备数据包重新注入协议栈流程 (4) (4)IMQ截留数据包流程 (4) (5)IMQ在软中断中及时将数据包重新注入协议栈 (7) (6)结束语 (9) 前言:IMQ用于入口流量整形和全局的流量控制,IMQ的配置是很简单的,但很少人分析过IMQ的内核实现,网络上也没有IMQ的源码分析文档,为了搞清楚IMQ的性能,稳定性,以及借鉴IMQ的技术,本文分析了IMQ的内核实现机制。 首先揭示IMQ的核心技术: 1.如何从协议栈中截留数据包,并能把数据包重新注入协议栈。 2.如何做到及时的将数据包重新注入协议栈。 实际上linux的标准内核已经解决了以上2个技术难点,第1个技术可以在NF_QUEUE机制中看到,第二个技术可以在发包软中断中看到。下面先介绍这2个技术。 (1)数据包截留并重新注入协议栈技术

(2)及时处理数据包技术 QoS有个技术难点:将数据包入队,然后发送队列中合适的数据包,那么如何做到队列中的数

激活状态的队列是否能保证队列中的数据包被及时的发送吗?接下来看一下,激活状态的队列的 证了数据包会被及时的发送。 这是linux内核发送软中断的机制,IMQ就是利用了这个机制,不同点在于:正常的发送队列是将数据包发送给网卡驱动,而IMQ队列是将数据包发送给okfn函数。

Linux内核结构详解教程

Linux内核结构详解教程 ─────Linux内核教程 linux内核就像人的心脏,灵魂,指挥中心。 内核是一个操作系统的核心,它负责管理系统的进程,内存,设备驱动程序,文件和网络系统,决定着系统的性能和稳定性。内核以独占的方式执行最底层任务,保证系统正常运行。协调多个并发进程,管理进程使用的内存,使它们相互之间不产生冲突,满足进程访问磁盘的请求等等. 严格说Linux并不能称做一个完整的操作系统.我们安装时通常所说的Linux,是有很多集合组成的.应称为GNU/Linux. 一个Linux内核很少1.2M左右,一张软盘就能放下. 内容基础,语言简短简洁 红联Linux论坛是致力于Linux技术讨论的站点,目前网站收录的文章及教程基本能满足不同水平的朋友学习。 红联Linux门户: https://www.sodocs.net/doc/c48459403.html, 红联Linux论坛: https://www.sodocs.net/doc/c48459403.html,/bbs 红联Linux 论坛大全,所有致力点都体现在这 https://www.sodocs.net/doc/c48459403.html,/bbs/rf/linux/07.htm

目录 Linux内核结构详解 Linux内核主要五个子系统详解 各个子系统之间的依赖关系 系统数据结构 Linux的具体结构 Linux内核源代码 Linux 内核源代码的结构 从何处开始阅读源代码 海量Linux技术文章

Linux内核结构详解 发布时间:2006-11-16 19:05:29 Linux内核主要由五个子系统组成:进程调度,内存管理,虚拟文件系统,网络接口,进程间通信。

Linux内核主要五个子系统详解 发布时间:2006-11-16 19:05:54 1.进程调度(SCHED):控制进程对CPU的访问。当需要选择下一个进程运行时,由调度程序选择最值得运行的进程。可运行进程实际上是仅等待CPU资源的进程,如果某个进程在等待其它资源,则该进程是不可运行进程。Linux使用了比较简单的基于优先级的进程调度算法选择新的进程。 2.内存管理(MM)允许多个进程安全的共享主内存区域。Linux的内存管理支持虚拟内存,即在计算机中运行的程序,其代码,数据,堆栈的总量可以超过实际内存的大小,操作系统只是把当前使用的程序块保留在内存中,其余的程序块则保留在磁盘中。必要时,操作系统负责在磁盘和内存间交换程序块。内存管理从逻辑上分为硬件无关部分和硬件有关部分。硬件无关部分提供了进程的映射和逻辑内存的对换;硬件相关的部分为内存管理硬件提供了虚拟接口。 3.虚拟文件系统(VirtualFileSystem,VFS)隐藏了各种硬件的具体细节,为所有的设备提供了统一的接口,VFS提供了多达数十种不同的文件系统。虚拟文件系统可以分为逻辑文件系统和设备驱动程序。逻辑文件系统指Linux所支持的文件系统,如ext2,fat等,设备驱动程序指为每一种硬件控制器所编写的设备驱动程序模块。 4.网络接口(NET)提供了对各种网络标准的存取和各种网络硬件的支持。网络接口可分为网络协议和网络驱动程序。网络协议部分负责实现每一种可能的网络传输协议。网络设备驱动程序负责与硬件设备通讯,每一种可能的硬件设备都有相应的设备驱动程序。 5.进程间通讯(IPC) 支持进程间各种通信机制。 处于中心位置的进程调度,所有其它的子系统都依赖它,因为每个子系统都需要挂起或恢复进程。一般情况下,当一个进程等待硬件操作完成时,它被挂起;当操作真正完成时,进程被恢复执行。例如,当一个进程通过网络发送一条消息时,网络接口需要挂起发送进程,直到硬件成功地完成消息的发送,当消息被成功的发送出去以后,网络接口给进程返回一个代码,表示操作的成功或失败。其他子系统以相似的理由依赖于进程调度。

读Linux内核源代码

Linux内核分析方法 Linux的最大的好处之一就是它的源码公开。同时,公开的核心源码也吸引着无数的电脑爱好者和程序员;他们把解读和分析Linux的核心源码作为自己的最大兴趣,把修改Linux源码和改造Linux系统作为自己对计算机技术追求的最大目标。 Linux内核源码是很具吸引力的,特别是当你弄懂了一个分析了好久都没搞懂的问题;或者是被你修改过了的内核,顺利通过编译,一切运行正常的时候。那种成就感真是油然而生!而且,对内核的分析,除了出自对技术的狂热追求之外,这种令人生畏的劳动所带来的回报也是非常令人着迷的,这也正是它拥有众多追随者的主要原因: ?首先,你可以从中学到很多的计算机的底层知识,如后面将讲到的系统的引导和硬件提供的中断机制等;其它,象虚拟存储的实现机制,多任务机制,系统保护机制等等,这些都是非都源码不能体会的。 ?同时,你还将从操作系统的整体结构中,体会整体设计在软件设计中的份量和作用,以及一些宏观设计的方法和技巧:Linux的内核为上层应用提供一个与具体硬件不相关的平台; 同时在内核内部,它又把代码分为与体系结构和硬件相关的部分,和可移植的部分;再例如,Linux虽然不是微内核的,但他把大部分的设备驱动处理成相对独立的内核模块,这样减小了内核运行的开销,增强了内核代码的模块独立性。 ?而且你还能从对内核源码的分析中,体会到它在解决某个具体细节问题时,方法的巧妙:如后面将分析到了的Linux通过Botoom_half机制来加快系统对中断的处理。 ?最重要的是:在源码的分析过程中,你将会被一点一点地、潜移默化地专业化。一个专业的程序员,总是把代码的清晰性,兼容性,可移植性放在很重要的位置。他们总是通过定义大量的宏,来增强代码的清晰度和可读性,而又不增加编译后的代码长度和代码的运行效率; 他们总是在编码的同时,就考虑到了以后的代码维护和升级。甚至,只要分析百分之一的代码后,你就会深刻地体会到,什么样的代码才是一个专业的程序员写的,什么样的代码是一个业余爱好者写的。而这一点是任何没有真正分析过标准代码的人都无法体会到的。 然而,由于内核代码的冗长,和内核体系结构的庞杂,所以分析内核也是一个很艰难,很需要毅力的事;在缺乏指导和交流的情况下,尤其如此。只有方法正确,才能事半功倍。正是基于这种考虑,作者希望通过此文能给大家一些借鉴和启迪。 由于本人所进行的分析都是基于2.2.5版本的内核;所以,如果没有特别说明,以下分析都是基于i386单处理器的2.2.5版本的Linux内核。所有源文件均是相对于目录/usr/src/linux的。 方法之一:从何入手 要分析Linux内核源码,首先必须找到各个模块的位置,也即要弄懂源码的文件组织形式。虽然对于有经验的高手而言,这个不是很难;但对于很多初级的Linux爱好者,和那些对源码分析很

Linux内核源代码阅读与工具介绍

Linux的内核源代码可以从很多途径得到。一般来讲,在安装的linux系统下,/usr/src/linux 目录下的东西就是内核源代码。另外还可以从互连网上下载,解压缩后文件一般也都位于linux目录下。内核源代码有很多版本,目前最新的版本是2.2.14。 许多人对于阅读Linux内核有一种恐惧感,其实大可不必。当然,象Linux内核这样大而复杂的系统代码,阅读起来确实有很多困难,但是也不象想象的那么高不可攀。只要有恒心,困难都是可以克服的。任何事情做起来都需要有方法和工具。正确的方法可以指导工作,良好的工具可以事半功倍。对于Linux内核源代码的阅读也同样如此。下面我就把自己阅读内核源代码的一点经验介绍一下,最后介绍Window平台下的一种阅读工具。 对于源代码的阅读,要想比较顺利,事先最好对源代码的知识背景有一定的了解。对于linux内核源代码来讲,基本要求是:⑴操作系统的基本知识;⑵对C语言比较熟悉,最好要有汇编语言的知识和GNU C对标准C的扩展的知识的了解。另外在阅读之前,还应该知道Linux内核源代码的整体分布情况。我们知道现代的操作系统一般由进程管理、内存管理、文件系统、驱动程序、网络等组成。看一下Linux内核源代码就可看出,各个目录大致对应了这些方面。Linux内核源代码的组成如下(假设相对于linux目录): arch这个子目录包含了此核心源代码所支持的硬件体系结构相关的核心代码。如对于X86平台就是i386。 include这个目录包括了核心的大多数include文件。另外对于每种支持的体系结构分别有一个子目录。 init此目录包含核心启动代码。 mm此目录包含了所有的内存管理代码。与具体硬件体系结构相关的内存管理代码位于arch/*/mm目录下,如对应于X86的就是arch/i386/mm/fault.c。 drivers系统中所有的设备驱动都位于此目录中。它又进一步划分成几类设备驱动,每一种也有对应的子目录,如声卡的驱动对应于drivers/sound。 ipc此目录包含了核心的进程间通讯代码。 modules此目录包含已建好可动态加载的模块。 fs Linux支持的文件系统代码。不同的文件系统有不同的子目录对应,如ext2文件系统对应的就是ext2子目录。 kernel主要核心代码。同时与处理器结构相关代码都放在arch/*/kernel目录下。 net核心的网络部分代码。里面的每个子目录对应于网络的一个方面。 lib此目录包含了核心的库代码。与处理器结构相关库代码被放在arch/*/lib/目录下。

linux内核启动 Android系统启动过程详解

linux内核启动+Android系统启动过程详解 第一部分:汇编部分 Linux启动之 linux-rk3288-tchip/kernel/arch/arm/boot/compressed/ head.S分析这段代码是linux boot后执行的第一个程序,完成的主要工作是解压内核,然后跳转到相关执行地址。这部分代码在做驱动开发时不需要改动,但分析其执行流程对是理解android的第一步 开头有一段宏定义这是gnu arm汇编的宏定义。关于GUN 的汇编和其他编译器,在指令语法上有很大差别,具体可查询相关GUN汇编语法了解 另外此段代码必须不能包括重定位部分。因为这时一开始必须要立即运行的。所谓重定位,比如当编译时某个文件用到外部符号是用动态链接库的方式,那么该文件生成的目标文件将包含重定位信息,在加载时需要重定位该符号,否则执行时将因找不到地址而出错 #ifdef DEBUG//开始是调试用,主要是一些打印输出函数,不用关心 #if defined(CONFIG_DEBUG_ICEDCC)

……具体代码略 #endif 宏定义结束之后定义了一个段, .section ".start", #alloc, #execinstr 这个段的段名是 .start,#alloc表示Section contains allocated data, #execinstr表示Section contains executable instructions. 生成最终映像时,这段代码会放在最开头 .align start: .type start,#function /*.type指定start这个符号是函数类型*/ .rept 8 mov r0, r0 //将此命令重复8次,相当于nop,这里是为中断向量保存空间 .endr b 1f .word 0x016f2818 @ Magic numbers to help the loader

Linux内核分析-网络[五]:网桥

看完了路由表,重新回到netif_receive_skb ()函数,在提交给上层协议处理前,会执行下面一句,这就是网桥的相关操作,也是这篇要讲解的容。 view plaincopy to clipboardprint? 1. s kb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 网桥可以简单理解为交换机,以下图为例,一台linux机器可以看作网桥和路由的结合,网桥将物理上的两个局域网LAN1、LAN2当作一个局域网处理,路由连接了两个子网1.0和2.0。从eth0和eth1网卡收到的报文在Bridge模块中会被处理成是由Bridge收到的,因此Bridge也相当于一个虚拟网卡。 STP五种状态 DISABLED BLOCKING LISTENING LEARNING FORWARDING 创建新的网桥br_add_bridge [net\bridge\br_if.c] 当使用SIOCBRADDBR调用ioctl时,会创建新的网桥br_add_bridge。 首先是创建新的网桥: view plaincopy to clipboardprint?

1. d ev = new_bridge_dev(net, name); 然后设置dev->dev.type为br_type,而br_type是个全局变量,只初始化了一个名字变量 view plaincopy to clipboardprint? 1. S ET_NETDEV_DEVTYPE(dev, &br_type); 2. s tatic struct device_type br_type = { 3. .name = "bridge", 4. }; 然后注册新创建的设备dev,网桥就相当一个虚拟网卡设备,注册过的设备用ifconfig 就可查看到: view plaincopy to clipboardprint? 1. r et = register_netdevice(dev); 最后在sysfs文件系统中也创建相应项,便于查看和管理: view plaincopy to clipboardprint? 1. r et = br_sysfs_addbr(dev); 将端口加入网桥br_add_if() [net\bridge\br_if.c] 当使用SIOCBRADDIF调用ioctl时,会向网卡加入新的端口br_add_if。 创建新的net_bridge_port p,会从br->port_list中分配一个未用的port_no,p->br会指向br,p->state设为BR_STATE_DISABLED。这里的p实际代表的就是网卡设备。 view plaincopy to clipboardprint? 1. p = new_nbp(br, dev); 将新创建的p加入CAM表中,CAM表是用来记录mac地址与物理端口的对应关系;而刚刚创建了p,因此也要加入CAM表中,并且该表项应是local的[关系如下图],可以看到,CAM表在实现中作为net_bridge的hash表,以addr作为hash值,链入 net_bridge_fdb_entry,再由它的dst指向net_bridge_port。

linux源代码分析实验报告格式

linux源代码分析实验报告格式

Linux的fork、exec、wait代码的分析 指导老师:景建笃 组员:王步月 张少恒 完成日期:2005-12-16

一、 设计目的 1.通过对Linux 的fork 、exec 、wait 代码的分析,了解一个操作系统进程的创建、 执行、等待、退出的过程,锻炼学生分析大型软件代码的能力; 2.通过与同组同学的合作,锻炼学生的合作能力。 二、准备知识 由于我们选的是题目二,所以为了明确分工,我们必须明白进程的定义。经过 查阅资料,我们得知进程必须具备以下四个要素: 1、有一段程序供其执行。这段程序不一定是进程专有,可以与其他进程共用。 2、有起码的“私有财产”,这就是进程专用的系统堆栈空间 3、有“户口”,这就是在内核中有一个task_struct 结构,操作系统称为“进程控制 块”。有了这个结构,进程才能成为内核调度的一个基本单位。同时,这个结构又 是进程的“财产登记卡”,记录着进程所占用的各项资源。 4、有独立的存储空间,意味着拥有专有的用户空间:进一步,还意味着除前述的 系统空间堆栈外,还有其专用的用户空间堆栈。系统为每个进程分配了一个 task_struct 结构,实际分配了两个连续的物理页面(共8192字节),其图如下: Struct task_struct (大约1K) 系统空间堆栈 (大约7KB )两个 连续 的物 理页 面 对这些基本的知识有了初步了解之后,我们按老师的建议,商量分工。如下: 四、 小组成员以及任务分配 1、王步月:分析进程的创建函数fork.c ,其中包含了get_pid 和do_fork get_pid, 写出代码分析结果,并画出流程图来表示相关函数之间的相互调用关系。所占工作 比例35%。 2、张少恒:分析进程的执行函数exec.c,其中包含了do_execve 。写出代码分析结 果,并画出流程图来表示相关函数之间的相互调用关系。所占工作比例35% 。 3、余波:分析进程的退出函数exit.c,其中包含了do_exit 、sys_wait4。写出代码 分析结果,并画出流程图来表示相关函数之间的相互调用关系。所占工作比例30% 。 五、各模块分析: 1、fork.c 一)、概述 进程大多数是由FORK 系统调用创建的.fork 能满足非常高效的生灭机制.除了 0进程等少数一,两个进程外,几乎所有的进程都是被另一个进程执行fork 系统调 用创建的.调用fork 的进程是父进程,由fork 创建的程是子进程.每个进程都有一

史上最全linux内核配置详解

对于每一个配置选项,用户可以回答"y"、"m"或"n"。其中"y"表示将相应特性的支持或设备驱动程序编译进内核;"m"表示将相应特性的支持或设备驱动程序编译成可加载模块,在需要时,可由系统或用户自行加入到内核中去;"n"表示内核不提供相应特性或驱动程序的支持。只有<>才能选择M 1. General setup(通用选项) [*]Prompt for development and/or incomplete code/drivers,设置界面中显示还在开发或者还没有完成的代码与驱动,最好选上,许多设备都需要它才能配置。 [ ]Cross-compiler tool prefix,交叉编译工具前缀,如果你要使用交叉编译工具的话输入相关前缀。默认不使用。嵌入式linux更不需要。 [ ]Local version - append to kernel release,自定义版本,也就是uname -r可以看到的版本,可以自行修改,没多大意义。 [ ]Automatically append version information to the version string,自动生成版本信息。这个选项会自动探测你的内核并且生成相应的版本,使之不会和原先的重复。这需要Perl的支持。由于在编译的命令make-kpkg 中我们会加入- –append-to-version 选项来生成自定义版本,所以这里选N。 Kernel compression mode (LZMA),选择压缩方式。 [ ]Support for paging of anonymous memory (swap),交换分区支持,也就是虚拟内存支持,嵌入式不需要。 [*]System V IPC,为进程提供通信机制,这将使系统中各进程间有交换信息与保持同步的能力。有些程序只有在选Y的情况下才能运行,所以不用考虑,这里一定要选。 [*]POSIX Message Queues,这是POSIX的消息队列,它同样是一种IPC(进程间通讯)。建议你最好将它选上。 [*]BSD Process Accounting,允许进程访问内核,将账户信息写入文件中,主要包括进程的创建时间/创建者/内存占用等信息。可以选上,无所谓。 [*]BSD Process Accounting version 3 file format,选用的话统计信息将会以新的格式(V3)写入,注意这个格式和以前的v0/v1/v2 格式不兼容,选不选无所谓。 [ ]Export task/process statistics through netlink (EXPERIMENTAL),通过通用的网络输出工作/进程的相应数据,和BSD不同的是,这些数据在进程运行的时候就可以通过相关命令访问。和BSD类似,数据将在进程结束时送入用户空间。如果不清楚,选N(实验阶段功能,下同)。 [ ]Auditing support,审计功能,某些内核模块需要它(SELINUX),如果不知道,不用选。 [ ]RCU Subsystem,一个高性能的锁机制RCU 子系统,不懂不了解,按默认就行。 [ ]Kernel .config support,将.config配置信息保存在内核中,选上它及它的子项使得其它用户能从/proc/ config.gz中得到内核的配置,选上,重新配置内核时可以利用已有配置Enable access to .config through /proc/config.gz,上一项的子项,可以通过/proc/ config.gz访问.config配置,上一个选的话,建议选上。 (16)Kernel log buffer size (16 => 64KB, 17 => 128KB) ,内核日志缓存的大小,使用默认值即可。12 => 4 KB,13 => 8 KB,14 => 16 KB单处理器,15 => 32 KB多处理器,16 => 64 KB,17 => 128 KB。 [ ]Control Group support(有子项),使用默认即可,不清楚可以不选。 Example debug cgroup subsystem,cgroup子系统调试例子 Namespace cgroup subsystem,cgroup子系统命名空间 Device controller for cgroups,cgroups设备控制器

Linux源代码分析_存储管理

文章编号:1004-485X (2003)03-0030-04 收稿日期:2003-05-10 作者简介:王艳春,女(1964 ),副教授,主要从事操作系统、中文信息处理等方面的研究工作。 Linux 源代码分析 存储管理 王艳春 陈 毓 葛明霞 (长春理工大学计算机科学技术学院,吉林长春130022) 摘 要:本文剖析了Linux 操作系统的存储管理机制。给出了Linux 存储管理的特点、虚存的实现方法,以及主要数据结构之间的关系。 关键词:Linux 操作系统;存储管理;虚拟存储中图分类号:T P316 81 文献标识码:A Linux 操作系统是一种能运行于多种平台、源代码公开、免费、功能强大、与Unix 兼容的操作系统。自其诞生以来,发展非常迅速,在我国也受到政府、企业、科研单位、大专院校的重视。我们自2000年开始对Linux 源代码(版本号是Linux 2 2 16)进行分析,首先剖析了进程管理和存储管理部分,本文是有关存储管理的一部分。主要介绍了Linux 虚存管理所用到的数据结构及其相互间的关系,据此可以更好地理解其存储管理机制,也可以在此基础上对其进行改进或在此后的研究中提供借鉴作用。作为一种功能强大的操作系统,Linux 实现了以虚拟内存为主的内存管理机制。即能够克服物理内存的局限,使用户进程在透明方式下,拥有比实际物理内存大得多的内存。本文主要阐述了Linux 虚存管理的基本特点和主要实现技术,并分析了Linux 虚存管理的主要数据结构及其相互关系。 1 Lin ux 虚存管理概述 Linux 的内存管理采用虚拟页式管理,使用多级页表,动态地址变换。进程在运行过程中可以动态浮动和扩展,为用户提供了透明的、灵活有效的内存使用方式。 1)32 bit 虚拟地址 在Linux 中,进程的4GB 虚存需通过32 bit 地址进行寻址。Linux 中虚拟地址与线性地址为同一概念,虚拟地址被分成3个子位段,而大小为4k,如图1所示。 2)Linux 的多级页表结构 图1 32位虚拟地址 标准的Linux 的虚存页表为三级页表,依次为页目录(Pag e Directory PGD)、中间页目录(Pag e Middle Directory PMD )、页表(Page Table PT E )。在i386机器上Linux 的页表结构实际为两级,PGD 和PMD 页表是合二为一的。所有有关PMD 的操作关际上是对PGD 的操作。所以源代码中形如*_pgd _*()和*_pmd_*()函数实现的功能也是一样的。 页目录(PGD)是一个大小为4K 的表,每一个进程只有一个页目录,以4字节为一个表项,分成1024个表项(或称入口点),表项的索引即为32位虚拟地址的页目录,该表项的值为所指页表的起始地址。页表(PTE)的每一个入口点的值为此表项所指的一页框(page frame),页表项的索引即为32位虚拟地址中的页号。页框(page reame)并不是物理页,它指的是虚存的一个地址空间。 3) 页表项的格式 图2 Linux 中页目录项和页表项格式 4)动态地址映射 Linux 虚存采用动态地址映射方式,即进程的地址空间和存储空间的对应关系是在程序的执行过 第26卷第3期长春理工大学学报 Vol 26N o 32003年9月 Journal of Changchun University of Science and T echnology Sep.2003

实例解析linux内核I2C体系结构(2)

实例解析linux内核I2C体系结构(2) 华清远见刘洪涛四、在内核里写i2c设备驱动的两种方式 前文介绍了利用/dev/i2c-0在应用层完成对i2c设备的操作,但很多时候我们还是习惯为i2c设备在内核层编写驱动程序。目前内核支持两种编写i2c驱动程序的方式。下面分别介绍这两种方式的实现。这里分别称这两种方式为“Adapter方式(LEGACY)”和“Probe方式(new style)”。 (1)Adapter方式(LEGACY) (下面的实例代码是在2.6.27内核的pca953x.c基础上修改的,原始代码采用的是本文将要讨论的第2种方式,即Probe方式) ●构建i2c_driver static struct i2c_driver pca953x_driver = { .driver = { .name= "pca953x", //名称 }, .id= ID_PCA9555,//id号 .attach_adapter= pca953x_attach_adapter, //调用适配器连接设备 .detach_client= pca953x_detach_client,//让设备脱离适配器 }; ●注册i2c_driver static int __init pca953x_init(void) { return i2c_add_driver(&pca953x_driver); } module_init(pca953x_init); ●attach_adapter动作 执行i2c_add_driver(&pca953x_driver)后会,如果内核中已经注册了i2c适配器,则顺序调用这些适配器来连接我们的i2c设备。此过程是通过调用i2c_driver中的attach_adapter方法完成的。具体实现形式如下: static int pca953x_attach_adapter(struct i2c_adapter *adapter) { return i2c_probe(adapter, &addr_data, pca953x_detect); /* adapter:适配器 addr_data:地址信息 pca953x_detect:探测到设备后调用的函数 */ } 地址信息addr_data是由下面代码指定的。 /* Addresses to scan */ static unsigned short normal_i2c[] = {0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27,I2C_CLIENT_END}; I2C_CLIENT_INSMOD;

Linux内核源码分析方法

Linux内核源码分析方法 一、内核源码之我见 Linux内核代码的庞大令不少人“望而生畏”,也正因为如此,使得人们对Linux的了解仅处于泛泛的层次。如果想透析Linux,深入操作系统的本质,阅读内核源码是最有效的途径。我们都知道,想成为优秀的程序员,需要大量的实践和代码的编写。编程固然重要,但是往往只编程的人很容易把自己局限在自己的知识领域内。如果要扩展自己知识的广度,我们需要多接触其他人编写的代码,尤其是水平比我们更高的人编写的代码。通过这种途径,我们可以跳出自己知识圈的束缚,进入他人的知识圈,了解更多甚至我们一般短期内无法了解到的信息。Linux内核由无数开源社区的“大神们”精心维护,这些人都可以称得上一顶一的代码高手。透过阅读Linux 内核代码的方式,我们学习到的不光是内核相关的知识,在我看来更具价值的是学习和体会它们的编程技巧以及对计算机的理解。 我也是通过一个项目接触了Linux内核源码的分析,从源码的分析工作中,我受益颇多。除了获取相关的内核知识外,也改变了我对内核代码的过往认知: 1.内核源码的分析并非“高不可攀”。内核源码分析的难度不在于源码本身,而在于如何使用更合适的分析代码的方式和手段。内核的庞大致使我们不能按照分析一般的demo程序那样从主函数开始按部就班的分析,我们需要一种从中间介入的手段对内核源码“各个击破”。这种“按需索取”的方式使得我们可以把握源码的主线,而非过度纠结于具体的细节。 2.内核的设计是优美的。内核的地位的特殊性决定着内核的执行效率必须足够高才可以响应目前计算机应用的实时性要求,为此Linux内核使用C语言和汇编的混合编程。但是我们都 知道软件执行效率和软件的可维护性很多情况下是背道而驰的。如何在保证内核高效的前提下提高内核的可维护性,这需要依赖于内核中那些“优美”的设计。 3.神奇的编程技巧。在一般的应用软件设计领域,编码的地位可能不被过度的重视,因为开发者更注重软件的良好设计,而编码仅仅是实现手段问题——就像拿斧子劈柴一样,不用太多的思考。但是这在内核中并不成立,好的编码设计带来的不光是可维护性的提高,甚至是代码性能的提升。 每个人对内核的了理解都会有所不同,随着我们对内核理解的不断加深,对其设计和实现的思想会有更多的思考和体会。因此本文更期望于引导更多徘徊在Linux内核大门之外的人进入Linux的世界,去亲自体会内核的神奇与伟大。而我也并非内核源码方面的专家,这么做也只是希望分享我自己的分析源码的经验和心得,为那些需要的人提供参考和帮助,说的“冠冕堂皇”一点,也算是为计算机这个行业,尤其是在操作系统内核方面贡献自己的一份绵薄之力。闲话少叙(已经罗嗦了很多了,囧~),下面我就来分享一下自己的Linix内核源码分析方法。 二、内核源码难不难? 从本质上讲,分析Linux内核代码和看别人的代码没有什么两样,因为摆在你面前的一般都不是你自己写出来的代码。我们先举一个简单的例子,一个陌生人随便给你一个程序,并要你看完源码后讲解一下程序的功能的设计,我想很多自我感觉编程能力还可以的人肯定觉得这没什么,只要我耐心的把他的代码从头到尾看完,肯定能找到答案,并且事实确实是如此。那么现在换一个假设,如果这个人是Linus,给你的就是Linux内核的一个模块的代码,你还会觉得依然那么 轻松吗?不少人可能会有所犹豫。同样是陌生人(Linus要是认识你的话当然不算,呵呵~)给 你的代码,为什么给我们的感觉大相径庭呢?我觉得有以下原因:

基于Linux内核编程的实验报告(Linux内核分析实验报告)

基于Linux内核编程的实验报告(Linux内核分析实验 报告) 以下是为大家整理的基于Linux内核编程的实验报告(Linux内核分析实验报告)的相关范文,本文关键词为基于,Linux,内核,编程,实验,报告,分析,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在教育文库中查看更多范文。 Linux内核分析实验报告

实验题目:文件系统实验 实验目的:linux文件系统使用虚拟文件系统VFs作为内核文件子系统。可以安装多种 不同形式的文件系统在其中共存并协同工作。VFs对用户提供了统一的文件访问接口。本实验的要求是 (1)编写一个get_FAT_boot函数,通过系统调用或动态模块调用它可以提 取和显示出FAT文件系统盘的引导扇区信息。这些信息的格式定义在内核文件的fat_boot_sector结构体中。函数可通过系统调用或动态模块调用。 (2)编写一个get_FAT_dir函数,通过系统调用或动态模块调用它可以 返回FAT文件系统的当 前目录表,从中找出和统计空闲的目录项(文件名以0x00打头的为从未使用过目录项,以0xe5打头的为已删除的目录项),将这些空闲的目录项集中调整到目录表的前部。这些信息的格式定义在内核文件的msdos_dir_entry结构体中。 硬件环境:内存1g以上 软件环境:Linux(ubuntu)2-6实验步骤: 一:实验原理: 以实验4为蓝本,在优盘中编译并加载模块,启动测试程序,查

/proc/mydir/myfile的文件内容。从优盘得到fat文件系统的内容存在msdos_sb_info结构中,然后得到msdos_sb_info结构相应的属性值,得到实验一的数据。实验二中,得到fat文件系统第一个扇区的十六个文件信息。然后按照文件名头文字的比较方法,应用归并排序的方法,将头文件是0x00和0xe5的文件调到前面,其他的文件调到后面 二:主要数据结构说明: (1)超级块对象: 数据结构说明:一个已经安装的文件系统的安装点由超级块对象代表。 structsuper_block{... conststructsuper_operations*s_op;} (2)索引i节点对象 数据结构说明:索引i节点对象包含了内核要操作的文件的全部控制信息,对应着打开文件的i节点表。structinode{ conststructinode_operations*i_op;...} (3)目录项对象 数据结构说明:录项对象代表了文件路径名的各个部分,目录文件名和普 通文件名都属于目录项对象。structdentry{

相关主题