搜档网
当前位置:搜档网 › 红外弱小目标检测方法研究

红外弱小目标检测方法研究

红外弱小目标检测方法研究
红外弱小目标检测方法研究

本科毕业设计论文

题 目 红外弱小目标检测方法研究

_______________________________________

专业名称

学生姓名

指导教师

毕业时间 2014年6月

毕业 任务书

一、题目

红外弱小目标检测算法研究

二、指导思想和目的要求

本题目来源于科研,主要研究红外弱小目标的特点,常用的检测算法,进而实现红外弱小目标的检测。希望通过该毕业设计,学生能达到:

1.利用已有的专业知识,培养学生解决实际工程问题的能力;

2.锻炼学生的科研工作能力和培养学生团队合作及攻关能力。

三、主要技术指标

1.掌握红外弱小目标的特点;

2.研究常用的红外弱小目标检测算法;

3.实现红外弱小目标的检测。

四、进度和要求

第01周----第02周: 参考翻译英文文献;

第03周----第04周: 学习红外图像及其弱小目标的特点;

第05周----第08周: 研究红外弱小目标的检测算法;

第09周----第14周: 编写红外弱小目标的检测程序;

第15周----第16周: 撰写毕业设计论文,论文答辩。

五、主要参考书及参考资料

1. 武斌. 红外弱小目标检测技术研究. 西安电子科技大学博士学位论文.

2. 史凌峰. 红外弱小目标检测方法研究. 西安电子科技大学硕士学位论文.

3. 杨丽萍. 空中红外弱小目标检测方法研究. 西北工业大学硕士学位论文.

4. 吴巍. 图像中目标特征的检测与识别. 华中科技大学博士论文。

5. 郑成勇. 小波分析在红外目标检测中的应用. 华中科技大学硕士论文。

6. 蔡智富. 基于自适应背景估计的复杂红外背景抑制技术. 哈尔滨程大学硕士论文。

学生 指导教师 系主任

设计

论文

摘要

红外弱小目标检测技术在当今的军事领域和民用领域都有很广阔的应用前景,是红外图像处理领域中一项历史悠久且又充满活力的研究课题。

在军事领域中,红外自寻制导,搜索跟踪和预警等技术在现代战争中占有非常重要的地位,红外弱小目标检测技术就是红外成像制导中的关键技术之一。实际的武器系统对于雷达的要求越来越高,如何充分发挥雷达技术的优势,提高目标的检测能力,尽早获取来袭目标的相关信息对于提高武器系统的性能具有重要的意义,利用红外探测和跟踪系统进行防御是一个重要方向,而红外弱小目标检测便是被动红外探测系统的关键技术。

在民用方面,红外弱小目标检测研究依然是世界重点研究项目。卫星大气红外云图分析、空间遥感、粒子碰撞、红外医疗图像病理分析、飞机拍摄地面红外图像地质分析、城市红外污染分析、森林防火和海面人员搜救等领域中,有效的红外目标检测技术可以帮助人们迅速提取有价值的信息,从而指导人们的生产和生活。因此,对其检测具有很强的学术和工程应用价值。

本文重点研究了红外弱小目标的检测方法。首先,综述了红外弱小目标检测技术的国内外研究状况,学习红外成像机理及特点。了解了分析红外图像的热点和难点。其次,针对目前的红外弱小目标检测方法,选择了三种红外弱小目标检测方法进行深入研究,分别是高通滤波检测法、中值滤波检测法和自适应门限法。最后,根据三种检测方法自行设计程序,利用Matalb进行仿真。仿真结果表明,本文研究的红外弱小目标检测方法能很好的突出目标,有利于弱小目标的检测,为将来更进一步的研究做出扎实基础。

关键词:弱小目标目标图像检测方法

Abstract

Infrared small target detection technology in today's military field and civilian field application is very extensive, it is an infrared image processing field has a long history and vibrant research subject.

Guidance in the field of military, infrared self-optimizing, search tracking and warning technology occupies very important position in the modern war,infrared weak small targets detection technology is one of key techniques in infrared imaging guidance. Actual weapon system is more and more high to the requirement of radar, how to give full play to the advantage of radar technology, improve the detection ability of targets, obtain information about incoming target as soon as possible to improve the performance of weapon system is of great importance to the use of infrared detection and tracking system for defense is an important direction, and the infrared weak small targets detection is the key technology of passive infrared detection system.

In terms of civil, infrared weak small targets detection research remains the world's key research projects. Atmospheric infrared satellite cloud image analysis, space remote sensing, particle collision, infrared medical pathology image analysis, infrared image plane shooting ground geological analysis, analysis of ir pollution in cities, forest fire prevention and the surface of the search and rescue, in areas such as effective infrared target detection technology can help people to extract valuable information quickly, so as to guide people's production and life. Therefore, the detection has great academic and engineering application value.

This paper mainly studies the infrared weak small targets detection method. First, this paper reviews the progress of infrared weak small targets detection technology research status at home and abroad, learning mechanism and characteristics of the infrared imaging. To understand the hot and difficult in analysis of infrared images. Secondly, aiming at the infrared weak small targets detection method, choose three kinds of infrared weak small targets

detection method in-depth research, respectively is high-pass filtering method, the median filtering method and adaptive threshold method. Finally, according to the designed program, three detection methods with the Matalb simulation. Simulation results show that the infrared weak small targets detection method in this paper can be a very good highlight goals, is advantageous to the weak target detection, make a solid foundation to further study in the future.

KEYWORDS: Weak small targets Target image The detection method.

目录

第1章绪论 (6)

1.1 课题背景、意义 (6)

1.1.1 红外弱小目标检测中的有关概念 (7)

1.2 国内外研究进展 (8)

1.2.1 国外研究进展 (8)

1.2.2 国内研究进展 (10)

1.3 各章简介 (11)

第2章红外图像分析 (12)

2.1红外成像机理及其特点 (12)

2.1.1红外弱小目标 (12)

2.1.2红外背景 (13)

2.1.3红外成像机理与红外热像仪 (14)

2.2红外图像特征分析 (16)

2.2.1噪声分析 (16)

2.2.2背景分析 (17)

2.2.3目标分析 (17)

2.3本章小结 (19)

第3章红外弱小目标图像检测方法 (20)

3.1 高通滤波 (20)

3.1.1理想高通滤波器 (20)

3.1.2巴特沃斯高通滤波器 (21)

3.1.3指数高通滤波器 (21)

3.2 中值滤波 (21)

3.3 自适应门限 (22)

3.3.1自适应门限设定 (22)

3.3.2自适应滤波器 (23)

3.4 本章小结 (24)

第4章仿真与讨论 (25)

4.1高通滤波器 (25)

4.2中值滤波器 (32)

4.3自适应门限 (34)

4.4仿真总结 (37)

第五章全文总结 (38)

参考文献 (39)

致谢 (41)

毕业设计小结 (42)

第1章绪论

1.1 课题背景、意义

(1)背景状况:

利用红外成像实现自动目标检测、识别与跟踪是现代军事武器装备的主要技术发展方向。近年来,在一些局部战争中,红外成像技术显示出巨大的威力,其应用主要在于机载成像搜索跟踪系统以及武器制导等方面。

国际光学工程学会(SPIE)每年按例举行“弱小目标信号与数据处理”会议,各国都在着力研究一种运算量小、性能高、便于硬件实施的检测算法。

国外军事强国目前正在加大对“红外被动预警探测系统”技术的投资,美国早在20世纪50年代起就已经将红外弱小目标检测技术作为“国家安全防御体系”的一个重要课题,我国也必须加大对红外弱小目标的研究力度,刻不容缓。

我国在“九五”、“十五”国防计划中,将“高性能红外探测器件研制和相关信号处理”列为解决“红外预警探测系统”以及“红外精确制导武器”中急需解决的关键研究项目。国内的华中科技大学、北京环境技术研究所等高等院校也已经展开研究“红外被动预警探测系统”。

(2)选题意义:

在现代战争中,雷达作用重要,是迄今为止最为有效的远程电子探测设备,它根据目标对雷达电磁波的散射能量来判定目标的存在并确定目标的空间位置。雷达也存在一些难以克服的弱点,面临着日益严重的对抗威胁,为了壮大国防力量,雷达越来越成为各国国防力量发展的重点。雷达的核心技术是被动红外探测系统,红外目标的检测与跟踪技术是被动红外探测系统的关键技术,而红外弱小目标检测问题又是其核心技术之一。因此,红外弱小目标检测技术的研究尤为重要。

从20世纪60年代开始,被动红外探测跟踪技术就己经开始应用于武器的精确制导,开始时是点源探测,直到70年代中期以后,随着高性能红外元件的工程应用及高性能检测算法的出现,该技术开始大量应用于武器的精确制导红外成像制导与电视、雷达和激光等制导方式相比具有许多显著的优点,体现在其以被动方式工作,灵敏度高、空间分辨率高、动态范围大、抗干扰能力强以及能昼夜工作等方面,因此成为世界各国军事应用中重点研究和发展的精确制导项目之一。

除了军事应用领域之外,红外弱小目标检测技术在民用领域也得到了广泛的应用。例如,在卫星大气红外云图分析、空间遥感、红外医疗图像病理分析、粒子碰撞、飞机拍摄地面红外图像地质分析、城市红外污染分析和海面人员搜救等领域中,有效的红外目标检测技术可以帮助人们迅速地提取感兴趣的目标区域,从而在人们的生产和生活提供必要地指导。

1.1.1 红外弱小目标检测中的有关概念

弱和小指的是目标属性的两个方面,所谓弱是指目标的强度,反映到图像上就是指目标的灰度,所谓小是指目标的尺寸,反映到图像上就是指目标所占的像素数。

目前军用的红外成像系统的空间分辨率大致为0.1mrad ,作用距离一般可达到10公里左右,如果目标为来袭的导弹或飞机,可以假设其迎头方向几何尺寸在1米至5米之间,这样目标对于成像系统来说大小为0.lmrad 至0.5mrad 之间。上述目标就在1个像素至5个像素之间,据此,可以认为所涉及的弱小目标是指在图像上大小在1x1个像素至6x6个像素之间的目标。另外,红外弱小目标可以认为是几何尺寸小到几乎没有形状信息的目标,从红外成像的一般概念出发,认为一般要对目标的形状进行识别需要6条线以上,所以6x6以下的目标可以认为基本没有形状信息[2]。

由于我们所研究的目标基本上位于红外成像系统的极限作用距离上,所以其信号强度较弱,表现在两方面,即对比度和信噪比。

(1)对比度:在图形图像学中对比度描述的是目标与周围背景之间灰度或亮度的差异,对比度的定义较多,下面列出常用的三种对比度:

1T B T B G G C G G -+= 2T B B G G C G -= 3max min

T B G G C G G -=- (1-1) (1-2) (1-3)

其中,T G 代表目标的灰度,B G 代表背景的灰度,max G 为图像的最高灰度值,min G 为图像的最低灰度值。(1)和(2)中的1C 和2C 常被称为相对对比度,而式(3)中的3C 被称为绝对对比度。

(2)信噪比:目标强度与噪声强度之间的比值,对于图像中的目标检测问题,信噪比可以用下式定义: T B

G G SNR σ-= (1-4)

其中,σ为背景的方差均值,T G 、B G 与上式代表意义相同[24]。

综上所述,可以认为,红外弱小目标是指在红外图像中对比度和信噪比较低像素尺寸较小的目标。一般情况下认为对比度小于15%,信噪比小于4,像素尺寸小于6x6的目标为弱小目标。

1.2 国内外研究进展

1.2.1 国外研究进展

红外弱小目标检测技术是红外探测系统的关键技术之一,是红外探测领域的研究热点,国外开展了卓有成效的研究工作,主要研究机构如美国的NASA 、南加利福尼亚大学应用数学中心、空军实验室、海军实验室等。在一些知名国际刊物上,经常会发表一些关于红外弱小目标检测算法的最新研究成果,国际光学工程学会自1959年开始,每年都会举办一次国际会议,专门就小目标(特别是红外弱小目标)相关处理方法的软!硬件实现问题展开讨论,一些有效的研究思路和处理方法被陆续提出。

红外探测起源于人们对响尾蛇的研究,响尾蛇的眼睛对可见光几乎失去作用,然而它却能敏捷地捕捉田鼠及其他小动物,人们研究发现,这种捕捉能力归结于响尾蛇的热感受器——“热眼”。二十世纪四十年代末期,人们研制出一种响尾蛇空对空导弹,其原理与响尾蛇相似,利用硫化铅作红外敏感元件,接收喷气式飞机机尾喷管发出的红外辐射流,引导导弹从飞机尾部进行攻击。从此开始,便有了红外探测技术在军事上的应用。许多发达国家在红外探测技术上的研究可分为三个阶段:

第一阶段为20世纪60年代前,美国和西方一些国家开始着手于机载红外告警接收机的研制。受当时技术条件的限制,红外探测设备作用距离短,虚警率高,难以满足实战要求,未能装备部队。

运动目标检测光流法

摘要 运动目标检测方法是研究如何完成对视频图像序列中感兴趣的运动目标区域的“准确定位”问题。光流场指图像灰度模式的表面运动,它可以反映视频相邻帧之间的运动信息,因而可以用于运动目标的检测。MATLAB这种语言可移植性好、可扩展性强,再加上其中有丰富的图像处理函数,所以利用MATLAB 软件来用光流法对运动目标的检测中具有很大的优势。本设计主要可以借助matlab软件编写程序,运用Horn-Schunck算法对图像前后两帧进行处理,画出图像的光流场。而图像的光流场每个像素都有一个运动矢量,因此可以反映相邻帧之间的运动,分析图像的光流场就可以得出图像中的运动目标的运动情况。 关键字:光流法;Horn-Schunck算法;matlab

目录 1光流法的设计目的 (1) 2光流法的原理 (1) 2.1光流法的介绍 (1) 2.1.1光流与光流场的概念 (1) 2.1光流法检测运动目标的原理 (2) 2.1.1光流场计算的基本原理 (2) 2.2.2基于梯度的光流场算法 (2) 2.2.3Horn-Schunck算法 (3) 2.2.4光流法检测运动目标物体的基本原理概述 (5) 3光流法的程序具体实现 (6) 3.1源代码 (6) 3.1.1求解光流场函数 (6) 3.1.2求导函数 (9) 3.1.3高斯滤波函数 (9) 3.1.4平滑性约束条件函数 (10) 3.1.5画图函数 (10) 4仿真图及分析 (12) 结论 (13) 参考文献 (14)

1 光流法的设计目的 数字图像处理,就是用数字计算机及其他有关数字技术,对图像进行处理,以达到预期的目的。随着计算机的发展,图像处理技术在许多领域得到了广泛应用,数字图像处理已成为电子信息、通信、计算机、自动化、信号处理等专业的重要课程。 数字图像处理课程设计是在学习完数字图像处理的相关理论后,进行的综合性训练课程,其目的是:使学生进一步巩固数字图像处理的基本概念、理论、分析方法和实现方法;增强学生应用Matlab编写数字图像处理的应用程序及分析、解决实际问题的能力;尝试所学的内容解决实际工程问题,培养学生的工程实践能力。 运动目标检测是数字图像处理技术的一个主要部分,近些年来,随着多媒体技术的迅猛发展和计算机性能的不断提高,动态图像处理技术日益受到人们的青睞,并且取得了丰硕的成果,广泛应用于交通管理、军事目标跟踪、生物医学等领域。 因此,基于光流法,实现运动目标的检测是本文的研究对象。结合图书馆书籍、网上资料以及现有期刊杂志,初步建立起运动目标检测的整体思路和方法。 2 光流法的原理 2.1 光流法的介绍 2.1.1 光流与光流场的概念 光流是指空间运动物体在观测成像面上的像素运动的瞬时速度,它利用图像序列像素强度数据的时域变化和相关性来确定各自像素位置的“运动”,即反映图像灰度在时间上的变化与景物中物体结构及其运动的关系。将二维图像平面特定坐标点上的灰度瞬时变化率定义为光流矢量。视觉心理学认为人与被观察物体

运动目标检测方法总结报告

摘要 由于计算机技术的迅猛发展,使得基于内容的视频信息的存取、操作和检索不仅成为一种可能,更成为一种需要。同时,基于内容的视频编码标准MPEG-4和基于内容的视频描述标准MPEG-7正在发展和完善。因此提取和视频中具有语义的运动目标是一个急需解决的问题。运动目标提取和检测作为视频和图像处理领域的重要研究领域,有很强的研究和应用价值。运动检测就是将运动目标从含有背景的图像中分离出来,如果仅仅依靠一种检测算法,难以从复杂的自然图像序列中完整地检测出运动的目标。较高的检测精度和效率十分重要,因此融合多种检测方法的研究越来越受到重视。本文介绍了几种国内外文献中的经典的视频运动目标的检测和提取算法,并对各种方法进行了评价和总结。首先介绍了基本的运动目标检测的基本知识和理论,然后介绍了基本的几种目标检测方法及其各种改进方法。对今后的运动目标检测提取的相关研究提供一定的参考。 关键词:运动目标检测光流法帧差法背景建模方法

ABSTRACT Because of the rapid development of computer technology, it is possible to access, operate and retrieve the video information based on the content of the video. At the same time, based on the content of the video coding standard MPEG-4 and content-based video description standard MPEG-7 is developing and improving. Therefore, it is an urgent problem to be solved in the extraction and video. Moving object extraction and detection is a very important field of video and image processing, and has a strong research and application value. Motion detection is to separate moving objects from the image containing background, if only rely on a detection algorithm, it is difficult to from a complex natural image sequences to detect moving target. Higher detection accuracy and efficiency are very important, so the study of the fusion of multiple detection methods is becoming more and more important. In this paper, the detection and extraction algorithms of the classical video moving objects in the domestic and foreign literatures are introduced, and the methods are evaluated and summarized. Firstly, the basic knowledge and theory of basic moving target detection is introduced, and then the basic method of target detection is introduced. To provide a reference for the research on the extraction of moving target detection in the future. Keywords: Visual tracking Optical flow method Frame Difference Background modeling method

红外光谱测试条件

红外光谱分析采用Nicolet Impact 410 型红外光谱仪,样品的结构及骨架振动采用KBr 支撑片,在400-4000 cm-1范围内记录样品的骨架振动红外吸收峰。 吡啶FT-IR 分析:首先将压成自支撑薄片的样品(~20 mg)装入原位红外样品池中,在200 ℃,10-4mmHg 高真空条件下处理0.5 h 以活化样品,降温至室温。将吡啶引入真空系统中。吸附0.5 h 后,抽真空至10-4mmHg 清除吸附后余气,再利用Nicolet-Impact 410 型红外光谱仪进行红外扫描,测定吡啶吸附态的红外光谱。 采用美国Nicolet公司的Nexus 670型傅立叶变换红外光谱仪测试,测试分辨率为4cm-1,扫描次数为32次,测试范围为400-4000cm-1。 红外光谱制样方法: 1、用玛瑙研钵将KBr固体研成极细的粉末,放入玻璃小盒内,放到100℃烘箱里保存,以防KBr粉末潮解; 2、称取0.2g KBr粉末和2-4mg样品(无机材料),放入研钵内研磨,将二者充分混合; 3、用药匙加适量样品至压片磨具中,用圆柱体铁棒旋转压实。套上空心圈及顶盖; 4、讲磨具放到压片机上,拧到上方转盘固定,拧紧下方螺旋钮; 5、摆动右侧长臂,至压力为8-9MPa,等待30s即可取出。 注意事项: 1、KBr粉末不用时,最好放入烘箱中,否则易潮解; 2、若样品为有机物,则加入样品量1mg即可; 3、样品量过多会造成出现宽峰的情况,此时数据无效; 4、KBr粉末潮解后,压片以后容易粘在磨具上,无法取下导致压片失败; 5、压力过大可能导致压片破裂,视破裂程度也可能进行红外测定(中间未破损即可测量)。红外光谱测试方法: 测试分辨率:4cm-1,扫描次数:64次,测试范围400-4000cm-1 点测量快捷键,改文件名和保存路径; 改变设置:OPTIC→Aperture Setting→1.5mm(狭缝设置) OPTIC→preamp Gain→Ref(放大倍数) Check signal:1万以上(若低于1万有可能液氮量不够,补充液氮即可) Basic→Background Signal Channel(采背景,大概60s,此时不放置样品) Background→Save Background 装样品,点Sample Signal Channel 选中点,可变换颜色,点---校准峰 保存:选中图(变换颜色按钮),File→Save as→名称→路径 Mode→Data point table(保存以后为DPH文件,大小为69k)

红外图像中弱小目标检测算法概述

文章编号21005-5 30(Z 005 04-0083-04 红外图像中弱小目标检测算法概述 卓宁1 孙华燕1 张海江Z (1.装备指挥技术学院 北京10141 ; Z. Z 41部队 8分队 辽宁葫芦岛1Z 5001 摘要2在现代战争中 复杂背景下的红外弱目标检测技术是红外制导系统中一个亟待 解决的问题 也是提高武器系统性能的关键O 现基于小目标检测的现状和最新进展 从空间 滤波和时间滤波的角度对现有的小目标检测技术进行了简单的概述 并分析了今后的研究 方向O 关键词2复杂背景;小目标;空间滤波;时间滤波 中图分类号2TP 3 1.4文献标识码2A Algorithm surveys on small target detection in inf rared image ZHUO Nzng 1 SUN Hua -yan 1 ZH NG Haz -jzang Z (1.Institute of eguipment Command and Technology Beijing 10141 China ; Z.PLA Z 41Command and 8Unit ~uludao 1Z 5001 China Abstract 2In the modern War detection of the small target in the condition of complicated background is an urgent problem for infrared control and guide it is also the key of improving Weapon system capability .Part algorithms of infrared small target detection in the Way of spatial filter and time filter are introduced in this paper based on present and recent technology .Finally the direction of the study are analyzed . Key words 2complicated background ;small target ;spatial filter ;time filter 1引言 现代战争中 要求更早地~在更远的距离上发现和捕获敌方的来袭导弹~飞机等目标 以使防御武器有足够的反应时间O 这时目标的图像很小 只有一个或几个像素 缺乏结构信息 此外视场中可能还有云~地物等各种复杂的背景杂波 目标点极易被噪声所淹没O 因此 复杂背景下低信噪比红外弱小目标检测是武器系统中的关键技术之一 是运动目标探测中一个亟待研究与解决的课题O 为了从二维序列图像中检测到低信噪比红外弱小目标 自70年代以来 国内外学者和专家进行了广 泛而深入的研究 提出了许多有实际意义的检测算法O Bauch [1]等人提出 通过采用一组时间上的高阶差分 来抑制背景干扰 并得到目标运动轨迹O 并用动态规则和状态估计技术来增加目标的可检测性O 然而 这种方法在低信噪比的情况下可能呈现较差的性能O 此后 又有人提出了频域中的三维时空匹配滤波技术 并且把其简化为只在空域中进行的二维匹配滤波 其结果在时间序列中进行递推求和O Irani M [Z ]等人用 计算小邻域上灰度的加权平均再用梯度进行归一化 以此作为运动的度量O 还有由Liou S P 和J ian R C 提出的运动目标检测方法是基于时空空间中运动轨迹任一点上切线和法线的正交性 但是为了得到图像 第Z 7卷第4期 Z 005年8月光学仪器O PTICAL I N S T R U M e N T S V ol.Z 7 N o.4 August Z 005 收稿日期2Z 004-11-1 作者简介2卓宁(1 7 - 女 安徽蚌埠人 工程师 硕士生 主要从事图像信号处理方面的研究O

红外图像弱小目标

红外图像弱小目标PF-TBD算法源程序 % 将粒子滤波算法应用于红外弱小目标TBD问题,验证其检测、跟踪目标的有效性 clear;clc % 粒子数目 N = 2000; % 采样时间 T = 1; % 仿真结束时间(采样总帧数) T_end = 30; % 假定目标从某一特定帧开始出现,然后在另一特定帧消失 T_ap = 6; T_dp = 24; % 采样时间序列 SimTime = zeros(floor(T_end/T),1); % 分辨单元数目 N_x = 32; % 横向分布单元数目 M_y = 32; % 纵向分布单元数目 % 分辨单元的宽度 Delta_X = 1; Delta_Y = 1; % 传感器的模糊参数值 SIGMA = 0.7; % 目标初始出现概率 mu = 0.05; % 目标速度区间 vmin = 0.2; vmax = 1; % 目标强度(灰度值)区间 Imin = 10; Imax = 30; % 抽样阈值(在大于r_th的区域内均匀分布) r_th = 2.5; % 扩散因子(目标影响相邻分辨单元的程度) p = 3;

% 目标Markov 过程转移概率相关参数 Pb = 0.05; Pd = 0.05; % 转移矩阵的表达式 PI_T = [1-Pb,Pb Pd,1-Pd]; % 转移矩阵PI 的行数(列数) PI_s = size(PI_T,1); % 系统状态转移矩阵 Phi = [1,T,0,0,0 0,1,0,0,0 0,0,1,T,0 0,0,0,1,0 0,0,0,0,1]; % 系统噪声协方差矩阵中的目标状态和灰度幅值噪声强度 q1 = 0.001; % 目标状态变化强度 q2 = 0.01; % 目标灰度值变化强度 % 系统噪声协方差矩阵 Q = [q1*T^3/3,q1*T^2/2,0,0,0 q1*T^2/2,q1*T, 0,0,0 0,0,q1*T^3/3,q1*T^2/2,0 0,0,q1*T^2/2, q1*T, 0 0,0,0,0,q2*T]; % 系统观测噪声 R = 1.5^2; %************************************* % 变量取值初始化过程 %************************************* % 定义滤波初值(假定目标出现时的初值) X = [4.2,0.45,7.2,0.25,20]'; % 整个粒子的集合,其中第6位代表当前时刻E判决标识位,而第7位为上一时刻值 X_PF = zeros(7,N); % 单个粒子状态值 X_PF_i = zeros(7,1); % 初始时假定每个粒子的权值为均匀的 w_i = 1/N*zeros(1,N); % 预测粒子的均值及其协方差

一种基于运动估计的红外目标跟踪方法

2014,50(12)Computer Engineering and Applications 计算机工程与应用1引言红外目标跟踪技术融合了图像处理、模式识别、人工智能、自动控制以及计算机等许多领域中的先进技术,在军事视觉制导、机器人视觉导航、安全监测、交通管制、医疗诊断以及气象分析等许多方面都有广泛的应用。但是由于红外成像是低对比度、低信噪比且边缘比较模糊图像[1],同时红外目标成像的背景具有非平稳性、相关性、复杂性的特点,使得对红外图像的跟踪难度增加。近年来,研究者们针对红外图像自身成像特点并结合现有比较成熟的跟踪技术对红外目标跟踪进行了深 入研究。Yuhui Liu [2]等人结合模板匹配法和卡尔曼滤波[2-3]原理,使用了一种新的相似性度量方法对红外目标进行了有效跟踪;Shupeng Wang [4]针对红外图像颜色特征的单一性特点,提出了一种自适应灰度特征更新策略,使用MeanShift 算法[3]对目标进行较准确跟踪;还有部分研究者使用粒子滤波[5-8]原理对红外目标进行准确跟踪,但该方法有较高算法复杂度,所以很难应用到实 时系统中。 一种基于运动估计的红外目标跟踪方法 修彬1,2,李成龙2,汤进1,2,罗斌1,2 XIU Bin 1,2,LI Chenglong 2,TANG Jin 1,2,LUO Bin 1,2 1.安徽省工业图像处理与分析重点实验室,合肥230039 2.安徽大学计算机科学与技术学院,合肥230601 1.Key Lab of Industrial Image Processing &Analysis of Anhui Province,Hefei 230039,China 2.School of Computer Science and Technology,Anhui University,Hefei 230601,China XIU Bin,LI Chenglong,TANG Jin,et al.Infrared target tracking algorithm based on motion https://www.sodocs.net/doc/c6164817.html,puter Engineering and Applications,2014,50(12):125-128. Abstract :A novel object tracking method based on motion estimation is proposed in this paper to solve stagger and occlu-sion problems in infrared object tracking.The gradient direction-joint gray histogram model of an object is established,which can depict characteristics of the object accurately.Then maximum posterior probability is used to match the objects in the search area,which is efficient to enhance the target,inhibit the background and easy to find the global optimal solution.A novel method based on motion estimation,trajectory prediction,is proposed to evaluate motion trajectory of object accurately.Experimental results illustrate that the proposed method not only can solve the stagger and occlusion prob-lems better,but also has lower computation complexity. Key words :infrared object tracking;Histogram of Oriented Gradient and Illumination (HOGI )feature;maximum posterior probability;motion estimation 摘要:为解决红外目标跟踪中目标的交错、遮挡等问题,提出了一种新的基于运动估计的目标跟踪方法。建立目标的方向梯度-灰度直方图特征模型,该模型能较准确地刻画目标特征。使用最大后验概率指标在搜索区域进行目标匹配,该指标能很好地突出目标、抑制背景,并容易得到全局最优解。提出一种新的运动估计方法,即轨迹预测算法,对目标的运动进行较准确的估计。实验结果证明,该方法不仅计算复杂度低,而且能够较好地解决目标交错、遮挡等问题。 关键词:红外目标跟踪;方向梯度-灰度直方图特征;最大后验概率;运动估计 文献标志码:A 中图分类号:TP391.4doi :10.3778/j.issn.1002-8331.1206-0347 基金项目:国家自然科学基金(No.61073116,No.61003038);安徽省教育厅自然科学重点基金(No.KJ2010A006)。 作者简介:修彬(1986—),男,硕士,研究领域为数字图像处理;李成龙,男,硕士;汤进,男,副教授;罗斌,男,教授。 E-mail :xbleozero@https://www.sodocs.net/doc/c6164817.html, 收稿日期:2012-06-21修回日期:2012-08-10文章编号:1002-8331(2014)12-0125-04 CNKI 网络优先出版:2012-09-25,https://www.sodocs.net/doc/c6164817.html,/kcms/detail/11.2127.TP.20120925.1000.015.html 125

几种有机化合物的红外光谱测定

几种有机化合物的红外光测定 一、实验目的 1、学习红外光谱的理论知识,了解红外光谱仪的工作原理及使用操作; 2、初步掌握固体样品和液体样品的红外光谱测定方法; 3、初步学习根据红外光谱图进行结构分析的方法。 二、红外吸收的基本原理 红外光谱分析是研究分子振动和转动信息的分子光谱。当化合物受到红外光照射时,化合物中某个化学键的振动或转动频率与红外光频率相当等,就会吸收光能,并引起分子永久偶极矩的变化, 产生分子振动和转动能级从基态到激发态的跃迁, 使相应频率的透射光强度减弱;分子中不同的化学键振动频率不同,会吸收不同频率的红外光,检测并记录透过光强度与波数(1/cm)或波长的关系曲线,就可得到红外光谱,根据谱带的位置、峰形及强度,对待测样品进行分析。红外光谱反映了分子化学键的特征吸收频率,可用于化合物的结构分析和定量测定。 在化合物分子中,具有相同化学键的原子基团,其基本振动频率吸收峰(简称基频峰)基本上出现在同一频率区域内。但同一类型原子基团,在不同化合物分子中所处的化学环境有所不同,使基频峰频率发生一定移动。因此,掌握各种原子基团基频蜂的频率及其位移规律,就可应用红外吸收光谱来确定有机化合物分子中存在的原子基团及其在分子结构中的相对位置。红外光谱中吸收谱带的位置与分子中组成化学键的原子之间的振动频率有关。每个化合物有着彼此不相同的谱图,通过化合物的红外光谱可以测定化合物的结构。 衰减全反射(ATR)装置是将红外光照射在有较高折射率的晶体上,光穿过晶体折射到样品表面一定深度后,反射回表面;当样品的折射率小于晶体的折射率,入射光的入射角大于临界角时,即可产生全反射现象,收集此时的反射光,可获得样品的衰减全反射光谱。此方法特别适合于材料分析,如塑料、橡胶、纸张等,也可用于液体和固体粉末样品的检测。 三、仪器与试剂 1、仪器:TENSOR27 FT-IR红外光谱仪;透射(TR)装置,衰减全反射(ATR)装置等。 2、样品:聚乙烯(PE)薄膜, 聚苯乙烯薄膜,无水乙醇,苯甲酸。 四、实验步骤 (一)透射法(TR)测试 1.安装透射装置。 2. 打开OPUS软件,点击高级测量选项,检查测量参数,选择MIR_TR.XPM。 3.检查信号,保存峰位。 4.在高级测量中输入文件名(即样品名称)和文件存放路径。 5.再在基本测量里输入样品描述和形态。 6.用TR装置,盖上盖子,先测量背景单通道光谱(注意不同样品,应选择适宜的参照物为背景)。 7.再将样品(聚乙烯或聚苯乙烯)模具卡装在样品架上,盖上盖子,测定样品单通道光谱。 8.扫谱结束后,取出压片模具、试样架等,用无水乙醇擦拭干净,置于干燥器中保存。 (二)衰减全反射法(A TR)测试 1.安装衰减全反射装置。 2. 打开OPUS软件,点击高级测量选项,检查测量参数,选择MIR_ATR.XPM。 3.检查信号,保存峰位。 4.在高级测量中输入文件名(即样品名称)和文件存放路径。 5.再在基本测量里输入样品描述和形态。

红外光谱仪验证方案

第1 页共4 页1主题内容 本方案规定了FTIR—8300红外光谱仪的验证方案及实施。 2适用范围 本方案适用于FTIR—8300红外光谱仪的到货后的首次验证。 3职责 工程部计量管理员:负责安装确认。 QC仪器验证责任人:参与安装确认,并负责功能试验及适用性试验。 验证协调员:组织协调验证工作的开展,并根据验证情况,出具验证报告。 4内容 4.1简介 本仪器为日本岛津制作所生产,该公司生产科学仪器及材料试验的工厂均已取得ISO9001认证,产品在国内及国际上有一定知名度。该仪器型号为FTIR—8300,它以MS—Windows 为基础,操作简便,数据处理功能齐全,并可进行光谱图库检索,可用于定性及定量测试。 我公司现主要用于西药原料、中间体或成品的定性分析。因其性能直接关系到分析结果的可信度,故依据我公司验证管理程序(1205·001)及GMP要求,制定本方案对该仪器进行验证,以保证应其能满足使用要求。制定依据为《中国药典》1995年版二部附录P19页及中国药品生物制品检定所1999年1月编《药品检验仪器检定规程》P12页。 4.2安装确认 4.2.1建立完整的设备档案,专人妥善保管。并记录设备档案编号。 药品生产质量管理文件

4.2.3仪器应置于平稳的工作台上,安放处无强振动源,无强光直射。室内应清洁,无腐蚀性气 体,无强电磁场干扰。室温15~30℃;相对湿度≤65%;供电电源:电压为AC(220±22)V,频率为(50±1)Hz。安装及安装环境其他方面也应符合GMP要求及仪器供应商要求。 4.2.4 是否建立相应的仪器使用SOP、维护保养SOP等文件。 4.2.5是否对操作人员进行了必要的培训,并记录培训人员名单。 4.2.6维修服务单位 单位名称: 地址: 联系人:电话: 4.2.7仪器校验情况 4.2.8安装确认结论 检查人:复核人:日期: 4.3运行确认 4.3.1功能试验(应在开机预热稳定后进行) 4.3.1.1按仪器使用说明书,运行仪器各项功能,要求每种功能至少运行一次,各项功能均应能正常运行,无误操作或死机等异常现象。

(完整版)视频目标检测与跟踪算法综述

视频目标检测与跟踪算法综述 1、引言 运动目标的检测与跟踪是机器视觉领域的核心课题之一,目前被广泛应用在视频编码、智能交通、监控、图像检测等众多领域中。本文针对视频监控图像的运动目标检测与跟踪方法,分析了近些年来国内外的研究工作及最新进展。 2、视频监控图像的运动目标检测方法 运动目标检测的目的是把运动目标从背景图像中分割出来。运动目标的有效分割对于目标分类、跟踪和行为理解等后期处理非常重要。目前运动目标检测算法的难点主要体现在背景的复杂性和目标的复杂性两方面。背景的复杂性主要体现在背景中一些噪声对目标的干扰,目标的复杂性主要体现在目标的运动性、突变性以及所提取目标的非单一性等等。所有这些特点使得运动目标的检测成为一项相当困难的事情。目前常用的运动目标检测算法主要有光流法、帧差法、背景相减法,其中背景减除法是目前最常用的方法。 2.1帧差法 帧差法主要是利用视频序列中连续两帧间的变化来检测静态场景下的运动目标,假设f k(x, y)和f(k i)(x, y)分别为图像序列中的第k帧和第k+1帧中象素点(x,y)的象素值,则这两帧图像的差值图像就如公式2-1所示: Diff ki f k(x, y) f(k 1)(x, y)(2-1)2-1式中差值不为0的图像区域代表了由运动目标的运动所经过的区域(背景象素值不变),又因为相邻视频帧间时间间隔很小,目标位置变化也很小,所以运动目标的运动所经过的区域也就代表了当前帧中运动目标所在的区域。利用此原理便可以提取出目标。下图给出了帧差法的基本流程:1、首先利用2-1式得到第k帧和第k+1帧的差值图像Diff k 1;2、对所得到的差值图像Diff k 1二值化(如 式子2-2示)得到Qk+1 ;3、为消除微小噪声的干扰,使得到的运动目标更准 确,对Q k 1进行必要的滤波和去噪处理,后处理结果为M k 1。 1

红外光谱法测定样品方法

一、红外光谱法测定样品方法 红外光谱的试样可以是液体、固体或气体,一般应要求: 1. 试样应该是单一组份的纯物质,纯度应>98%或符合商业规格,才便于与纯物质的标准光谱进行对照。多组份试样应在测定前尽量预先用分馏、萃取、重结晶或色谱法进行分离提纯,否则各组份光谱相互重叠,难于判断。 2. 试样中不应含有游离水。水本身有红外吸收,会严重干扰样品谱,而且会侵蚀吸收池的盐窗。 3. 试样的浓度和测试厚度应选择适当,以使光谱图中的大多数吸收峰的透射比处于10%~80%范围内。 二、制样的方法 1. 气体样品 气态样品可在玻璃气槽内进行测定,它的两端粘有红外透光的NaCl或KBr窗片。先将气槽抽真空,再将试样注入。 2. 液体和溶液试样 (1)液体池法 沸点较低,挥发性较大的试样,可注入封闭液体池中,液层厚度一般为0.01~1mm。 (2)液膜法 沸点较高的试样,直接滴在两片盐片之间,形成液膜。对于一些吸收很强的液体,当用调整厚度的方法仍然得不到满意的谱图时,可用适当的溶剂配成稀溶液进行测定。一些固体也可以溶液的形式进行测定。常用的红外光谱溶剂应在所测光谱区内本身没有强烈的吸收,不侵蚀盐窗,对试样没有强烈的溶剂化效应等。 3. 固体试样 (1)压片法 将1~2mg试样与200mg纯KBr研细均匀,置于模具中,用(5~10)′107Pa压力在油压机上压成透明薄片,即可用于测定。试样和KBr都应经干燥处理,研磨到粒度小于2微米,以免散射光影响。 (2)石蜡糊法 将干燥处理后的试样研细,与液体石蜡或全氟代烃混合,调成糊状,夹在盐片中测定。

(3)薄膜法 主要用于高分子化合物的测定。可将它们直接加热熔融后涂制或压制成膜。也可将试样溶解在低沸点的易挥发溶剂中,涂在盐片上,待溶剂挥发后成膜测定。当样品量特别少或样品面积特别小时,采用光束聚光器,并配有微量液体池、微量固体池和微量气体池,采用全反射系统或用带有卤化碱透镜的反射系统进行测量。 仪器操作 1. 样品准备(固体样品) 取样品约0.5mg在红外灯下充分研磨,再加入干燥KBr粉末约50mg,继续研磨至混合均匀。 2. 模具准备 将干燥器中保存的简易模具取出,确认模具洁净。若其表面不洁净,可用棉花沾少许无水乙醇轻轻擦拭(绝对不可用力,以免模具表面被划伤),然后在红外灯下干燥。 3. 制片方法 将试样与纯KBr混合粉末置于模具中,用(5~10)′107Pa压力在油压机上压成透明薄片,即可用于测定。试样和KBr都应经干燥处理,研磨到粒度小于2微米,以免散射光影响。 样品测试过程中的注意事项 1. 测试样品一定要干燥,干燥不充分的样品可以在红外灯下烘烤1小时左右。样品研磨要充分,否则会损伤模具。 2. 所有用具应保持干燥、清洁;使用前可以用脱脂棉蘸酒精小心擦拭。 3. 压片过程应在红外灯照射下进行。 4. 操作过程中应保持模具表面干燥、清洁;防止药品腐蚀模具(KBr对模具表面腐蚀很严重) 5. 易吸水和潮解的样品不宜用压片法。 6. KBr在粉末状态下极易吸水、潮解,应放在干燥器中保存,定期在干燥箱中110℃或在真空烘箱中恒温干燥2小时。

(完整word版)基于图像处理的运动物体的跟踪与检测开题报告

1、课题来源 随着计算机技术的高速发展,运动物体的检测和跟踪在图像处理、计算机视觉、模式识别、人工智能、多媒体技术等领域越来越受到人们的关注。运动跟踪和检测的应用广泛,在智能监控和人机交互中,如:银行、交通、超市等场合常常使用运动跟踪分析技术,通过定位物体并对其行为进行分析,一旦发现物体有异常行为,监控系统就发出警报,提醒人们注意并即时的处理,改善了人工监督注意力分散、反应时间较慢、人力资源浪费等问题。运动目标的跟踪在虚拟现实、工业控制、军事设备、医学研究、视频监控、交通流量观测监控等很多领域也有重要的实用价值。特别在军事上,先进的武器导航、军事侦察和监控中都成功运用了自动跟踪技术。而跟踪的难点在于如何快速而准确的在每一帧图像中实现目标定位。正因如此,对运动目标的跟踪和检测的研究很有价值。 2、研究目的和意义 运动目标检测是图像处理与计算机视觉的一个分支,在理论和实践上都有重大意义,长久以来一直被国内外学者所关注。在实际中,视频监控利用摄像机对某一特定区域进行监视,是一个细致和连续的过程,它可以由人来完成,但是人执行这种长期枯燥的例行监测是不可靠,而且费用也很高,因此引入运动监测非常有必要。它可以减轻人的负担,并且提高了可靠性。概括起来运动监测主要包括三个内容:运动目标检测,方向判断和图像跟踪。运动目标检测是整个监测过程的基础,运动目标的提取准确与否,直接关系到后续高级过程的完成质量。3、国内外研究现状和发展趋势及综述 运动目标检测在国外已经取得了一些的研究成果,许多相关技术已经开始应用到实际系统中,但是国内研究相对落后,与国外还有较大差距。传统的视频目标提取大致可以分两类,一类以空间同性为准则,先用形态学滤波器或其他滤波器对图像作预处理;然后对该图像的亮度、色度或其他信息作空间上的分割以对区域作边缘检测;之后作运动估计,并合并相似的运动区域以得到最终的提取结果。如光流算法、主动轮廓模型算法。此类方法结果较为准确但是运算量相对较大。另一类算法主要以时间变化检测作为准则,这类算法主要通过帧差检测图像上的变化区域和不变区域,将运动物体与静止背景进行分割。此类方法运算量小,提取结果不如前类方法准确。此外,还有时空结合方法、时空亮度梯度信息结合的方法等等。 4、研究方法

基于多光谱与显著性的红外弱小目标融合检测

基于多光谱与显著性的红外弱小目标融合检测 摘要:基于多光谱与显著性,提出一种红外弱小目标融合检测算法。该算法旨在将从多光谱探测器获得的同一场景的多光谱图像信息组合到一起,利用它们在时空上的相关性及信息上的互补性,提高系统的检测性能。采用一种新的基于人类视觉注意机制的显著性方法,该方法能够快速准确找到图像中的显著性区域;将目标看作一类,背景和干扰点看作另一类,选取离差平方和准则,使类内距离最小,类间距离最大;训练出融合参数,得到融合后的显著性图像。通过设定的门限值二值化,可以看出该融合方法能很好地将目标与背景分开,从而检测出目标。 关键词:红外弱小目标;多光谱;显著性;图像融合 中图分类号:TP391文献标识码:A文章编号:1673-5048(2016)02-0047-05 0引言 多光谱成像技术不同于传统的单一宽波段成像技术,而是将成像技术和光谱测量技术相结合,获取的信息不仅包括二维空间信息,还包含随波长分布的光谱辐射信息,形成所谓的“数据立方”。丰富的目标光谱信息结合目标空间影响 极大提高了目标探测的准确性、扩展了传统探测技术的功能。

因此,研究如何基于多光谱对红外弱小目标进行检测与识别有着实际的意 义。 在多光谱领域,国内外学者已经取得了一定的进展。Margalit和Reed提出了一种基于相关图像的恒虚警率自适应目标检测算法[1];Heesung提出了基于滤波的光谱匹配方法[2];1999年,Richards等提出了光谱角映射算法(SAM)[3]。SAM算法具有结构简单、实时性好等优点,但是,其性能对目标光谱方差十分敏感,当光谱信噪比较低时,其性能变得十分不可靠。2011年,GuYanfeng等将SAM算法与核函数相结合,提出了一种基于核函数的正规化光谱角的光谱匹配算法[4],提升了SAM算法对于光谱方差变化的鲁棒性。光谱匹配滤波器(SMF)[5]是一种具有代表性的光谱目标检测算法,是典型的光谱匹配算法,基于标准目标光谱模型和背景光谱模型的先验信息已知。 然而在实际系统中,很难得到一个场景的红外全谱段图像,一些红外警戒系统通常采用双波段的工作方式。在双/多波段红外热成像系统中,由于多个传感器工作在不同的电磁波段,探测到的同一场景的多光谱图像在信噪比、对比度、强度等方面存在很大的差异性,利用它们在时空上的相关性及信息上的互补性,对多光谱图像进行融合,可以得到对目标更全面、清晰的描述。现有的融合方法有小波变换模型、

傅立叶红外光谱仪测试样品的方法及注意事项-红外压片机

傅立叶红外光谱仪测试样品的方法及注意事项 要获得一张高质量红外光谱图,除了仪器本身的因素外,还必须有合适的样品制备方法。 一、红外光谱法对试样的要求 红外光谱的试样可以是液体、固体或气体,一般应要求: 1. 试样应该是单一组份的纯物质,纯度应>98%或符合商业规格,才便于与纯物质的标准光谱进行对照。多组份试样应在测定前尽量预先用分馏、萃取、重结晶或色谱法进行分离提纯,否则各组份光谱相互重叠,难于判断。 2. 试样中不应含有游离水。水本身有红外吸收,会严重干扰样品谱,而且会侵蚀吸收池的盐窗。 3. 试样的浓度和测试厚度应选择适当,以使光谱图中的大多数吸收峰的透射比处于10%~80%范围内。 二、制样的方法 1. 气体样品 气态样品可在玻璃气槽内进行测定,它的两端粘有红外透光的NaCl或KBr窗片。先将气槽抽真空,再将试样注入。 2. 液体和溶液试样 (1)液体池法 沸点较低,挥发性较大的试样,可注入封闭液体池中,液层厚度一般为0.01~1mm。 (2)液膜法 沸点较高的试样,直接滴在两片盐片之间,形成液膜。对于一些吸收很强的液体,当用调整厚度的方法仍然得不到满意的谱图时,可用适当的溶剂配成稀溶液进行测定。一些固体也可以溶液的形式进行测定。常用的红外光谱溶剂应在所测光谱区内本身没有强烈的吸收,不侵蚀盐窗,对试样没有强烈的溶剂化效应等。 3. 固体试样

(1)压片法 将1~2mg试样与200mg纯KBr研细均匀,置于模具中,用(5~10)′107Pa压力在油压机上压成透明薄片,即可用于测定。试样和KBr都应经干燥处理,研磨到粒度小于2微米,以免散射光影响。 (2)石蜡糊法 将干燥处理后的试样研细,与液体石蜡或全氟代烃混合,调成糊状,夹在盐片中测定。 (3)薄膜法 主要用于高分子化合物的测定。可将它们直接加热熔融后涂制或压制成膜。也可将试样溶解在低沸点的易挥发溶剂中,涂在盐片上,待溶剂挥发后成膜测定。当样品量特别少或样品面积特别小时,采用光束聚光器,并配有微量液体池、微量固体池和微量气体池,采用全反射系统或用带有卤化碱透镜的反射系统进行测量。 仪器操作 1. 样品准备(固体样品) 取样品约0.5mg在红外灯下充分研磨,再加入干燥KBr粉末约50mg,继续研磨至混合均匀。 2. 模具准备 将干燥器中保存的简易模具取出,确认模具洁净。若其表面不洁净,可用棉花沾少许无水乙醇轻轻擦拭(绝对不可用力,以免模具表面被划伤),然后在红外灯下干燥。 3. 制片方法 将试样与纯KBr混合粉末置于模具中,用(5~10)′107Pa压力在油压机上压成透明薄片,即可用于测定。试样和KBr都应经干燥处理,研磨到粒度小于2微米,以免散射光影响。 样品测试过程中的注意事项

目标检测综述

一、传统目标检测方法 如上图所示,传统目标检测的方法一般分为三个阶段:首先在给定的图像上选择一些候选的区域,然后对这些区域提取特征,最后使用训练的分类器进行分类。下面我们对这三个阶段分别进行介绍。 (1) 区域选择这一步是为了对目标的位置进行定位。由于目标可能出现在图像的任何位置,而且目标的大小、长宽比例也不确定,所以最初采用滑动窗口的策略对整幅图像进行遍历,而且需要设置不同的尺度,不同的长宽比。这种穷举的策略虽然包含了目标所有可能出现的位置,但是缺点也是显而易见的:时间复杂度太高,产生冗余窗口太多,这也严重影响后续特征提取和分类的速度和性能。(实际上由于受到时间复杂度的问题,滑动窗口的长宽比一般都是固定的设置几个,所以对于长宽比浮动较大的多类别目标检测,即便是滑动窗口遍历也不能得到很好的区域) (2) 特征提取由于目标的形态多样性,光照变化多样性,背景多样性等因素使得设计一个鲁棒的特征并不是那么容易。然而提取特征的好坏直接影响到分类的准确性。(这个阶段常用的特征有SIFT、HOG等) (3) 分类器主要有SVM, Adaboost等。 总结:传统目标检测存在的两个主要问题: 一是基于滑动窗口的区域选择策略没有针对性,时间复杂度高,窗口冗余; 二是手工设计的特征对于多样性的变化并没有很好的鲁棒性。

二、基于Region Proposal的深度学习目标检测算法 对于传统目标检测任务存在的两个主要问题,我们该如何解决呢? 对于滑动窗口存在的问题,region proposal提供了很好的解决方案。region proposal(候选区域)是预先找出图中目标可能出现的位置。但由于region proposal 利用了图像中的纹理、边缘、颜色等信息,可以保证在选取较少窗口(几千个甚至几百个)的情况下保持较高的召回率。这大大降低了后续操作的时间复杂度,并且获取的候选窗口要比滑动窗口的质量更高(滑动窗口固定长宽比)。比较常用的region proposal算法有selective Search和edge Boxes,如果想具体了解region proposal可以看一下PAMI2015的“What makes for effective detection proposals?” 有了候选区域,剩下的工作实际就是对候选区域进行图像分类的工作(特征提取+分类)。对于图像分类,不得不提的是2012年ImageNet大规模视觉识别挑战赛(ILSVRC)上,机器学习泰斗Geoffrey Hinton教授带领学生Krizhevsky使用卷积神经网络将ILSVRC分类任务的Top-5 error降低到了15.3%,而使用传统方法的第二名top-5 error高达26.2%。此后,卷积神经网络占据了图像分类任务的绝对统治地位,微软最新的ResNet和谷歌的Inception V4模型的top-5 error降到了4%以内多,这已经超越人在这个特定任务上的能力。所以目标检测得到候选区域后使用CNN对其进行图像分类是一个不错的选择。 2014年,RBG(Ross B. Girshick)大神使用region proposal+CNN代替传统目标检测使用的滑动窗口+手工设计特征,设计了R-CNN框架,使得目标检测取得巨大突破,并开启了基

相关主题