搜档网
当前位置:搜档网 › 一类高阶中立型泛函微分方程周期解

一类高阶中立型泛函微分方程周期解

一类高阶中立型泛函微分方程周期解
一类高阶中立型泛函微分方程周期解

高阶线性微分方程常用解法介绍

高阶线性微分方程常用解法简介 关键词:高阶线性微分方程 求解方法 在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅 因为线性微分方程的一般理论已被研究的十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛应用。下面对高阶线性微分方程解法做一些简单介绍. 讨论如下n 阶线性微分方程:1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt ---++++= (1),其中()i a t (i=1,2,3,,n )及f(t)都是区间a t b ≤≤上的连续函数,如果 ()0f t ≡,则方程(1)变为 1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (2),称为n 阶齐次线性微分方程,而称一般方程(1)为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且把方程(2)叫做对应于方程(1)的齐次线性微分方程. 1.欧拉待定指数函数法 此方法又叫特征根法,用于求常系数齐次线性微分方程的基本解组。形如 111121[]0,(3),n n n n n n n d x d x dx L x a a a x dt dt dt ---≡++++=其中a a a 为常数,称为n 阶常系数齐次线性微分方程。 111111111111[]()()()n t n t t t t n n n n n n n t t n n n n n n n d e d e de L e a a a e dt dt dt a a a e F e F a a a n λλλλλλλλλλλλλλλλ---------≡++++=++++≡≡++++其中=0(4)是的次多项式. ()F λ为特征方程,它的根为特征根. 1.1特征根是单根的情形 设12,,,n λλλ是特征方程111()0n n n n F a a a λλλλ--≡++++=的n 个彼此不相等的根,则应相应地方程(3)有如下n 个解:12,,,.n t t t e e e λλλ(5)我们指出这n 个解在区间a t b ≤≤上线性无关,从而组成方程的基本解组. 如果(1,2,,)i i n λ=均为实数,则(5)是方程(3)的n 个线性无关的实值 解,而方程(3)的通解可表示为1212,n t t t n x c e c e c e λλλ=+++其中12,,,n c c c 为任意常数. 如果特征方程有复根,则因方程的系数是实常数,复根将称对共轭的出现.设1i λαβ=+是一特征根,则2i λαβ=-也是特征根,因而于这对共轭复根

基于Simulink进行系统仿真(微分方程、传递函数)

实验四 基于Simulink 进行系统仿真(微 分方程、传递函数) 一.实验目的 1) 熟悉Simulink 的工作环境; 2) 掌握Simulink 数学工具箱的使用; 3) 掌握在Simulink 的工作环境中建立系统仿真模型。 二.实验内容 系统微分方程:)(10)(10) (10) (83322t u t y dt t dy dt t y d =++ 系统传递函数:8328 101010)()()(++==s s s U s Y s G 1)(=t u ,)314sin()(t t u =,)90314sin()(o t t u += 模型 微分方程时的过程 Ut=1时

t u 时)(t 314 ) sin(

t t u+ =时 )(o ) sin( 90 314 传递函数时的过程

u时 t )(= 1 t u=时 )(t sin( 314 )

t t )(o =时 u+ ) sin( 90 314 结论及感想 从两种种不同方法的仿真结果,我们可以看出分别用微分方程和传递函数在Simulink中,仿真出来的结果没有很明显的区别,说明两种方法的精度都差不多。但是,不同的电压源得出的仿真结果不一样,阶跃电源开始时震荡,后来幅度逐渐变小,趋近于1;正弦电源,初相不同时,初始时刻的结果也不相同,有初相时开始震荡会更剧烈,但最后都会变为稳态值,即为正弦值。通过本次实验,我认识到了建模与仿真的一般性方法,收获甚多,也更进一步了解了

Matlab,Matlab不仅仅在平时的编程方面功能强大,在仿真方面也熠熠生辉。

第八节二阶常系数齐次线性微分方程

第八节 二阶常系数齐次线性微分方程 教学目的:掌握二阶常系数齐次线性微分方程的特征方程,特征根,及对应于特征根的三种 情况,通解的三种不同形式。 教学重点:特征方程,特征根,及对应于特征根的三种情况,通解的三种不同形式。 教学难点:根据特征根的三种不同情况,得到三种不同形式的通解。 教学内容: 若 22()()0d y dy P x Q x y dx dx ++= (1) 中(),()P x Q x 为常数,称之为二阶常系数齐次微分方程,而(1)称之为二阶变系数齐次微分方程。 记: '''0y py qy ++= (2) 将rx y e =代入(2)中有2()0rx r pr q e ++=,称20r pr q ++=为(2)的特征方程。 20r pr q ++= (3) 设12,r r 为(3)的解。 (1)当12r r ≠即240p q ->时,1 212r x r x y C e C e =+为其通解。 (2)当12r r r ==即240p q -=时, (3)只有一个解rx y Ce =。 (3)当r i αβ=±即240p q -<时,有()i x y e αβ±=是解。 利用欧拉公式可得实解,故通解为 12(cos sin )x y e C x C x αββ=+。 求二阶常系数齐次线性微分方程 '''0y py qy ++= (2) 的通解的步骤如下: 1. 写出微分方程(2)的特征方程 2 0r pr q ++= (3) 2. 求出特征方程(3)的两个根1r 、2r 。

3. 根据特征方程(3)的两个根的不同情形,按照下列表格写出微分方程(2)的通解: 例1 求微分方程230y y y ''--=的通解。 解 所给微分方程的特征方程为 2230r r --= 其根121 ,3r r =-=是两个不相等的实根,因此所求通解为 312x x y C e C e -=+ 例2 求方程222 0d s ds s dt dt ++=满足初始条件0|4t s ==,0|2t s ='=-的特解。 解 所给方程的特征方程为 2210r r ++= 其根121r r ==-是两个相等的实根,因此所求微分方程的通解为 ()12t s C C t e -=+ 将条件0|4t s ==代入通解,得14C =,从而 ()24t s C t e -=+ 将上式对t 求导,得 ()224t s C C t e -'=-- 再把条件0|2t s ='=-代入上式,得22C =。于是所求特解为 ()42t s t e -=+ 例3 求微分方程250y y y '''-+=的通解。 解 所给微分方程的特征方程为

几类偏泛函微分方程解的动力学行为研究

几类偏泛函微分方程解的动力学行为研究主要运用偏泛函微分方程理论,算子半群理论和无穷维动力系统理论,研究了几类偏泛函微分方程解的动力学行为,包括拉回吸引子的存在性、维数及其上半连续性,平衡解的多项式稳定性和指数稳定性.全文共分六章:第一章介绍了偏泛函微分方程和无穷维动力系统的研究背景和意义,综述了近年来关于偏泛函微分方程与无穷维动力系统的研究现状,并概括了本论文的主要工作.第二章首先运用经典的Faedo-Galerkin逼近方法证明了非自治随机p-Laplace方程弱解的存在唯一性,并利用一致估计和渐近紧性得到了双空间随机吸引子的存在性及其上半连续性;然后结合Galerkin近似和Aubin-Lions紧性证明了时滞p-Laplace 方程弱解的存在唯一性,并运用能量方法得到了拉回吸引子的存在性及其上半连续性.第三章借助泛函微分方程理论证明了无界时滞的Navier-Stokes方程弱解的存在唯一性,运用Lyapunov函数等方法证明了其平衡解的局部稳定性,通过构造合适的Lyapunov泛函得到了该平衡解的渐近稳定性,并在一种特殊的无界时滞的情形下证明了该平衡解具有多项式稳定性;然后使用Ito公式证明了无限时滞的随机Navier-Stokes方程弱解的存在唯一性,通过构造合适的Lyapunov泛函得到了其平衡解的渐近稳定性,并在一种特殊的无界时滞的情形下证明了该平衡解的多项式稳定性.第四章结合能量方法和紧性理论分析了一类时滞不可压缩非Newtonian流体弱解的存在唯一性,并运用一致估计和分解方法证明了拉回吸引子的存在性;然后综合运用Lax-Milgram定理和Schauder不动点定理证明了时滞不可压缩非Newtonian流体平衡解的存在唯一性,最后运用Razumikhin等方法证明了平衡解的指数稳定性.第五章运用算子半群理论证明了无限时滞的分数阶随机反应扩散方程温和解的存在唯一性及其关于初值的连续依赖性,得到了具有有

二阶变系数线性微分方程的一些解法

第九节 二阶变系数线性微分方程 的一些解法 常系数线性齐次方程和某些特殊自由项的常系数线性非齐次方程的解法已在第七节中介绍,而对于变系数线性方程,要求其解一般是很困难的。本节介绍处理这类方程的二种方法 §9.1 降阶法 在第五节中我们利用变量替换法使方程降阶,从而求得方程的解,这种方法也可用于二阶变系数线性方程的求解。 考虑二阶线性齐次方程 22dx y d +p(x) dx dy +q(x)y =0 (9.1) 设已知其一个非零特解y 1,作变量替换,令 y =uy 1 (9.2) 其中u =u(x)为未知函数,求导数有 dx dy =y 1dx du +u dx dy 1 求二阶导数有22dx y d =y 122dx u d +2dx du dx dy 1 +u 2 12dx y d 代入(9.1)式得

y 122dx u d +(2dx dy 1+p(x)y 1)dx du +(212dx y d +p(x) dx dy 1 +q(x)y 1)u =0 (9.3) 这是一个关于u 的二阶线性齐次方程,各项系数是x 的已知函数,因为y 1是(9.1)的解,所以其中 212dx y d +p(x) dx dy 1 +q(x)y 1≡0 故(9.3)式化为 y 122dx u d +(2dx dy 1+p(x)y 1) dx du =0 再作变量替换,令dx dy =z 得 y 1dx dz +(2dx dy 1 +p(x)y 1)z =0 分离变量 z 1 dz =-[1y 2+p(x)]dx 两边积分,得其通解 z =21 2y C e -∫p(x)dx 其中C 2为任意常数 积分得u =C 2∫21 y 1e -∫p(x)dx dx +C 1代回原变量得(9.1) 的通解 y =y 1[C 1+C 2∫21 y 1e -∫p(x)dx dx ]

试求图示电路的微分方程和传递函数

2-1 习 题 2-1 试求图示电路的微分方程和传递函数。 2-2 ur 为输入量,电动机的转速ω为输 出量,试绘制系统的方框图,并求系统的传递函数 ) () ( ,)( )(s M s s U s L r ΩΩ。(ML 为负载转矩,J 为电动机的转动惯量,f 为粘性摩擦系数,Ra 和La 分别为电枢回路的总电阻和总电感,Kf 为测速发动机的反馈系数)。 2-3 图示电路,二极管是一个非线性元件,其电流d i 和电压d u 之间的关系为)1(10026 .0/6-=-d u d e i ,假设系统 工作在u 0=2.39V ,i 0=2.19×10-3A 平衡点,试求在工作点 (u 0,i 0)附近d i =f (d u )的线性化方程。 2-4 试求图示网络的传递函数,并讨论负载效应问题。

2-2 2-5 求图示运算放大器构成的网络的传递函数。 2-6 已知系统方框图如图所示,试根据方框图简化规则,求闭环传递函数。 2-7 分别求图示系统的传递函数 )()(11s R s C 、)()(12s R s C 、)()(21s R s C 、) () (22s R s C 2-8 绘出图示系统的信号流图,并求传递函数)(/)()(s R s C s G

2-3 2-9 试绘出图示系统的信号流图,求系统输出C (s )。 2-10 求图示系统的传递函数C (s )/R (s )。 2-11 已知单位负反馈系统的开环传递函数 ] 4)4)[(1(2 34)(22 23++++++=s s s s s s s G 1. 试用MA TLAB 求取系统的闭环模型; 2. 试用MA TLAB 求取系统的开环模和闭环零极点。 2-12 如图所示系统 1. 试用MA TLAB 化简结构图,并计算系统的闭环传递函数;

试求图示电路的微分方程和传递函数.docx

2-1试求图示电路的微分方程和传递函数。 题2?1图 2-2移恒速控制系统的原理图如图所示,给定电压ui ?为输入最,电动机的转速3为输 出 就,试绘制系统的方框图,并求系统的传递函数丄型,卫型。(ML 为负载转矩,J 为 匕($) M L (S ) 电动机的转动惯量,f 为粘性摩擦系数,Rn 和La 分别为电枢凹路的总电阻和总电感,Kf 为 测速发动机的反馈系数)。 和电压间的关系为仃=10-6(^/0026 - 1),假设系统 工作在M O =2.39V, /O =2.19X1O _3A 平衡点,试求在工作点 2-4试求图示网络的传递函数,并讨论负载效应问题。 题24图 2-3图示电路,二极管是一个非线性元件,其电流i (w ()Jo )附近匚=/(叫)的线性化方程。 题2-3图 Cl Ci Ko

2-5求图示运算放大器构成的网络的传递函数。 题2-5图 2-6已知系统方框图如图所示,试根据方框图简化规则,求闭环传递函数。 题2-6图 2-8绘出图示系统的信号流图,并求传递函数 G(s) = C($)//?(s) 2 7 分别求图示系统的传递函数If 、xf C]($) C2") /?2($)、心⑴ (O (4) C($) RM (b)

艮3 题2-7图题2-8图2-9试绘出图示系统的信号流图,求系统输出C(5)o 题2?9图 2-10求图示系统的传递函数C(s)/R(s)o 2 题2?10图 2-11已知单位负反馈系统的开环传递函数 +4疋+3$ + 2 52(5 + 1)[(5 + 4)2+4] 1.试用MATLAB求取系统的闭环模型; 2.试用MATLAB求取系统的开环模和闭环零极点。 2-12如图所示系统 1.试川MATLAB化简结构图,并计算系统的闭坏传递函数;

微分方程传递函数的定义

求解微分方程可求出系统的输出响应,但如果方程阶次较高,则计算非常繁琐,因此对系统的设计分析不便,所以应用传递函数将实数中的微分运算变成复数中的代数运算,可使问题分析大大简化。 一、传递函数的概念及意义 (1)传递函数的定义: 线性系统在零初始条件下,输出信号的拉氏变换与输入信号的拉氏变换之比。 线性定常系统微分方程的一般表达式: 其中x c为系统输出量,x r为系统输入量 在初始情况为零时,两端取拉氏变换: 移项后得: 上式中Xc(s)输出量的拉氏变换;Xr(s)输入量的拉氏变换;W(s) 为系统或环节的传递系数。 (2)传递函数的两种表达形式 a.传递函数的零极点表示形式 b.传递函数的时间常数表示形式

(3)关于传递函数的几点说明 a.传递函数的概念只适应于线性定常系统。 b.传递函数只与系统本身的特性参数有关,而与输入量变化无关。 c.传递函数不能反映非零初始条件下系统的运动规律。 d.传递函数分子多项式阶次低于或至多等于分母多项式的阶次。 二、典型环节的传递函数及其暂态特性 无论什么样的系统,它的传递函数都是一些基本因子相乘积而得到的。这些基本因子就是典型环节对应的传递函数。把复杂的物理系统划分为若干个典型环节,利用传递函数和框图来进行研究,这是研究系统的一种重要方法。 (1)比例环节(放大环节/无惯性环节) 特点:输入量与输出量的关系为一种固定的比例关系(见下图)。 (2)惯性环节 特点:只包含一个储能元件,使其输出量不能立即跟随输入量的变化,存在时间上的延迟(见下图)。

(3)积分环节 特点:输出量随时间成正比地无限增加(见下图)。 (4)振荡环节 特点:振荡的程度与阻尼系数有关(见下图)。 (5)微分环节 特点:是积分环节的逆运算,其输出量反映了输入信号的变化趁势(见下图)。实践中,理想的微分环节难以实现。

相关主题