搜档网
当前位置:搜档网 › 同步发电机励磁系统原理

同步发电机励磁系统原理

同步发电机励磁系统原理
同步发电机励磁系统原理

定义:励磁装置是指同步发电机的励磁系统中除励磁电源以外的对励磁电流能起控制和调节作用的电气调控装置。励磁系统是电站设备中不可缺少的部分。励磁系统包括励磁电源和励磁装置,其中励磁电源的主体是励磁机或励磁变压器;励磁装置则根据不同的规格、型号和使用要求,分别由调节屏、控制屏、灭磁屏和整流屏几部分组合而成。 励磁装置的使用,是当电力系统正常工作的情况下,维持同步发电机机端电压于一给定的水平上,同时,还具有强行增磁、减磁和灭磁功能。对于采用励磁变压器作为励磁电源的还具有整流功能。励磁装置可以单独提供,亦可作为发电设备配套供应。

励磁系统的主要作用有: 1)根据发电机负荷的变化相应的调节励磁电流,以维持机端电压为给定值; 2)控制并列运行各发电机间无功功率分配; 3)提高发电机并列运行的静态稳定性; 4)提高发电机并列运行的暂态稳定性; 5)在发电机内部出现故障时,进行灭磁,以减小故障损失程度; 6)根据运行要求对发电机实行最大励磁限制及最小励磁限制。

原理:利用导线切割磁力线感应出电势的电磁感应原理,将原动机的机械能变为电能输出。同步发电机由定子和转子两部分组成。定子是发出电力的电枢,转子是磁极。定子由电枢铁芯,均匀排放的三相绕组及机座和端盖等组成。转子通常为隐极式,由励磁绕组、铁芯和轴、护环、中心环等组成。汽轮发电机的极数多为两极的,也有四极的。 转子的励磁绕组通入直流电流,产生接近于正弦分布磁场(称为转子磁场),其有效励磁磁通与静止的电枢绕组相交链。转子旋转时,转子磁场随同一起旋转、每转一周,磁力线顺序切割定子的每相绕组,在三相定子绕组内感应出三相交流电势。发电机带对称负载运行时,三相电枢电流合成产生一个同步转速的旋转磁场。定子磁场和转子磁场相互作用,会产生制动转矩。从汽轮机输入的机械转矩克服制动转矩而作功。发电机可发出有功功率和无功功率。所以,调整有功功率就得调节汽机的进汽量。转子磁场的强弱直接影响定子绕组的电压,所以,调发电机端电压或调发电机的无功功率必须调节转子电流。 发电机的有功功率和无功功率几何相加之和称为视在功率。有功功率和视在功率之比称为发电机的功率因数(力率),发电机的额定功率因数一般为0.85。 供给发电机转子直流建立转子励磁的系统称为发电机励磁系统。大型发电机励磁方式分为:①它励励磁系统;②自并激励磁系统。它励励磁是由一台与发电机同轴的交流发电机产生交流电,经整流变成直流电,给发电机转子励磁。自并激励磁是将来自发电机机端的交流电经变压器降压,再整流变成直流电,作为发电机转子的励磁。

励磁系统对提高电力系统稳定的作用,一直是人们关心的课题和努力的方向,长期以来已经进行了大量的工作。励磁系统是发电机的重要组成部份,它对电力系统及发电机本身的安全稳定运行有很大的影响。 优良的励磁控制系统不仅可以保证发电机可靠运行,提供合格的电能,而且还可以有效地提高系统的技术指标,保证电网的电压水平在一定的范围。 在一定的条件下,励磁自动控制系统如果能按照要求进行某种适当的控制,同样可以改善电力系统暂态稳定性。 当电力系统由于种种原因,出现短时的低电压时,励磁自动控制系统可以发挥其调节功能,即大幅度的增加励磁以提高系统电压。 目前广泛采用的励磁方式有两种: 他励励磁系统的特点是用同轴的交流励磁机作为主整流器的电源。这种励磁方式具有励磁电流独立,工作比较可靠和减少自用电消耗量等优点,是过去发电机主要励磁方式,具有较成熟的运行经验。缺点是励磁调节速度较慢,维护工作量大。 自励励磁系统的特点是励磁电源取自发电机自身,用励磁变压器或与励磁变流器共同供给整流装置变换成直流后,再供给发电机本身,这种励磁系统具有结简单,设备少,投资省和维护工作量少等优点。缺点是稳定性不够好。

励磁系统对提高电力系统稳定的作用,一直是人们关心的课题和努力的方向,长期以来已经进行了大量的工作。励磁系统是发电机的重要组成部份,它对电力系统及发电机本身的安全稳定运行有很大的影响。 优良的励磁控制系统不仅可以保证发电机可靠运行,

提供合格的电能,而且还可以有效地提高系统的技术指标,保证电网的电压水平在一定的范围。 在一定的条件下,励磁自动控制系统如果能按照要求进行某种适当的控制,同样可以改善电力系统暂态稳定性。 当电力系统由于种种原因,出现短时的低电压时,励磁自动控制系统可以发挥其调节功能,即大幅度的增加励磁以提高系统电压。 目前广泛采用的励磁方式有两种: 他励励磁系统的特点是用同轴的交流励磁机作为主整流器的电源。这种励磁方式具有励磁电流独立,工作比较可靠和减少自用电消耗量等优点,是过去发电机主要励磁方式,具有较成熟的运行经验。缺点是励磁调节速度较慢,维护工作量大。 自励励磁系统的特点是励磁电源取自发电机自身,用励磁变压器或与励磁变流器共同供给整流装置变换成直流后,再供给发电机本身,这种励磁系统具有结简单,设备少,投资省和维护工作量少等优点。缺点是稳定性不够好。

同步发电机励磁自动控制系统练习参考答案

一、名词解释 1.励磁系统 答:与同步发电机励磁回路电压建立、调整及在必要时使其电压消失的有关设备和电路。 2.发电机外特性 答:同步发电机的无功电流与端电压的关系特性。 3.励磁方式 答:供给同步发电机励磁电源的方式。 4.无刷励磁系统 答:励磁系统的整流器为旋转工作状态,取消了转子滑环后,无滑动接触元件的励磁系统。 5.励磁调节方式 答:调节同步发电机励磁电流的方式。 6.自并励励磁方式 答:励磁电源直接取自于发电机端电压的励磁方式。 7.励磁调节器的静态工作特性 答:励磁调节器输出的励磁电流(电压)与发电机端电压之间的关系特性。 8.发电机调节特性 答:发电机在不同电压值时,发电机励磁电流IE与无功负荷的关系特性。 9.调差系数 答:表示无功负荷电流从零变至额定值时,发电机端电压的相对变化。 10.正调差特性 答:发电机外特性下倾,当无功电流增大时,发电机的端电压随之降低的外特性。11.负调差特性 答:发电机外特性上翘,当无功电流增大时,发电机的端电压随之升高的外特性。12.无差特性 答:发电机外特性呈水平.当无功电流增大时,发电机的端电压不随之变化的外特性。

13.强励 答:电力系统短路故障母线电压降低时,为提高电力系统的稳定性,迅速将发电机励磁增加到最大值。 二、单项选择题 1.对单独运行的同步发电机,励磁调节的作用是( A ) A.保持机端电压恒定; B.调节发电机发出的无功功率; C.保持机端电压恒定和调节发电机发出的无功功率; D.调节发电机发出的有功电流。 2.对与系统并联运行的同步发电机,励磁调节的作用是( B ) A.保持机端电压恒定; B.调节发电机发出的无功功率; C.调节机端电压和发电机发出的无功功率; D.调节发电机发出的有功电流。 3.当同步发电机与无穷大系统并列运行时,若保持发电机输出的有功 PG = EGUG sinδ为常数,则调节励磁电流时,有( B )等于常数。 X d A.U G sinδ; B.E Gsinδ; C.1 X d ?sinδ; D.sinδ。 4.同步发电机励磁自动调节的作用不包括( C )。 A.电力系统正常运行时,维持发电机或系统的某点电压水平; B.合理分配机组间的无功负荷; C.合理分配机组间的有功负荷; D.提高系统的动态稳定。 5.并列运行的发电机装上自动励磁调节器后,能稳定分配机组间的( A )。A.无功负荷;

发电机励磁原理

励磁系统是同步发电机的重要组成部分,它是供给同步发电机励磁电源的一套系统。励磁系统一般由两部分组成:(如图一所示)一部分用于向发电机的磁场绕组提供直流电流,以建立直流磁场,通常称作励磁功率输出部分(或称励磁功率单元)。另一部分用于在正常运行或发生故障时调节励磁电流,以满足安全运行的需要,通常称作励磁控制部分(或称励磁控制单元或励磁调节器)。在电力系统的运行中,同步发电机的励磁控制系统起着重要的作用,它不仅控制发电机的端电压,而且还控制发电机无功功率、功率因数和电流等参数。在电力系统正常运行的情况下,维持发电机或系统的电压水平;合理分配发电机间的无功负荷;提高电力系统的静态稳定性和动态稳定性,所以对励磁系统必须满足以下要求: 图一 1、常运行时,能按负荷电流和电压的变化调节(自 动或手动)励磁电流,以维持电压在稳定值水平,并能稳定地分配机组间的无功负荷。 2、应有足够的功率输出,在电力系统发生故障,电压降低时,能迅速地将发电机地励磁电流加大至最大值(即顶值),以实现发动机安全、稳定运行。 3、励磁装置本身应无失灵区,以利于提高系统静态稳定,并且动作应迅速,工作要可靠,调节过程要稳定。我热电分厂现共有三期工程,5台同步发电机采用了3种励磁方式: 1、图二为一期两台QFG-6-2型发电机的励磁系统方框图。 图二 2、图三为二期两台QF2-12-2型发电机的励磁系统方框图。

图三 3、图四为三期一台QF2-12-2型发电机的励磁系统方框图 图四 一、三种发电机励磁系统的组成 一期是交流励磁机旋转整流器的励磁系统,即无刷励磁系统。如图二所示,它的副励磁机是永磁发电机,其磁极是旋转的,电枢是静止的,而交流励磁机正好相反,其电枢、硅整流元件、发电机的励磁绕组都在同一轴上旋转,不需任何滑环与电刷等接触元件,这就实现了无刷励磁。二期是自励直流励磁机励磁系统。如图三所示,发电机转子绕组由专用的直流励磁机DE供电,调整励磁机磁场电阻Rc可改变励磁机励磁电流中的IRC从而达到调整发电机转子电流的目的。三期采用的是静止励磁系统。这类励磁系统不用励磁机,由机端励磁变压器供给整流器电源,经三相全控整流桥控制发电机的励磁电流。 二、励磁电流的产生及输出 一期励磁系统原理图如图五所示。其中主励磁机的励磁

同步发电机励磁系统的建模及仿真

同步发电机励磁系统的建模及仿真 发电机的三分之一故障来自于同步发电机的励磁系统,所以研究同步发电机励磁系统对于电力系统有举足轻重的作用。所谓同步发电机励磁系统就是向励磁绕组供给励磁电流的整套装置。按照励磁功率产生的方式不同,同步发电机的励磁方式可以分为自励式和他励式两种。自励式是将发电机发出的交流电经过整流后输送到同步发电机的励磁侧,而他励式是同步发电机的励磁侧单独采用直流励磁机或交流励磁机作为电源供电。 以单机―无穷大系统为模型进行研究。单机―无穷大系统模型是简单电力系统分析中最简单最常用的研究对象,其示意图如图1所示,该仿真系统由同步励磁发电机、变压器、双回路输电线和无穷大系统构成。其中,同步励磁发电机参数为200MVA、13800V、112.5r/min、50Hz,变压器参数为Y―Y型210MVA。 图1单机―无穷大系统示意图 建模及其仿真步骤如下。 1.选择模块 首先建立一个Simulink 模型窗口,然后根据系统的描述选择合适的模块添加至模型窗口中,建立模型所需的模块如下:

1)选择Machines 模块库下的Synchronous Machine pu Standard 模块作为同步励磁发电机、Excitation System 模块作为励磁控制器。 2)选择Elements 模块库下的Three-Phase Transformer (Two Windings) 模块作为三相升压变压器、Three-Phase Series RLC Load 模块作为三相并联RLC 负载接地、Three-Phase Fault 模块作为任意相之间或者任意相与地之间的短路、Ground 模块作为接地。 3)选择Electrical Source 模块库下的Three-Phase Source 模块作为无穷大系统。 4)选择Measurements 模块库下的Voltage Measurement 模块作为电压测量。 5)选择Math Operation 模块库下的Gain 模块。 6)选择Sources 模块库下的Constant 模块。 7)选择Signal Routing 模块库下的Bus Selector 模块作为输出信号选择器。 8)选择Sinks 模块库下的Scope 模块。 2. 搭建模块 将模块放在合适的位置,将模块从输入端至输出端进行连接,搭建完的Simulink 励磁系统模型如图2 所示。 图2 Simulink 励磁系统模型

发电机励磁原理及构造

发电机原理及构造——发电机的励磁系统 众所周知,同步发电机要用直流电流励磁。在以往的他励式同步发电机中,其直流电流是有附设的直流励磁机供给。直流励磁机是一种带机械换向器的旋转电枢式交流发电机。其多相闭合电枢绕组切割定子磁场产生了多相交流电,由于机械换向器和电刷组成的整流系统的整流作用,在电刷上获得了直流电,再通过另一套电刷,滑块系统将获得的直流输送到同步发电机的转子,励磁绕组去励磁,因此直流励磁机的换向器原则上是一个整流器,显然可以用一组硅二节管取代,而功率半导体器件的发展提供了这个条件。将半导体元件与发电机的轴固结在一起转动,则可取消换向器、滑块等滑动接触部分、利用二极管换成直流电流。直流送给转子励磁、绕组励磁。这就是无刷系统。 下面我们以典型的几种不同发电机励磁系统,介绍它的工作原理。 一、相复励励磁原理 左图为常用的电抗移相相复励励磁系统线路图。由线形电抗器DK把电枢绕组抽头电压移相约90°、和电流互感器LH提供的电压几何叠加,经过桥式整流器ZL整流,供给发电机励磁绕组。负载时由电流互感器LH供给所需的复励电流,进行电流补偿,由线形电抗器DK 移相进行相位补偿。 二、三次谐波原理 左图为三次谐波原理图,对一般发电机来源,我们需要的是工频正弦波,称为基波,比基波高的正弦波都称为谐波、其中三次谐波的含量最大,在谐波发电机定子槽中,安放有主绕组和谐波励磁绕组(s1、s2),而这个绕组之间没有电的联系。谐波绕组将绕组中150HZ谐波感应出来,经过ZL桥式整流器整流,送到主发电机转子绕组LE中进行励磁。 三、可控硅直接励磁原理 由左图可以看出,可控硅直接励磁是采用可控硅整流器直接将发电机输出的任一相一部分能量,经整流后送入励磁绕组去的励磁方式,它是由自动电压调节器(A VR),控制可控硅的导通角来调节励磁电流大小而维持发电机端电压的稳定。 四、无刷励磁原理 无刷励磁主要用于西门子、斯坦福、利莱等无刷发电机。它是利用交流励磁机,其定子上的剩磁或永久磁铁(带永磁机)建立电压,该交流电压经旋转整流起整流后,送入主发电机的励磁绕组,使发电机建压。自动电压调节器(A VR)能根据输出电压的微小偏差迅速地减小或增加励磁电流,维持发电机的所设定电压近似不变。 中小型三相同步发电机的技术发展概况 一.概述 中小型同步发电机是中小型电机的主要产品之一,广泛应用于小型水电站、船舶电站、移动电站、固定电站、应急备用电站、正弦波试验电源、变频电源、计算机电源及新能源――风力发电、地热发电、潮汐发电、余热发电等。它对边(疆)老(区)贫(穷)地区实现电气化,提高该地区经济发展水平和人民的生活水平有着重要的作用,中小型发电机在船舶、现代电气化火车内燃机车等运输设备中也是一个关键设备。移动电站对国防设施、工程建设、海上石油平台、陆上电驱动石油钻机、野外勘探等也是不可缺少的关键装备之一。应急备用电站在突发事件中的防灾、救护保障人民的生命和财产的安全有着不可替代的作用。开发绿色能源、可再生能源、减少大气二氧化碳的含量,小水电、风力发电、地热发电和余热发电是重要的组成部分。 我国小型同步发电机的第一代产品是1956年电工局在上海组织的统一设计并于1957年完成的TSN、TSWN系列农用水轮发电机。第二代产品是在进行了大量试验研究和调查研究的基础上于1965年开始的T2系列小型三相同步发电机统一设计,该水平达到六十年代国际先进水平,为B级绝缘的有刷三相同步发电机。在这段时间还开发了ST系列有刷单相同

发电机无刷励磁的结构特点 工作方式 工作原理

2.无刷励磁的结构特点、工作方式、工作原理。 2.1结构:由主磁机、永磁副励磁机、旋转整流盘、空气冷却器、硅整流器、AVR等组成。 主励:三相、200Hz、2760KVA、417V、2820A、cos∮0. 9、 8极 副励:三相、400Hz、90KVA、250V、208A、cos∮0.95、 16极 f=pn/60 旋转整流装置:全波不可控硅整流有熔断器及过电压保 护,直流输出:2450KW 500V 4900N 副励磁机为旋转磁极式,发出的电流送到主励磁机的定子作为主励磁机的励磁电流,由于主励磁机为旋转 电枢式,电枢发出的电流通过转轴中孔送到旋转整流盘, 经整流后送至转子线圈从而达到对发电机励磁。 2.2 发电机励磁电流的调节过程 △由副励磁机——可控硅——AVR调节器——作为主励磁机定子励磁电流——来调节主励旋转电枢的输出电流— —送至旋转整流盘——转子绕组 △静止的永励副励磁机的电枢送出400Hz的电源,通过励磁电压调节器中的三相全控桥式可控硅整流器形成可调的 直流电源到交流励磁机的磁场绕组。

通过控制全控桥整流器的导通角来调节交流励磁机的磁场电流,从而达到调节发电机励磁电流的目的。 当DAVR故障时,由厂用电经工频手动励磁调节装置整流 后提供。发电机励磁。 工作原理 发电机的励磁电流由交流励磁机经旋转整流盘整流后提供,交流励磁机的励磁电流则由永磁机经调节装置中 的可控硅全控桥整流后提供,励磁电流的大小由自励磁调 节装置进行自动或手动调节,以满足发电机运行工况的要 求。 2.3 无刷励磁系统特点 2.3.1 励磁机与发电机同轴,电源独立,不受电力系统干扰 2.3.2 没有滑环和电刷,根除了碳粉污染,噪音低,维护简单2.3.3 具备高起始、响应持久、能有效地提高电力系统稳定性2.3.4 选扎整流盘设计合理、电流和电压余量大,运行可靠 2.3.5 采用双重数字AVR、功能齐全、故障追忆功能强 无刷励磁系统原理框图 整流盘及电路 整流盘采用双盘结构,一个正极盘,另一个负极盘。 整流盘与转轴间绝缘可靠、固定合理,能承受各种短路力矩的冲击而不产生位移。 电路接线是:励磁机电枢八个Y支路中心点通过短

同步电动机励磁系统常见故障分析

同步电动机励磁系统常见故障分析 作者:陆业志 本文结合KGLF11型励磁装置,对其在运行中的常见故障进行分析。 1 常见故障分析 (1)开机时调节6W,励磁电流电压无输出。 原因分析:励磁电流电压无输出,肯定是晶闸管无触发脉冲信号,而六组脉冲电路同时无触发脉冲很可能是移相插件接触不良,或者同步电源变压器4T损坏,造成没有移相给定电压加到六组脉冲电路的1V1基极回路上,从而六组脉冲电路无脉冲输出导致晶闸管不导通。 (2)励磁电压高而励磁电流偏低。 原因分析:这是个别触发脉冲消失或是个别晶闸管损坏的缘故。个别触发脉冲消失可能是脉冲插件接触不良。另外图1中三极管1V1、单极晶体管2VU及小晶闸管9VT损坏,或者是电容2C严重漏电或开路。如果主回路中晶闸管1VT~6VT中有某一个开路或是触发极失灵,同样会导致输出励磁电流偏低的现象。 (3)合励磁电路主开关时,励磁电流即有输出。 原因分析:这是由于图1所示脉冲电路中的三极管1V1集电极-发射极之间漏电,即使移相电路还未送来正确的控制电压,也会导致1C充电到2VU导通的程度。2VU即输出触发使小晶闸管9VT导通,2C经9VT放电而发出脉冲令1VT、3VT、6VT之一触发导通,使转子励磁电路中流过直流电流。 (4)同步电动机起动时,励磁不能自行投入。 原因分析:励磁不能自行投入。肯定是自动投励通道电路中断或工作不正常,因此可能是投励插件与插座间接触不良,或是图2所示投励电路中的三极管3V1、单结晶体管4VU工作不正常,电容5C漏电、电位器W′损坏。另外是移相插件同样有接触不良现象,或者是图3所示移相电路的小晶闸管10VT损坏等等。 (5)运行过程中励磁电流电压上下波动。 原因分析:引起励磁电流电压输出不稳的原因很多,主要有1)脉冲插件可能存在接触不良,造成个别触发脉冲时有时无。2)图1所示脉冲电路的电位器4W松动,使三极管1V1电流负反馈发生变化,造成放大器工作点不稳定,从而影响晶闸管主回路输出的稳定性。另外,如果电容2C漏电或单结晶体管2VU及三极管1V1性能不良,也会引起触发脉冲相位移动。3)图3所示移相电路的电位器6W松动或接触不良,将会使移相控制电压Ed间歇性消失,引起励磁电流电压输出大幅度波动。另外,如果稳压管7VS、8VS损坏,都会使Ey随电网电压波动而波动,使Ed输出波动,造成晶闸管主回路直流输出不稳。 (6)励磁装置输出电压调不到零位。

汽轮发电机结构及原理

第四节汽轮发电机 汽轮发电机是同步发电机的一种,它是由汽轮机作原动机拖动转子旋转,利用电磁感应原理把机械能转换成电能的设备。 汽轮发电机包括发电机本体、励磁系统及其冷却系统等。 一、汽轮发电机的工作原理 按照电磁感应定律,导线切割磁力线感应出电动势,这是发电机的基本工作原理。汽轮发电机转子与汽轮机转子高速旋转时,发电机转子随着转动。发电机转子绕组内通入直流电流后,便建立一个磁场,这个磁场称主磁极,它随着汽轮发电机转子旋转。其磁通自转子的一个极出来,经过空气隙、定子铁芯、空气隙、进入转子另一个极构成回路。 根据电磁感应定律,发电机磁极旋转一周,主磁极的磁力线北装在定子铁芯内的U、V、W三相绕组(导线)依次切割,在定子绕组内感应的电动势正好变化一次,亦即感应电动势每秒钟变化的次数,恰好等于磁极每秒钟的旋转次数。 汽轮发电机转子具有一对磁极(即1个N极、一个S极),转子旋转一周,定子绕组中的感应电动势正好交变一次(假如发电机转子为P对磁极时,转子旋转一周,定子绕组中感应电动势交变P次)。当汽轮机以每分钟3000转旋转时,发电机转子每秒钟要旋转50周,磁极也要变化50次,那么在发电机定子绕组内感应电动势也变化50次,这样发电机转子以每秒钟50周的恒速旋转,在定子三相绕组内感应出相位不同的三相交变电动势,即频率为50Hz的三相交变电动势。 这时若将发电机定子三相绕组引出线的末端(即中性点)连在一起。绕组的首端引出线与用电设备连接,就会有电流流过,这个过程即为汽轮机转子输入的机械能转换为电能的过程。 二、汽轮发电机的结构 火力发电厂的汽轮机发电机皆采用二极、转速为3000r/min的卧式结构。发电机与汽轮机、励磁机等配套组成同轴运转的汽轮发电机组。

发电机励磁原理

发电机励磁原理 励磁机的作用: 发电机原理为永磁极随转子旋转,产生交流电,交流电一部分作为AER的电源,一部分通过逆变器整流成直流为转子建立磁场。通过调节导通角可以改变发电机的端电压(空载时)进而实现并网,在并网时调节向电网的无功输出。 工作原理:众所周知,同步发电机要用直流电流励磁。在以往的他励式同步发电机中,其直流电流是有附设的直流励磁机供给。直流励磁机是一种带机械换向器的旋转电枢式交流发电机。其多相闭合电枢绕组切割定子磁场产生了多相交流电,由于机械换向器和电刷组成的整流系统的整流作用,在电刷上获得了直流电,再通过另一套电刷,滑块系统将获得的直流输送到同步发电机的转子,励磁绕组去励磁,因此直流励磁机的换向器原则上是一个整流器,显然可以用一组硅二极管取代,而功率半导体器件的发展提供了这个条件。将半导体元件与发电机的轴固结在一起转动,则可取消换向器、滑块等滑动接触部分、利用二极管换成直流电流。直流送给转子励磁、绕组励磁。这就是无刷系统。 下面我们以典型的几种不同发电机励磁系统,介绍它的工作原理。 一、相复励励磁原理 由线形电抗器DK把电枢绕组抽头电压移相约90°、和电流互感器LH提供的电压几何叠加,经过桥式整流器ZL整流,供给发电机励磁绕组。负载时由电流互感器LH供给所需的复励电流,进行电流补偿,由线形电抗器DK移相进行相位补偿。 二、三次谐波原理 对一般发电机来源,我们需要的是工频正弦波,称为基波,比基波高的正弦波都称为谐波、其中三次谐波的含量最大,在谐波发电机定子槽中,安放有主绕组和谐波励磁绕组(s1、s2),而这个绕组之间没有电的联系。谐波绕组将绕组中150HZ谐波感应出来,经过ZL桥式整流器整流,送到主发电机转子绕组LE 中进行励磁。 三、可控硅直接励磁原理 可控硅直接励磁是采用可控硅整流器直接将发电机输出的任一相一部分能量,经整流后送入励磁绕组去的励磁方式,它是由自动电压调节器(AVR),控制

发动机无刷励磁结构及原理(2020年九月整理).doc

发电机无刷励磁结构及原理 一、励磁系统作用 励磁系统的主要作用就是维持发电机的电压在给定范围,主要有以下三点: 1、是保证电力系统运行设备的安全。电力系统中的运行设备都有其额定运行电压和最高运行电压。保证发电机端电压在容许水平上,是保证发电机及其电力系统设备安全运行的基础条件之一,这就要求发电机励磁系统不仅能够在静态下,而且在大扰动后的稳态下保证发电机在给定的容许水平上,一般发电机运行电压不得高于额定值的10%。 2、保证发电机运行的经济性。发电机在额定值附近运行是最经济的,如果发电机电压下降,则输出相同的功率所需的定子电流将增加,从而使损耗增加。一般发电机运行电压不得低于额定值的90%;当发电机电压低于95%时,发电机应该限负荷运行。 3、提高维持发电机电压能力的要求和提高电力系统稳定的要求在许多方面是一致的。 二、有刷励磁和无刷励磁的优缺点 发电机励磁系统一般分为有刷励磁和无刷励磁,它们各有优缺点,具体区别如下: 1、有刷励磁是通过与发电机同轴的直流发电机发出直流电,再经过电刷和滑环加在发电机转子线圈上。

优点是:发电机与励磁系统界限明显,相对独立、直观明了,转子励磁电流、励磁电压容易取得,数值准确、检修方便。 缺点是:由于电刷的存在,增加了接触电阻,随着励磁电流的增加,电刷和滑环常常因接触不良导致发热,严重时会产生环火而烧毁刷架和滑环,并且电刷的质量也直接影响到运行的稳定性,故障率高;电刷磨损产生的碳粉对环境卫生有一定影响,容易污染轴承座,降低绝缘,给安全运行带来一定隐患;由于电刷存在磨损,运行人员要经常巡视、擦拭、更换电刷,在擦拭、更换时存有一定安全隐患。 2、无刷励磁系统是由发电机和与发电机同轴连接的励磁发电机组成,这种励磁发电机不同于和发电机同轴的直流发电机,这种励磁发电机实际上是交流发电机,它所发出的三相交流电通过连接在其轴上的旋转整流器进行整流,输出的直流电直接接在发电机转子绕组上,用来产生转子磁场。 优点是:由于没有电刷也就不存在接触不良以及因此产生的发热问题,更不会因产生电火花而烧毁设备;没有电刷也就没有磨损的碳粉,发电机两端会比较洁净;运行中不用更换电刷,运行维护少。 缺点是:因励磁发电机输出的直流电直接接在发电机转子绕组上,这样很难测量转子的实际电流,一般根据转子电压等相关参数计算出转子电流,计算值和实际值存在一定

发电机的励磁控制原理

发电机的励磁系统 同步发电机为了实现能量的转换,需要有一个直流磁场,而产生这个磁场的直流电流,称为发电机的励磁电流。根据励磁电流的供给方式,凡是从其它电源获得励磁电流的发电机,称为他励发电机,从发电机本身获得励磁电源的,则称为自励发电机。 一、发电机获得励磁电流的方式: 1、直流发电机供电的励磁方式:这种励磁方式的发电机具有专用的直流发电机,这种专用的直流发电机称为直流励磁机,励磁机一般与发电机同轴,发电机的励磁绕组通过装在大轴上的滑环及固定电刷从励磁机获得直流电流。这种励磁方式具有励磁电流独立,工作比较可靠和减少自用电消耗量等优点,是过去几十年间发电机主要励磁方式,具有较成熟的运行经验。缺点是励磁调节速度较慢,维护工作量大,故在10MW 以上的机组中很少采用。 2、交流励磁机供电的励磁方式,现代大容量发电机有的采用交流励磁机提供励磁电流。交流励磁机也装在发电机大轴上,它输出的交流电流经整流后供给发电机转子励磁,此时,发电机的励磁方式属他励磁方式,又由于采用静止的整流装置,故又称为他励静止励磁,交流副励磁机提供励磁电流。交流副励磁机可以是永磁机或是具有自励恒压装置的交流发电机。为了提高励磁调节速度,交流励磁机通常采用100——200HZ 的中频发电机,而交流副励磁机则采用400——500HZ的中频发电机。这种发电机的直流励磁绕组和三相交流绕组都绕在定子槽内,转子只有齿与槽而没有绕组,像个齿轮,因此,它没有电刷,滑环等转动接触部件,具有工作可靠、结构简单、维护方便等优点。 3、无励磁机的励磁方式:在励磁方式中不设置专门的励磁机,而从发电机本身取得励磁电源,经整流后再供给发电机本身励磁,称自励式静止励磁。自励式静止励磁可分为自并励和自复励两种方式。自并励方式它通过接在发电机出口的整流变压器取得励磁电流,经整流后供给发电机励磁,这种励磁方式具有结简单,设备少,投资省和维护工作量少

发电机无刷励磁的结构特点、工作方式、工作原理

无刷励磁的结构特点、工作方式、工作原理。 2 . 1 结构:由主磁机、永磁副励磁机、旋转整流盘、空气 冷却器、硅整流器、AVR等组成。 主励:三相、200Hz、2760KVA、417V、2820A、cos 少0. 9、 8 极 副励:三相、400Hz、90KVA、250V、208A、cos 如.95、16 极 f=pn/60 旋转整流装置:全波不可控硅整流有熔断器及过电压保护, 直流输出:2450KW 500V 4900N 副励磁机为旋转磁极式,发出的电流送到主励磁机的定子作为主励磁机的励磁电流,由于主励磁机为旋转电枢式, 电枢发出的电流通过转轴中孔送到旋转整流盘,经整流后送至 转子线圈从而达到对发电机励磁。 2. 2 发电机励磁电流的调节过程 △由副励磁机——可控硅——AVR调节器——作为主励磁机定子励磁电流——来调节主励旋转电枢的输出电流一 —送至旋转整流盘一一转子绕组

△静止的永励副励磁机的电枢送出400Hz的电源,通过励磁电压调节器中的三相全控桥式可控硅整流器形成可调 的直流电源到交流励磁机的磁场绕组。 通过控制全控桥整流器的导通角来调节交流励磁机的磁场电流,从而达到调节发电机励磁电流的目的。 当DAVR故障时,由厂用电经工频手动励磁调节装置整流后提 供。发电机励磁。 工作原理 发电机的励磁电流由交流励磁机经旋转整流盘整流后提供,交流励磁机的励磁电流则由永磁机经调节装置中的 可控硅全控桥整流后提供,励磁电流的大小由自励磁调节装置进 行自动或手动调节,以满足发电机运行工况的要求。2.3 无刷励磁系统特点 2.3.1 励磁机与发电机同轴,电源独立,不受电力系统干扰 2.3.2 没有滑环和电刷,根除了碳粉污染,噪音低,维护简单 2.3.3 具备高起始、响应持久、能有效地提高电力系统稳定性 2.3.4 选扎整流盘设计合理、电流和电压余量大,运行可靠 2.3.5 采用双重数字AVR、功能齐全、故障追忆功能强 无刷励磁系统原理框图 整流盘及电路

几种常见的励磁系统介绍

发电机的心脏——励磁系统 发电机励磁系统概述励磁系统是同步发电机的重要组成部分,它是供给同步发电机励磁电源的一套系统。励磁系统一般由两部分组成:(如图一所示)一部分用于向发电机的磁场绕组提供直流电流,以建立直流磁场,通常称作励磁功率输出部分(或称励磁功率单元)。另一部分用于在正常运行或发生故障时调节励磁电流,以满足安全运行的需要,通常称作励磁控制部分(或称励磁控制单元或励磁调节器)。在电力系统的运行中,同步发电机的励磁控制系统起着重要的作用,它不仅控制发电机的端电压,而且还控制发电机无功功率、功率因数和电流等参数。在电力系统正常运行的情况下,维持发电机或系统的电压水平;合理分配发电机间的无功负荷;提高电力系统的静态稳定性和动态稳定性,所以对励磁系统必须满足以下要求: 图一 1、常运行时,能按负荷电流和电压的变化调节(自 动或手动)励磁电流,以维持电压在稳定值水平,并能稳定地分配机组间的无功负荷。 2、应有足够的功率输出,在电力系统发生故障,电压降低时,能迅速地将发电机地励磁电流加大至最大值(即顶值),以实现发动机安全、稳定运行。 3、励磁装置本身应无失灵区,以利于提高系统静态稳定,并且动作应迅速,工作要可靠,调节过程要稳定。我热电分厂现共有三期工程,5台同步发电机采用了3种励磁方式: 1、图二为一期两台QFG-6-2型发电机的励磁系统方框图。 图二

2、图三为二期两台QF2-12-2型发电机的励磁系统方框图。 图三 3、图四为三期一台QF2-12-2型发电机的励磁系统方框图 图四 一、三种发电机励磁系统的组成 一期是交流励磁机旋转整流器的励磁系统,即无刷励磁系统。如图二所示,它的副励磁机是永磁发电机,其磁极是旋转的,电枢是静止的,而交流励磁机正好相反,其电枢、硅整流元件、发电机的励磁绕组都在同一轴上旋转,不需任何滑环与电刷等接触元件,这就实现了无刷励磁。二期是自励直流励磁机励磁系统。如图三所示,发电机转子绕组由专用的直流励磁机DE供电,调整励磁机磁场电阻Rc可改变励磁机励磁电流中的IRC从而达到调整发电机转子电流的目的。三期采用的是静止励磁系统。这类励磁系统不用励磁机,由机端励磁变压器供给整流器电源,经三相全控整流桥控制发电机的励磁电流。 二、励磁电流的产生及输出

同步电机励磁系统

同步电机励磁系统 Excitation system for synchronous electricalmachines-Definitions GB/T 7409.11997 本标准是对GB 7409—87的修订。 GB 7409—87执行七年来,技术已有新的发展,其中有些内容IEC已制定了国际标准。为适应技术发展的要求和贯彻积极采用国际标准的精神,原标准需作修订。 为便于采用IEC标准和今后增补、修订标准的方便,经技术委员会研究,将GB 7409改编为系列标准:修订后的GB 7409.1等同采用IEC 34-16-1:1991;GB 7409.2等同采用IEC 34-16-2:1991,至于GB 7409.3,由于IEC目前还没有相应的标准,此部分是根据GB 7409执行七年的情况并参考了美国IEEE std 421.1—1986、421.A—1978、421.B—1979和原苏联ГОСТ21558—88等标准编写的。 本标准定义的同步旋转电机的励磁系统术语为一般通用的术语。同步电机励磁系统所有 各分标准在使用同步电机励磁系统技术名词和术语时均符合本标准之规定。其他未包括的术 语,应在同步电机励磁系统各分标准中作补充规定。 本标准由全国旋转电机标准化技术委员会汽轮发电机分技术委员会提出并归口。 本标准负责起草单位:哈尔滨大电机研究所。 主要起草人:忽树岳。 IEC

1)IEC(国际电工委员会)是由所有国家的电工技术委员会(IEC国家委员会)组成的世界范围内的标准化组织。IEC的目的是促进电工和电子领域内所有有关标准化问题的国际间的合 作。为此目的和除其他活动之外,IEC出版国际标准。这些标准是委托各个技术委员会制定 的;对所讨论的主题感兴趣的任何一个国家委员会都可以参加起草工作,与IEC有联系的国际的,政府的和非政府的组织也可以参加起草工作。IEC和ISO(国际标准化组织)按两大组织之间共同确定的条件紧密合作。 2)IEC关于技术问题的正式决议或协议是由代表各国家委员会专门利益的技术委员会 所制定的,这些决议或协议都尽可能充分地表达了国际上所涉及的问题的一致意见。 3)这些决议或协议均以标准、技术报告或导则的形式出版且以推荐的形式供国际上使 用,并在此意义上为各国家委员会所承认。 4)为了促进国际上的统一,IEC各国家委员会应尽最大可能在各自的国家和地区标准中 明确地采用IEC国际标准,并应清楚地指明IEC标准与对应的本国或本地区标准之间的某 些分歧。 5)IEC对任何申明符合其某些标准的设备不提供表明它已被认可的标记过程,并且也不 对其负责。 IEC

最新发电机励磁原理及构造

发电机励磁原理及构 造

发电机原理及构造——发电机的励磁系统 众所周知,同步发电机要用直流电流励磁。在以往的他励式同步发电机中,其直流电流是有附设的直流励磁机供给。直流励磁机是一种带机械换向器的旋转电枢式交流发电机。其多相闭合电枢绕组切割定子磁场产生了多相交流电,由于机械换向器和电刷组成的整流系统的整流作用,在电刷上获得了直流电,再通过另一套电刷,滑块系统将获得的直流输送到同步发电机的转子,励磁绕组去励磁,因此直流励磁机的换向器原则上是一个整流器,显然可以用一组硅二节管取代,而功率半导体器件的发展提供了这个条件。将半导体元件与发电机的轴固结在一起转动,则可取消换向器、滑块等滑动接触部分、利用二极管换成直流电流。直流送给转子励磁、绕组励磁。这就是无刷系统。 下面我们以典型的几种不同发电机励磁系统,介绍它的工作原理。 一、相复励励磁原理 左图为常用的电抗移相相复励励磁系统线路图。由线形电抗器DK把电枢绕组抽头电压移相约90°、和电流互感器LH提供的电压几何叠加,经过桥式整流器ZL整流,供给发电机励磁绕组。负载时由电流互感器LH供给所需的复励电流,进行电流补偿,由线形电抗器DK移相进行相位补偿。 二、三次谐波原理 左图为三次谐波原理图,对一般发电机来源,我们需要的是工频正弦波,称为基波,比基波高的正弦波都称为谐波、其中三次谐波的含量最大,在谐波发电机定子槽中,安放有主绕组和谐波励磁绕组(s1、s2),而这个绕组之间没有电的联系。谐波绕组将绕组中150HZ谐波感应出来,经过ZL桥式整流器整流,送到主发电机转子绕组LE中进行励磁。

三、可控硅直接励磁原理 由左图可以看出,可控硅直接励磁是采用可控硅整流器直接将发电机输出的任一相一部分能量,经整流后送入励磁绕组去的励磁方式,它是由自动电压调节器(AVR),控制可控硅的导通角来调节励磁电流大小而维持发电机端电压的稳定。 四、无刷励磁原理 无刷励磁主要用于西门子、斯坦福、利莱等无刷发电机。它是利用交流励磁机,其定子上的剩磁或永久磁铁(带永磁机)建立电压,该交流电压经旋转整流起整流后,送入主发电机的励磁绕组,使发电机建压。自动电压调节器(AVR)能根据输出电压的微小偏差迅速地减小或增加励磁电流,维持发电机的所设定电压近似不变。 中小型三相同步发电机的技术发展概况 一.概述 中小型同步发电机是中小型电机的主要产品之一,广泛应用于小型水电站、船舶电站、移动电站、固定电站、应急备用电站、正弦波试验电源、变频电源、计算机电源及新能源――风力发电、地热发电、潮汐发电、余热发电等。它对边(疆)老(区)贫(穷)地区实现电气化,提高该地区经济发展水平和人民的生活水平有着重要的作用,中小型发电机在船舶、现代电气化火车内燃机车等运输设备中也是一个关键设备。移动电站对国防设施、工程建设、海上石油平台、陆上电驱动石油钻机、野外勘探等也是不可缺少的关键装备之一。应急备用电站在突发事件中的防灾、救护保障人民的生命和财产的安全有着不

同步发电机励磁系统的简述

同步发电机励磁的简述 摘要:励磁系统是同步发电机组的重要构成部分,它的技术性能及运行的可靠性,对供电质量、继电保护可靠动作、加速异步电动机自启动和发电机与电力系统的安全稳定运行都有重大的影响。随着国内外励磁系统的研制不断取得进展,各型励磁系统不断涌现。综合各种因素的比较,交流无刷励磁机励磁系统和静止励磁系统(发电机自并励系统)两种励磁系统在工程是实际应用中占有很大的优势。 关键词:励磁直流发电机交流励磁机永磁机稳定 笔者所涉及的火电厂主要为中小型火力发电厂,下面着重介绍在我们所涉及的工程中常用的他励交流励磁机励磁系统和静止励磁系统(发电机自并励系统)两种励磁系统,其他励磁系统只做简单介绍。 一、概述 励磁系统是提供同步发电机可调励磁电流装置的组合。同步发电机的励磁系统一般由励磁功率单元和励磁调节器两个部分组成,励磁功率单元向同步发电机转子提供直流电流,即励磁电流:励磁调节器根据输入信号和给定的调节准则控制励磁功率单元的输出。整个励磁自动控制系统是由励磁调节器、励磁功率单元、发电机构成的一个反馈控制系统。 对同步发电机的励磁进行控制,是对发电机的运行实行控制的重要内容之一。电力系统在正常运行时,发电机励磁电流的变化主要影响电网的电压水平和并联运行机组间无功功率的分配,在某些故障情况下,发电机端电压降低将导致

电力系统稳定水平下降。为此,当系统发生故障的时候,要求发电机迅速增大励磁电流,以维持电网的电压水平及稳定性,可见,同步发电机励磁的自动控制在保证电能质量,无功功率的合理分配和提高电力系统运行的可靠性方面都起着非常重要的作用。优良的励磁控制系统不仅可以保证发电机可靠运行,提供合格的电能,而且还可以有效提高系统的技术指标。 二、同步发电机励磁系统的分类及其性能特点 同步发电机为了实现能量的转换,需要有一个直流磁场,而产生这个磁场的直流电流,称为发电机的励磁电流。根据励磁电流的供给方式,凡是从其它电源获得励磁电流的发电机,称为他励发电机,从发电机本身获得励磁电源的,则称为自励发电机。 同步发电机的励磁电源实质上是一个可控的直流电源。为了满足正常运行的要,发电机励磁电源必须具备足够的调节容量,并且要有一定的强励倍数和励磁电压响应速度。在设计励磁系统方案时,首先应考虑他的可靠性。为了防止系统电网故障对他的影响,励磁功率单元往往作为发电机的专用电源,另外,它的起励方式也应力求简单方便。 在电力系统发展初期,同步发电机容量不大,励磁电流由与发电机组同轴的直流发电机供给,既所谓直流励磁机励磁系统。随着发电机容量的提高,所需励磁电流也相应增大,机械整流在换流方面遇到了困难,而大功率半导体整流元件制造工艺却日益成熟,于是大容量机组的励磁功率单元就采用了交流发电机和半

三相同步发电机的结构和工作原理

三相同步发电机结构及工作原理1 LEROYSOMER 电球侧视图 LEROYSOMER 电球分解图 1.定子 2.转子100.励磁电枢90.励磁定子34 3.旋转二极管桥架347.浪涌抑制器198.AVR70.轴承 meccaltespa 电球分解图 10.励磁定子143.励磁线柱19.轴承11.旋转二极管架13.励磁电枢14.转子40.固定环 绕组和AVR Kirloskar 电球分解图 1.定子 2.转子 3.励磁转子 4.励磁定子10.AVR11.轴承22.旋转整流集成 发电机通常由定子、转子、端盖及轴承等部件构成。定子由定子铁芯、线包绕组、机座以及固定这些部分的其他结构件组成。转子由转子铁芯(或磁极、磁扼)绕组、护环、中心环、滑环、风扇及转轴等部件组成。由轴承及端盖将发电机的定子,转子连接组装起来,使转子能在定子中旋转,做切割磁力线的运动,从而产生感应电势。 发电机曲轴带动发电机的转子,利用“电磁感应”原理,发电机就会输出感应电动势,经闭合的负载回路就能产生电流。主磁场的建立:励磁绕组通入直流励磁电流,建立极性相间的励磁磁场,即建立起主磁场。 载流导体:三相对称的电枢绕组充当功率绕组,成为感应电势或者感应电流的载体(定子)。 切割运动:引擎曲轴拖动转子旋转(给电球输入机械能),极性相间的励磁磁场随轴一起旋转并顺次切割定子各相绕组(相当于绕组的导体反向切割励磁磁场)。 交变电势的产生:由于电枢绕组与主磁场之间的相对切割运动,电枢绕组中将会感应出大小和方向按周期性变化的三相对称交变电势。通过接线端子引出,接在回路中,便产生了电流。 励磁机 整流器 转子 定子 AVR(自动电压调节器) 风扇 飞轮连接 盘 出线端子

同步发电机怎么励磁

无刷励磁发电机的轴端头是一台交流发电机,其转子是发电绕组,发出的电流通过固定在发电机轴上的导线引导固定在轴上的硅整流管,整流后的直流直接进入转子绕组,其中没有整流刷这个东西,所以成为无刷励磁。 无刷励磁发电机的轴端头是一台交流发电机,其转子是发电绕组,发出的电流通过固定在发电机轴上的导线引导固定在轴上的硅整流管,整流后的直流直接进入转子绕组,其中没有整流刷这个东西,所以成为无刷励磁。曾经风靡过一段时间,但是由于整流管坏了就得停机,所以现在已经用的很少了,基本都采用自复励系统。 同步发电机励磁方式分为两大类:一类是用直流发电机作为励磁电源的直流励磁系统;另一类是用硅整流装置将交流转化成直流后供给励磁的整流器励磁系统。现说明如下: 1.直流励磁机励磁 直流励磁机通常与同步发电机同轴,采用并励或他励接法。采用他励接法时,励磁机的励磁电流由另一台被称为副励磁机的同轴的直流发电机供给。 2.静止励磁器励磁 同一轴上有3台发电机,即主发电机、交流主励磁机和交流副励磁机。副励磁机的励磁电流开始时由外部直流电源提供,待电压建立起来后再转为自励(有时采用永磁发电机)。副励磁机的输出电流经过静止晶闸管整流器整流后供给主励磁机,而主励磁机的交流输出电流经过静止的三相桥式硅整流器整流后供给主发电机的励磁绕组。 3.旋转整流器励磁 静止整流器的直流输出必须经过电刷和集电环才能输送到旋转的励磁绕组,对于大容量的同步发电机,其励磁电流达到了数千安培,使得集电环严重过热。因此,在大容量的同步发电机中,常采用不需要电刷和集电环的旋转整流器励磁系统。主励磁机是旋转电枢式三相同步发电机,旋转电枢的交流电流经与主轴一起旋转的硅整流器整流后,直接送到主发电机的转子励磁绕组。交流主励磁机的励磁电流由同轴的交流副励磁机经静止的晶闸管整流器整流后供给。用于这种励磁系统取消了集电环和集电装置,故又称为无刷励磁系统。

发电机的励磁方法及工作原理

.发电机的励磁方法及工作原理 同步发电机为了实现能量的转换,需要有一个直流磁场而产生这个磁场的直流电流,称为发电机的励磁电流。根据励磁电流的供给方式,凡是从其它电源获得励磁电流的发电机,称为他励发电机,从发电机本身获得励磁电源的,则称为自励发电机。 一、发电机获得励磁电流的几种方式 1、直流发电机供电的励磁方式:这种励磁方式的发电机具有专用的直流发电机,这种专用的直流发电机称为直流励磁机,励磁机一般与发电机同轴,发电机的励磁绕组通过装在大轴上的滑环及固定电刷从励磁机获得直流电流。这种励磁方式具有励磁电流独立,工作比较可靠和减少自用电消耗量等优点,是过去几十年间发电机主要励磁方式,具有较成熟的运行经验。缺点是励磁调节速度较慢,维护工作量大,故在10MW以上的机组中很少采用。 2、交流励磁机供电的励磁方式代大容量发电机有的采用交流励磁机提供励磁电流。交流励磁机也装在发电机大轴上,它输出的交流电流经整流后供给发电机转子励磁,此时,发电机的励磁方式属他励磁方式,又由于采用静止的整流装置,故又称为他励静止励磁,交流副励磁机提供励磁电流。交流副励磁机可以是永磁机或是具有自励恒压装置的交流发电机。为了提高励磁调节速度,交流励磁机通常采用100——200HZ的中频发电机,而交流副励磁机则采用400——500HZ的中频发电机。这种发电机的直流励磁绕组和三相交流绕组都绕在定子槽内,转子只有齿与槽而没有绕组,像个齿轮,因此,它没有电刷,滑环等转动接触部件,具有工作可靠,结构简单,制造工艺方便等优点。缺点是噪音较大,交流电势的谐波分量也较大。 3、无励磁机的励磁方式: 在励磁方式中不设置专门的励磁机,而从发电机本身取得励磁电源,经整流后再供给发电机本身励磁,称自励式静止励磁。自励式静止励磁可分为自并励和自复励两种方式。自并励方式它通过接在发电机出口的整流变压器取得励磁电流,经整流后供给发电机励磁,这种励磁方式具有结简单,设备少,投资省和

发电机的励磁方法及工作原理之欧阳家百创编

.发电机的励磁方法及工作原理 欧阳家百(2021.03.07) 同步发电机为了实现能量的转换,需要有一个直流磁场而产生这个磁场的直流电流,称为发电机的励磁电流。根据励磁电流的供给方式,凡是从其它电源获得励磁电流的发电机,称为他励发电机,从发电机本身获得励磁电源的,则称为自励发电机。 一、发电机获得励磁电流的几种方式 1、直流发电机供电的励磁方式:这种励磁方式的发电机具有专用的直流发电机,这种专用的直流发电机称为直流励磁机,励磁机一般与发电机同轴,发电机的励磁绕组通过装在大轴上的滑环及固定电刷从励磁机获得直流电流。这种励磁方式具有励磁电流独立,工作比较可靠和减少自用电消耗量等优点,是过去几十年间发电机主要励磁方式,具有较成熟的运行经验。缺点是励磁调节速度较慢,维护工作量大,故在10MW以上的机组中很少采用。 2、交流励磁机供电的励磁方式代大容量发电机有的采用交流励磁机提供励磁电流。交流励磁机也装在发电机大轴上,它输出的交流电流经整流后供给发电机转子励磁,此时,发电机的励磁方式属他励磁方式,又由于采用静止的整流装置,故又称为他励静止励磁,交流副励磁机提供励磁电流。交流副励磁机可以是永磁机或是具有自励恒压装置的交流发电机。为了提高励磁调节速

度,交流励磁机通常采用100——200HZ的中频发电机,而交流副励磁机则采用400——500HZ的中频发电机。这种发电机的直流励磁绕组和三相交流绕组都绕在定子槽内,转子只有齿与槽而没有绕组,像个齿轮,因此,它没有电刷,滑环等转动接触部件,具有工作可靠,结构简单,制造工艺方便等优点。缺点是噪音较大,交流电势的谐波分量也较大。 3、无励磁机的励磁方式: 在励磁方式中不设置专门的励磁机,而从发电机本身取得励磁电源,经整流后再供给发电机本身励磁,称自励式静止励磁。自励式静止励磁可分为自并励和自复励两种方式。自并励方式它通过接在发电机出口的整流变压器取得励磁电流,经整流后供给发电机励磁,这种励磁方式具有结简单,设备少,投资省和维护工作量少等优点。自复励磁方式除没有整流变压外,还设有串联在发电机定子回路的大功率电流互感器。这种互感器的作用是在发生短路时,给发电机提供较大的励磁电流,以弥补整流变压器输出的不足。这种励磁方式具有两种励磁电源,通过整流变压器获得的电压电源和通过串联变压器获得的电流源。 二、发电机与励磁电流的有关特性 1、电压的调节 自动调节励磁系统可以看成为一个以电压为被调量的负反馈控制系统。无功负荷电流是造成发电机端电压下降的主要原因,当励磁电流不变时,发电机的端电压将随无功电流的增大而降低。但是为了满足用户对电能质量的要求,发电机的端电压应基本保

相关主题