搜档网
当前位置:搜档网 › 三轴加速度传感器在智能车控制与道路识别中的应用

三轴加速度传感器在智能车控制与道路识别中的应用

三轴加速度传感器在智能车控制与道路识别中的应用
三轴加速度传感器在智能车控制与道路识别中的应用

三轴加速度传感器在智能车控制与道路识别中的应用

赵小平程志江张永瑞段志尚

摘要:三轴加速度传感器MMA7260Q可以测量智能车惯性大小,选取最佳重心位置,并能准确定位智能车处于直线、弯道、坡道、漂移等运行状态;利用加速度传感器能够提前预测路径,并判断何时刹车效果最佳。并且很好的解决了在直立行走车模的平衡与方向识别。

关键词:智能车;加速度传感器;MMA7260Q;道路识别;

引言:

提出了一种基于三轴加速度传感器在智能车中的控制以及路径识别的设计。该设计采用三轴加速度传感器MMA7260Q测量智能车在运动中的加速度信号,以嵌入式单片MC9S12XSl28B作为核心控制器,对加速度信号进行采样,A /D转换,再将特征数据存储在EEPROM中。很好地解决了智能车运动路径分析的问题以及在。实时获取小车加速度,从而更加全面的获取小车的运行状态,为控制的流畅性和更好的路况识别提供了可能。

在直立行走的车模中,应用同样的原理,选择最佳重心,可以很好地解决直立行走车模的平衡以及方向识别,从而加快车模的行车速度。

实验结果证明:结合加速度传感器具有很强的抗干扰性,提取角度信息更准确,确保了智能车在直道上能够以较高的速度行驶,在弯道则能基本不失速平滑地过弯。

1.智能车现存问题

在车模运行当中,人无法判断小车的运行状态,使用加速度传感器来监控小车的加速度,这样可以更加精确地知道小车的运行状态,而且可以通过对某个方向加速度的变化的检测来区分出坡道和非坡道。从而进行相应的策略应对。避免小车在比赛时出现停车与翻车现象。以及很好地解决了直立行走的车模中在行走过程中的平衡性。

2.MMA7260Q简介

加速度传感器是Freescale公司出品的MMA7260Q。

图1 芯片引脚定义

2.1M M A 7 2 6 0 Q 的特性:

在一个设备中提供三轴向XYZ检测灵敏度,可选灵敏度:1.5g、2g、4g 和6g;功耗低,具有休眠模式,低压运行一般在2.2V~3.6V,能够快速启动,一般启动时间为1ms;其低噪音,封装一般为16针脚6mm x 6mm x 1.45mm无针脚型方体扁平封装(Q F N )。

2.2M M A 7 2 6 0 Q 的优点

为多功能应用提供灵活的可选量程:包括1.5g、2g 、4g 和6g ;功耗低,可延长电池使用寿命开机响应时间短,最适合电池供电手持设备的休眠模式,组件数量少-节约成本和空间噪音低、灵敏度高,具有自适应功能,频率及解析度高,提供精确的坠落、倾斜、移动、放置、震动和摇摆感应灵敏度不同应用的建议重力加速度级别自由落体检测:1g~2g 倾斜控制:1g~2g。

2.3加速度传感器应用分析

2.3.1干扰因素分析

芯片可以测试一个方向上的加速度变化。所以采用了不同的安装方式,其间要考虑到比较多的干扰因素。

一、车体行进过程中的机械振动

二、速度控制不平滑对车体运动状态的影响

三、常规情况下的误差和正常时,加速度传感器产生的输出区别大小

2.3.2安装方式分析

若安装于安装摄像头的立杆上,杆子在小车加减速的时候有比较明显的左右晃动,通过Labview 观察发现干扰过大。若安装于小车后部,由于电机自身的振动,对MEMS 产生的影响会较之前更为明显。

经测试,如果测量水平X 方向的加速度,宜将装有MMA2260的电路板装载在车前部。

图二 加速度传感器安装方式

若在直立行走车模上安装,则要测量竖直Z 方向上的加速度。

图三 直立行走车模安装示意图

Z 轴

X 轴

Y 轴

车模运行方向

X 轴

Z 轴

Y 轴

MMA7260Q信号采集模块设计加速度信号采集模块如图1所示。x,l,,z 3个相互垂直方向上的加速度由G-Gell传感单元感知,电容值经过容压变换器转换为电压值,经过增益放大器、滤波器和温度补偿以电压的形式作为输出信号拉J,经过放大滤波处理,将所需模拟信号调整至一个合适的范围,再转换为数字信号送数据处理单元。

图四加速度信号采集结构图

加速度传感器与单片机的接口电路MMA7260Q与MC9S12XSl28B的硬件接口电路如图2所示。微处理器内部包含完整的地输入缓存器、模拟开关电路、可编程增益放大器和A/D转换器以及数字滤波器,使用非常方便。G1,G2输入低电平,灵敏度达到800 mV/g。。当Mode=l时,加速度传感器处于正常工作状态。x,y,z输出端分别接RC滤波器,再通过高输出驱动运算放大器TLV4112构成电压跟随作用,输出稳定的直流电压信号。

图五MMA7260Q与MC9S12XSl28B的硬件接口电路

本设计采用CodeWamor软件与BDM作为调试工具,编程环境支持c语言和汇编语言的程序设计,大大方便了用户的程序设计,提高了系统开发效率。本设计程序代码使用C语言编写。

图六加速度程序流程图

2.6 A/D采样流程设计

本设计主要包括单片机初始化模块和实时路径检测模块。

1)单片机的初始化模块包括:I/O模块,AD模块,定时中断模块初始化。

2)实时路径检测模块:利用接受管,红外光电传感器和CCD摄像头检测特征信号,利用加速度传感器检测角度信号,将返回信号输入单片机的输入端口,程序不问断地读入输入端口的信号,结合判断语句,得出合适的PWM控制信号。

图七主程序与中断程序流程图

2.7实验测试

图中曲线为时间和AD采集到的数据之间的关系。而AD采集到的数据可以用来反映加速度的变化情况

图八装载于静止小车上时

图九 装载于运动状态不变小车上时

图十 小车角度变化时

通过测试可以看出。对于车体角度的变化,加速度传感器的值都有一定的变化。不过同时也看到车子的振动对加速度传感器也会产生一些干扰。

在识别坡道时,如果加速度传感器监控的是竖直方向的加速度,即z 方的加速度,那么在平道上时,明显竖直方向上加速度为零,在上坡后,如果忽略摩擦力,那加速度将变化为θθcos sin g 。通过加速度传感器中加速度的

-1.5g

1.5g 0

变化可以容易的辨别出平道和坡道。

2.8数字滤波算法设计

由于加速度传感器三轴之间差异和较高灵敏度,防止在运动过程中由于智能车的抖动引起的误差,对单片机采样得到的电压值进行归一化处理,最后可得到各方向传感器的相对电压值。具体实现方法:让智能车后轮转动起来,分别记录各传感器输出信号的最大值和最小值,用最大值减去最小值得到各传感器在运动过程中的输出范围。在智能车行驶过程中将各方向传感器输出的信号值减去最小值,再除以各方向传感器的输出范围即可得到其相对输出值。根据g1=g2=0,最小值对应着-1.5g,最大值对应着+1.5g。,静止时各向加速度值为0,加速度范围为-1.5g一+1.5g。

2.9路径识别规则

X-T表示智能车前后方向加速度信号,Y-OUT表示智能车左右方向加速度信号,Z-T表示智能车上下方向加速度信号.采样值经过数字滤波,由于智能车的底盘不可能保持绝对水平,车身可能会向前倾斜或者向后倾斜,所以,Y-OUT,X-UT,Z-OUT值都有5%的误差,当处于匀速直线运动时,采样值在100~110之间波动。通过加权平均近似为105,125对应+1.5g,80对应-1.5g。

3 结束语

MMA 7260Q是一种电容式加速度传感器,融合了信号调理,单极低通滤波和温度补偿技术。成本低,功耗低,测试中加速度信号稳定性与灵敏度都达到了预期的效果,从而提高了系统的控制精度,使舵机响应速度变快。

基于三轴加速度传感器在智能车的控制与路径识别的设计,相比传统的路径识别具有数据处理简单,控制精度高的特点,使舵机响应变快。可以广泛应用与无人驾驶智能车,智能仪表,机器人等高端技术领域。

4 参考文献:

[1]卓晴,黄开胜.学做智能车一挑战“飞思卡尔”杯[M]。北京航空航天大学出版社,2007。

[2] 苏维嘉,王旭辉.新型加速度传感器在倾角测量中的应用研究[J].机械研究及应用,2007。

[3]王威.HCSl2微控制器原理及应用[M].北京航空航天大学出版社,2007.10。

[4]邵贝贝.单片机嵌入式的在线开发方法的应用[M].清华大学出版社,2004.10。

[5]侯向锋,刘蓉,周兆丰.加速度传感器MMA7260在步态特征提取中的应用[J].传感技术学报,2007。

[6]薛涛宫辉邵贝贝单片机与嵌入式系统开发方法清华大学出版社2009.10。

智能小车的路径识别问题

智能小车的路径识别问题 摘要:智能小车路径识别技术是系统进行控制的前提,介绍了路径识别技术的几种分类及相应的优缺点,通过分析得出面阵CCD摄像更适合作为采集信息的工具。 关键词:智能小车;路径识别;面阵CCD摄像器件 Abstract: Smart car’s path recognition technology is the premise of the control system, this paper introduces the path of several classification and recognition technology, through the analysis of the advantages and disadvantages of the corresponding to array CCD camera is more suitable for gathering information as the tool. Key words:smart car; Path recognition; Surface array CCD camera device 0 引言:为培养大学生的自主创新设计的能力,各大高校都设置了智能车比赛,智能小车 行驶在给定的白色路面,由中间的黑色轨迹线引导,实现自主循迹功能。实现该 功能的小车主要由电源模块、循迹模块、单片机模块、舵机模块、后轮电机驱动 模块组成。路径模块一般由ATD模块,外围芯片和电路,与路面信息获取模块 组成,要能够快速准确得进行路径识别检测及相关循迹算法研究,本文就这两个 方面进行相应的分析和介绍。 1 光电传感器 1.1 反射式红外发射接收器 半导体受到光照时会产生电子-空穴对,是导电性能增强,光线愈强,阻值愈低。这种光照后电阻率变化的现象称为光电导效应[1],用于路径检测的反射式红外光电传感器基于此原理设计。该传感器一般由一个红外线发射二极管和一个光电二极管组成,可以发射并检测到反射目的光线。不同颜色的物体对光的反射率不同,当发射出的红外光对准黑色物体时,反射的红外线很少,光电二极管不能导通,反之,当对准白色物体时,光电二极管导通[2]。系统的单片机接收到光电二极管的信息根据相应的算法分析出小车此时的位置及位置偏离度,进而控制小车的方向和速度。 光电式传感器是通过对光的测量通过光电元件转化为电信号,并输出有效的输出量,由于外界光电因素的原因导致空间分辨率低是每个红外传感器存在的缺点,因此必须对原始传感器信息进行预处理,取相对值是一种有效解决外界干扰的方法,即将传感器未发射红外线时的A/D转换值进行提取,再与红外线时的转换值取相对值。文献[2]同时也提出了如何根据每个传感器的相对值与传感器位置推断出车模相对于黑色引导线的横向偏移位置。而文献[3]中所描述的方法与文献[2]有异曲同工之妙,文献[4][5]也对光电传感器的路径算法有详细科学的介绍。 1.2光敏电阻阵列传感器 假设光敏电阻阵列布置如图1所示,在智能小车的正前方布置n个光敏电阻( n=1,2,…, 11 ) ,在其质心位置依次紧密排列m个光敏电阻(m=1,2…7),首先测出路径黑色区域和白色区域的光敏电阻值,以通过d点的中心线的交点为原点建立坐标系,两排光敏之间的距离为K,光敏n和n+1且n>6或者(n和n-1且n<6)所测的值分别为黑色区域值和白色区域值,光敏6中心为智能小车的中心线通过点,而光敏d也为其通过点,连接这两点即为智能小车的中心线,则通过小车中心线并与黑色区域光敏值对应的光敏n与光敏m的连线即为所求路径信息。理论上讲,只要有两点就可以确定唯一的直线。

传感器技术在汽车智能中的应用

商丘科技职业学院毕业论文(设计) 题目传感器技术在汽车智能中的应用 系别机电工程系 专业汽车检测与维修 学生姓名 成绩 指导教师 2011年4月

目录 1汽车传感器的发展情况 (4) 1.1汽车传感器的发展历程 (4) 1.2国际发展现状 (4) 1.3国内发展现状 (5) 1.4汽车传感器的发展趋势 (6) 2汽车传感器的应用现状 (7) 2.1汽车传感器的特点 (7) 2.1.1适应性强、耐恶劣环境 (7) 2.1.2抗干扰能力强 (8) 2.1.3稳定性和可靠性高 (8) 2.1.4价格低廉 (8) 2.2汽车发动机控制系统用传感器 (8) 2.2.1温度传感器 (9) 2.2.2压力传感器 (9) 2.2.3流量传感器 (10) 2.2.4位置和转速传感器 (10) 2.2.5气体浓度传感器 (10) 2.2.6爆震传感器 (11) 2.3底盘控制用传感器 (11) 2.3.1变速器控制用传感器 (12) 2.3.2悬架系统控制用传感器: (12) 2.3.3动力转向系统用传感器 (12) 2.3.4防抱制动传感器 (12) 2.4车身控制用传感器 (12) 2.5导航系统用传感器 (13) 2.6车用雷达控制用传感器 (13) 2.7车载计算机系统中的职能监控用传感器 (13)

摘要 随着电子技术的发展,汽车电子化程度不断提高,传统的机械系统已经难以解决某些与汽车功能要求有关的问题,因而将逐步被电子控制系统代替。汽车传感器作为汽车电子控制系统的信息源,是汽车电子控制系统的关键部件,也是汽车电子技术领域研究的核心内容之一。目前,一辆普通家用轿车上大约安装几十到近百只传感器,而豪华轿车上的传感器数量可多达两百余只。预计2012年全球汽车传感器市场将从2007年的80亿美元上升到135亿美元,复合年增长率为10.8%。 汽车传感器在汽车上主要用于发动机控制系统、底盘控制系统、车身控制系统和导航系统。它的应用大大提高了汽车电子化程度,增加了汽车驾驶的安全系数。 关键词: 传感器;汽车;发展;应用

三轴加速度传感器原理应用及前景分析

三轴加速度传感器原理及应用 2012年09月09日 12:42来源:本站整理作者:胡哥我要评论(0) 三轴加速度传感器原理 MEMS换能器(Transducer)可分为传感器(Sensor)和致动器(Actuator)两类。其中传感器会接受外界的传递的物理性输入,通过感测器转换为电子信号,再最终转换为可用的信息,如加速度传感器、陀螺仪、压力传感器等。其主要感应方式是对一些微小的物理量的变化进行测量,如电阻值、电容值、应力、形变、位移等,再通过电压信号来表示这些变化量。致动器则接受来自控制器的电子信号指令,做出其要求的反应动作,如光敏开关、MEMS显示器等。 目前的加速度传感器有多种实现方式,主要可分为压电式、电容式及热感应式三种,这三种技术各有其优缺点。以电容式3轴加速度计的技术原理为例。电容式加速度计能够感测不同方向的加速度或振动等运动状况。其主要为利用硅的机械性质设计出的可移动机构,机构中主要包括两组硅梳齿(Silicon Fingers),一组固定,另一组随即运动物体移动;前者相当于固定的电极,后者的功能则是可移动电极。当可移动的梳齿产生了位移,就会随之产生与位移成比例电容值的改变。 当运动物体出现变速运动而产生加速度时,其内部的电极位置发生变化,就会反映到电容值的变化(ΔC),该电容差值会传送给一颗接口芯片(InteRFace Chip)并由其输出电压值。因此3轴加速度传感器必然包含一个单纯的机械性MEMS传感器和一枚ASIC接口芯片两部分,前者内部有成群移动的电子,主要测量XY及Z轴的区域,后者则将电容值的变化转换为电压输出。 文中所述的传感器和ASIC接口芯片两部分都可以采用CMOS制程来生产,而在目前的实际生产制造中,由于二者实现技术上的差异,这两部分大都会通过不同的加工流程来生产,再最终封装整合到一起成为系统单封装芯片(SiP)。封装形式可采用堆叠(Stacked)或并排(Side-by-Side)。 手持设备设计的关键之一是尺寸的小巧。目前ST采用先进LGA封装的加速度传感器的尺寸仅有3 X 5 X 1mm,十分适合便携式移动设备的应用。但考虑到用户对尺寸可能提出的进一步需求,加速度传感器的设计要实现更小的尺寸、更高的性能和更低的成本;其检测与混合讯号单元也会朝向晶圆级封装(WLP)发展。 下一代产品的设计永远是ST关注的要点。就加速度传感器的发展而言,单芯片结构自然是

汽车传感器识别与检测图解题目

一、填空题 1.热敏电阻按半导体电阻和温度的特性关系可分为三种:一、负温度系数热敏电阻;二、正温度系数热敏电阻;三、临界温度热敏电阻。 2.热敏铁氧体温度传感器由强磁材料制成。 3.水温传感器大多用负温度系数热敏电阻制成。 4.进气温度传感器在D型EFI系统中被安装在空气滤清器之后的进气软管上; 在L型EFI系统中被安装在空气流量计;第三种被安装在进气压力传感器内。 5.车内空气温度传感器有两个,一个安装在驾驶室内仪表板下;另一个安装在后挡风玻璃下。 6.EGR废气再循环系统主要是为了减少汽车尾气中NOx 的含量。 7.读取故障码的方法有两种方法,一、人工读取;二、专用仪器。 8.双金属片气体温度传感器用于检测进气温度,并通过真空膜片控制冷空气和热空气的混合比例。 9.空气流量传感器用来检测发动机进气量的传感器,并将其转换为电信号输入电子控制单元ECU ,以供计算喷油量和点火时间。 10.叶片式空气流量传感器由空气流量计和电位计组成。 11.空气流量传感器中有一个油泵开关,来控制燃油的喷射。 12.空气流量计内的进气温度传感器是为进气量作温度补偿。 13.叶片式空气流量传感器叶片完全关闭时,触点应处于断开状态,电阻值应为无穷大。 14.叶片式空气流量传感器叶片稍微摆动时,触点应处于闭合状态,电阻值

应为0 。 15.涡流式空气流量传感器的工作原理是在进气道内放置一个三角形或流线型涡流发生器。 16.涡流式空气流量传感器测量漩涡数量的方法有声波测量法和反光镜测量法两种。 17.涡流式空气流量传感器的检测内容主要是测量各端子电阻和电压值。 18.热线式空气流量传感器按其热线安装位置的不同可分为主流测量法和旁通测量法两种。 19.热线式空气流量传感器是利用热线与空气之间的热传递现象进行空气质量、流量测定。 20.热线式空气流量传感器还有自洁功能,当发动机熄火时,电路会把热线自动加热,以清洁流量计。 21.进气歧管绝对压力传感器的功能是根据发动机的负荷状况检测出进气歧管内压力的变化。 22.进气压力传感器按信号产生的原理可分为电压型和频率型两种。 23.半导体压敏电阻式压力传感器是利用半导体的压敏效应制成的。24.半导体压敏电阻式压力传感器薄膜周围有四个应变电阻,以电桥方式连接。 25.真空膜式进气压力传感器将膜盒的机械运动变换成电信号输出,可用、

无人驾驶汽车地传感器系统设计及技术展望

一、无人驾驶汽车传感器的研究背景和意义 无人驾驶汽车是人工智能的一个非常重要的验证平台,近些年成为国内外研究热点.无人驾驶汽车作为一种陆地轮式机器人,既与普通机器人有着很大的相似性,又存在着很大的不同.首先它作为汽车需保证乘员乘坐的舒适性和安全性,这就要求对其行驶方向和速度的控制更加严格;另外,它的体积较大,特别是在复杂拥挤的交通环境下,要想能够顺利行驶,对周围障碍物的动态信息获取就有着很高的要求。无人驾驶的研究目标是完全或部分取代驾驶员,是人工智能的一个非常重要的实现平台,同时也是如今前沿科技的重要发展方向。当前,无人驾驶技术具有重大的应用价值,生活和工程中,能够在一定程度上减轻驾驶行为的压力;在军事领域内,无人驾驶技术可以代替军人执行侦查、排雷、以及战场上危险环境中的任务;在科学研究的领域,无人驾驶技术可以实现外星球等极端环境下的勘探活动。无人驾驶车辆技术,又称智能车辆,即利用将无人驾驶的技术应用于车辆的控制中。 国外的无人驾驶车辆技术大多通过分析激光传感器数据进行动态障碍物的检测。代表有斯坦福大学的智能车“Junior”,利用激光传感器对跟踪目标的运动几何特征建模,然后用贝叶斯滤波器分别更新每个目标的状态;卡耐基?梅隆大学的“BOSS”智能车从激光传感器数据中提取障碍物特征,通过关联不同时刻的激光传感器数据对动态障碍物进行检测跟踪。牛津大学研制的无人车辆“WildCat”,不使用GPS,使用激光雷达和相机监控路面状况。我国相关技术开展较晚,国防科学技术大学研制的自主车“开路雄狮”,采用三维激光雷达Velodyne作为主要传感器,将Velodyne获取的相邻两激光数据作差,并在获得的差分图像上进行聚类操作,对聚类结果建立方盒模型。 无人驾驶车辆是一项融合了认知科学、人工智能、机器人技术与车辆工程等多学科的技术,涉及到电子电路,计算机视觉,自动控制,信号处理等多学科技术。无人驾驶汽车的出现从根本上改变了传统的“人——车——路”闭环控制方式,将无法用规则严格约束的驾驶员从该闭环系统中请出去,从而大大提高了交通系统的效率和安全性,是汽车工业发展的革命性产物。 二、无人驾驶汽车的传感器系统整体设计 无人驾驶汽车的实现需要大量的科学技术支持,而其中最重要的就是大量的传感器定位。核心技术是包括高精度地图、定位、感知、智能决策与控制等各个模块。其中有几个关键的技术模块,包含精确GPS定位及导航、动态传感避障系统、机械视觉三个大部分,其他的如只能行为规划等不属于传感器范畴,

三轴加速度传感器在跌倒检测中的应用

三轴加速度传感器在跌倒检测中的应用 前言 人们在跌倒后会面临双重危险。显而易见的是跌倒本身可能对人体产生伤害;另外,如果跌倒后不能得到及时的救助,可能会使结果更加恶化。例如,许多老年人由于其身体比较虚弱,自理能力和自我保护能力下降,常常会发生意外跌倒,如果得不到及时的救助,这种跌倒可能会导致非常严重的后果。有资料显示,很多严重的后果并不是由于跌倒直接造成的,而是由于跌倒后,未得到及时的处理和救护。当出现跌倒情况时,如果能够及时地通知到救助人员,将会大大地减轻由于跌倒而造成的危害。 不仅是对老人,在很多其他情况下,跌倒的报警也是非常有帮助的,尤其是从比较高的地方跌倒下来的时候。比如人们在登山,建筑,擦窗户,刷油漆和修理屋顶的时候。 这促使人们越来越热衷于对跌倒检测以及跌倒预报仪器的研制。近年来,随着iMEMS?加速度传感器技术的发展,使得设计基于三轴加速度传感器的跌倒检测器成为可能。这种跌倒检测器的基本原理是通过测量佩戴该仪器的个体在运动过程中的三个正交方向的加速度变化来感知其身体姿态的变化,并通过算法分析判断该个体是否发生跌倒情况。当个体发生跌倒时,仪器能够配合GPS模块以及无线发送模块对这一情况进行定位及报警,以便获得相应的救助。而跌倒检测器的核心部分就是判断跌倒情况是否发生的检测原理及算法。 ADXL3451是ADI公司的一款3轴、数字输出的加速度传感器。本文将在研究跌倒检测原理的基础上,提出一种基于ADXL345的新型跌倒检测解决方案。 iMEMS加速度传感器ADXL345

iMEMS 半导体技术把微型机械结构与电子电路集成在同一颗芯片上。iMEMS加速度传感器就是利用这种技术,实现对单轴、双轴甚至三轴加速度进行测量并产生模拟或数字输出的传感器。根据不同的应用,加速度传感器的测量范围从几g到几十g不等。数字输出的加速度传感器还会集成多种中断模式。这些特性可以为用户提供更加方便灵活的解决方案。 ADXL345是ADI公司最近推出的基于iMEMS技术的3轴、数字输出加速度传感器。ADXL345具有+/-2g,+/-4g,+/-8g,+/-16g可变的测量范围;最高13bit分辨率;固定的4mg/LSB灵敏度;3mm*5mm*1mm超小封装;40-145uA超低功耗;标准的I2C或SPI数字接口;32级FIFO存储;以及内部多种运动状态检测和灵活的中断方式等特性。所有这些特性,使得ADXL345有助于大大简化跌倒检测算法,使其成为一款非常适合用于跌倒检测器应用的加速度传感器。 本文给出的跌倒检测解决方案,完全基于ADXL345内部的运动状态检测功能和中断功能,甚至不需要对加速度的具体数值进行实时读取和复杂的计算操作,可以使算法的复杂度降至最低。 中断系统 图1给出了ADXL345的系统框图及管脚定义。

完整版三轴数字加速度传感器ADXL345技术资料

概述: ADXL345是一款小而薄的超低功耗3轴加速度计,分辨率高(13位),测量范围达±16g。数字输出数据为16位二进制补码格式,可通过SPI(3线或4线)或I2C数字接口访问。ADXL345非常适合移动设备应用。它可以在倾斜检测应用中测量静态重力加速度,还可以测量运动或冲击导致的动态加速度。其高分辨率(3.9mg/LSB),能够测量不到1.0。的倾斜角度变化。该器件提供多种特殊检测功能。 活动和非活动检测功能通过比较任意轴上的加速度与用户设置的阈值来检测有无运动发生。敲击检测功能 可以检测任意方向的单振和双振动作。自由落体检测功能可以检测器件是否正在掉落。这些功能可以独立 映射到两个中断输岀引脚中的一个。正在申请专利的集成式存储器管理系统采用一个32级先进先岀(FIFO)缓冲器,可用于存储数据,从而将主机处理器负荷降至最低,并降低整体系统功耗。低功耗模式支持基于运动的智能电源管理,从而以极低的功耗进行阈值感测和运动加速度测量。ADXL345采用3 mm X 5 mm x 1 mm,14引脚小型超薄塑料封装。 对比常用的飞思卡尔的MMZ7260三轴加速度传感器,ADXL345,具有测量精度高、可以通过SPI或I2C 直接和单片机通讯等优点。 特性: 超低功耗:VS= 2.5 V 时(典型值),测量模式下低至23uA, 待机模式下为0.1 g A功耗随带宽自动按比例变化 用户可选的分辨率10位固定分辨率全分辨率,分辨率随g范围提高而提高, ±16g时高达13位(在所有g范围内保持4 mg/LSB的比例系数) 正在申请专利的嵌入式存储器管理系统采用FIFO技术,可将主机处理器负荷 降至最低。单振/双振检测,活动/非活动监控,自由落体检测 电源电压范围:2.0 V 至3.6 V I / O电压范围:1.7 V至VS SPI (3线和4线)和I2C数字接口 灵活的中断模式,可映射到任一中断引脚 通过串行命令可选测量范围 通过串行命令可选带宽 宽温度范围(-40°C至+85 °C) 抗冲击能力:10,000 g 无铅/符合RoHS标准 小而薄:3 mn X 5 mm x 1 mm,LGA 封装 模组尺寸:23*18*11mm (高度含插针高度 应用: 机器人控制、运动检测 过程控制,电池供电系统 硬盘驱动器(HDD)保护,单电源数据采集系统 手机,医疗仪器,游戏和定点设备,工业仪器仪表,个人导航设备

传感器技术在交通检测中的应用

传感器技术在交通检测中的应用 传感器技术在交通检测领域的应用交通信息是城市交通规划和交通管理的重要基础信息,通过全面、丰富、实时的交通信息不但可以把握城市道路交通的发展现状,而且可以对未来发展进行预测。因此,交通信息采集与处理技术无论对城市的规划、路网建设、交通管理,还是对未来智能交通系统功能的实现都非常重要。 动态交通信息采集系统的目标是全面、自动、连续地从路网上获得不同地点和路段上的交通流信息。而要实现这一目标,就离不开信息传感器。 一、传感器的涵义及组成国家标准(GB7665—1987)对传感器下的定义是:能感受到规定的被测量的量,并依据一定的规律转换成可用于输出信号的器件或装置。在现代科学技术的发展过程中,非电量(例如压力、力矩、应变、位移、速度、流量、液位等)的测量技术(传感技术)已经成为各领域的重要组成部分,但传感技术最主要的应用领域是自动检测和自动控制,它将诸如温度、压力、流量等非电量变化为电量,然后通过电的方法进行测量和控制。因此,传感器是一种获得信息的手段,它获得的信息正确与否,关系到整个测量系统的精度。传感器一般是利用物理、化学、生物等学科的某些反应或原理,按照一定的制造工艺研制出来的。因此,传感器的组成将随不同的情况而有较大

差异。但是,总的来说,传感器是由敏感元件、传感元件、信号调节与转换电路和辅助电路组成。敏感元件是直接感受非电量,并按一定规律转换成与被测量有确定关系的其他量(一般仍为非电量)的元件。传感元件又称变换器,一般情况下,它不直接感受被测量,而是将敏感元件输出的量转换成为电量输出。这种划分并无严格的界限,并不是所有的传感器都必须包含敏感元件和传感元件。如果敏感元件直接输出的是电量,它同时兼作为传感元件。信号调节与转换电路一般是指把传感元件输出的电信号转换成为便于显示、记录、处理和控制的有用信号的电路。辅助电路通常包括电源,有些传感器系统采用电池供电。 二、交通检测中常见的传感器技术 1、红外线传感器红外传感器是波束检测装置的一种,有主动和被动两种形式。主动式发射器和接收器分别为半导体激光器和光电二极管,将两者对中,水平安装在车道旁边。无车通过时,接收器接收细束线状红外光,有信号输出;车辆通过时,遮断光束,接收器无输出,通-断转换是对车辆的检测信号。新型主动反射式红外检测器的原理为:在相同的红外光辐射下,反射物的大小、材料和结构不同,反射能量就不一样。 被动式红外检测没有发射器,只有接收器。接收器感受路面和车辆以红外波长为主的辐射能量。路面和车体的材料温度和表面光洁度都不一样,它们的辐射能量也必然不相等。现代红外测温的分辨率已达到0、1%℃,因此区分道路和车辆己不存在困难。

2015年传感器与检测技术(考试复习题)

传感器与检测技术 (一)选择题 1.※根据传感器的组成,能直接感受被测物理量的是(敏感元件) 2.※通过动态标定可以确定传感器的(固有频率) 3.※光导摄像管具有的功能是(光电转换功能、扫描功能、存贮功能) 4.※在人工视觉系统中,明亮度信息可以借助(A/D转换器) 5.※测量不能直接接触的物体的文档,可选用的温度传感器类型是(亮度式) 6.※实用化的水分传感器是利用被测物质的(电阻值)与含水率之间的关系实现水分含量 的测量。 7.※属于传感器静态特性指标的是(线性度)。 8.※传感器能感知的输入变化量越小,表示传感器的(灵敏度越高)。 9.※红外光导摄像管上的红外图像所产生的温度分布在靶面上感应出相应的电压分布图 像的物理基础是(热电效应)。 10.※热电偶式温度传感器的T端称为工作端,又称(热端)。 11.※在典型噪声干扰抑制方法中,将不同信号线分开并且留有最大可能的空间隔离是为了 (克服串扰)。 12.※信号的方差大,表述信号的(波动范围大)。 13.※传感器输出量的变化△Y与引起此变化的输入量的变化量△X之比,称为(灵敏度) 14.※对传感器实施动态标定,可以确定其(幅频特性)。 15.※周期信号频谱不具有的特点是(发散性)。 16.※在传感器与检测系统中,如果被测量有微小变化,传感器就有较大输出,表明该传感 器的(灵敏度高) 17.※对传感器实施静态标定,可以确定其(线性度) 18.※下列传感器,不适合测量静态力的是(压电式压力传感器)。 19.※一般来说,压电式加速度传感器尺寸越大,其(固有频率越低) 20.※为了测量多点的平均温度,可以将同一型号的热电偶的同性电极参考端相(并联) 21.※对于信号x(t)和y(t),若互相关系数P xy(t)=1,表明两信号(完全相关)。 22.※变磁通式速度传感器测转速时,若传感器转子的齿数越多,则输出的感应电动势的频 率(越高)

基于摄像头的最佳道路识别及赛车控制算法 飞思卡尔

基于摄像头的道路识别及赛车控制算法 杨运海周祺吕梁 摘要:本文探讨了摄像头在智能车道路识别中的应用,并提出了一种通用的控制算法。在准确采集图像的基础上,利用临近搜索法对有效道路信息进行快速提取,通过分析赛道信息,计算出赛道黑线的走向趋势及赛车当前位置。在充分考虑当前和过去的赛道信息的基础上,对赛道类型进行判断及分类。在综合考虑赛道类型,黑线走向及车当前位置,对舵机的转向和电机的速度进行精确控制。 关键词:图像采集;临近搜索;转向控制,速度控制 1.概述 在飞思卡尔智能车汽车比赛中,路径识别方法主要有两大类,一类是基于红外光电传感器,令一类是基于摄像头。通常,红外光电传感器安装灵活,原理简单,可靠性好,不易受环境光干扰,因而得到了广泛应用,但其对前方道路的预判距离非常有限,不适宜赛车高速行驶。另一类是基于摄像头,与光电传感器相比,其优点非常明显,能提前获取大量前方道路信息,有利于实现赛车的最优控制。但其缺点是图像采集要求有高的AD转换频率,图像处理算法复杂度高,且容易受环境光的干扰。考虑到摄像头的优点远大于其缺点,因此选择了摄像头。以下是摄像头的工作流程图: 图B-1 摄像头工作流程

摄像头控制赛车行驶方案有三大模块:图像采集、赛道信息提取、转向和速度控制。 2.图像采集 考虑到S12的运算能力,我们采用了黑白制式、320*240的CMOS单板摄像头。摄像头出来的是模拟信号,每秒有50场图像,场之间有场消隐信号,行之间有行消隐信号,经过lm1881分离后,可得到场同步信号和行同步信号,作为行中断信号。由于行中断中要采集该行的信号,对时间要求很严格,其中断优先级应比普通中断的优先级高,因此我们选择IRQ作为行同步信号输入口,PT0作为场信号输入口。此外,为保证图像不丢失,我们仅对场信号的下降沿进行捕捉。 图B-2 摄像头视频信号 按照目前车的刹车时的加速度,我们选定图像拍摄最远处为前方1米就足以对速度做出了控制。考虑到前轮到前方20cm为摄像头的盲区,故有效拍摄范围为0.8m,为了保证不丢失起跑线,每2.5cm至少拍摄一行,故一幅图像至少采集32行。为了稳妥起见,我们选择了ROW=45行。摄像头最前方拍摄的宽度为80cm,而黑线宽度为2.5cm,故一行至少采集32,为了稳妥起见,一行采集的点数定为COL=45个点。 正常情况下,S12的AD频率不能超过2M,转化一个点需要14个周期,如果不超频,一行将只能采集8个点(24M主频时)。将分频系数设为0,此时AD 频率为12M。在行采集过程中,我们通过查询方式来判断AD是否转换完成,并对AD转换时间进行了记录,发现记录到的时间恰是期间指令执行一次的时间,这表明,影响一行采集的点数已不是AD的频率,而是执行指令的时间,因此采集过程中不需要查询A TDSTA T0的标志位,只需要通过执行一定数量的NOP空操作指令延时即可。例如采集47个点需要时,每个点的时间间隔是53us/47=1.125us,对应的指令周期数为1.125*24=27。通过反编译知读写等指令本身有13个指令周期,故令加14个NOP指令即可实现。 由于摄像头的角度关系,拍摄是不均匀的,而是前方疏,近处密。为了保证采集的均匀,采集的行之间间隔的行数就不能相同。摄像头的有效行数为285行左右,具体关系如下表: 行采集计数器line 摄像头行计数器row 备注 0 0 每3行采集一行

传感器在电动汽车中的应用

网络技术、信息技术和线控技术的广泛应用,使智能交通系统(ITS)的实现也变得非常简单,还可以实现再生制动和能量回收,提高了电动汽车制动的安全性和可靠性。 电动汽车主要由电力驱动子系统、电源子系统和辅助子系统等几部分组成。其结构与传统汽车相比有了明显的变化,其传统燃油动力系统被电力驱动系统所替代。 电力驱动系统包括系统控制器、功率变换器、电动机、机械传动装置和车轮,其功用是将存储在蓄电池中的电能高效地转化为车轮的动能,并能够在汽车减速制动时,将车轮的动能转化为电能充入蓄电池。电动汽车的能量源由电池提供。 随着电动汽车的结构的变化,其内部所用的传感器也有所不同,传感器类型也相应发生变化。车内大部分的传统和机械钢性信号被柔性的电信号所取代,增加了电源系统中一些电压计电流传感器。 为了更好地控制电动机的出入电压计电流,传感器的检测精度也比以往有所提高。电动汽车中同时保留了传统汽车中辅助子系统中作用电子控制传感单元(ECU),同时对安全管理系统和车身舒适系统传感器提出更高要求,体现了汽车传感器的最先进技术。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关传感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.sodocs.net/doc/c718319543.html,。

三轴加速度传感器MMA7260

MMA7260 三轴加速度传感器使用手册 一、MMA7260QT的简介 MMA7260QT低成本微型电容式加速度传感器,采用了信号调理、单极低通滤波器和温度补偿技术,并且提供4个量程可选,用户可在4个灵敏度中的选择。该器件带有低通滤波并已做零g补偿。本产品还提供休眠模式,因而是电池充电的手持设备产品的理想之选。 二、特性: (1) 可选灵敏度(1.5g/2g/4g/6g) (2) 低功耗:500 μA (3) 休眠模式: 3 μA (4) 低压运行:2.2 V - 3.6 V (5) 6mm x 6mm x 1.45 mm的无引线四方扁平 (QFN) 封装; (6) 高灵敏度(800 mV/g @ 1.5g) (7) 快速开启 (8) 低通滤波器具备内部信号调理 (9) 设计稳定、防震能力强 (10) 无铅焊接 (11) 环保封装 (12) 成本低 三、典型应用: 三轴加速度传感器是一种可以对物体运动过程中的加速度进行测量的电子设备,典型互动应用中的加速度传感器可以用来对物体的姿态或者运动方向进行检测,比 如其中WII和iPhone中的经典应用。Nokia最新推出的手机N95利用内置的加速度传感器,让用户可以通过机身的摆动进行各种操作,包括主菜单操 作、图片浏览、切歌操作甚至进行游戏的控制等,非常全面,甚至超越了苹果 iPhone的动作感应功能的应用范畴。 基于Freescale公司MMA7260的这个三轴加速度传感器,对于普通的互动应用来讲应该是一个不错的选择, 可以用于摩托车和汽车防盗报警器,遥控航模,游戏手柄,跌倒探测,硬盘冲击保护,倾斜角度测量,电梯安全监控等需要测试加速度的地方。

飞思卡尔智能车黑线识别算法及控制策略研究

智能车黑线识别算法及控制策略研究 时间:2009-05-1811:23:07来源:电子技术作者:北京信息科技大学,机电工程学院张淑 谦王国权 0引言 “飞思卡尔”杯全国大学生智能车大赛是由摩托罗拉旗下飞思卡尔公司赞助由高等学校自动化专业教学指导委员会负责主办的全国性的赛事,旨在加强大学生的创新意识、团队合作精神和培养学生的创新能力。此项赛事专业知识涉及控制、模式识别、传感技术、汽车电子、电气、计算机、机械等多个学科,对学生的知识融合和动手能力的培养,对高等学校控制及汽车电子学科学术水平的提高,具有良好的推动作用。 智能车竞赛所使用的车模是一款带有差速器的后轮驱动模型赛车,它由大赛组委会统一提供。自动控制器是以飞思卡尔16位微控制器MC9S12DGl28(S12)为核心控制单元,配合有传感器、电机、舵机、电池以及相应的驱动电路,它能够自主识别路径,控制车高速稳定运行在跑道上。比赛要求自己设计控制系统及自行确定控制策略,在规定的赛道上以比赛完成的时间短者为优胜者。赛道由白色底板和黑色的指引线组成。根据赛道的特点,比赛组委会确定了两种寻线方案:1.光电传感器。2.摄像头。 两种寻线方案的特点如下: (1)光电传感器方案。通过红外发射管发射红外线光照射跑道,跑道表面与中心指引线具有不同的反射强度,利用红外接收管可以检测到这些信息。此方案简单易行程序调试也简单且成本低廉,但是它受到竞赛规则的一些限制(组委会要求传感器数量不超过16个(红外传感器的每对发射与接收单元计为一个传感器,CCD传感器计为1个传感器)),传感器的数量不可能安放的太多,因而道路检测的精度较低,能得到指引线的信息量也较少。若采用此方案容易引起舵机的回摆走蛇形路线。 (2)摄像头方案。根据赛道的特点斯用黑白图像传感器即可满足要求。CCD摄像头有面阵和线阵两种类型,它们在接口电路、输出信号以及检测信息等方面有着较大的区别,面阵摄像头可以获取前方赛道的图像信息,而线阵CCD只能获取赛道一条直线上的图像信息。摄像头方案的所能探测的道路信息量远大于光电传感器方案,而且摄像头也可以探测足够远的距离以方便控制器对前方道路进行预判。虽然此方案对控制器的要求比较高,但组委会提供的MC9S12DGl28(S12)的运算能力以及自身AD口的采样速度完全能够满足摄像头的视频采样和大量图像数据的处理的要求。 本文就是在摄像头方案的前提下,在实时的图像数据获取的基础上对图像信息进行数据处理,从而提取赛道中心的黑色指引线,再以此来作为舵机和驱动电机的控制依据。 1摄像头采样数据的特点 采用的黑白摄像头的主要工作原理为:按一定的分辨率,以隔行扫描的方式采集图像上的点,当扫描到某点时,就通过图像传感芯片将该点处图像的灰度转换成与灰度一一对应的电压值,然后将此电压值通过视频信号端输出,见图1。摄像头连续地扫描图像上的一行,则输出就是一段连续的电压信号,该电压信号的高低起伏反映了该行图像的灰度变化。当扫描完一行,视频信号端就输出一个低于最低视频信号电压的电平(如O.3V),并保持一段时间。这样相当于紧接着每行图像信号之后会有一个电压“凹槽”,此“凹槽”叫做行同步脉

单目视觉智能车路径识别及控制策略

单目视觉智能车路径识别及控制策略研究* 陈启迅 薛 静 (西北工业大学自动化学院 西安710072 )摘 要 研究了基于CMOS摄像头的图像采集方法,以及智能车赛道路径识别。提出了自适应差分边缘检测算法,采用取点求面积的方法提取指引线的相关参数。自适应差分边缘检测算法是在一般的边缘检测算法的基础上提出的,它能根据提取的左右边缘存在情况调整搜索范围、阈值,以及差值的求取方法。使用海伦公式求指引线上所取的三角形的面积, 据此提出了1种基于三角形面积的智能车速度控制方法,此方法以指引线上的三角形面积反映赛道的弯曲程度,并以此作为智能车速度控制的控制变量。 关键词 自适应差分边缘检测;智能车;图像采集;海伦公式 中图分类号:TP301.6 文献标志码:A doi:10.3963/j .issn 1674-4861.2012.05.006收稿日期:2012-07-04 修回日期:2012-09- 07 *西北工业大学研究生创业种子基金项目( 批准号:Z2011047)资助第一作者简介:陈启迅(1984),硕士生.研究方向:控制工程、系统工程.E-mail:cq x062014@126.com0 引 言 智能车辆系统是1个拥有感知环境能力,具备规划决策能力以实现自动行驶,并且可以实现多等 级辅助驾驶等功能于一体的综合系统[ 1 ]。与很多学科有着密切关系,如计算机、控制、通信、图像处 理、人工智能、信号处理等,同时也是多种传感器融 合的载体。因为它一般集中了摄像机、GPS、超声波雷达、激光雷达等多种传感器来感知周围环境, 并根据多传感器融合所获得的道路、车辆状态和障碍物信息进行控制车辆的转向和速度,从而使得车辆安全、可靠、稳定地在道路上行驶,因此智能车辆 是多学科综合于一体的高度智能化的产物[ 2- 3]。文献[4] 中介绍了一般差分边缘检测算法。文献[5 ]中描述了基于序列图像运动分割的车辆边界轮廓提取算法。文献[6]中提到了道路裂纹线检测中的脊波域图像增强算法。选用功耗低、前瞻性好的CMOS摄像头作为路径识别视觉传感器,采用自适应差分边缘检测算法有效地提取道路指引线,此算法具有很高的灵活性和适应能 力, 能够有效地降低干扰。进一步使用取点求面积的方法获取指引线参数。 1 视觉图像采集 1.1 硬件实现 CMOS视觉传感器图像采集电路[7] 见图1 ,LM1881可以实现视频同步信号的分离。2脚为视 频信号输入端;3脚和5脚分别为场同步、行同步信号输出端;7脚为奇偶场同步信号输出端,在此不使用。视频信号同时接入微处理器AD转换口 。 图1 视频同步信号分离电路 Fig.1 The circuit for separation of sy nchronizationsig nal of video1.2 软件实现 视频信号采集流程[8] :首先等待场信号的到 来;然后延时,跳过场消隐,约1.44ms;等待行同步信号;判断采集行数是否满足要求,满足则采集完成,否则延时,跳过行同步信号和消隐信号;对1行视频信号进行连续采集; 延时,跳过若干行视频信号,再跳回到等待行同步信号,直至完成,就能采集到1幅有效而完整的视频图像了。 2 自适应差分边缘检测算法 阈值分割法[9- 10]在结构化道路上是提取指引 4 2交通信息与安全 2012年5期 第30卷 总171期

汽车智能化电子传感器技术研究

汽车智能化电子传感器技术研究 摘要:本文为进一步了解汽车智能化电子传感器技术的应用情况,特以此为题,展开了详细地探讨与分析。 关键词:汽车智能化;电子传感器技术;应用效果

1.汽车智能化对电子传感器的具体要求 1.1操作系统的稳定性 传统的电子传感器因其集成性较低且反应速度慢等多种问题导致其无法满足现代化汽车行业发展的实际需求,在这种情况下,智能化电子传感器应运而生。其不但在硬件上实现了对零部件的集成,使得整个汽车操作系统更加的整体化与全面化,同时还可以在接收到信息后短时间内做出反应,提高了汽车操作系统迅速、高效、稳定等多项应用需求,为我国汽车行业的发展奠定了良好的基础。 1.2提高了汽车元器件与电路的集成化 因原有的汽车电子传感器为了增加自身的功能性,多会以多个零部件来满足汽车操作系统对于电子传感器的各项需求,但是,这样一来便会占据汽车控制系统中较大的空间。而智能化电子传感器的应用其在一定程度上实现了汽车元器件与电路的集成,使得微型电子传感器内包含了多种功能,这在一定程度上使得汽车电子控制系统与受控构件能够有效结合起来,共同为汽车运行的安全稳定性提供重要保障。 1.3提高了汽车控制单元操作的智能化 因为汽车的安全气囊只有在出现意外的情况下才会应用,在绝大多数情况下其一直是处于备用状态,但是,即使如此也不可忽视安全气囊在汽车运行安全性中所起到的重要作用。而在日常生活中,多数汽车驾驶人员并不会对安全气囊的应用效果进行多次检测与维护,所以极有可能会在出现意外时因未及时发现并维护安全气囊的损坏部分而对驾驶人员的生命财产安全造成无法挽回的伤害。在这种情况下,智能化电子传感器的应用可实现对汽车特殊部件的自检与自我维护,

三轴加速度传感器的步态识别系统==

三轴加速度传感器的步态识别系统 近年来随着微机电系统的发展,加速度传感器已经广泛应用于各个领域并拥有良好的发展前景。例如在智能家居、手势识别、步态识别、跌倒检测等领域,都可以通过加速度传感器实时获得行为数据从而判断出用户的行为情况。 目前许多智能手机都内置多种传感器,通过预装软件就能够获得较精确的原始数据。本文提出一种基于三轴加速度传感器,用智能手机采集用户数据,对数据进行处理及特征提取获得特征矩阵并分类识别的方法,有效地识别了站立、走、跑、跳四种动作。 人体动作识别处理过程主要包含数据采集、预处理、特征提取和分类器识别数据采集数据采集和发送模块安装在用户端,另一个数据接收模块接在电脑终端上。 由于我们制作的采集模块很轻、很小,所以方便佩戴。当用户运动时,三轴加速度传感器会将据采集并通过无线方式发送给电脑接收模块,再通过电脑上的软件部分对采集到的数据进行分析处理,将结果输出,显示用户的实时状态。 本文使用的加速度传感器数据来自于共计60个样本。传感器统一佩戴于腰间。本文选取了其中一位采集者的数据用于主要分析研究,其余两位采集者的数据则用于验证由第一位采集者数据研究所得的结论,这样的做法既减小了数据处理的繁杂又能保证最终结果的准确性。预处理应用程序设置的采集时间间隔为0.1s,对每一个动作的采集时间为25s。考虑到用户在采集数据一开始与将要结束时的动作

不平稳可能对数据带来较大影响,前2s2s采集的数据将被舍弃不予分析。因原始加速度信号一般都含有噪声,为了提高数据分析结果的准确性,通常在原始加速度信号进行特征提取前对其进行去躁、归一化、加窗等预处理。通过加窗处理,不仅规整了加速度信号的长度,而且方便研究人员按照需要选择适宜的信号长度,这样有利于后续的特征提取。 许多研究人员使所示。研究人员采集的加速度传感器信号由于采集者的动作力度不同造成加速度信号的幅度差异较大,这会对之后的分类识别造成负面影响,归一化技术可以调整加速度信号的幅度,按照一定的归一化算法可以使加速度信号的幅度限定在某一数值范围内,文献[2]在识别跑、站立、跳和走路这四种动作时对四种动作的加速度信号进行了归一化;文献[3]在进行手势识别时对手势动作的加速度信号进行了归一化处理。特征提取特征提取和选择模块的作用在于从加速度信号中提取出那些表征人体行为的特征向量,处于预处理模块和分类器模块之间,是人体行为识别过程中的一个重要环节,直接影响分类识别的效果。特征的提取方法具有多样性,对于不同的识别目的,研究人员会提取不同的特征,例如为了识别分类站立和跑步,研究人员通常会选取方差和标准差这类能够反映加速度信号变化大小的特征,而为了识别分类走路和跑步,研究人员通常会选取能量和均值这类能够反映加速度信号大小的特征。使用不同的特征表征行为会对分类识别效果产生不同的影响,因此寻找更加有效的特征一直是研宄人员关注的一个课题。通过查阅大量的文献,大致可以把加速度信

打印机传感器造成的故障与检测

打印机传感器造成的故障与检测 随着现代办公自动化程度的提高,打印机已经成为一个不可缺少的角色,并且智能化程度也越来越高。其实,之所以能够实现打印智能化,一方面靠的是主控芯片,另一方面分布打印机各个重要部位的传感器也起到至关重要的作用,这些传感器负责向打印机及电脑反馈当前打印机的工作状态及错误信息,从而保证了打印机的正常工作。 传感器作为打印机的一个重要部件,由于它所配合的机构需要频繁地动作,加之打印机工作时产生的振动、不规范的操作、灰尘和打印过程中产生碎屑等的影响,常常会导致打印机内部传感器失效,使之不能正常传感打印机当前的工作状态,造成打印异常。 下面我们就以hp3748打印机为例,来给大家讲解一下打印机内部各种传感器的作用及其常见故障现象。 “工欲善其事,必先利其器”,先准备好工具:一把小内六角扳手,梅花口螺丝刀(图1)。准备好后就可以正式开工了!Let's Go! 图1一、门限传感器 门限传感器(图2)说通俗点就是一个弹簧开关,其作用是检查打印机上盖的开合状态。当打印机上盖关闭时,上盖的重量就会通过一根传动杆迫使传感器开关闭合,打印机进入正常工作状态。上盖打开时,在弹簧弹力作用下,传感器开关断开,同时其状态也被发送给打印机,打印机接收到信息后驱动喷头电机,

使之移动到更换墨盒的位置。因为这个传感器属于机械传感器,自身有一定的寿命,所以频繁地开合上盖,可能会导致传感器出现开路而损坏,从而使喷头始终处于墨盒更换位置,电源灯闪烁,电脑提示打印机上盖未关闭,引发打印机不能正常工作。如果传感器出现短路故障的话,虽然打印机能正常工作,但是我们打开上盖想更换墨盒时,喷头就不会移动,导致无法更换墨盒。

浅谈智能传感器在汽车电子中的应用

浅谈智能传感器在汽车电子中的应用 摘要:世界各国都在车用传感器硬件的基础上,努力用软件来解决汽车电气干扰大、环境差、温度高、温度梯度大、污染等问题造成的对汽车参数测量的影响。智能传感器精度高、量程覆盖范围大、输出信号大、信噪比高、抗干扰性能好,有的还带有自检功能,在汽车中应用也越来越广泛。 关键词:智能传感器汽车电子传感器 0 引言 在信息社会的今天,人们对信息的提取、处理、传输以及综合等要求愈加迫切,传感器作为信息提取的功能器件,在国防、科技、工业、农业以及生活各个领域占有重要地位和作用,传感器技术的开发和应用水平已经成为代表一个国家工业发展的标志之一。汽车传感器作为汽车电子控制系统的信息源,是汽车电子控制系统的关键部件,也是汽车电子技术领域研究的核心内容之一。应用于汽车上的传感器有很多种,目前主要有:温度传感器、压力传感器、流量传感器、位移传感器以及速度、加速度传感器等等。 1 智能化传感器概述 智能传感器是装有微处理器的、能够执行信息处理和信息存储、还能进行逻辑思考和结论判断的传感器系统。智能传感器是传感器集成化与微处理器结合的新一代电子器件,具有自动补偿、自动校准、自动诊断、数据处理、通信等功能。智能传感器能对信息进行处理、分析和调节,能对所测量数值及其误差进行补偿,能借助软

件对非线性信号进行线性化处理,还能利用软件实现非线性补偿或其它更复杂的环境补偿。 对于汽车电子器件而言,大多元件处于非常恶劣的运行环境中,而且各不相同。诸如工作状态时的高温、停车等待时的低温、电磁干扰以及高速运动是的风噪和高强度的冲击等。所以要求电子元器件和电路要有高稳定、对环境的自适应、自补偿调整的能力。 智能传感器与普通传感器相比测量的数据更加准确,这是由于它对测量的数据量可进行修正,这样就减少了环境因素,例如温度、湿度、风噪等的影响。它的最大优点在于能够充分感知驾驶员和乘客的状况、交通设施以及周边环境的信息,能够判断驾驶员和乘客是否处于最佳状态、车辆和人是否会发生危险,并及时采取相应措施。它的不同之处就在于是利用软件来解决问题的,而这些问题又是普通的传感器中硬件难以解决的问题。 2 智能传感器在汽车电子中的应用 2.1 汽车制动系统 对于汽车必须具有平稳、安全驾驶的考虑,汽车制动系统尤为关键。汽车防抱死制动系统(anti lock break system;abs),控制防止汽车制动时车轮的抱死,保证车轮与地面之间达到最佳滑动率(5%-20%)。这样汽车无论在何种路面上制动时,自动调节作用在车轮上的制动力矩,轮胎与地面之间都能达到纵向的峰值附着系数和较大的侧向附着系数,从而可以保证车辆制动时不会发生车轮抱死抱滑、失去转向能力等不安全的情况,减小制动距离,提高了汽

相关主题