搜档网
当前位置:搜档网 › 软土强度与变形特性的微细观分析

软土强度与变形特性的微细观分析

软土强度与变形特性的微细观分析
软土强度与变形特性的微细观分析

第四章软土强度与变形特性的微细观分析

§4.1 微观测试仪器简介

§4.1.1环境扫描电子显微镜(ESEM)

借助电子显微技术技术,可直接观察到土体的微观结构,从微观层次解释土体的工程性质。环境扫描电子显微镜(ESEM)是现阶段研究土体微结构重要的、最常用的显微观察仪器,该仪器能对含水土样直接观察,不需干燥和镀膜处理,可在接近天然原状条件下观测土体的微观结构图像,是一种很有前景的土体微观试验研究手段。扫描电子显微镜(ESEM)的工作原理如图4-1所示;图4-2所示为荷兰FEI 公司生产的型号为Quanta 200的环境扫描电子显微镜,其主要技术参数如下:

1 分辨率:

二次电子像:

高真空模式 1.2nm @ 30kV; 3.0nm @ 1kV

低真空模式 1.5nm @ 30kV; 3.0nm @ 3kV

环境真空模式 1.5nm @ 30kV

背散射电子:

高真空和低真空模式: 2.5nm @ 30kV

扫描透射STEM探测器: 0.8nm @ 30kV

图4-1 扫描电镜原理示意图

2 加速电压200V ~30kV,连续可调

3 放大倍数:12倍~100万倍

4 电子枪:高亮度肖特基热场发射电子枪,4 极电子枪单

5 最大电子束流:100nA

6 样品室压力最高达4000Pa

7 样品台:全对中样品台,5轴马达驱动

X≥100mm,Y≥100mm,Z≥60mm,T≥-5~+70°(手动)R=360°连续旋转,最大样品尺寸: 左右284mm。

图4-2 Quanta 200环境电子扫描显微镜

图4-3所示为膨润土粉末在不同放大倍数的电子扫描图片。

(a)200倍

(b)500倍

(c) 2000倍

(d)4000倍

软土地基工程中存在的问题及处理方法

浅析软土地基工程中存在的问题及处理方法 摘要:软土在荷载作用下,极易产生工程问题,在勘察过程中切不可马虎松懈,本文从软土特性出发,分析了软土工程地基中存在的问题及处理措施,并作出了勘察方法探讨。 关键词:软土地基工程问题勘察方法 中图分类号:tu4文献标识码:a 文章编号: 在公路铁路的修建施工过程中,经常会遇到物理力学性质差且分布面积较大的第四系软土类区域,软土体是自然界的历史产物,它有独特的地域特征,地基条件差别巨大,根据相邻建筑物或相邻地域的地质资料来设计,一点微小的差异就可能给影响工程质量,给工程造成巨大的经济损失,所以应引起重视,我们施工中充分利用信息,及时调整设计参数和工艺,避免了施工期间可能引起的附加沉降,体现了当今勘察设计施工监测为一体的全过程综合岩土工程实践理念。 一、软土的特征及其危害性 软土指的是所含水量大于液限天然孔隙比大于或等于1.0的细粒土,处于软朔或流朔状态。我国的软土主要分布在东南沿海及各大江大河的入海三角洲冲击平原地区。内陆主要是湖泊或山谷冲击而成,有机质含量较高,分布范围比较小。主要包含饱和软粘土包括泥炭、泥炭质土,淤泥、淤泥质土等,软土一般具触变性、流变性、高压缩性、低强度、低透水性、不均匀性等特征,在工程应用上的

表现为地基沉降量大,可以达到数十厘米甚至到数百厘米;地基沉降时间长,达数十年甚至到数百年,特别严重的是沿海地带的软土地基,因为厚度过大,所以固结速度比较慢;地基不均匀沉降,大多是由上部结构的特性和荷载差异所引起;地基抗剪强度低。软土上述的特点,容易影响公路铁路工程质量,引发一些地质灾害,其危害性主要表现为:软土地基不均匀和过大沉降将严重影响路面的平整度,牵制了道路通行能力和安全度;路基路堤还可能会随着软土地基一起产生滑动现象,从而导致路面的整体遭到破坏,鉴于软土地基潜在的种种危害性,各部对于软基的处理标准要求高,也更高地要求了地质勘察在软土地基工程的深度和广度。 二、软土地基工程中存在的问题 由上所述出的软土地基固有的特性以及工程在勘察、设计、施工、管理使用各程序阶段的失误,造成了所建造在软土地基上建筑物的结构损伤工程倒塌等一系列工程事故,大致可分为以下几种情况:(一)在地质勘测时深度不够,没有查清楚软土土层的分布、厚度以及一些暗沟暗塘的具体情况,造成建筑物产生严重不均匀沉降,结构构件开裂,甚至工程不负荷载倒塌的事故。 (二)由于地质勘察不深入,不细致,未取得的地质资料不具可靠性,以致错误的将软土判断为好的地基土,使设计也随之错误,产生的不均匀沉降使建造物受力结构变化,裂缝倒塌,引起工程事故。

水泥稳定土 稳定砂砾的区别

水泥稳定土、稳定砂砾、有什么区别? 水泥稳定土、稳定砂砾、稳定粒料有什么区别? 一、水泥稳定土作为道路路基的主基层,它的强度是比较稳定的,且受水分的影响不大,其强度越高,稳定 土经过水泥稳定后能获得重要的技术指标,如抗压强度,抗弯拉强度和承载比等数值。它的强度来源既取决接的。从改变土的固有性质,使土具有新的,稳定的质量方面来讲,它只起着量变的作用。 二、水泥稳定砂砾基层是在砂砾中掺加一定剂量的水泥和水,经拌和得到的混合料,在压实、养生后形成具有较就地取材、施工简便、造价较低的优点。水泥剂量一般为水泥砂砾总质量的3%至5%左右,砂砾质量较差的可 三、水泥稳定碎石是以级配碎石作骨料,采用一定数量的胶凝材料和足够的灰浆体积填充骨料的空隙,按嵌的初期强度高,并且强度随龄期而增加很快结成板体,因而具有较高的强度,抗渗度和抗冻性较好。水稳水泥用面坚实,是高级路面的理想基层材料。 水稳混合料组成设计 采用水泥、粉煤灰、稳定碎石、砂、石屑等筑路材料作为水泥稳定碎石基层。 首先,实验室通过经过一定数量的原材料试验,进行配合比设计、击实实验,确定最大干密度和最佳含水量 附: ”基层(底基层)施工技术 基层可分为无机结合料稳定类和粒料类,前者又称为半刚性或整体性型,包括水泥稳定类、石灰稳定类和综合稳半刚性基础材料的显著特点是:整体性强、承载力高、刚度大、水稳性好,而且比较经济。在我国,半刚性材料”半刚性基层材料的强度形成原理及缩裂特性 ”石灰稳定类材料的强度形成原理 包括石灰土、石灰砂砾土、石灰碎石土。其强度形成主要指石灰于细粒土的相互作用。石灰加入土中,发生强烈变化主要表现在结晶结构的形成,从而提高土的强度与稳定性。

软土

浅谈软土及软土地基 摘要:我国幅员辽阔,地质地貌条件复杂多样,大量的高等级公路要穿过软土地区,然而,软土是较难处理的区域性土之一,地质条件较为复杂,路堤的沉降和稳定是一个极其突出的问题。因此,对路基的沉降变形预测具有重要的实际工程意义。本文就软土的物理力学特性以及对软土地区一些传统的地基处理方法略谈一些体会。 关键词:软土物理力学特性软土地基 一、软土的定义 软土泛指淤泥及软泥质土,是第四纪后期于沿海地区的滨海相、泻湖相、三角洲相和溺谷相;内陆平原或山区的湖相和冲击洪击沼泽相等静水或非常缓慢的流水环境中沉积,并经生物化学作用形成的饱和软粘性土。它富含有机质,天然含水量w大于液限wL,天然孔隙比e大于或等于1.0。 其中: 当e≥1.5时,称淤泥; 当1.5>e≥1.0时,称淤泥质土; 当5%≤土中有机质含量≤10%,称有机质土; 当10%<土中有机质含量≤60%,称泥炭质土; 当土中有机质含量>60%,称泥炭。 二、软土的物理力学特性 1、高含水量和高孔隙性(决定其压缩性和抗剪强度的重要因素) 软土的天然含水量总是大于液限,一般为50%~70%,山区软土有时高达200%。天然含水量随液限的增大成正比增加。天然孔隙比在1~2之间,最大达3~4。其饱和度一般大于95%。 2、渗透性低(对地基强度有显著影响) 软土的恨透系数一般在i*10-4~i*10-8cm/s之间,而大部分滨海相和相软土地区由于该土层中夹有数量不等的薄层或极薄层粉、细沙、粉土等,故在水平方向的渗透性较垂直方向要大得多。 由于该类土渗透系数小、含水量大且呈饱和状态,这不但延缓土体的固结过

程,而且在加荷初期,常易出现较高的空隙水压力,对地基强度有显著影响。 3、压缩性高 软土均属高压缩性土,其压缩系数a0.1~0.2一般为0.7~0.5Mpa-1,最大4.5pa-1,他随着土的液限和天然含水量的增大而增高。 4、抗剪强度 软土的抗剪强度小且与加荷速度及排水固结条件密切相关。因此要提高软土地基的强度,必须控制施工和使用时的加荷速度,特别是在开始阶段加速不能过大,以便每增加一级荷重与土体在新的受荷条件下强度的提高相适应。 如果相反,则土中的水分将来不及排出,土体强度不但来不及得到提高,反而会由于土中空隙水压力的急剧增大,有效应力降低,而产生土体的挤出破坏。 5、较显著地触变性和蠕变性 一般用灵敏度St指标定量评价软土的触变性(详见课本p74)。 软土的蠕变性是比较明显的。表现在长期恒定应力作用下,软土将产生缓慢剪切变形,并导致抗剪强度的衰减;在固结沉降完成之后,软土还可能继续产生可观的此固结沉降。许多工程现实表明:当土中孔隙水压力完全消散后,建筑物还会继续沉降。 三、软土地基 1、定义 明确定义软土地基是困难的。通常把抗剪强度低、压缩性高、透水性差的地基以及在动力荷载作用下容易液化的地基称为软土地基。 2、软土地基的稳定性评价 遇下列情况时应评价地基的稳定性。 ①当“建物”离河岸、池塘、海岸等边坡较近时,应评价软土侧向挤出或滑移的可能性。 ②当地基受力范围内有顶面倾斜的基岩或硬土层,应评价软土沿该面产生滑移的可能性 ③当场地位于强震区,应分析场地和地基的地震效应、饱和砂土、粉土液化判别、场地稳定性和震陷的可能性评定。 ④水文地质条件变化较大时,分析其对地基和稳定性的影响。

软土蠕变特性试验研究

第28卷 第5期 岩 土 工 程 学 报 Vol.28 No.5 2006年 5月 Chinese Journal of Geotechnical Engineering May, 2006 软土蠕变特性试验研究 周秋娟,陈晓平 (暨南大学力学与土木工程系,广东 广州 510632) 摘要:针对广州南沙原状软土进行了一系列室内试验研究,包括三轴压缩试验、三轴蠕变试验和一维固结试验,系统地探讨了软土的蠕变变形特性。结果表明:软土的蠕变特性与多种因素有关,包括土体的初始固结度、土层排水条件、加荷比等;次固结系数与固结压力的关系取决于土体的先期固结压力和试验中的加荷比。 关键词:软土;蠕变;次固结;试验 中图分类号:TU41 文献标识码:A 文章编号:1000–4548(2006)05–0626–05 作者简介:周秋娟(1981–),女,浙江人,硕士研究生,从事土力学与基础工程工作。 Experimental study on creep characteristics of soft soils ZHOU Qiu-juan, CHEN Xiao-ping (Department of Mechanics and Civil Engineering, Jinan University, Guangzhou 510632, China) Abstract: Based on a series of laboratory tests with undisturbed samples obtained from Nansha of Guangzhou, including triaxial compression test, triaxial creep test and one dimensional compression test, creep deformation characteristics of soft soils were researched. It was shown that there were many factors impacting on the creep characteristics of soils, such as the initial degree of consolidation, drainage condition, load ratios and so on; and the relationship between coefficient of secondary consolidation and consolidation pressure depended on preconsoildation pressure and load ratios in the test. Key words: soft soil; creep; secondary consolidation; experiment 0 引 言 土体变形是土体在外力作用下,土颗粒趋向新的、较稳定的位置移动而产生的,一般可分为固结变形和次固结变形。固结是土体受外力作用后由内部应力变化引起的体积变化。次固结是指由土骨架蠕动产生的变形,主要指超孔隙水压力消散后,有效应力基本稳定的条件下,因土粒表面的结合水膜蠕变及土颗粒结构重新排列等引起的较为缓慢的变形,因而可以认为次固结变形即属于蠕变变形,与时间密切相关。陈宗基认为造成次固结变形的时间效应的机械作用有2个主要的过程:①因剪应力而产生的滞留和因球应力而产生的体积蠕变,②在这2个过程中产生的土骨架硬化[1]。 对于饱和软土而言,应力、应变受时间的影响是很明显的。根据应力状态的不同,其变形速率有时是极其缓慢的,最后趋于停止;有时则逐渐增长,最后导致破坏。近年来,随着软土工程的迅速发展,关于软土的变形时效特性的研究取得了很多的成果[2-6]。本文在已有研究成果基础上,重点探讨不同应力和排水条件下土体蠕变变形的变化规律,以对控制软土工程的工后沉降提供理论依据。1 试验方案 1.1 土的基本物理特性 试验选取珠江入海口处典型土样,根据土体的外观特点,可知该地区在6.4~8.4 m范围内为淤泥混砂层,有些土样中还混有贝壳等杂质。其基本物理性质指标如表1。 1.2 三轴压缩试验 常规三轴试验在TSZ30-2.0型应变控制式三轴仪上进行。试验采用φ= 39.1 mm,H = 80 mm的原状土样。为了探讨土体初始固结度U0和排水条件对应力–应变特性的影响,在三轴试验中分别进行了不固结不排水(UU)试验、施加围压σ3使土体达到固结度U为25%、50%、100%的固结不排水剪(CU)试验和固结排水剪(CD)试验。 1.3 三轴蠕变试验 三轴蠕变试验在应力控制式三轴剪切渗透试验仪─────── 基金项目:广东省自然科学基金资助项目(021145);广东省科技计划项目(2004B32801003);广东省水利厅科技计划项目(2003-13) 收稿日期: 2005–03–21

非饱和土的强度及变形特性

目录 1概述 2非饱和土基本特性 3应力状态变量 3.1吸力 3.2有效应力 3.3应力状态变量. 4强度理论 4.1Mohr一Coulomb准则 4.2非饱和土的破坏准则 4.3非饱和土抗剪强度公式的讨论 5变形特性

岩土工程中的非饱和土比比皆是,主要是自然干燥土和压实土。在地基工程、边坡工程和洞室工程中尤为常见,因此研究非饱和土的性质实属必要。非饱和土力学涉及的一系列工程,如土坝的建造与运行、环境条件变化情况下的天然土坡、竖直挖方的边坡稳定、膨胀土造成的地面隆起及湿陷性土中的许多实际问题,均要对土的渗流、体变和抗剪强度特性有所了解才能解决。非饱和土是由固相、液相和气相组成的复合介质,其性质远比饱和土复杂。目前对非饱和土的研究还停留在初步阶段,对非饱和土力学涉及的实际问题还缺乏建立在非饱和土三相特性基础之上的严密理论和正确解决方案。非饱和土分布广,并且应用广,但对其特性研究不足的矛盾使得对非饱和土问题的解决成为日益紧迫的研究课题。 1 概述 1936年召开的第一届国际土力学和基础工程会议为建立饱和土力学的原理和公式提供了论坛,这些原理和公式在随后几十年的研究工作中始终起着关键性的作用。在同一会议上讨论了有关非饱和土性状的许多论文,但遗憾的是没有出现适用于非饱和土的类似的原理和公式。随后的岁月非饱和土理论发展缓慢(Fredlund,1979),一直到50年代后期,解释非饱和土性状的若干概念才在英国帝国大学建立起来(Bishop,1959)。 20世纪60年代前,非饱和土力学研究的主要特点是以毛细作用为主要研究内容。在30年代进行大规模城市建设的时候,兴建了大量与城市建设有关的灌溉工程和交通工程,使工程师感到困难的就是地下水位以上土体中水的流动问题。他们使用了毛细作用来描述水从地下水位向上的流动,以后对土中毛细水流动的研究至少长达20年。在1936年的国际会议上,Ostashev 提出了两篇有关土中毛细作用的论文,他指出了土中存在毛细作用;Boulichev 介绍了计算毛细水压力和毛细水高度的方法。Terzaghi 在《理论土力学》中总结和吸收Hogentogle 和Barder 的研究成果,假定土的孔隙率n 和渗透系数k 不变,提出毛细水上升到某个高度z 所需要的时间t :log nh h z t k h z h ????=- ???-???? 式中:h ——毛细水的最大高度。 这一阶段研究的主要精力都在毛细水,局限性明显,因此研究进展缓慢,所取得的成功有限。 20世纪60年代到80年代末,这一阶段研究的特点是将饱和土力学有关理论借用到非饱和土力学研究中,以Bishop 和Fredlund 为代表。Hogentogle 和Barder 就已经认识到毛细水的应力状态对非饱和土强度的影响,并认为毛细水的流动严格符合公认的表面张力、重力和水力学原理;Bernatizk 也已经观测到水-气弯液面会使土的强度增加,并建议用土的无侧限抗压强度来研究毛细张力;Black 和Crony (1957),Williams (1957),Bishop (1960)等和Aitchison (1967)将饱和土有效应力原理引进非饱和土中,提出非饱和土有效应力的概念,并用其解决非饱和土的强度问题;Coleman (1962),Matyas 和Radhakrishna (1968),以及Fredlund 和Morgenstern (1977)用两个独立的应力状态变量来研究非饱和土的力学性质。这阶段对非饱和土强度问题取得一些公认的结果,对变形问题还处于探索阶段。 20世纪80年代后,对非饱和土的变形进行了更深入地研究。Alonso(1990)和Toll(1990)分别提出了土的弹塑性本构模型;Alonso(1992)根据非饱和土(膨胀土)的变形特性提出了描述膨胀土体积和剪切变形的本构模型;陈正汉(1998)

第三章材料力学的基本概念第六节杆件变形的基本形式

第三章材料力学的基本概念 第六节杆件变形的基本形式 有下列说法,________是错误的。 A.杆件的几何特征是长度远大于横截面的尺寸 B.杆件的轴线是各横截面形心的连线 C.杆件的轴线必是直线 D.A+B+C 下列说法________是正确的。 A.与杆件轴线相正交的截面称为横截面 B.对于同一杆件,各横截面的形状必定相同 C.对于同一杆件,各横截面的尺寸必定相同 D.对于同一杆件,各横截面必相互平行 下列说法________是正确的。 A.与杆件轴线相平行的截面称为横截面 B.对于同一杆件,各横截面的形状必定相同 C.对于同一杆件,各横截面的尺寸不一定相同 D.对同一杆件,各横截面必相互平行 不管构件变形怎样复杂,它们常常是由________种基本变形形式所组成。 A.3 B.4 C.5 D.6 不管构件变形怎样复杂,它们常常是轴向拉压、________、扭转和弯曲等基本变形形式所组成。 A.位移 B.错位 C.膨胀 D.剪切 不管构件变形怎样复杂,它们常常是轴向拉压、剪切、________和________等基本变形形式所组成。 A.错位/膨胀 B.膨胀/弯曲 C.弯曲/扭转 D.扭转/位移 在一对大小相等、方向相反的沿杆件轴线的外力作用下使杆件产生伸长变化的变形,称为________。 A.弯曲变形 B.扭转变形

C.轴向拉伸变形 D.剪切变形 在一对大小相等、方向相反的沿杆件轴线的外力作用下使杆件产生缩短变化的变形,称为________。 A.弯曲变形 B.扭转变形 C.轴向压缩变形 D.剪切变形 受拉压变形的杆件,各截面上的内力为________。 A.剪力 B.扭矩 C.弯矩 D.轴力 轴力的单位是________。 A.牛顿 B.牛顿/米 C.牛顿·米 D.牛顿/米2 关于轴力,下列说法中________是正确的。 ①轴力是轴向拉压杆横截面上唯一的内力;②轴力必垂直于杆件的横截面;③非轴向拉压的杆件,横截面上不可能有轴向力;④轴力作用线不一定通过杆件横截面的形心。 A.①② B.③④ C.①③ D.②④ 受拉压变形的杆件,各截面上的应力为________。 A.正应力 B.扭应力 C.剪应力 D.弯应力 受拉压变形的杆件,各截面上的内力为________。 A.正应力 B.剪应力 C.拉压应力 D.轴力 受拉压变形的杆件,各截面上的应力为________。

水泥土抗压强度经验公式研究.

水泥土抗压强度经验公式研究 许宏发1 马军庆2 华中民1 赵佩胜 1 (1. 解放军理工大学工程兵工程学院南京市210007 2. 武警工程学院建筑工程系西安市710086 提要水泥土目前被广泛的应用于水利工程、建筑工程以及道路工程, 但由于水泥土抗压强度的影响因素很多, 需要作大量的实验, 费时费力。该文在前人试验工作的基础上, 通过曲线拟合方法, 定量分析了水泥土抗压强度与土质、水泥掺入量、龄期等的关系, 得到了水泥土强度经验公式。该公式在南通人防大厦基坑锚拉水泥土挡墙支护设计中得到验证, 具有一定的理论意义和实用价值。 关键词水泥土抗压强度水泥土挡墙经验公式基坑设计 Study on Empirical Formula of 2Xu H ong fa 1 Ma Junqing 2 1 1 (1. Engineering C of Science &T echnology 2. ,Engineering C ollege of Armed P olice F orce

Abstract 2has been widely applied to hydraulic engineering , architectural engineering as well as highway engineering at present , but it must take a lot of time and energy to do cement 2s oil com pressive strength experiment ,because there are many influential factors on cement 2s oil com pressive strength. Based on previous w orks ,by means of nonlinear curve fitting methods , this paper quantitatively analyzes the in fluence of s oil types , the mixed quantities of cement and ageing etc. on the cement 2s oil com pressive strength. An em pirical formula of cement 2s oil com pressive strength is established. And it is certified by the design with cement 2s oil retaining wall and anchor for foundation pit in Nantong civil air defense building. It has certain theoretical meaning and practical value. K eyw ords cement 2s oil ;com pressive strength ;cement 2s oil retaining wall ;em pirical formula ;design for founda 2tion pit 作者简介:许宏发(1964- , 男, 教授、博士, 从事岩土工程、地下工程方面的教学和科研工作。收稿日期:2008-09-26 1前言 水泥土以及各种工艺所形成的水泥土桩体, 由于其材料来源广泛、性能良好、价格低廉而被广泛应用于水利工程防渗、护坡, 建筑工程的地基基础、基坑防渗、挡土墙护坡以及道路工程的路基改良加固等[1~6]。近年来, 在我国分布有软土的地区, 如浙江、江苏、上海、天津、福建、广东、云南、湖北、山东、海南以及台湾等地, 得到了广泛应用, 发展迅速, 已 经取得了良好的经济效益和社会效益[2,6] 。水泥加固土(简称水泥土的物理力学性质与被加固土性质、状态、水泥掺入比、养护龄期、外掺剂、水泥品种、 水泥级别等因素有关

软土强度与变形特性的微细观分析

第四章软土强度与变形特性的微细观分析 §4.1 微观测试仪器简介 §4.1.1环境扫描电子显微镜(ESEM) 借助电子显微技术技术,可直接观察到土体的微观结构,从微观层次解释土体的工程性质。环境扫描电子显微镜(ESEM)是现阶段研究土体微结构重要的、最常用的显微观察仪器,该仪器能对含水土样直接观察,不需干燥和镀膜处理,可在接近天然原状条件下观测土体的微观结构图像,是一种很有前景的土体微观试验研究手段。扫描电子显微镜(ESEM)的工作原理如图4-1所示;图4-2所示为荷兰FEI 公司生产的型号为Quanta 200的环境扫描电子显微镜,其主要技术参数如下: 1 分辨率: 二次电子像: 高真空模式 1.2nm @ 30kV; 3.0nm @ 1kV 低真空模式 1.5nm @ 30kV; 3.0nm @ 3kV 环境真空模式 1.5nm @ 30kV

背散射电子: 高真空和低真空模式: 2.5nm @ 30kV 扫描透射STEM探测器: 0.8nm @ 30kV 图4-1 扫描电镜原理示意图

2 加速电压200V ~30kV,连续可调 3 放大倍数:12倍~100万倍 4 电子枪:高亮度肖特基热场发射电子枪,4 极电子枪单 5 最大电子束流:100nA 6 样品室压力最高达4000Pa 7 样品台:全对中样品台,5轴马达驱动 X≥100mm,Y≥100mm,Z≥60mm,T≥-5~+70°(手动)R=360°连续旋转,最大样品尺寸: 左右284mm。 图4-2 Quanta 200环境电子扫描显微镜 图4-3所示为膨润土粉末在不同放大倍数的电子扫描图片。

构件的基本变形与强度练习题

构件的基本变形与强度练习题 构件的基本变形与强度练习题 一.填空题 1. --------------------------------------------------------- 杆件的基本变形有----------------------------- --------------------- 四种。 2.轴向拉伸与压缩的受力特点是: 变形特点是 --------- O 3?杆件所受其他物体的作用力都称为外力。它包括------------- 和 --------------- 杆件内 部由于外力的作用而产生的相互作用力称为

---------- ,在某一范围内随外力的增大而4.单位面积上的内力称为 5?工程中一般把------------- 作为塑性材料的 极限应力,对于脆性材料,则把------------ 作为材料的极限应力。 6. -------------------------------------------- 安全系数反应了-------------------------- 。 7.对于重要的构件和哪些如果破坏会造成重大

事故的构件,应将安全系数取 &当细长杆所受压力达到某个极限时,就会突然 变弯而丧失工作能力,这种现象称为 ------------- ,简称 ----------------- ----------------- , 变形特点是 10?构件发 生剪切变形的同时往往在接触的作用 面之间发生 -------------------------- -------------------- 。变形特点是 12?圆轴扭转时,横截面上只有 --------------- 应力,而没有 ------------- 应力。 13 弯曲变形的受力特点是 ------------------- ,变形特点是 15?根据支 撑方式不同,梁分为 ,三种形式。 9 11 轴扭转的受力特点是

第三章 土的变形特性

第三章 土的变形特性 3.1 应力-应变试验与试验曲线 目前,为了测定土的变形和强度特性,在土工试验方面经常使用的土工仪器有固结仪、直剪仪和常规三轴仪。另外,还有真三轴仪、平面应变仪和扭剪仪等,但使用不很普遍。由于能施加复合应力的试验设备的设计、制造和使用都比较困难,因此目前通常采用的研究方法是通过少量简单的试验,求取在比较简单的应力状态下的应力应变关系试验曲线,然后利用一些理论,如增量弹塑性理论,把这些试验结果推广应用到复杂的应力状态上去,建立所需要的应力-应变模型。土的应力-应变模型建立后,再用应力路径不同的试验以及用复杂应力状态的试验来验证模型的正确性。必要时,可对建立的应力应变模型进行修正。 下面简要介绍各向等压力固结试验和三轴压缩试验的情况,以及相应的试验曲线的特性。 3.1.1 各向等压力固结试验和土的固结状态 各向等压力固结试验,即123σσσ==条件下的排水压缩试验,可用常规三轴仪进行。 试验得到的应力-应变关系曲线,通常称为压缩和回弹曲线,如图3-1 所示。一般情况下,土体压缩时,土体孔隙比e 与平均有效应力p '的关系在半对数坐标图上可简化为直线关系,压缩曲线的方程可表示为: 0ln e e p λ'=- (3.1.1) 式中0e ——p '等于单位应力时土体的孔隙比; λ——半自然对数坐标图上压缩曲线的斜率。 当卸荷及重复加荷时,土体孔隙比与平均有效应力的关系在半对数坐标上也可近似表示为直线关系,回弹曲线的方程可表示为: ln e e p κκ'=- (3.1.2) 式中e κ——回弹曲线上p ′等于单位压力时土体的孔隙比; κ——半自然对数坐标图上压缩曲线的斜率。

第9章构件组合变形

材 料 力 学 ·198 · 第9章 构件/组合变形 9.1 概 述 前面章节讨论了杆件在拉伸(压缩)、剪切、扭转和弯曲等基本变形形式下的应力和位移的计算等问题。工程实际中的许多构件往往发生两种或两种以上基本变形,称为组合变形。例如,钻探机钻杆(图9.1(a ))上端受到来自动力机械的力螺旋(力+力偶)作用引起的轴向压缩变形,下部受到来自泥土的分布力螺旋作用引起的扭转变形;蓄水堤(图9.1(b ))受自重引起的轴向压缩变形,同时还有水平的水压引起的弯曲变形;又如机械中齿轮传动轴(图9.1(c ))在啮合力作用下,将同时发生扭转变形以及在水平和竖直平面内的弯曲变形;再如厂房中支撑吊车梁的立柱(图9.1(d ))在由吊车梁传来的不通过立柱轴线的竖直载荷作用下,引起的偏心压缩变形,它可看成是轴向压缩和纯弯曲的组合变形。 图9.1 组合变形实例 对于组合变形下的构件,在线弹性范围内,小变形条件下,可按构件的原始形状和尺寸进行计算。因而,可先将载荷化为符合基本变形外力作用条件的外力系,分别计算构件在每一种基本变形下的内力、应力或变形。然后,利用叠加原理,综合考虑各种基本变形的组合情形,以确定构件的危险截面、危险点的位置及危险点处的应力状态,并据此进行强度计算。 利用叠加原理进行组合变形构件的强度分析计算过程可概括为: (1)按引起的变形类型分解外力。通常是将载荷向杆件的轴线和形心主惯轴简化,把组合变形分解为几个基本变形。

第9章 构件/组合变形 ·199 · (2)分别绘出各基本变形的内力图,确定危险截面位置,再根据各种变形应力分布规律,确定危险点。 (3)分别计算危险点处各基本变形引起的应力。 (4)叠加危险点的应力。叠加通常是在应力状态单元体上的进行。然后选择适当的强度理论进行强度计算。 若构件的组合变形超出了线弹性范围,或虽在线弹性范围内但变形较大,则不能按其初始形状或尺寸进行计算,必须考虑各基本变形之间的相互影响,此时不能用叠加原理。 本章主要讨论在实际工程中常见组合变形:拉(压)弯组合、弯扭组合、斜弯曲等。 9.2 轴向拉伸(压缩)与弯曲的组合 杆件受轴向拉伸(压缩)与弯曲的组合作用有两种情况:一种是轴向载荷与横向载荷的联合作用,另一种是偏心拉伸或压缩。 若杆受到轴向载荷作用的同时,又在其纵向平面内受到横向载荷的作用,这时杆件将发生轴向拉伸(压缩)与弯曲的组合变形。对于弯曲刚度较大的杆件,由于横向力引起的挠度与横截面的尺寸相比很小,原始尺寸原理可以使用,轴向力因弯曲变形而产生的弯矩可以省略不计。这样,轴向力就只引起压缩变形,外力与杆件内力和应力的关系仍然是线性的,叠加原理就可以使用。可分别计算由横向力和轴向力引起的杆横截面上的正应力,按叠加原理求其代数和,即得在拉伸(压缩)与弯曲组合变形下杆横截面上的正应力。 下面以图9.2所示的简支梁为例,说明杆受轴向载荷与横向载荷联合作用下的应力及强度计算方法。该简支梁承受轴向载荷F 与横向均布载荷q 的联合作用。轴向载荷F 使梁产生轴向伸长,引起各横截面的轴力均为F N =F (图9.2(c ));横向载荷q 使梁发生在xy 平面 内的弯曲,跨中截面C 的弯矩最大,其值为2max /8C M M ql ==(图9.2(d ))。显然,截面C 是危险截面(剪力引起的切应力通常忽略不计),如图9.2(b )所示。 在危险截面上,由轴力F N 引起的正应力N F σ为 N N F F A σ= 纵坐标为y 处,弯矩C M 引起的弯曲正应力M σ为 max M z M y I σ= 应用叠加原理,可得危险截面上任一点处的正应力 (9.1) 上式表明,正应力沿截面高度呈线性变化,且中性轴不通过截面形心。截面底部边缘和顶部边缘处的正应力分别为 (9.2)

常用水泥的主要特性和适用范围

常用水泥的主要特性和适用范围 硅酸盐水泥的性质、应用与存放 (一)硅酸盐水泥的性质与应用 1、早期及后期强度均高:适用于预制和现浇的混凝土工程、冬季施工的混凝土工程、预应力混凝土工程等。 2、抗冻性好:适用于严寒地区和抗冻性要求高的混凝土工程。 3、耐腐蚀性差:不宜用于受流动软水和压力水作用的工程,也不宜用于受海水和其它腐蚀性介质作用的工程。 4、水化热高:不宜用于大体积混凝土工程。 5、抗炭化性好:适合用于二氧化碳浓度较高的环境,如翻砂、铸造车间等。 6、耐热性差:不得用于耐热混凝土工程。 7、干缩小:可用于干燥环境。 8、耐磨性好:可用于道路与地面工程。 酸盐水泥的运输与储存 水泥在运输过程中,须防潮与防水。散装水泥须分库储存,袋装水泥的堆放高度不得超过十袋;水泥不宜久存,超过三个月的水泥须重新试验,确定其标号。 ①普通硅酸盐水泥的主要特性和适用范围: (一)主要特性:a、比重为3~3.2,容重为1100~1300公斤/立方米;b、早期强度增长快,在标准养护条件下,3天的抗压强度可达28天强度的40%左右; C、水化热高,在低温情况下( 4~10 t)强度进展很快,耐冻性好;d、和易性好;e、抗腐蚀性差。 (二)适用范围:普通水泥适用于混凝土、钢筋混凝土和预应力混凝土的地上、地下和水中结构(其中包括受反复冰冻作用的结构)以及需要早期达到要求强度的结构,配制耐热混凝土等,但不宜用于大体积混凝土工程及受侵蚀的结构中。 ②矿渣水泥的特性及适用范围: (一)主要特性:a、比重为2.85~3,容重为850~1150公斤/立方米;b、早期强度比同标号普通水泥低,但后期强度增长较快;C、水化热较低,耐冻性较差,在低温环境中强度增长较慢;d、需水量比普通水泥大5%,所以干缩性也较大;e、耐热性较好。

@@@情境五,2 构件的基本变形与强度计算.

情景五构件的基本变形与强度计算 情境描述 本情境的研究对象是变形固体,属于材料力学的范畴。工程构件的基本变形与强度计算不仅是本情境的学习重点,也是工程力学课程的学习重点。已学过的刚体静力分析的基本概念与理论以及静力平衡问题(属于静力学范畴)为学习本情境打下了基础。情境五将重点讨论工程构件的四种基本变形和强度、刚度计算,除为后续课程(机械构件及工装夹具设计)提供最基本的原理和方法外,还力图为同学们的终身学习与职业生涯发展以及工程素养的培养寻求(奠定)科学支撑。学习目标 ● 明确材料力学的任务、研究对象与方法,理解变形固体的基本假设,认知工程构件的四种基本变形,建立起强度、刚度、稳定性的概念。● 建立起内力、应力的概念,理解并测定材料的机械性能指标,能用截面法求拉(压)杆横截面上的正应力,并能对拉(压)杆进行强度校核、截面尺寸选择和确定结构的许用载荷。 ● 理解连接件剪切与挤压破坏的受力和变形特点,能正确地判断剪切面和挤压面,能熟练运用剪切强度条件和挤压强度条件对连接件进行强度计算。 ● 建立圆轴扭转变形的相关概念,正确绘制扭矩图,熟悉横截面上剪应力的分布规律,并能应用圆轴的强度、刚度条件对扭转圆轴进行设计计算。● 熟悉平面弯曲概念,会将实际受弯构件简化成梁的力学模型,熟悉纯弯曲时截面上正应力分布规律,能绘出弯矩图并对直梁进行弯曲强度计算,找出提高梁弯曲强度的主要措施。 ● 培养工程意识、质量意识与社会责任意识。 学习任务 ● 变形固体及其相关概念认知。 ● 轴向拉(压)杆的变形及其强度计算。 ● 连接件剪切与挤压变形及其实用计算。 ● 圆轴的扭转变形及其强(刚)度计算。 ● 直梁弯曲的强(刚)度计算。 任务五直梁弯曲的强(刚)度计算 【能力目标】 ?能正确地建立剪力方程与弯矩方程并画出剪力图和弯矩图。?能计算纯弯曲梁横截面上的正应力。 ?能运用弯曲强度条件进行设计计算,并能拟定提高梁抗弯曲能力的措施。?能运用梁的刚度条件校核其刚度。 ?会查型钢表。

浅谈土的变形特性

2010年 第4期(总第194期) 黑龙江交通科技 HEIL ONGJI A NG JI A OTONG KEJI No .4,2010(Sum No .194) 浅谈土的变形特性 李连志1,王 佳2 (1 黑龙江工程学院土木与建筑工程学院;2 黑龙江省公路局) 摘 要:土的力学性质研究是建立在三大力学基础之上,但又因为土的多相性、散体性和自然变异性,使其与 金属材料有着本质的区别。在土的非线性、剪胀性、硬化与软化、应力路径和应力历史等方面分析了土有别于金属材料的变形特性。 关键词:土体;变形特性;本构关系 中图分类号:U 416 1 文献标识码:C 文章编号:1008-3383(2010)04-0004-01 收稿日期:2010-02-08 0 概 述 土是一种具有多相性、散体性和自然变异性的材料,与材料力学中的金属有着本质的区别。为了研究土的变形往往应用压缩固结仪、三轴压缩仪、平面应变仪、真三轴仪等进行试验,得出土的应力 应变关系。这种关系反映了土体变形的特性。但试验有一定的局限性,试验总是在某种简化条件下进行的,即使真三轴仪能考虑三维受力状态,试验也只能按某种应力状态,某种加荷方式进行。为了更好的了解土的变形特性,仅就土区别于金属材料的变形特性阐述。1 非线性和非弹性 大部分坚硬材料,如金属和混凝土,在受轴向拉压时,应力 应交关系如图1(a)所示,初始阶段为直线,材料处于弹性变形状态。当应力达到某一临界值时,应力 应交关系明显地转为曲线,材料同时存在弹性变形和塑性变形。土体也有类似的特性,图1(b)为土的三轴试验得出的轴向应力 1- 3与轴向应变 之间的关系曲线。与金属等材料不同的是,初始的直线阶段很短,对于松砂和正常固结黏土,几乎没有直线阶段,加荷一开始就呈非线性。土体的非线性变形特性比其他材料明显得多。 这种非线性变化的产生,就是因为除弹性变形以外还出现了不可恢复的塑性变形。土体是松散介质,受力后颗粒之间的位置调整在荷载卸除后,不能恢复,形成较大的塑性变形。如果加荷到某一应力后再卸荷,曲线将如图1(b)虚线所示。oa 为加荷段,ab 为卸荷段。卸荷后能恢复的应变 e 即弹性应变。不可恢复的那部分应变 p 为塑性应变。经过一个加荷退荷循环后,再加荷,将如图1(b)中的bc 段所示,它并不与ab 线重合,而存在一个环,叫回滞环。回滞环的存在表示卸荷再加荷过程中能量消耗了,要给以能量的补充。再加荷还会产生新的不可恢复的变形,不过同一荷载多次重复后塑性变形逐渐减小。 土体在各种应力状态下都有塑性变形,甚至在加荷初始应力 应变关系接近直线的阶段,变形仍然包含弹性和塑性两部分。卸荷后不能恢复到原点。非线性和非弹性是土体变形的突出特点。 2 塑性体积应变和剪胀性 土体受力后会有明显的塑性体积变形。由土样在三轴仪中逐步施加各向相等的压力P 后,再卸除,所得到的P 与体积应变 v 之间的关系曲线,可见存在不可恢复的塑性体积应变,而且它往往比弹性体积应变更大。这一点与金属不同,金属被认为是没有塑性体积变形的。塑性变形是由于晶格之间的错动滑移而造成的,它只体现形状改变,不产生体积变化。土体的塑性变形也与颗粒的错位滑移有关。在各向相等的压力作用下,从宏观上来说,是不受剪切的,但在微 观上,颗粒间是有错动的。压缩前,颗粒架空,存在较大孔隙,压缩后,有些颗粒挤入原来的孔隙中,颗粒错动,相对位置调整,颗粒之间发生着剪切位移。当荷载卸除后,不能再使它们架空,无法恢复到原来的体积,就形成较大的塑性体 积变形。 (a)金属;(b)土体 图1 材料的应用 应变关系 不仅压力会引起塑性体积变形,而且剪切也会引起塑性体积变形。剪切引起的体积收缩叫剪缩。软土和松砂常表现为剪缩。若剪切引起体积膨胀,则称之为剪胀。紧密砂土,超固结黏土,常表现为剪胀。文献中常把剪切引起的体积变化,不管剪缩还是剪胀,统称为剪胀性,剪缩是负的剪胀。剪胀性是散粒体材料的一个非常重要的特性。3 硬化和软化 三轴试验测得的轴向应力 1- 3与轴向应变 a 的关系曲线有两种形态。图2(a)所示曲线有一直上升的趋势直至破坏,这种形状的应力应变关系称为硬化型。软土和松砂表现为这种形态,图2(b)所示曲线前面部分是上升的,应力达到某一峰值后转为下降曲线,即应力在降低,而应变却在增加,这种形态称之为软化型。紧密砂和超压密黏土表现为这种形态。 密砂受剪时,由于顺位排列紧密,一部分颗粒要滚过另一部分颗粒而产生相对错动,须克服较大的 咬合 作用力,故表现为较高的抗剪强度。而一旦一部分颗粒绕过了另一部分颗粒,结构便变松,抗剪能力减小了,因而表现为软化。超固结黏土剪切破坏后结构黏聚力丧失,也降低强度,表现为软化。对于松砂和软土,剪切过程中结构变得紧密,一般表现为剪缩,因而强度也在提高,呈现硬化特性。硬化和软化与剪缩和剪胀,常有一定联系,但也不是必然联系,软化类型的土往往是剪胀的,剪胀土未必都是软化的。 (下转第7页) 4

构件的基本变形与强度练习题

构件的基本变形与强度练习题 一.填空题 1.杆件的基本变形有------------------ -------------------- --------------------- ---------------------------------四种。 2.轴向拉伸与压缩的受力特点是:------------------------------------------------------------------------,变形特点是----------------------------------------------------------------。 3.杆件所受其他物体的作用力都称为外力。它包括--------------------和----------------------杆件内部由于外力的作用而产生的相互作用力称为-----------------,在某一范围内随外力的增大而----------------------------。 4.单位面积上的内力称为-------------------------------。 5.工程中一般把--------------------作为塑性材料的极限应力,对于脆性材料,则把---------------作为材料的极限应力。 6.安全系数反应了---------------------------。 7.对于重要的构件和哪些如果破坏会造成重大事故的构件,应将安全系数取------------------------。 8.当细长杆所受压力达到某个极限时,就会突然变弯而丧失工作能力,这种现象称为--------------------,简称------------------------。 9.剪切变形的受力特点是-----------------------------,变形特点是---------------------------------------。 10.构件发生剪切变形的同时往往在接触的作用面之间发生--------------------------------------。11圆轴扭转的受力特点是------------------------------。变形特点是----------------------------------------。 12.圆轴扭转时,横截面上只有-----------------------应力,而没有-------------------应力。 13弯曲变形的受力特点是--------------------------------,变形特点是----------------------------- 15.根据支撑方式不同,梁分为--------------------------,------------------------------------,--------------------------------------,三种形式。 16.构件在外力作用下,同时产生两种或两种以上的基本变形,称为----------------------------。 17.提高梁抗弯能力的措施有--------------------------------,------------------------------------------,-------------------------------------------。 18.要使零件在载荷的作用下安全,可靠地工作,零件必须具有足够的------------------------,------------------------------------,--------------------------------------------。 19.低碳钢拉伸时的四个阶段是--------------------阶段---------------------------------阶段------------------------------阶段----------------------------------阶段。 20.铸铁压缩时的抗压强度极限远-----------------于抗拉强度极限。 21.材料丧失正常工作能力时的应力,称为---------------------------------------------。 22.圆轴任一点的切应力与该横截面上的------------------------成正比,与该点所在圆周的 ---------------成正比。,方向与过该点的半径-----------------------。最大切应力在------------------------。 23.弯曲变形时,横截面绕-------------------转动。梁一侧的纤维受拉而------------------------另- 一侧的纤维受压而-------------------------------,横截面上只有----------------------------而没有--------------------------------、 23.梁的横截面上任意一点的正应力与该点到中性轴的距离成------------------------------。 24.挤压变形的特点是-----------------------------------------------------------------------------------。

相关主题