搜档网
当前位置:搜档网 › 分子生物学简答题(整理)

分子生物学简答题(整理)

分子生物学简答题(整理)
分子生物学简答题(整理)

分子生物学简答题(整理)

1阐述操纵子(operon)学说:

见课本

2、乳糖操纵子的作用机制?/简述乳糖操纵子的结构及其正、负调控机制

答:A、乳糖操纵子的组成:大肠杆菌乳糖操纵子含Z、Y、A三个结构基因,分别编码半乳糖苷酶、透酶和半乳糖苷乙酰转移酶,此外还有一个操纵序列O,一个启动子P和一个调节基因I。B、阻遏蛋白的负性调节:没有乳糖存在时,I 基因编码的阻遏蛋白结合于操纵序列O处,乳糖操纵子处于阻遏状态,不能合成分解乳糖的三种酶;有乳糖存在时,乳糖作为诱导物诱导阻遏蛋白变构,不能结合于操纵序列,乳糖操纵子被诱导开放合成分解乳糖的三种酶。所以,乳糖操纵子的这种调控机制为可诱导的负调控。C、CAP的正性调节:在启动子上游有CAP结合位点,当大肠杆菌从以葡萄糖为碳源的环境转变为以乳糖为碳源的环境时,cAMP浓度升高,与CAP结合,使CAP发生变构,CAP结合于乳糖操纵子启动序列附近的CAP结合位点,激活RNA聚合酶活性,促进结构基因转录,调节蛋白结合于操纵子后促进结构基因的转录,对乳糖操纵子实行正调控,加速合成分解乳糖的三种酶。D、协调调节:乳糖操纵子中的I基因编码的阻遏蛋白的负调控与CAP的正调控两种机制,互相协调、互相制约。

3、基因调控的水平有哪些?基因调控的意义?

答:a、DNA水平的调控。b、转录水平上的调控。c、转录后的调控。d、翻译水平的调控。e、细胞质与基因调控。

意义:适应物理,化学等环境因素变化,调节代谢,维持细胞生长与分裂。

4、简述乳糖操纵子的结构及其正负调控机制。

答:结构:A、Y和Z,以及启动子、控制子和阻遏子。

正调控机制:CAP分解代谢产物激活蛋白质,直接作用于操纵子区上与cAMP结合形成CAP-cAMP复合物,转录进行。

负调控机制:a、无诱导物时结构基因不转录。b、有诱导物时与阻遏基因相结合,形成无活性阻遏物,RNA聚合酶可与启动子区相结合,起始基因转录。

5、简述Trp操纵子的结构及其调控机制。

答:Trp操纵子由5个结构基因TrpE、TrpD、TrpC、TrpB、TrpA组成一个多顺因子的基因簇,在5'端是启动子、操纵子、前导顺序和弱化子区域。

机制:a、辅阻蛋白参与的负调控阻遏调节。/、trp诱导物含量高,与游离的辅阻遏蛋白相结合,形成有活性阻遏物,与操纵子区DNA紧密结合,进行转录。//、trp诱导物含量低,不能与辅阻遏物结合,辅阻遏物从O区上解离,trp操纵子阻遏转录进行。

b、弱化作用。/、trp浓度高时,2-3不配对,3、4区自由配对形成茎环状终止结构,转录停止。//、trp浓度低时,2,3配对,4区片段无配对,结构基因转录。

6、细菌的trp操纵子为什么除需要阻遏体系外还需要弱化系统。

答:细菌的trp操纵子通过弱化作用弥补阻遏作用的不足,因为阻遏作用只能使转录不起始,而对于已经起始的转录,只能通过弱化作用使之中途停顿下来,阻遏作用的信号是细胞内trp的多少,弱化作用的信号是细胞内载有trp的tRNA的多少,两种作用相辅相成,体现周密的调控作用。

7、简述原核生物转录后调控的机制。

答:a、mRNA自身结构元件对翻译起始的调节。b、mRNA稳定性对转录水平的影响。c、调节蛋白的调控作用。d、反义RNA的调节作用。e、稀有密码子对翻译的影响。f、重叠基因对翻译的影响。g、翻译的阻遏。h、魔斑核苷酸水平对翻译的影响。

8、简要概括真核生物基因表达调控的7个层次

答:a、转录水平的调控,包括基因的开与关和转录效率的高与低。

b、DNA水平上的表达调控,包括基因丢失、扩增、交换、重排、DNA甲基化。

c、转录水平的调控,顺式作用元件与特异转录因子结合影响转录,反式作用因子能识别结合于顺式作用元件上,参与调控。

d、反式作用因子的DNA识别域或结合域。

e、蛋白质修饰、磷酸化和去磷酸化。

f、转录后水平的调控。

g、翻译水平的调控mRNA的“扫描模式”与蛋白质合成起始mRNA5'端帽子结构及polyA尾巴,mRNA稳定性与基因表达调控,蛋白质的修饰。

9、真核基因表达调控与原核生物有什么异同点。

答:同:a、都有转录水平上调控和转录水平后调控,并且都以转录水平上的调控为重要。

b、在结构基因的上下游都存在着许多特异的调控成分,并依靠特异蛋白因子与这些调控成分的结合与否,调控基因的转录。

异: a、真核基因表达调控环节多,位点多,区域大,位置多样化。

b、真核基因的转录与染色质的结构变化相关。

c、无操纵子和衰减子。

d、受环境影响小。

e、以正性调控为主。

f、调控的基因组很大,而原核基因组小。

10、简述DNA水平对真核基因表达的调控。

答:DNA水平的调控是真核生物发育调控的一种形式,包括基因丢失,扩增,重排和移位等方式,通过这些方式可以消除或变换某些基因并改变它们的活性。

主要有:a、染色质状态对基因表达调控。b、修饰作用(乙酰化甲基化)与

染色质状态的关系。c、基因丢失,扩增,重排,交换。

11、真核基因顺式作用元件及各自的特点。

答:a、启动子,位于转录起始点附近且为转录起始所必需的DNA序列。/、核心启动子,指保证RNA聚合酶2转录正常起始所必需的,最少的DNA序列,包括转录起始位点及位点上游-30-负25bp处的TATA区。//、上游启动子元件,包括通常位于-70bp附近的CAAT区和GC区等能通过TF2D复合物调节转录起始的频率,提高转录效率。

b、增强子,指能使与之连锁的基因转录频率明显增加的DNA序列,位于离转录起始点较远位置上,具有参与激活和增强起始功能的序列元件。

c、绝缘子,负调控作用元件(与增强子作用相反)。

12、反式作用因子的DNA结合域有哪几种?各自的结构特点?

答:a、螺旋-转折-螺旋结构(HTH)。

b、锌指结构。

c、碱性-亮氨酸拉链。

d、碱性-螺旋-环-螺旋,(BHLH结构)。

e、同源域蛋白。

13、真核基因转录调控的主要模式

答:启动子、转录模板、RNA聚合酶2、RNA聚合酶2基础转录所需的蛋白质因子、增强子及绝缘子对转录的影响、反式作用因子对转录的影响。

14、简述DNA加工水平对基因表达的调控

答:RNA加工水平:a、rRNA加工成熟,包括分子内的切割和化学修饰(主要是核糖甲基化)。b、mRNA加工成熟,包括mRNA5’末端加“帽子”,3’端加上polyA尾巴。c、tRNA的3 ’末端CCA-OH,5’端加上甲基鸟苷酸。

翻译水平:a、真核生物mRNA“扫描模式”与蛋白质合成的起始。b、mRNA 的稳定性与基因表达的调控。c、mRNA5'端帽子结构的识别与蛋白质的合成。d、可溶性蛋白因子的修饰与翻译起始调控

15、生物体内主要有几种RNA?

m RNA:编码特定蛋白序列

r RNA:直接参与核糖体中蛋白质的合成

t RNA:能特异性解读m RNA中的遗传信息,将其转化成相应的氨基酸后加入多肽链中

Sn RNA:小核RNA,是真核生物转录后加工过程中RNA剪接体的主要成分. Hn RNA:指导RNA,核酶RNA

16、转录包括哪几个基本过程?

1. 模板识别:RNA聚合酶与启动子DNA双链互相作用与之相结合的过程

2. 转录起始:RNA链上第一个核苷酸链的产生

3. 转录延伸:RNA聚合酶释放σ因子离开启动子后,核心酶沿模板DNA链移动并使新生RNA链不断伸长

4. 转录终止:RNA—DNA杂合物分离,转录泡瓦解,DNA恢复成双链状态,RNA聚合酶和RNA链从模板上释放出来

17、简述真核细胞RNA聚合酶的细胞定位及其转录产物

答:见课本

18、简述原核和真核生物启动子的结构特点

答:原核生物:启动子在两段由5个核苷酸组成的共同序列,即位于—10bp处的TATA区(也叫pribnow区),和—35bp处的TTGACA区,他们是RNA聚合酶与启动子结合位点,能与σ因子相互识别而具有很高的亲和力

真核生物:启动子在—30~~—25bp处的Hogness区,类似pribnow区,在—70~~—80bp区有CAAT区(与—35区序列相对应),在—110~~—80的GC区(GCCACACCC或GGGCGGG序列)

19、什么是SD序列?

答:原核生物起始密码子AUG上游7~12个核苷酸的保守区,能与16s rRNA 的3’端反向互补

20、简述真核生物mRNA的结构与原核生物mRNA的结构的区别

答:①、真核生物mRNA具有前体,需要转录后加工成成熟RNA才能与蛋白质合成

②、原核生物mRNA以多顺反子形式存在,一个mRNA可编码几个多肽;真核生物mRNA最多只能编码一个多肽

③、原核生物mRNA的5’端无帽子结构,3’端没有或只有较短的polyA;而真核生物mRNA的5’端存在帽子结构,绝大多数正所谓3’端有polyA结构

④、原核生物mRNA起始密码子AUG上游有SD序列的保守区

⑤、起始密码子原核生物的有AUG(有时GUG,UUG),真核生物只有AUG

21、转录终止有几种机制?各有何特点?

答:①、依赖ρ因子的终止:ρ因子是一个由6个相同亚基组成的六聚体,具有NTP酶和解螺旋酶活性,能水解各种核苷酸三磷酸,通过催化NTP的水解促使新生RNA链从三元转录复合物中解离出来,从而终止转录

②、不依赖ρ因子的终止:没有任何其他因子的参与,核心酶也能在某些位点终止转录,因模板DNA上存在终止转录的特殊信号——终止子

1.终止位点上游一般存在一个富含GC碱基的二重对称区,由这段DNA转录产

生的RNA容易形成发卡式结构

2.在终止位点前有一段4~8个A组成的序列,所以转录产物的3’端为寡聚U,这种结构特征的存在决定了转录的终止

22、内含子的分类及剪接机制(含剪接信号、转酯反应等),各类内含子剪接过程的异同。

答:内含子的分类:GU—AG,AU—AC,Ⅰ类内含子,Ⅱ类内含子,Ⅲ类内含子,双内含子,pre—tRNA中的内含子。

Ⅰ类内含子的剪接主要是转酯反应,即剪接反应实际上是发生了两次磷酸二酯键的转移;

Ⅱ类内含子切除体系中,转酯反应无需游离鸟苷酸或鸟苷,而是由内含子本身的靠近3’短的腺苷酸2’—OH作为亲核基因攻击内含子5’端的磷酸二酯键,从上游切开RNA链后形成套索环结构,再由上游外显子的自由3’—OH 作为亲核基因攻击内含子3’端的磷酸二酯键,使内含子被完全切开,上下游两个外显子通过新的磷酸二酯键键相连。发生了两次转酯反应。

Ⅲ类内含子主要依靠Sn RNP发生2次转酯反应,在哺乳动物中,mRNA前体上的Sn RNP是从5’向下游“扫描”悬着在分支点富嘧啶区3’下游的第一个AG作为剪接的3’位点。

剪接机制:组成型剪接:需要外界能量和各种酶形成复合物剪接;

自我剪接:不需外源酶和能量,剪接特征由35s RNA自我催化完成;

选择性剪接:同一前体mRNA中的外显子通过不同组合形成不同的成熟mRNA 分子

36.RNA编辑的种类及意

答:种类:位点特异性脱氨基作用和引导DNA指导的尿嘧啶的插入或删除

意义:1、能够改变和补充遗传信息

2、增加基因产物的多样性

3、与生物细胞发育与分化有关

4、校正作用

5、翻译调控

39)核糖体的组成结构及功能

答:组成结构:由大、小两个亚基,许多不同的核糖体蛋白质子和核糖体RNA 共同组成,有3个tRNA的结合位点(A、P、E位点)

功能:①、在多肽合成过程中,不同的tRNA将相应的氨基酸带到蛋白质合成部位,并与mRNA进行专一性的相互作用,以选择对信息专一的氨基酸—tRNA

②、核糖体容纳另一种携带肽链的tRNA,即肽酰—tRNA,并使之处于肽链容易生成的位置上。

③、核糖体小亚基负责对mRNA进行序列特异性识别;大亚基负责携带氨基酸以及tRNA的功能,包括肽键的形成,氨基酸—tRNA,肽酰—tRNA的结合等

40)蛋白质前体的加工主要内容

答:1、N端f Met或Met的切除:N端的甲硫氨酸往往在多肽合成完毕之前被切除

2、二硫键的形成:蛋白质的二硫键是蛋白质合成后,通过两个半胱氨酸的氧化作用生成的,密码子中没有胱氨酸的密码子。

3、特定氨基酸的修饰:氨基酸侧链的修饰包括磷酸化、糖基化、甲基化、已基化、羟基化和羧基化等。

4、切除新生肽链中的非功能片段:不少肽类激素和酶的前体都要经过加工才能变成活性分子

41)蛋白质转运的主要机制

答:1、翻译—转运同步机制:由信号肽介导协助转运。蛋白质其实首先合成信号肽——SRP与信号肽结合,翻译暂停——SRP与SRP受体结合,核糖体与膜结合,翻译重新开始——信号肽进入膜结构——蛋白质过膜,信号肽被切除,翻译继续进行——蛋白质完全过膜,核糖体解离并回复翻译起始前状态。

2、翻译后转运机制:由前导肽介导协助转运,线粒体和叶绿体中的蛋白质。蛋白质由外膜上的Tom受体复合蛋白识别与分子伴侣相结合形成转运多肽,通Tom和Tim组成的膜通道进入内腔——蛋白酶水解前导肽。

3、核定位蛋白的转运机制:细胞质中的蛋白质通过核孔到达细胞核(装配)——运回细胞质——进行转运。如:RNA,DNA聚合酶,组蛋白,拓扑异构酶等

42)信号肽的结构特征及功能

答:结构特征1、一般带有10~15个疏水氨基酸,位于蛋白质的N端;2、在靠近N端有一个或数个带正电荷的氨基酸;3、C端有一个能被信号肽识别的位点;

4、没有严格的专一性;

5、信号肽可能是一种环状结构,而非是以一种直线通过双脂层膜;(

6、在C端靠近蛋白酶切点处常有数个极性氨基酸,离切割位点最近的那个氨基酸往往带有很短的侧链;

7、广义上的信号肽是初生蛋白质穿过膜必须的疏水性肽段,它位于蛋白质各部位。)

功能:1、保证蛋白质顺利转运;2、延伸功能;3、能和新生的分泌蛋白的信号肽相结合;4、能和位于膜上的蛋白受体相结合。

44)原核与真核生物蛋白质合成起始的差别

答:1、原核生物的起始tRNA是fMet—tRNAfMet,真核生物是Met—tRNAMet。

2、原核生物中30s小亚基先与mRNA模板相结合,最后与50s大亚基结合;而在真核生物中,40s小亚基首先与Met—tRNAfMet结合,再与模板mRNA结合,最后与60s大亚基结合生成80s?mRNA?Met—tRNAfMet起始复合物。

4、正调控和负调控的主要不同是什么?

答:负调控时,调节基因的蛋白质产物是基因活性的一种阻遏物,而在正调控时,调节基

因的产物是一种激活物。

6、解释为什么操纵子和启动子是反式隐性、顺式显性的,而编码阻碍蛋白的基因既是反式

显性又是顺式显性。

答:操纵基因和启动子突变只影响顺式基因的表达(反式隐性的),这是因为它们是调控序

列,仅仅调节相同DNA分子上的相邻基因的表达。阻遏物基因编码可以扩散的基因产物,

因此既能影响顺式又能影响反式基因的表达。

7、哪三个序列对原核生物mRNA的精确转录是必不可少的?

答:-35(RNA聚合酶结合位点)、-10(RNA荣合酶起始位点)启动子序列和终止子

10、葡萄糖是如何影响涉及糖代谢的操纵子(葡萄糖敏感型操纵子)的表达?

答:在缺乏葡萄糖时,cAMP的水平升高,CAP蛋白同每一个葡萄糖敏感操纵子中启动子内的CAP位点结合,转录作用协同起始。如果有葡萄糖,cAMP的.水平下降,CAP蛋白不再结合,转录的速率协同下降。

1、阐述原核生物的转录终止。(1)转录终止的两种主要的机制是什么? (2)描述翻译怎样能调节转录终止。(3)为什么在细菌转录终止中很少涉及到Rho因子?

(4)怎样能阻止转录的终止?

答:原核生物中的转录终止作用概要如下:(1)原核生物中两种不同的转录终止机制:①在某一位点不需要其他因子协助仅依赖于内在终止子的终止机制;

②依赖于肋σ因子的终止机制。

(2)翻译可通过弱化作用调节转录终止,例如发生在氨基酸生物合成基因的表达中。前导肽的翻译可以调节结构基因下游的转录。这种调节的重要性充分体现在氨基酸的生物合成中(例如色氨酸)。原核细胞中转录和翻译是同时发生的,正在翻译的核糖体就像在追赶正在转录的RNA聚合酶。具有所需氨酰tRNA 时,核糖体可将前导序列翻译成前导肽,而在前导开放读码框的终止密码子处终止翻译。新生的mRNA自由形成3-4茎环(完全配对)终止结构,所以阻碍了DNA指导的RNA聚合酶的前进,结构基因的下游转录终止,即发生弱化现象。若某种氨基酸短缺,则会导致相应的氨酰tRNA短缺,核糖体终止在前导可读框中所短缺的氨基酸密码子上。2-3茎环形成抗终止子,这一茎环不是聚合酶的终止信号,它可以防止3-4茎环的形成,使结构基因的转录进行下去。

(3)在原核生物中、转录与翻译是同时进行的,意味着核糖体追赶着DNA指

导的RNA聚合酶。Rho因子是一个依赖于RNA的ATP水解酶,能够在转录过程中将在转录泡中的RNA-DNA杂合体分开。因此它顺着转录的方向(5’→3’)追赶DNA指导的RNA聚合酶。若核糖体正好妨碍了它的前进,则依赖于肋σ因子的终止反应不会发生。

(4)最为常见的机制是抗终止(参见噬菌体遗传学)。抗终止于是一种能识别终止序列上游抗终止序列(例如λ噬菌体的nut位点)的蛋白质,它帮助抗终止子所利用的底物(如λ噬菌体基因表达中的Nus蛋白)与依赖DNA的RNA聚合酶的相互作用,通读下游的终止子序列。

3、区别可诱导和可阻遏的基因调控。

答:在可诱导的系统中,操纵子只有在诱导物存在时才开放,没有诱导物时阻碍物结合在操纵子上阻止结构基因的转录。存在诱导物时,它与阻遏物结合,使之变构不再与操纵子结合,打开操纵子。酶的诱导是分解途径特有的,诱导物就是酶的底物或者底物的类似物。在可阻碍系统中操纵子被终产物所关闭。不存在终产物时,阻碍物不能结合到操纵子上,因此操纵子开放;存在终产物时,它结合到阻碍物上,改变后者的构象,使其能结合到操纵子上,关闭操纵子。酶阻碍是合成代谢的特点。

2、简述真核生物转录水平的调控机制?

答:真核生物在转录水平的调控主要是通过反式作用因子、顺式作用元件和RNA 聚合酶的相互作用来完成的,主要是反式作用因子结合顺式作用元件后影响转录起始复合物的形成过程。A、转录起始复合物的形成:真核生物RNA聚合酶识别的是由通用转录因子与DNA形成的蛋白质-DNA复合物,只有当一个或多个转录因子结合到DNA上,形成有功能的启动子,才能被RNA聚合酶所识别并结合。转录起始复合物的形成过程为:TFⅡD结合TATA盒;RNA聚合酶识别并结合TFⅡD-DNA复合物形成一个闭合的复合物;其他转录因子与RNA聚合酶结合形成一个开放复合物。在这个过程中,反式作用因子的作用是:促进或抑制TFⅡD与TATA盒结合;促进或抑制RNA聚合酶与TFⅡD-DNA复合物的结合;促进或抑制转录起始复合物的形成。B、反式作用因子:一般具有三个功能域(DNA识别结合域、转录活性域和结合其他蛋白结合域);能识别并结合上游调控区中的顺式作用元件;对基因的表达有正性或负性调控作用。3、转录起始的调控:⑴反式作用因子的活性调节:A.表达式调节——反式作用因子合成出来就具有活性;B.共价修饰——磷酸化和去磷酸化,糖基化;C.配体结合——许多激素受体是反式作用因子;D.蛋白质与蛋白质相互作用——蛋白质与蛋白质复合物的解离与形成。⑵反式作用因子与顺式作用元件的结合:反式作用因子被激活后,即可识别并结合上游启动子元件和增强子中的保守性序列,对基因转录起调节作用。⑶反式作用因子的作用方式——成环、扭曲、滑动、Oozing。

⑷反式作用因子的组合式调控作用:每一种反式作用因子结合顺式作用元件后虽然可以发挥促进或抑制作用,但反式作用因子对基因调控不是由单一因子完成的而是几种因子组合发挥特定的作用。

3、简述真核生物转录后水平的调控机制?

答:(1)、5,端加帽和3,端多聚腺苷酸化的调控意义:5,端加帽和3,端多聚腺苷酸化是保持mRNA稳定的一个重要因素,它至少保证mRNA在转录过程中不被降解。

(2)、mRNA选择性剪接对基因表达调控的作用

(3)、mRNA运输的控制

11、PCR的基本原理?

、答:PCR是在试管中进行的DNA复制反应,基本原理是依据细胞内DNA半保留复制的机理,以及体外DNA分子于不同温度下双链和单链可以互相转变的性质,人为地控制体外合成系统的温度,以促使双链DNA变成单链,单链DNA 与人工合成的引物退火,然

后耐热DNA聚合酶以dNTP为原料使引物沿着单链模板延伸为双链DNA。PCR 全过程每一步的转换是通过温度的改变来控制的。需要重复进行DNA模板解链、引物与模板DNA结合、DNA聚合酶催化新生DNA的合成,即高温变性、低温退火、中温延伸3个步骤构

成PCR反应的一个循环,此循环的反复进行,就可使目的DNA得以迅速扩增。DNA模板变性:模板双链DNA?单链DNA,94℃。退火:引物+单链DNA?杂交链,引物的Tm值。引物的延伸:温度至70 ℃左右,Taq DNA聚合酶以4种dNTP为原料,以目的DNA

为模板,催化以引物3’末端为起点的5’→3’DNA链延伸反应,形成新生DNA 链。新合成的引物延伸链经过变性后又可作为下一轮循环反应的模板PCR,就是如此反复循环,使目的DNA得到高效快速扩增。

1.参与蛋白质生物合成体系的组分有哪些?它们具有什么功能?

1答.A.mRNA:蛋白质合成的模板;B.tRNA:蛋白质合成的氨基酸运载工具;

C.核糖体:蛋白质合成的场所;

D.辅助因子:(a)起始因子—--参与蛋白质合成起始复合物形成;(b)延长因子—--肽链的延伸作用;(c)释放因子一--终止肽链合成并从核糖体上释放出来。

8.蛋白质合成中如何保证其翻译的正确性?

答:(1)氨基酸与tRNA的专一结合,保证了tRNA携带正确的氨基酸;

(2)携带氨基酸的tRNA对mRNA的识别,mRNA上的密码子与tRNA上的反密码子的相互识别,保证了遗传信息准确无误地转译;

(3)起始因子及延长因子的作用,起始因子保证了只有起始氨酰-tRNA能进入核糖体P位与起始密码子结合,延伸因子的高度专一性,保证了起始tRNA携带的fMet不进入肽链内部;

(4)核糖体三位点模型的E位与A位的相互影响,可以防止不正确的氨酰-tRNA 进入A位,从而提高翻译的正确性;

(5)校正作用:氨酰-tRNA合成酶和tRNA的校正作用;对占据核糖体A位的氨酰-tRNA的校对;变异校对即基因内校对与基因间校对等多种校正作用可以保

证翻译的正确

9.原核细胞和真核细胞在合成蛋白质的起始过程有什么区别。

答1)起始因子不同:原核为IF-1,IF-2,IF-2,真核起始因子达十几种。

(2)起始氨酰-tRNA不同:原核为fMet-tRNAf,真核Met-tRNAi

(3)核糖体不同:原核为70S核粒体,可分为30S和50S两种亚基,真核为80S 核糖体,分40S和60S两种亚基

12.真核细胞与原核细胞核糖体组成有什么不同?如何证明核糖体是蛋白质的合成场所?

答原核细胞:70S核糖体由30S和50S两个亚基组成;

真核细胞:80S核糖体由40S和60S两个亚基组成。利用放射性同位素标记法,通过核糖体的分离证明之。

3试比较原核和真核细胞的mRNA的异同.

答案要点:A.真核生物5‘端有帽子结构大部分成熟没mRNA 还同时具有3’多聚A尾巴,原核一般没有;

B.原核的没mRNA 可以编码几个多肽真核只能编码一个。

C.原核生物以AUG作为起始密码有时以GUG,UUG作为起始密码,真核几乎永远以AUG作为起始密码。

D.原核生物mRNA半衰期短,真核长。

E.原核生物以多顺反子的形式存在,真核以单顺反子形式存在。

分子生物学简答题

分子生物学:研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学。 C值反常:也称c值谬误,指c值往往与种系进化复杂性不一致的现象,及基因组的大小与遗传复杂性之间没有必然的联系,某些较低等的生物c值却很大。DNA重组技术:又称基因工程。将不同的DNA片段按照预先的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状的技术。 GU-AG法则:多数细胞核mRNA前体中内含子的5’边界序列为GU,3’边界为AG,因此,GU表示供体衔接点的5’端,AG 表示接纳点的3’端序列,习惯上,把这种保守序列模式称为GU-AG法则。 RNA干涉:是利用双链小RNA高效,特异性降解细胞内同源MRNA,从而阻断体内靶基因的表达,使细胞内出现靶基因缺失表性的方法。 摆动假说:crick为解释反密码子中子某些稀有成分的配对(如I)以及许多氨基酸中有两个以上密码子而提出的假设。编码链/有义链:在DNA双链中,与mRNA 序列(除t/u替换外)和方向相同的那条DNA,又称有义链 模板链:指双链DNA中能够作为模板通过碱基互补原则指导mRNA前体的合成的DNA链,又称反义链 操纵子:原核生物中由一个或多个相关基因以及转录翻译调控原件组成的基因表达单元。 反式作用因子:能直接或间接识别或结合在各类顺式作用元件中核心序列上参与调控靶基因转录效率的pro。 基因定点突变:向靶DNA片段中引入所需的变化,包括碱基的添加,删除,或改变基因家族:在基因组进化中,一个基因通过基因重复发生了两个或更多的拷贝,这些基因即构成一个基因家族,是具有显著相似性的一组基因,编码相似的蛋白质产物 基因敲除技术:针对一个序列已知打包功能未知的基因,从DNA水平上设计实验,彻底破坏该基因的功能或消除其表达机制,从而推测该基因的生物学功能 基因组DNA文库:某一生物体全部或部分基因的集合,将某个生物的基因组DNA 或cDNA片段与适当的载体体外重组后,转化宿主细胞,所谓的菌落或噬菌体的集合即为…… 基因治疗:是将具有治疗价值的基因即“治疗基因“装配于带有在人体细胞中表达所必备元件的载体中,导入人体细胞,通过靶基因的表达来治疗遗传疾病 聚合酶链反应:指通过模拟体内DNA复制方式在体外选择性的将DNA某个特定区域扩增出来的 魔斑核苷酸:在应急反应过程中,由大量GTP合成的ppGpp和pppGpp,它们的主要作用可能是影响RNA聚合酶与启动子结合的专一性,诱发应急反应,帮助细菌度过难关 弱化子:原核生物操纵子中能明显减弱甚至终止转录作用的一段核苷酸序列 同工tRNA:几个代表AA,能够被一个特殊的氨酰—tRNA合成酶识别的Trna 顺式作用元件:存在于基因旁侧序列中能影响基因表达的序列,包括启动子,增强子等,本身不编码任何pro,仅提供一个作用位点,与反式作用因子相互作用参与基因表达调控 原位杂交技术:用标记的核苷酸探针,经放射自显影或非放射检测体系,在组织,细胞及染色体水平上对核苷酸进行定位和相对定量研究的手段 转座/移位:遗传信息从一个基因座转移至另一个基因座的现象,由可移问位因子介导的遗传物质的重排 管家基因:维持细胞正常生长发育的必需基因,所以细胞中均需表达的一类基因转座子:是存在染色体上的可自主复制和移位的基本单位,参与转座子易位及DNA 链整合的酶称为转座酶 原癌基因:正常细胞中与病毒癌基因具有显著同源性的基因,本身没有致癌作用,但是经过致癌因子的催化下激活成为致 癌基因,使正常细胞向恶性转化。 SP序列:mRNA中用于结合原核生物核糖 体的序列 无义突变:在蛋白质的结构基因中,一个 核苷酸的改变可能是代表某个AA的密码 子变成终止密码子(UAG UGA UAA),使 pro合成提前终止,合成无功能或无意义 的多肽,这称— 错义突变:由于结构基因中某个核苷酸的 变化使一种AA的密码子变成另外一种AA 的密码 指导RNA:与已正确编码的RNA序列互补 的一小段RNA,被用来作为向未经编辑的 RNA中插入碱基的模板。 上游启动子元件:将TATA区上游的保守 序列称为— 启动子:与基因表达启动相关的顺式作用 原件,是结构基因的重要成分。它是一段 位于转录起始位点5’端上游区大约 100~200bp以内的具有独立功能的DNA序 列,能活化RNA聚合酶,使之与模板DNA 准确地相结合并具有转录起始的特异性。 细菌转化:是一种细菌菌株由于捕获了来 自供体菌株的DNA而导致性状特征发生 遗传改变的过程,提供转化DNA的菌株叫 做供体菌株,接受转化DNA的菌株被称作 受体菌株。 实时定量PCR技术:利用带荧光检测的 PCR仪对整个PCR过程中扩增DNA的累积 速率绘制动态变化图。 基因工程:在体外将核算分子插入病毒, 质粒或其他载体分子,构成遗传物质的新 组合,使之进入新的宿主细胞内并获得持 续稳定增殖能力和表达。 应答原件:能与某个(类)专一蛋白因子 结合,从而控制基因特异表达的DNA上游 序列。 增强子:是指能使与它连锁的基因转录频 率明显增加的DNA序列(1.5分)。它可 以在启动子的上游,也可以在启动子的下 游,绝大多数增强子具有组织特异性(1.0 分)。 分子伴侣:是结合其他不稳定蛋白质并稳 定其构象的一类蛋白质(1.0分)。通过 与部分折叠的多肽协调性地结合与释放, 分子伴侣促进了包括蛋白质折叠、寡聚体 装配、亚细胞定位和蛋白质降 负调控:阻遏蛋白结合在操作子位点,阻 止基因的表达。没有调节蛋白时操纵元内 结构基因是表达的,而加入调节蛋白后结 构基因的表达活性被关闭,这种调节称为 负调节。 应急因子:是指与核糖体相结合的蛋白质 RelA,当空载的tRNA进入A位时,它催 化GTP形成pppGpp或催化GDP形成 ppGpp。 信号肽:在蛋白质合成过程中N端有 15~36个氨基酸残基的肽段,引导蛋白质 的跨膜。 密码的简并性:由一种以上密码子编码同 一个氨基酸的现象称为密码的简并性 移码突变(frame-shift mutation):在 mRNA中,若插入或删去一个核苷酸,就 会使读码发错误,称为移码,由于移码而 造成的突变、称移码突变 简答题 1原核生物与真核生物基因组的不同? 答:原核基因组:常仅由一条环状双链DNA 分子组成,结构简单;基因组中只有一个复 制起点;具有操纵子结构,转录的RNA为多 顺反子;有重叠基因(1、基因内基因 2、部 分重叠基因 3、一个碱基重叠);无内含子; 编码pro的DNA在基因组中所占比例较大; 结构基因为单贝 真核基因组:真核基因组庞大,一般都远 大于原核生物;真核基因组存在大量的重复 序列;真核基因组的大部分为非编码序列, 占整个基因组序列的90%以上;真核基因组的 转录产物为单顺反子;真核生物为断裂基因、 有内含子结构;真核基因组存在大量的顺式 作用原件;真核基因组中存在大量的DNA多 态性;真核基因组具有端粒结构。 2比较RNA转录与DNA复制的异同? 答:相同:都以DNA链作为模板;合成方向 均为5’—3’;聚合反应均是通过核苷酸之间 形成的3’,5’—磷酸二酯建使核苷酸链延长 不同:复制转录 模板:两条链均复制;模板链转录(不对称 转录) 原料:dNDP ; NTP 酶:DNA聚合酶;RNA聚合酶 产物:子代双链DNA;mRNA,tENA,rRNA 配对:A---T ,G---C; A—U,T---A,G---C 引物:RNA引物;无 试比较转录与复制的区别。: 1,目的不同,所使用的酶、原料及其它辅助 因子不同,转录是合成RNA,复制是合成DNA; 2,方式不同:转录是不对称的,只在双链DNA 的一条链上进行,只以DNA的一条链为模板, 复制为半不连续的,分别以DNA的两条链为 模板,在DNA的两条链上进行;3,复制需要 引物,转录不需要引物;,4复制过程存在校 正机制,转录过程则没有;5转录产物需要加 工,复制产物不需要加工;6复制与转录都经 历起始、延长、终止阶段,都以DNA为模板, 新链按碱基互补原则,5'→3’方向合成。 3、 RNA转录的基本过程? 转录的基本过程包括:模板识别、转录起始、 转录的延伸和终止。 模板识别:RNA聚合酶与启动子DNA双链相互 作用并与之结合; 转录起始:RNA聚合酶结合在启动子上以后, 是启动子附近的DNA双链解旋并解链,形成 转录泡以促使底物核糖核苷酸与模板DNA的 碱基配对,当RNA链上第一个核苷酸键产生 标志着转录的起始,一旦RNA聚合酶成功地 合成9个以上核苷酸并离开启动子区,转录 就进入正常的延伸阶段。 转录的延伸:RNA聚合酶释放因子离开启动子 后,核心酶沿模板DNA链移动并使新生成RNA 链不断伸长,在解链区形成RNA—DNA杂合物。 转录终止:当RNA链延伸到转录终止位点时, RNA聚合酶不再形成新的磷酸二酯建,DNA— RNA杂合物分离,转录泡瓦解,DNA恢复成双 链状态,DNA聚合酶和RNA链都从模板上释放 出来,转录终止。 4.DNA复制的过程和机制? 答:分三个阶段:即复制的起始、延伸、终 止。 复制的起始:DNA解旋解链,形成复制叉,引 发体组装,然后在引发酶的催化下以DNA链 为模板合成一段短的RNA引物。 延伸:DNA链的延伸由DNA聚合酶催化以亲代 DNA链为模板引发体移动,从5’—>3’方向 聚合子代DNA链,前导键的合成以5’—>3’ 方向随着亲本双链体的解开而连续进行复 制,后随链在合成过程中,一段亲本DNA单 恋首先暴露出来,然后以与复制叉移动相反 方向,按5’—>3’方向合成一系列冈崎片段。 终止:当子链延伸到终止位点时,DNA复制终 止,切除RNA引物,填充缺口,在DNA连接 酶的催化下将相邻的DNA片段连接起来形成 完整的DNA长链。 5、真核生物与原核生物在翻译的起始过程中 有哪些区别? 答:真核生物的起始tRNA是met-tRNA met 原核是fmet-tRNA fmet; 真核生物核糖体小亚基识别mRNA的帽子结 构,而原核生物通过与mRNA的SD序列结合; 真核生物小亚基先与met-tRNAmet结合再与 mRNA结合,而原核生物小亚基先与mRNA结合 再与fmet-tRNAfmet结合;真核生物有较多 的起始因子参与,且核糖体较大为80S,而原 核生物有较少的起始因子参与,且核糖体较 小为70S 6.简述蛋白质生物合成过程。,以大肠杆菌为 例: (1)氨基酸的活化:游离的氨基酸必须经过活 化以获得能量才能参与蛋白质合成,由氨酰 -tRNA合成酶催化,消耗1分子ATP,形成氨 酰-tRNA。 (2)肽链合成的起始:由起始因子参与,mRNA 与30S小亚基、50S大亚基及起始甲酰甲硫氨 酰-tRNA(fMet-tRNAt)形成70S起始复合物, 整个过程需GTP水解提供能 (3)肽链的延长:起始复合物形成后肽链即开 始延长。首先氨酰-tRNA结合到核糖体的A 位,然后,由肽酰转移酶催化与P位的起始 氨基酸或肽酰基形成肽键,tRNA f 或空载tRNA 仍留在P位.最后核糖体沿mRNA5’→3’方 向移动一个密码子距离,A位上的延长一个氨 基酸单位的肽酰-tRNA转移到P位,全部过程 需延伸因子EF-Tu、EF-Ts,能量由GTP提供 (4)肽链合成终止,当核糖体移至终止密码 UAA、UAG或UGA时,终止因子RF-1、RF-2 识别终止密码,并使肽酰转移酶活性转为水 解作用,将P位肽酰-tRNA水解,释放肽链, 合成终止。 7.试比较真核生物与原核生物mRNA转录的主 要区别。 答:转录单元:原核生物常为多顺反子转录, 真核生物常为单顺反子转录。酶:RNA聚合酶 核心酶加p因子,原核生物为RNA聚合酶Ⅱ 聚合酶加转录因子。转录产物:真核生物不 需加工与翻译相偶联真核生物需加工与翻译 分开。转录过程:无核小体的结局和组装的 过程,原核生物有核小体的结局和组成的过 程。转录终止“原核生物两种方式分别是依 赖P因子的终止和不依赖P因子的终止,真 核生物转录的终止加尾修饰同步进行。反应 部位:原核生物在类核,真核生物在核内。 8.比较原核和真核生物mRNA的区别? 答:(1)、原核生物mRNA5’端无帽子结构,3’ 端没有或只少较短的polyA结构,真核生物 5’端存在帽子结构,3’端具有polyA尾巴. (2)、许多原核生物mRNA可能以多顺反子形 式存在,而真核生物几乎都是单顺反子(3)原 核生物mRNA的半衰期短,转录与翻译是紧密 相连的,两个过程不仅发生在同一细胞间里, 而且几乎是同步进行的,真核生物mRNA的录 翻译是发生在不同空间和时间范畴内的。(4) 原核生物以AUG作为起始密码有时以GUG, UUG作为起始密码,真核几乎永远以AUG作为 起始密码。 9.乳糖操纵子调控机理 答:是大肠杆菌中控制半乳糖苷酶诱导合成 的操纵子。包括调控元件P(启动子)和O(操 纵基因)阻遏子(I),以及结构基因lacZ(编 码半乳糖苷酶)、lacY(编码通透酶)和lacA (编码硫代半乳糖苷转乙酰基酶)。转录时 RNA聚合酶首先与启动子结合,通过操纵区向 右转录,转录从O区中间开始,按Z→Y→A 方向进行,每次转录出来的一条mRNA上都带 有这3个基因,转录的调控是在启动区和操 纵区进行的。 1、无乳糖时,调节基因lacI编码阻遏蛋白, 与操纵子基因O结合后抑制结构基因转录, 不产生代谢乳糖的酶。 2、只有乳糖存在时,乳糖可以与lac阻遏蛋 白结合,而使阻遏蛋白不与操纵基因结合, 诱导结构基因转录,代谢乳糖的酶产生以代 谢乳糖。 3、葡萄糖和乳糖同时存在时,葡萄糖的降解 产物能降低cAMP的含量,影响CAP与启动基 因结合,抑制结构基因转录,抑制代谢乳糖 的酶产生。 10、色氨酸操纵子及机制? 答:负责色氨酸的生物合成,当培养基中有 足够的色氨酸时,这个操纵子自动关闭,缺 乏时操纵子打开,trp基因表达,色氨酸或与 其代谢有关的某种物质在阻遏过程中起作 用。由于trp体系参与生物合成而不是降解, 它不受葡萄糖或cAMP-CAP的调控。 弱化作用:当色氨酸达到一定浓度、但还没 有高到能够活化R使其起阻遏作用的程度时, 产生色氨酸合成酶类的量已经明显降低,而 且产生的酶量与色氨酸的浓度呈负相关。先 导序列起到随色氨酸浓度升高降低转录的作 用,这段序列就称为衰减子或弱化子。在trp 操纵元中,对结构基因的转录阻遏蛋白的负 调控起到粗调的作用,而衰减子起到细调的 作用。 11.原核生物和真核生物复制的差异? 答:原核真核 复制起点:一般为单复制起点;一般为多复 制起点 主要的酶:DNA聚合酶Ⅲ;DNA聚合酶& 单链复制叉复制速度:快;慢 复制的延伸:无核小体的解聚及诚信组装; 有核小体…… 终止:两个复制叉相遇终止复制(环形DNA); 端粒酶复制末端完成复制(线性DNA) 12原核细胞和真核细胞在合成蛋白质的 起始过程有什么区别。 .(1)起始因子不同:原核为IF-1,IF-2, IF-2,真核起始因子达十几种。 (2)起始氨酰-tRNA不同:原核为 fMet-tRNA f ,真核Met-tRNAi (3)核糖体不同:原核为70S核粒体, 可分为30S和50S两种亚基,真核为80S 核糖体,分40S和60S两种亚基

细胞生物学期末复习简答题及答案

细胞生物学期末复习简答题及答案 五、简答题 1、细胞学说的主要容是什么?有何重要意义? 答:细胞学说的主要容包括:一切生物都是由细胞构成的,细胞是组成生物体的基本结构单位;细胞通过细胞分裂繁殖后代。细胞学说的创立参当时生物学的发展起了巨大的促进和指导作用。 其意义在于:明确了整个自然界在结构上的统一性,即动、植物的各种细胞具有共同的基本构造、基本特性,按共同规律发育,有共同的生命过程;推进了人类对整个自然界的认识;有力地促进了自然科学与哲学的进步。 2、细胞生物学的发展可分为哪几个阶段? 答:细胞生物学的发展大致可分为五个时期:细胞质的发现、细胞学说的建立、细胞学的经典时期、实验细胞学时期、细胞生物学时期。 3、为什么说19世纪最后25年是细胞学发展的经典时期? 答:因为在19世纪的最后25年主要完成了如下的工作: ⑴原生质理论的提出;⑵细胞分裂的研究;⑶重要细胞器的发现。这些工作大推动了细胞生物学的发展。 1、病毒的基本特征是什么? 答:⑴病毒是“不完全”的生命体。病毒不具备细胞的形态结构,但却具备生命的基本特征(复制与遗传),其主要的生命活动必需在细胞才能表现。⑵病毒是彻底的寄生物。病毒没有独立的代和能量系统,必需利用宿主的生物合成机构进行病毒蛋白质和病毒核酸的合成。⑶病毒只含有一种核酸。⑷病毒的繁殖方式特殊称为复制。 2、为什么说支原体是目前发现的最小、最简单的能独立生活的细胞生物? 答:支原体的的结构和机能极为简单:细胞膜、遗传信息载体DNA与RNA、进行蛋白质合成的一定数量的核糖体以及催化主要酶促反应所需要的酶。这些结构及其功能活动所需空间不可能小于100nm。因此作为比支原体更小、更简单的细胞,又要维持细胞生命活动的基本要求,似乎是不可能存在的,所以说支原体是最小、最简单的细胞。 1、超薄切片的样品制片过程包括哪些步骤? 答案要点:固定,包埋,切片,染色。 2、荧光显微镜在细胞生物学研究中有什么应用? 答案要点:荧光显微镜是以紫外线为光源,照射被检物体发出荧光,在显微镜下观察形状及所在位置,图像清晰,色彩逼真。 荧光显微镜可以观察细胞天然物质经紫外线照射后发荧光的物质(如叶绿体中的叶绿素能发出血红色荧光);也可观察诱发荧光物质(如用丫啶橙染色后,细胞中RNA发红色荧光,DNA发绿色荧光),根据发光部位,可以定位研究某些物质在细胞的变化情况。 3、比较差速离心与密度梯度离心的异同。 答案要点:二者都是依靠离心力对细胞匀浆悬浮液中的颗粒进行分离的技术。差速离心是一种较为简便的分离法,常用于细胞核和细胞器的分离。因为在密度均一的介质中,颗粒越大沉降越快,反之则沉降较慢。这种离心方法只能将那些大小有显著差异的组分分开,而且所获得的分离组分往往不很纯;而密度梯度离心则是较为精细的分离手段,这种方法的关键是先在离心管中制备出蔗糖或氯化铯等介质的浓度梯度并将细胞匀浆装在最上层,密度梯度的介质可以稳定沉淀成分,防止对流混合,在此条件下离心,细胞不同组分将以不同速率沉降并形成不同沉降带。 4、为什么电子显微镜不能完全替代光学显微镜? 答案要点:电子显微镜用电子束代替了光束,大大提高了分辨率,电子显微镜相对光学显微镜是个飞跃。

(完整版)医学细胞生物学常用简答题详细答案.docx

细胞生物学复习-简答题 第三章真核细胞的基本结构 膜的流动性和不对称性极其生理意义 流动性:膜蛋白和膜脂处于不断运动的状态。主要由膜脂双层的动态变化引起,质膜的流动性由膜脂和蛋白质的分子运动两个方面组成。 膜质分子的运动:侧向移动、旋转、翻转运动、左右摆动 膜蛋白的运动:侧向移动、旋转 生理意义: 1、质膜的流动性是保证其正常功能的必要条件。如物质跨膜运输、细胞信息传递、细胞识别、细胞免疫、细胞 分化以及激素的作用等等都与膜的流动性密切相关。 2、当膜的流动性低于一定的阈值时,许多酶的活动和跨膜运输将停止。 不对称性:质膜的内外两层的组分和功能有明显的差异,称为膜的不对称性。 膜脂、膜蛋白和糖在膜上均呈不对称分布,导致膜功能的不对称性和方向性,即膜内外两层的流动性不同,使物 质传递有一定方向,信号的接受和传递也有一定方向 生理意义: 1、保证了生命活动有序进行 2、保证了膜功能的方向性 影响膜流动性的因素 1、胆固醇:相变温度以上,会降低膜的流动性;相变温度以下,则阻碍晶态形成。 2、脂肪酸链的饱和度:不饱和脂肪酸链越多,膜流动性越强。 3、脂肪酸链的长度:长链脂肪酸使膜流动性降低。 4 、卵磷脂 / 鞘磷脂:比例越高则膜流动性越增加(鞘磷脂粘度高于卵磷脂)。 5、膜蛋白:镶嵌蛋白越多流动性越小 6、其他因素:温度、酸碱度、离子强度等 细胞外被作用 1、保护、润滑作用:如消化道、呼吸道和生殖道的上皮细胞的糖萼 2、决定抗原 3、许多膜受体是糖蛋白或糖脂蛋白,参与细胞识别、应答、信号传递 RER和 SER的区别 存在细胞形状结构功能 RER在蛋白质合成囊状或扁平膜上含有特殊的参与蛋白质合成和修 旺盛的细胞中囊状,核糖核糖体连接蛋饰加工(糖基化,酰 发达。体和 ER 无白,可与核糖体基化,二硫键形成, 论在结构上60S 大亚基上的氨基酸的羟化,以及 还是功能上糖蛋白连接新生多肽链折叠成三 都不可分割级结构) SER在特化的细胞泡样网状结脂类和类固醇激素合 中发达构,无核糖成场所。 体附着肝细胞 SER解毒

分子生物学试题及答案

分子生物学试题及答案

分子生物学试题及答案一、名词解释 1.cDNA与cccDNA:cDNA是由mRNA通过反转录酶合成的双链DNA;cccDNA是游离于染色体之外的质粒双链闭合环形DNA。 2.标准折叠单位:蛋白质二级结构单元α-螺旋与β-折叠通过各种连接多肽可以组成特殊几何排列的结构块,此种确定的折叠类型通常称为超二级结构。几乎所有的三级结构都可以用这些折叠类型,乃至他们的组合型来予以描述,因此又将其称为标准折叠单位。3.CAP:环腺苷酸(cAMP)受体蛋白CRP(cAMP receptor protein ),cAMP与CRP结合后所形成的复合物称激活蛋白CAP(cAMP activated protein ) 4.回文序列:DNA片段上的一段所具有的反向互补序列,常是限制性酶切位点。 5.micRNA:互补干扰RNA或称反义RNA,与mRNA序列互补,可抑制mRNA的翻译。 6.核酶:具有催化活性的RNA,在RNA的剪接加工过程中起到自我催化的作用。 7.模体:蛋白质分子空间结构中存在着某些立体形状和拓扑结构颇为类似的局部区域 8.信号肽:在蛋白质合成过程中N端有15~36个氨基酸残基的肽段,引导蛋白质的跨膜。

除了5’ 3’外切酶活性 19.锚定PCR:用于扩增已知一端序列的目的DNA。在未知序列一端加上一段多聚dG的尾巴,然后分别用多聚dC和已知的序列作为引物进行PCR扩增。 20.融合蛋白:真核蛋白的基因与外源基因连接,同时表达翻译出的原基因蛋白与外源蛋白结合在一起所组成的蛋白质。 二、填空 1. DNA的物理图谱是DNA分子的(限制性内切酶酶解)片段的排列顺序。 2. RNA酶的剪切分为(自体催化)、(异体催化)两种类型。3.原核生物中有三种起始因子分别是(IF-1)、( IF-2 )和(IF-3 )。4.蛋白质的跨膜需要(信号肽)的引导,蛋白伴侣的作用是(辅助肽链折叠成天然构象的蛋白质)。 5.启动子中的元件通常可以分为两种:(核心启动子元件)和(上游启动子元件)。 6.分子生物学的研究内容主要包含(结构分子生物学)、(基因表达与调控)、( DNA重组技术)三部分。 7.证明DNA是遗传物质的两个关键性实验是(肺炎球菌感染小鼠)、( T2噬菌体感染大肠杆菌)这两个实验中主要的论点证据是:(生物体吸收的外源DNA改变了其遗传潜能)。 8.hnRNA与mRNA之间的差别主要有两点:( hnRNA在转变为mRNA 的过程中经过剪接,)、

(完整版)分子生物学试题及答案(整理版)

分子生物学试题及答案 一、名词解释 1.cDNA与cccDNA:cDNA是由mRNA通过反转录酶合成的双链DNA;cccDNA是游离于染色体之外的质粒双链闭合环形DNA。 2.标准折叠单位:蛋白质二级结构单元α-螺旋与β-折叠通过各种连接多肽可以组成特殊几何排列的结构块,此种确定的折叠类型通常称为超二级结构。几乎所有的三级结构都可以用这些折叠类型,乃至他们的组合型来予以描述,因此又将其称为标准折叠单位。 3.CAP:环腺苷酸(cAMP)受体蛋白CRP(cAMP receptor protein ),cAMP与CRP结合后所形成的复合物称激活蛋白CAP(cAMP activated protein ) 4.回文序列:DNA片段上的一段所具有的反向互补序列,常是限制性酶切位点。 5.micRNA:互补干扰RNA或称反义RNA,与mRNA序列互补,可抑制mRNA的翻译。 6.核酶:具有催化活性的RNA,在RNA的剪接加工过程中起到自我催化的作用。 7.模体:蛋白质分子空间结构中存在着某些立体形状和拓扑结构颇为类似的局部区域 8.信号肽:在蛋白质合成过程中N端有15~36个氨基酸残基的肽段,引导蛋白质的跨膜。 9.弱化子:在操纵区与结构基因之间的一段可以终止转录作用的核苷酸序列。 10.魔斑:当细菌生长过程中,遇到氨基酸全面缺乏时,细菌将会产生一个应急反应,停止全部基因的表达。产生这一应急反应的信号是鸟苷四磷酸(ppGpp)和鸟苷五磷酸(pppGpp)。PpGpp与pppGpp的作用不只是一个或几个操纵子,而是影响一大批,所以称他们是超级调控子或称为魔斑。 11.上游启动子元件:是指对启动子的活性起到一种调节作用的DNA序列,-10区的TATA、-35区的TGACA 及增强子,弱化子等。 12.DNA探针:是带有标记的一段已知序列DNA,用以检测未知序列、筛选目的基因等方面广泛应用。13.SD序列:是核糖体与mRNA结合序列,对翻译起到调控作用。 14.单克隆抗体:只针对单一抗原决定簇起作用的抗体。 15.考斯质粒:是经过人工构建的一种外源DNA载体,保留噬菌体两端的COS区,与质粒连接构成。16.蓝-白斑筛选:含LacZ基因(编码β半乳糖苷酶)该酶能分解生色底物X-gal(5-溴-4-氯-3-吲哚-β-D-半乳糖苷)产生蓝色,从而使菌株变蓝。当外源DNA插入后,LacZ基因不能表达,菌株呈白色,以此来筛选重组细菌。称之为蓝-白斑筛选。 17.顺式作用元件:在DNA中一段特殊的碱基序列,对基因的表达起到调控作用的基因元件。18.Klenow酶:DNA聚合酶I大片段,只是从DNA聚合酶I全酶中去除了5’→3’外切酶活性 19.锚定PCR:用于扩增已知一端序列的目的DNA。在未知序列一端加上一段多聚dG的尾巴,然后分别用多聚dC和已知的序列作为引物进行PCR扩增。 20.融合蛋白:真核蛋白的基因与外源基因连接,同时表达翻译出的原基因蛋白与外源蛋白结合在一起所组成的蛋白质。 二、填空 1. DNA的物理图谱是DNA分子的(限制性内切酶酶解)片段的排列顺序。 2. RNA酶的剪切分为(自体催化)、(异体催化)两种类型。 3.原核生物中有三种起始因子分别是(IF-1)、(IF-2)和(IF-3)。 4.蛋白质的跨膜需要(信号肽)的引导,蛋白伴侣的作用是(辅助肽链折叠成天然构象的蛋白质)。5.启动子中的元件通常可以分为两种:(核心启动子元件)和(上游启动子元件)。 6.分子生物学的研究内容主要包含(结构分子生物学)、(基因表达与调控)、(DNA重组技术)三部分。7.证明DNA是遗传物质的两个关键性实验是(肺炎球菌感染小鼠)、( T2噬菌体感染大肠杆菌)这两个实验中主要的论点证据是:(生物体吸收的外源DNA改变了其遗传潜能)。 8.hnRNA与mRNA之间的差别主要有两点:(hnRNA在转变为mRNA的过程中经过剪接,)、 (mRNA的5′末端被加上一个m7pGppp帽子,在mRNA3′末端多了一个多聚腺苷酸(polyA)尾巴)。 9.蛋白质多亚基形式的优点是(亚基对DNA的利用来说是一种经济的方法)、(可以减少蛋白质合成过程中随机的错误对蛋白质活性的影响)、(活性能够非常有效和迅速地被打开和被关闭)。 10.蛋白质折叠机制首先成核理论的主要内容包括(成核)、(结构充实)、(最后重排)。 11.半乳糖对细菌有双重作用;一方面(可以作为碳源供细胞生长);另一方面(它又是细胞壁的成分)。所以需要一个不依赖于cAMP—CRP的启动子S2进行本底水平的永久型合成;同时需要一个依赖于cAMP—CRP的启动子S1对高水平合成进行调节。有G时转录从( S2)开始,无G时转录从( S1)开

细胞生物学简答题整理

1.简述G蛋白偶联受体所介导的信号通路的异同G蛋白偶联受体所介导信号通路分为三类: ①激活离子通道;②激活或抑制腺苷酸环化酶,以cAMP 为第二信使;③激活磷脂酶C ,以IP3 和DAG 作为双信使 激活离子通道: 当受体与配体结合被激活后,通过偶联G蛋白的分子开关作用,调控跨膜离子通道的开启和关闭,进而调节靶细胞的活性。 激活或抑制腺苷酸环化酸的cAMP信号通路: 细胞外信号(激素,第一信使)与相应G蛋白偶联的受体结合,导致细胞内第二信使cAMP的水平变化而引起细胞反应的信号通路。腺苷环化酶调节胞内cAMP的水平,cAMP被环腺苷酸磷酸二酯酶降解清除。 cAMP信号通路主要是通过活化cAMP依赖性蛋白激酶A (PKA) ,激活靶酶开启基因表达,从而表现出不同的效应。蛋白激酶A 由2个催化亚基和2个调节亚基组成,cAMP的结合可改变调节亚基的构象,释放催化亚基产生活性。 蛋白激酶A被激活后,一方面通过对底物蛋白的磷酸化,引起细胞对胞外信号的快速反应;另一方面,其催化亚基可进入细胞核,磷酸化cAMP应答元件结合蛋白 (CREB) 的丝氨酸残基。磷酸化的CREB蛋白被激活,它作为基因转录的调节蛋白识别并结合到靶细胞的cAMP应答元件 (CRE) 启动靶基因的转录,引起细胞缓慢的应答反应。 cAMP信号通路中的缓慢反应过程:激素→G-蛋白偶联受体→G-蛋白→腺苷酸环化酶→ cAMP→ cAMP依赖的蛋白激酶A→基因调控蛋白→基因转录。 cAMP是由腺苷酸环化酶 (adenylyl cyclase,AC) 催化合成的,腺苷酸环化酶为跨膜12次的糖蛋白,在Mg2+或Mn2+存在下能催化ATP生成cAMP;细胞内的环腺苷酸磷酸二酯酶 (PDE) 可降解cAMP生成5’-AMP,导致细胞内cAMP水平

医学细胞生物学试题及答案(六)

细胞生物学试题题库第五部分 简答题 1. 根据光镜与电镜的特点,观察下列结构采用那种显微镜最好?如果用光镜(暗视野、相差、免疫荧显微镜) 那种最有效?为什么? 2. 细胞是生命活动的基本单位,而病毒是非细胞形态的生命体,如何理解二者之间的关系? 3. 为什么说支原体是最小、最简单的细胞? 4. 原核细胞与真核细胞差别是后者有细胞器,细胞器结构的出现有什么优点?(至少2点) 5. 简述动物细胞与植物细胞之间的主要区别。 6. 简述动物细胞、植物细胞、原生动物应付低渗膨胀的主要方式? 7. 简述单克隆抗体的主要技术路线。 8. 简述钠钾泵的工作原理及其生物学意义。 9. 受体的主要类型。 10. 细胞的信号传递是高度复杂的可调控过程,请简述其基本特征。 11. 简述胞饮作用和吞噬作用的主要区别。 12. 细胞通过分泌化学信号进行通讯主要有哪几种方式? 13. 简要说明G蛋白偶联受体介导的信号通路的主要特点。 14. 信号肽假说的主要内容。 15. 简述含信号肽的蛋白在细胞质合成后到内质网的主要过程。 16. 简述蛋白质糖基化修饰中N-连接与O-连接之间的主要区别。 17. 溶酶体膜有何特点与其自身相适应? 18. 简述A.TP合成酶的作用机制。 19. 化学渗透假说的主要内容。 20. 内共生学说的主要内容。 21. 线粒体与叶绿体基本结构上的异同点。 22. 细胞周期中核被膜的崩解和装配过程。 23. 核孔复合体的结构模型。 24. 染色质的多级螺线管模型。 25. 染色体的放射环模型。 26. 细胞内以多聚核糖体的形式合成蛋白质,其生物学意义是什么? 27. 肌肉收缩的机制。 28. 纤毛的运动机制。 29. 中心体周期。 30. 简述C.D.K1(MPF)激酶的活化过程。 31. 泛素化途径对周期蛋白的降解过程。 32. 人基因组大约能编码5万个基因,而淋巴细胞却能产生约107-109个不同抗体分子,为什么? 33. 细胞学说的主要内容。 34. 溶酶体膜有何与其自身功能相适应的特点? 35. 何为信号肽假说的? 36. 核孔复合体的结构模型。 37. 胞饮作用和吞噬作用的区别。 38. 为什么说线粒体和叶绿体是半自主性细胞器? 39. 简述核被膜的主要功能 40. 简述减数分裂的意义

分子生物学问答题

1.什么是转座? 转座因子在一个DNA分子内部或者两个DNA之间不同位置 间的移动。 2.病毒基因组有哪些特点?答:不同病毒基因组大小相差较大;不同病 毒基因组可以是不同结构的核酸;除逆转录病毒外,为单倍体基因组;病毒基因组有的是连续的,有的分节段;有的基因有内含子;病毒基因组大部分为编码序列;功能相关基因转录为多顺反子mRNA有基因重叠现象。 3.原核生物基因组有哪些特点?答:基因组由一条环状双链DNA组成; 只有一个复制起始点;大多数结构基因组成操纵子结构;结构基因无重叠现象;无内含子,转录后不需要剪接;基因组中编码区大于非编码区;重复基因少,结构基因一般为单拷贝;有编码同工酶的等基因;基因组中存在可移动的DNA序列;非编码区主要是调控序列。 4.真核生物基因组有哪些特点?答:每一种真核生物都有一定的染色 体数目;远大于原核基因组,结构复杂,基因数庞大;真核生物基因转录为单顺反子;有大量重复序列;真核基因为断裂基因;非编码序列多于编码序列;功能相关基因构成各种基因家族。 5.基因重叠有什么意义?答:利用有限的核酸储存更多的遗传信息,提 高自身在进化过程中的适应能力。 6.质粒有哪些特性? 答:在宿主细胞内可自主复制;细胞分裂时恒定地 传给子代;所携带的遗传信息能赋予宿主特定的遗传性状;质粒可以转移。 7.什么是顺式作用元件? 答:基因中能影响基因表达,但不编码RNA 和蛋白质的DNA序列。顺式作用元件主要包括启动子、增强子、负调控元件等。 8.简述原核基因表达的特点。答:(1)只有一种RNA聚合酶。(2)原核 生物的基因表达以操纵子为基本单位。(3)转录和翻译是偶联进行的。(4)mR

细胞生物学名词解释和简答题版

第四章P16提要第一段;细胞生物学概念,研究的主要内容 研究细胞基本生命活动规律的科学称为细胞生物学。它是以细胞为研究对象,从细胞的显微水平、亚显微水平、分子水平等三个层次,主要研究细胞和细胞器的结构和功能、细胞增殖、分化、衰老与凋亡,细胞信号转导、细胞基因表达与调控,细胞起源与进化等。二、细胞生物学的主要研究内容1 细胞核、染色体以及基因表达的研究2生物膜与细胞器的研究3生物膜与细胞器的研究4 细胞增殖及其调控5 细胞分化及其调控6 细胞的衰老与凋亡7细胞的起源与进化8 细胞工程P46提要真核结构:1生物膜体系以及生物膜为基础构建的各种独立的细胞器2.遗传信息表达的结构体系3细胞骨架体系 P80提要,普通光学显微镜结构和性能参数 1、光学显微镜的组成主要分为光学放大系统,为两组玻璃透镜:目镜和物镜;照明系统:光源、折光镜、聚光镜;机械和支架系统,主要保证光学系统的准确配置和灵活调控。光学显微镜的分辨率是最重要的性能参数,它由光源的波长、物镜的镜口角和介质折射率三个因素决定。 2、荧光显微镜是以紫外光为光源,电子显微镜则是以电子束为光源。 3、倒置显微镜与普通光学显微镜的不同在于物镜和照明系统的位置颠倒。

一、名词解释 外在膜蛋白:外在膜蛋白为水溶性蛋白质,靠离子键或其他较弱的键与膜表面的膜蛋白分子或膜脂分子结合,因此只要改变溶液的离子强度甚至提高温度就可以从膜上分离下来,但膜结构并不被破坏。 内在膜蛋白:内在膜蛋白是通过与之共价相连的脂分子插入膜的脂双分子中,从而锚定在细胞质膜上。与脂肪酸结合的内在膜蛋白多分布在质膜内侧,与糖脂相结合的内在膜蛋白多分布在质膜外侧。 生物膜:镶嵌有蛋白质和糖类(统称糖蛋白)的磷脂双分子层,起着划分和分隔细胞和细胞器作用生物膜,也是与许多能量转化和细胞内通讯有关的重要部位,同时,生物膜上还有大量的酶结合位点。细胞、细胞器和其环境接界的所有膜结构的总称。 二、简答题 1、生物膜的结构和功能,影响生物膜流动性的因素 生物膜的基本结构与作用 (1)具有极性头部和非极性尾部的磷脂分子在水相中具有自发形成封闭的膜系统的性质,以疏水性非极性尾部相对,极性头部朝向水相的磷脂双分子层是组成生物膜的基本结构成分,尚未发现在生物膜结构中起组织作用的蛋白。 (2)蛋白分子以不同的方式镶嵌在脂双分子中或结合在其表面,蛋白的类型,蛋白分布的不对称性及其与脂分子的协同作用赋予生物膜具有各自的特性与功能。

医学细胞生物学试题及答案大全03

医学细胞生物学试题及答案 第一章细胞生物学与医学 一、名词解释 1. 细胞生物学(cell biology: 2. 医学细胞生物学(medical cell biology: 二、问答题 1. 简述细胞生物学的主要研究内容。 2. 如何理解细胞的“时空”特性? 3. 细胞学说是怎样形成的? (eukaryotic cell:拟核(nucleoid:质粒 细胞体积守恒定律 二、问答题2. 比较真核细胞的显微结构和亚显微结构。3. 细胞的生命现象表现在哪些方面? 第五章细胞膜及其表面 一、名词解释

1. 生物膜(biological membrane 2. 脂质体(liposome 3. 糖脂(glycolipid 和糖蛋白(glycoprotein 4. 内在蛋白质(integral protein 和周边蛋白质(peripheral protein 6. 细胞表面(cell surface 8. 糖萼(glycocalyx 9. 细胞连接(cell junction 11. 穿膜运输(transmembrane transport 和膜泡运输(transport by vesicle formation 12. 胞吞作用(endocytosis 、胞饮作用(pinocytosis 和胞吐作用(exocytosis 13. 低密度脂蛋白(low density lipoprotein, LDL 14. 受体(receptor 和配体(ligand 1 5. 细胞识别(cell recognition 1 6. G 蛋白受体(G receptor和G 蛋白(G protein 1 7. 信号转导(signal transduction 1 8. 二、问答题 1. 组成细胞膜的化学物质主要有哪些? 2. 3. 5. 细胞膜的理化特性有哪些? 12. 细胞是如何识别的?细胞的识别有何生物学意义? 13. 简述G 蛋白的结构和作用机制。 14.cAMP 、IP3、DAG 和Ca 2+等第二信使分属于哪些信号传导通路?是如何产生的?有何生物学功能? 第六章细胞质和细胞器 一、名词解释

分子生物学简答题教学教材

试述乳糖操纵子的阻遏作用、诱导作用及正调控。 阻遏作用:阻遏基因lacl转录产生阻遏物单体,结合形成同源四体,即阻遏物。它是一个抗解链蛋白,当阻遏物与操纵基因O结合时,阻止DNA形成开放结构,从而抑制RNA聚合酶的功能。lacmRNA的转录起始受到抑制。 诱导作用:按照lac操纵子本底水平的表达,每个细胞内有几个分子的β-半乳糖苷酶和β-半乳糖苷透过酶。当加入乳糖,在单个透过酶分子的作用下,少量乳糖分子进入细胞,又在单个β-半乳糖苷酶的作用下转变为诱导物异构乳糖,诱导物通过与阻遏物结合,改变它的三维构象,使之因不能与操纵基因结合而失活,O区没有被阻遏物占据从而激发lacmRNA 的合成。 调控作用:葡糖糖对lac操纵子的表达的抑制是间接的,不是葡萄糖本身而是其降解产物抑制cAMP的合成。cAMP-CAP复合物与启动子区的结合是lacmRNA转录起始所必须的,因为该复合物结合于启动子上游,能使DNA双螺旋发生弯曲。有利于形成稳定开放型启动子-RNA聚合酶结构。如果将葡萄糖和乳糖同时加入培养基中,lac操纵子处于阻遏状态,不能被诱导 试述E.coli的RNA聚合酶的结构和功能。 2个α亚基、一个β亚基、一个β’亚基和一个亚基组成的核心酶,加上一个亚基后则成为聚合酶全酶 α亚基:核心酶组装、启动子识别 β和β’亚基:β和β’共同形成RNA合成的催化中心 因子:存在多种因子,用于识别不同的启动子 试述原核生物DNA复制的特点。 1.原核只有一个起始位点。 2.原核复制起始位点可以连续开始新的复制,特别是快速繁殖的细胞。 3.原核的DNA聚合酶III复制时形成二聚体复合物。 4.原核的DNA聚合酶I具有5'-3'外切酶活性 DNA解旋酶通过水解ATP 产生能量来解开双链DNA 单链结合蛋白保证被解链酶解开的单链在复制完成前保持单链结构 DNA拓扑异构酶消除解链造成的正超螺旋的堆积,消除阻碍解链继续进行的这种压力,使复制得以延伸 真核生物hnRNA必须经过哪些加工才能成为成熟的mRNA,以用作蛋白质合成的模板? (1)、在5’端加帽,5’端的一个核苷酸总是7-甲基鸟核苷三磷酸(m7Gppp)。 (2)、3’端加尾,多聚腺苷酸尾巴。准确切割,加poly(A)(3)、RNA的剪接,参与RNA剪接的物质:snRNA、snRNP(4)、RNA的编辑,编辑(editing)是指转录后的RNA 在编码区发生碱基的突变、加入或丢失等现象。 (5.)、RNA的再编码,mRNA有时可以改变原来的编码信息,以不同的方式进行翻译 (6.)、RNA的化学修饰,人细胞内rRNA分子上就存在106种甲基化和95种假尿嘧啶产物。

(完整版)分子生物学简答题全

简答题 6.为什么利用RNAi抑制一个基因的表达较利用反义RNA技术更为彻底。 答:RNAi是外源或内源性的双链RNA 进入细胞后引起与其同源的mRNA特异性降解.dsRNA进入细胞后,在Dicer作用下,分解为21-22bp的SiRNA.SiRNA结合相关 酶,形成RNA介导的沉默复合物RISC.RISC在ATP作用下,将双链SiRNA变成单链 SiRNA,进而成为有活性的RISC,又称为slicer.slicer与靶mRNA结合,导致其断裂,进 而导致其彻底降解。 反义RNA是与靶mRNA互补的RNA,它通过与靶mRNA特异结合而抑制其翻译表达,反义RNA是与靶mRNA是随机碰撞并通过碱基互补配对,所以,mRNA不一定完全 被抑制。 8.简述真核基因表达的调控机制。 答:(1)DNA和染色质结构对转录的调控: ①DNA甲基化,②组蛋白对基因表达的抑制,③染色质结构对基因表达的调控作 用,④基因重排,⑤染色质的丢失,⑥基因扩增; (2)转录起始调控: ①反式作用因子活性调节,包括表达调节、共价调节,配体调节等蛋白质相互作用 调节),②反式作用因子与顺式作用原件结合对转录过程进行调控; (3)转录后调控: ①5’端加帽和3’端多核苷酸化调控,②选择剪接调控,③mRNA运输调控,④mRNA 稳定性调控; (4)翻译起始的调控: ①阻遏蛋白的调控,②对翻译因子的调控,③对AUG的调控,④mRNA 5’端非编 码区的调控,⑤小分子RNA; (5)翻译后加工调控: ①新生肽链的水解,②肽链中氨基酸的共价修饰,③信号肽调控。 9.简述mRNA加工过程。 答:(1)5′端加帽(由加帽酶催化5′端加入7-甲苷乌苷酸,形成帽子结构m7GpppmNP-)。(2)3′端加入Poly(A)尾(A、组蛋白的成熟mRNA无需加polyA尾;B、加尾信号包括AAUAAA和富含GU的序列;C、加尾不需模板;D剪切过程需要多种蛋白质因 子的辅助)。 (3)mRNA前体的剪接(剪接加工以除去内含子序列,并将外显子序列连接成为成熟的有功能的mRNA分子。内含子两端的结构通常是5′-GU……AG-3′。选择性剪接的作 用机制包括;A使用不同的剪接位点,B选择使用外显子,C、反式剪接,D、使用 不同的启动子,E、使用不同的多腺苷酸化位点)。 (4)RNA的编辑(发生于转录后水平,改编mRNA序列,C→U或A→G,增加遗传信息容量)。 10.简述生物的中心法则。 答:中心法则(genetic central dogma),是指遗传信息从DNA传递给RNA,再从RNA传递给蛋白质,即完成遗传信息的转录和翻译的过程。也可以从DNA传递给DNA,即完成DNA的复制过程。

相关主题