搜档网
当前位置:搜档网 › 量子化学计算方法及应用

量子化学计算方法及应用

量子化学计算方法及应用
量子化学计算方法及应用

量子化学计算方法及应用

马建华

华侨大学材料学院2009级研究生班学号0900202003

摘要:文章概括地介绍了从头算法及一些半经验的量子化学计算方法, 同时简要介绍了国际理论界近年发展起来的组合方法、遗传算法、神经网络等计算方法及其在材料学、生物学、药物学以及配位化学中的应用。

关键词:量子化学;计算方法;应用

1、量子化学计算方法简介

量子力学是20世纪最重要的科学发现之一。在量子力学基础上发展起来的理论物理、量子化学及相关的计算, 为我们开辟了通向微观世界的又一个途径。

量子化学研究的电子- 原子核体系可用相应的Schrdinger 方程解的波函数来描述。原则上,Schrdinger方程的全部解保证了多电子体系中电子结构与相互作用的全面描述。然而, 由于数学处理的复杂性, 在实践中, 总希望发展和运用量子力学的近似方法, 从而无需进行很繁杂的计算就可以说明复杂原子体系的主要特性, 这就必须在原始量子化学方程中引进一些重要的简化, 以便得到一定程度的近似解。量子化学发展到现在, 根据为解Schrdinger方程而引入近似程度的不同,大致可分为以下几种方法:

1.1、从头计算方法(ab initio calculation)[1- 2]

从头计算方法, 即进行全电子体系非相对论的量子力学方程计算。这种方法仅仅在非相对论近似、Born-Oppenheimer近似、轨道近似这三个基本近似的基础上利用Planck常数、电子质量和电量三个基本物理常数以及元素的原子序数, 对分子的全部积分严格进行计算,不借助任何经验或半经验参数,达到求解量子力学Schrdinger方程的目的。Roothaan方程是多电子体系Schrdinger方程引入三个基本近似后的基本表达。原则上,只要合适地选择基函数,自洽迭代的次数足够多,Roothaan方程就一定能得到接近自洽场极限的精确解。因此这种计算方法在理论和方法上都是比较严格的, 其计算结果的精确性和可靠性都大大优于半经

验的一些计算方法。所以它日益受到行家们的重视, 应用范围愈来愈广, 成为量子化学计算的主流。

1.2、简单分子轨道法[3-4]如HMO(休克尔分子轨道法)、EHMO(扩展

HM0)法等。

这类方法最突出的特点是计算量小, 很适合于共轭体系的计算, 但它在计算的开始以及计算过程中引入太多的近似, 只能用来定性研究较简单分子的有关规律, 在早期的量子化学工作中用得较多。如, HMO法是在绝热近似、单电子近似和LCAO(linearcombination of atomic orbitals,即原子轨道的线性组合)近似的基础上,进一步完全忽略电子之间的排斥力, 并对有机共轭分子体系采取σ-π分离近似等近似来建立和求解定态Schrdinger方程。在EHMO中, 单电子哈密顿Hii 数值取自原子轨道电离势的实验值, 忽略了双电子积分, 使研究对象从π电子体系扩展到σ骨架的一般分子, 对系列同系物的分子内部电荷分布、化学键性质、轨道能级等, 可以给出定性结果。

1.3、半经验分子轨道方法[5]

如全略微分重叠的CNDO、间略微分重叠的INDO、还有NDDO、MNDO、MINDO等方法。这类半经验方法从电子结构实验资料估计最难计算的一些积分, 不是从原始的完整Hamilton量出发, 而是从最简单的模型Hamilton量出发。只粗略地考虑了分子中相互作用, 而忽略了许多二、三、四中心积分。所以,这类方法虽然极大地减少了必需的计算工作量,但是其计算所得到的结果只带有定性和半定量的特性,其准确性、可靠性不够。故此法逐渐被其它更为精确的计算方法所替代。如方法MNDO,用光谱数据拟合双电子积分参数, 用这些参数计算有机物的平衡几何构型、生成热、偶极矩等都获得成功, 但仅限于第一、二周期元素化合物。

1.4、密度泛函理论[6-7]

如定域密度泛函理论LDFT、自旋密度泛函近似LSDA、广义梯度近似GGA、密度泛函与分子轨道的杂化方法(如B3LYP等)等。密度泛函理论改变以往以轨道波函数为基的特点,以密度函数为为基。

1.5、Xα方法[8]

Xα方法是密度泛函理论的一个重要分支, 它是对电子间非定域的交换能采用了统计平均近似, 用一个与电荷密度的立方根成正比的密度泛函近似替代了从头计算方法中计算最为困难的电子交换作用项, 从而在保持较高理论严谨性和计算精确度的同时, 大大减少了计算工作量。Xα方法从50 年代发展到现在,根据它们引入近似程度的不同, 主要可分为以下几种:

(1)自洽场多重散射Xα法(SCF-MS-Xα法),这种方法的特点是在计算中引入了交换势的统计平均近似和圆球分区近似,它的计算工作量比其它Xα法小, 但计算结果的精确度不高。

(2)分立变分Xα法(DV- Xα法), 这种方法只采用交换势的统计平均近似, 而不采用圆球分区近似, 它把分子轨道展开为原子轨道的线性组合, 而且此法对于基函数的选择, 原则上没有限制, 这正是分立变分Xα法的优点。

(3)原子线性组合Xα法(LCAO-Xα法),它同分立变分Xα法一样也只采用交换势的统计平均近似,而不采用圆球分区近似,把分子轨道展开为原子轨道的线性组合, 但它在求解Hartree-Fock-Slater方程时用Gauss函数代替Slater函数作为基以求简化多种中心积分的计算。分立变分Xα法和原于线性组台Xα法虽然克服了自治场多重散射Xα法的某些缺点, 并且提高了计算的精确度, 但是它们却增加了计算的工作量。

1.6、分子模拟[9-11]

分子力学或量子力学与统计力学结合的分子模拟技术使量子化学计算从静态向动态、从小体系向纳米、介观尺度过渡提供了可能。分子模拟可分为两大类:一类为分子动力学(MD)模拟,它是根据原子间相互作用势, 用经典力学处理体系中每个粒子随时间变化的运动途径。另一类以概率论为基础的Monte Carlo模拟(MC),与MD方法不同,MC模拟不需要势能函数,它采用简单取样或权重取样,去构造一个Markov链。经过长期演算后, 粒子状态逼近Boltzmann分布,然后通过统计平均, 获得各种平均值。MC模拟只提供体系始态和终态的状况, 可以处理达几千个原子的相当大的体系。

1.7、QM/MM组合方法[12]

量子化学方法(QM) 能精确地预测各种中小分子的物理、化学性状, 研究化学反应机理。对于结构规整的较大体系, 周期性理论方法也可以给出合理的描

述。然而对于复杂的生物体系、固体表面吸附问题、非晶态纳米材料等, 目前用量子化学直接计算仍相当困难。分子力学(MM) 及建立在分子力学基础上的分子动力学(MD) , 在研究模拟生物大分子、大块合金材料等方面获得广泛的应用,但由于分子力学是建立在原子层次上, 无法考虑电子的运动, 一般不适合讨论化学反应。为综合两种方面的优点, 将两种方法结合起来, 把研究体系分为几个区域, 在中心区域进行高精度的量子化学计算(QM) , 在周边区域进行半经验或分子力学计算(MM) , 这就是近来十分流行的QM/MM组合方法。

1.8、遗传算法[13]

遗传算法(genetic algorithm)是借鉴自然界生物进化论的规律, 优胜劣汰, 步步逼近最优解的一种算法。在研究过程中使用选择、杂交、变异等遗传算子, 在繁衍过程中对群体中的个体进行筛选,选择最优个体或过程。

1.9、神经网络方法[14-16]

神经网络方法是根据人体神经元的联系、信息传递而设计的多种网络研究方法。它与其他方法不同之处在于能进行学习训练, 使它更适合研究对象。

2、量子化学应用

80年代以来,随着计算机和大型工作站的出现以及有关量子化学计算软件的大量推出(例如GSMESS系列,HONDO系列,GAUSSIAN系列等程序包的推出),使量子化学计算方法成为化学计算理论研究的主流[17]。可用于解释或预测原子,分子和晶体的各种性质,包括分子的能量和结构,化学反应路径,过渡态的能量和结构,分子轨道,振动频率,原子电荷,红外和拉曼光谱,电多极矩,NMR 屏蔽和磁化系数,热化学性质,自旋-自旋耦合常数,成健和化学反应能量,振动圆二色性强度,电子圆二色性强度,g张量和超精细光谱的其他张量,旋光性,振动-转动耦合,电子亲和能和电离势,极化率和超极化率,各向异性超精细耦合常数,静电势和电子密度等。其应用范围也不断扩大,涉及到化学各分支学科,并取得了可喜的成果。

2.1、在含能材料的研究方面

量子化学计算能帮助阐明含能材料的分子结构和性能的关系,对含能材料进行分子设计,并建立相应的判别原则,从而更好的指导含能材料的开发工作。[18]

王桂香,肖鹤鸣[19]等人用量子化学方法计算了硝胺类和硝基芳烃类爆炸物的生成焓,估算其爆速(D)和爆压(P),发现多环硝胺类化合物的爆轰性能优于芳烃硝基类爆炸物,且爆速(D)和爆压(P)的计算值与静电感度实验值(EES)之间存在较好的线性关系,有助于含能材料的分子设计。

2.2、在现代分子生物学和生物医学研究方面

量子化学计算方法主要应用在了解大幅度构象变化的机理,设计高效、高选择性的药物分子等方面[20]。高川、韩维涛[21]等人通过量子化学半经验AM1方法,计算确定了白喉毒素分子催化区活性中心的关键氨基酸残基,并定量分析了DT及突变体的酶催化活性与NAD的键和能力,为导向性抗癌药物研究提供了高效杀伤细胞工具。李敏杰[22]等人用量子化学计算方法对核酸自由基、损伤机理进行了深入研究,并开发了一个新的高精度组合从头算法(ONIOM-G3B3),准确预测了各类有机物的键解离能;确定了生物体系中存在较多的核苷和脱氧核苷的构型,准确预测了核苷和脱氧核苷糖环及碱基上的C-H 和N-H BDE值,提出了合理的损伤机理。

2.3、无机化学材料方面

无机化学最近几年里所取得的突出进展主要表现在固体材料化学、配位化学方面,对于复杂体系的研究,量子化学的计算研究更显现出它无可比拟的优越性。赵金安[23]等人进行了无机子筛材料[CoNa6(SO4)4(H2O)2]n的量化研究,发现无论对于何种轨道,Na原子的贡献很大,S原子其次,H原子最少,对化学键的计算发现Na原子与S原子之间存在较强的配位作用,预示着整个化合物具有很高的稳定性;张珉[24]等人采用密度泛函方法,更精确的讨论了sp2杂化对硅纳米管的结构和电子性质的影响,进一步讨论了他们光学性质上的差异,为未来硅纳米管的应用研究提供来理论依据;对简化的第三族氮化物碳纳米管进行基于sp2杂化和sp3杂化的第三族氮化物纳米管进行对比研究,并给出了一个更为简单、合理的理论判据。

2.4、在催化化学领域方面

量化计算的各种方法主要应用于对催化作用本质的研究、多相催化中的吸附、检验反应机理等方面。余远斌等通过量子化学计算发现,金属卟啉催化剂的

EHOMO和AEL-H值越小,其催化活性越高;实现了对未知催化剂催化活性的预测,对设计合成性能优异的催化剂有积极的指导意义。阮宇红等从分子结构与微观角度研究了异丁烷与丁烯的多相催化反应过程及催化剂失活的原因,比较了液体酸和固体酸催化烷基化反应的差别,为开发无毒无污染的新型液体酸烷基化催化剂指明了方向。

2.5、在地球化学领域方面

对于稳定同位素分馏的机理研究,需要量子水平的理论才能深刻理解其本质。刘耘[25]用给予u-rey的量子化学从头计算,揭示了Fe在FeCN64-和FeCN63-中的不同“自旋态”对同位素分馏行为的巨大影响,修正了关于“重同位素倾向于富集在高价化合物中”的这个广泛被接受的基本原理,并首次指出在压力导致自旋态变化的地质过程中,必定存在同位素分馏反常的复杂状况。唐茂等[26]提出了用新的“二元同位素”方法研究天然气的形成温度,利用量子化学计算方法分析了天然气中甲烷和CO的二元同位素特征,使在温度的判定上达到双重校订的效果,更准确地确定天然气的温度和迁移过程信息。

3、前景

量子化学计算的研究不再只被纯理论化学家所青睐,也成为实验化学家进行研究的有力武器,有着广阔的应用前景。量子化学计算的研究越来越多地与实验相结合,其研究方法和手段呈现多样化。随着学科之间的相互交叉和相互渗透,量子化学计算的研究领域正在逐渐拓宽并朝着纵深方向拓展,研究方法也在不断创新。量子化学计算的发展给研提供了许多可以借鉴的经验和方法,与之相互结合、取长补短,可使科研走向一个新的高度。

3、参考文献

[1]唐敖庆.量子化学[M].北京: 科学出版社, 1982.

[2]徐光宪, 黎乐民, 王德民.量子化学基本原理和从头计算法[M].北京: 科学

出版社, 1999

[3]唐敖庆, 李前树.应用量子化学[M].上海: 知识出版社,1987.

[4]江连霖.量子化学原理[M].上海: 复旦大学出版社,1990.

[5][美]J.A. 波普尔, D.L 贝弗里奇. 分子轨道近似方法理论[M].北京: 科学

出版社, 1976

[6]Kohn W.sham L J. Phys.Rev.[J].2008, 140:1133- 1138.

[7]Pople J A, Head - Gordon M, Fox D J. J.Chem.Phys. [J].2008, 90:5622.

[8]潘毓刚, 李俊清, 祝继康, 李笃.Xa 方法的理论和应用[M].北京: 科学出版

社, 1987.

[9]Car R,Parrinello M. Phys,Rev.Lett.[J].2008,55:2471.

[10]Lennard - Jones L E. Proc.R.Soc. [M].London 1924, 106:463.

[11]Verdier P H,Stockmayer W H. J.Chem.Phys. [J].1962, 36:227.

[12]Bersuker I B, Leong M K, Boggs J E et al. Int.J.QuantumChem.[M].2008,

1051.

[13]Holland J H. Adaptation in Natural and Artifical Systems[M].Ann

Arbor:Michigan Univ.Press, 2008.

[14]Hopfield J J. Proc.Natl.Acad.Sci[M].USA,2008, 79:2554.

[15]Hopfield J J,Tank D W. Science[M].2007, 233:625.

[16]Rumelhard D,Hinton GE,Williams R J.in Parallel DistributedProcessing:

Explorations in the Microstructures of Cognition[M].MIT

Press,2008:318- 362.

[17] 笪良国,张倩茹.量子化学计算方法及其在结构化学中的应用[J].淮南师

范学院学报,2007,9(3):101.

[18] 黎小平,张炜,等.量子化学计算在含能材料合成中的应用lEc]∥航天力

技术站与应用学术会议论文集.沈阳:中国航天第三专业信息网,2006:323.

[19]王桂香,肖鹤鸣,等.含能材料的密度、爆速、爆压和静电感度的理论研究

[J].化学学报,2007,65(6):517.

[20]许叶春,沈建华,等.药物/生物体系的大规模分子动力学模拟研究[c]//

中国化学会.桂林:中国化学会第九届全国量子化学学术会议,2005:1. [21]高川,韩维涛,等.白喉毒素活性中心的量子化学计算与149位突变体的酶

学动力学EJ].化学学报,2008,65(14):134.

[22] 李敏杰.核酸自由基性质和损伤机理的量子化学研究[D].合肥:中国科学

技术大学,2008.

[23]赵金安.无机分子筛材料[CoN (SO4) (H。O)z] 的合成、晶体结构和量化

研究[J].皮革化工,2006,23(4):8.

[24]张珉.硅及第三族氮化物纳米管稳定性及相关性质的理论研究[D].长春:

东北师范大学,2008.

[25]刘耘.对稳定同位素地球化学一个基本原理的反思[J].矿物岩石地球化学

通报,2007,25(2):49.

[26]唐茂,赵辉,刘耘.天然气中甲烷和C02的二元同位素特征[J].矿物学报,

2007,27(3/4):396.

高中化学学习方法..

高中化学学习方法 大家好,我是王伟川,14级北大化学学院 今天与大家分享化学部分的经验 这部分比较长 因为化学,其实高中不同的三个部分,其应对战略并不完全相同 家长可以先了解,然后后续让孩子看 为什么家长也要看? 因为家长如果对于孩子所学,一无所知,很难和孩子沟通交流,并不需要家长具体了解内容,而是框架性就足够 这样,家长催促孩子复习,就不是快去复习! 而是,你那个元素化学看得如何了? 也方便和老师的沟通 关于高考化学的学习方法,大部分我们所看到的建议与参考,或大同小异,或笼统概括,或蜻蜓点水地说出“归纳很重要、做题也重要”这样的言语却不加细释 乍看之下言简意赅,然而实际上当学生想要学习它的做法时又显得无从下手,不知所措。 我决定从一个高考亲历者的角度出发,还原出当年我自己学习化学过程中的真实心得与经验,将所有的方法与建议都以最详细的方式呈现出来 力求“手把手”地教会学生学习化学的方法。当然,方法因人而异,供各位学弟学妹参考。

很多同学想要学好化学,于是急着去做题、去看书 但是首先我们需要弄清楚的是,高中的化学分为好几个类别 总的来说高中化学通过【图表总结,类比学习的方式梳理知识点】最为有效 然而对每一个类别都有不同的方法来学习,都有自己的知识图表,如果连自己究竟是哪一块最薄弱尚未清楚,所做的努力可能就是事倍功半了。 从知识点上分,高中化学,分为元素化学、有机化学、化学反应原理三个大部分,各种具体的化学实验贯穿其中 基本上,高一上,最多高一下一点点,解决初高中衔接和元素化学高一下进行化学反应原理,这个基本上要一直到高二上 剩下是有机化学 这里我们举一些例子 元素化学是整个高中阶段知识最琐碎的一块内容 所以在这种背景下,显而易见的一个特点就是:元素化学要记的细节特别多,而对于一种元素又要掌握它的多种相关物质,知识点显得杂而碎。 所以我们必须有针对性的给出一些可操作性强的方法: 1.自行绘制物质转化框图——一定要自己书写。 注意,这种总结,框图,你必须自己写,不能是模糊地我记得的!给一张白纸,你自己写下来,梳理出来 比如说,我通过一周的学习,老师把碱金属这一块差不多讲完了

量子化学计算方法试验

量子化学计算方法试验 1. 应用量子化学计算方法进行计算的意义 化学是一门基础学科,具有坚实的理论基础,化学已经发展为实验和理论并重的科学。理论化学和实验化学的主要区别在于,实验化学要求把各种具体的化学物质放在一起做试验,看会产生什么新的物质,而理论化学则是通过物理学的规律来预测、计算它可能产生的结果,这种计算和预测主要借助计算机的模拟。也就是说,理论化学可以更深刻地揭示实验结果的本质并阐述规律,还可以对物质的结构和性能预测从而促进科学的发展。特别是近几年来,随着分子电子结构、动力学理论研究的不断深入以及计算机的飞速发展,理论与计算化学已经发展成为化学、生物化学及相关领域中不可缺少的重要方向。目前,已有多种成熟的计算化学程序和商业软件可以方便地用于定量研究分子的各种物理化学性质,是对化学实验的重要的补充,不仅如此,理论计算与模拟还是药物、功能材料研发环境科学的领域的重要实用工具。 理论化学运用非实验的推算来解释或预测化合物的各种现象。理论化学主要包括量子化学,(quantum chemistry)是应用量子力学的基本原理和方法研究化学问题的一门基础科学。研究范围包括稳定和不稳定分子的结构、性能及其结构与性能之间的关系;分子与分子之间的相互作用;分子与分子之间的相互碰撞和相互反应等问题。量子化学可分基础研究和应用研究两大类,基础研究主要是寻求量子化学中的自身规律,建立量子化学的多体方法和计算方法等,多体方法包括化学键理论、密度矩阵理论和传播子理论,以及多级微扰理论、群论和图论在量子化学中的应用等。理论与计算化学的巨大进展,正使化学学科经历着革命性的变化。今天的理论与计算化学几乎渗透到现代一切科技领域,与材料、生物、能源、信息和环保尤为密切,理论化学的应用范围将越来越广。理论与计算化学逐步发展成为一门实用、高效、富有创造性的基础科学,在化学、生物学等领域的影响越来越显著,且与日剧增。 2. 应用量子化学计算方法进行计算的目的 (1)了解量子化学计算的用途。 (2)了解量子化学计算的原理、方法和步骤。 (3)通过一两个计算实例进行量子化学计算的上机操作试验。 (4)学会简单的分析和应用计算结果。 3. 量子化学计算试验的原理

高中化学计算方法总结:差量法

差量法 差量法是依据化学反应前后的某些变化找出所谓的理论差量(固体质量差、液体质量差、气体体积差、气体物质的量之差等),与反应物或生成物的变化量成正比而建立的一种解题方法。此法将“差量”看作化学方程式右端的一项,将已知差量(实际差量)与化学方程式中的对应差量(理论差量)列成比例,其他解题步骤与按化学方程式列比例解题完全一样。在根据化学方程式的计算中,有时题目给的条件不是某种反应物或生成物的质量,而是反应前后物质的质量的差值,解决此类问题用差量法十分简便。此法的关键是根据化学方程式分析反应前后形成差量的原因(即影响质量变化的因素),找出差量与已知量、未知量间的关系,然后再列比例式求解。 一.固体差量 1.将19 g Na2CO3和NaHCO3的混合物加热至质量不再减少为止,称得剩余固体质量为15.9 g,则原混合物中NaHCO3的质量分数是_____%。44.2%。 二.液体差量 2.用含杂质(杂质不与酸作用,也不溶于水)的铁10 g与50 g稀硫酸完全反应,滤去杂质,所得液体质量为55.4 g,则该铁的纯度是_____%。56%。 三.气体差量 3.将12 g CO和CO2的混合气体通过灼热的氧化铜后,得到气体的总质量为18 g,则原混合气体中CO的质量分数是_____%。87.5%。 四.增减差量 4.在天平左右两边的托盘天平上,各放一个盛有等质量、等溶质质量分数的足量稀硫酸的烧杯,待天平平衡后,向两烧杯中分别加入铁和镁,若要使天平仍保持平衡,则所加铁和镁的质量比是_____。77/81。 五.体积差量 5.在一个6 L的密闭容器中,放入3 L X和2 L Y,在一定条件下发生下列反应:4X(g)+ 3Y(g) 2Q(g)+nR(g),达到平衡后,容器内温度不变,混合气体的压强比原来增加5%,X的浓度减小1/3,则该反应的n值是 A.4 B.5 C.6 D.7 6.同温同压下,40 mL CO、CO2和O2的混合气体点燃后,恢复到原来的状况,剩余气体36 mL,则原混合气体中O2不少于 A.4 mL B.8 mL C.10 mL D.12 mL 六.压强差量 7.标准状况下,一容积不变的的密闭容器里充满3 L H2和O2的混合气体,点燃完全反应后,恢复至原状态,压强变为原来的1/2,则原混合气体中H2和O2的体积分别是 __________。2.5,0.5;1,2。 七.巧练 8.有KCl、KBr和KI混合物3.87 g,溶于水配成溶液,向溶液中加入足量的AgNO3溶液,得到的沉淀干燥后是6.63 g,则原混合物中钾元素的质量分数是 A.51% B.40.3% C.32% D.24% 9.将足量的铁粉投入到CuCl2和FeCl3组成的混合液中,充分反应后,过滤洗涤并干燥

高中有机化学计算题方法总结(修正版)

方程式通式 CXHY +(x+ 4y )O2 →xCO2+ 2y H2O CXHYOz +(x+24z y -) O2 →xCO2+2 y H2O 注意 1、有机物的状态:一般地,常温C 1—C 4气态; C 5—C 8液态(新戊烷C 5常温气态, 标况液态); C 9以上固态(不严格) 1、有机物完全燃烧时的耗氧量 【引例】完全燃烧等物质的量的下列有机物,在相同条件下,需要O 2最多的是( B ) A. 乙酸乙酯 CH 3COOC 2H 5 B. 异丁烷 CH(CH 3)3 C. 乙醇 C 2H 5OH D. 葡萄糖 C 6H 12O 6 ①等物质的量的烃C X H Y 完全燃烧时,耗氧量决定于的x+ 4 y 值,此值越大,耗氧量越多; ②等物质的量的烃的含氧衍生物C X H Y O Z 完全燃烧耗氧量决定于的x+24z y -值,此值越大,耗氧量越多; 【注】C X H Y 和C X H Y O Z 混搭比较——把衍生物C X H Y O Z 分子式写成残基·不耗氧的 CO 2 · H 2O 后,剩余残基再跟烃C X H Y 比较。如比较乙烯C 2H 4和乳酸C 3H 6O 3,后者就可写成 C 2H 4?1CO 2?1H 2O ,故等物质的量的二者耗氧量相同。 【练习】燃烧等物质的量的下列各组物质,耗氧量不相同的是( B ) A .乙烷CH 3CH 3与丙酸C 2H 5COOH B .乙烯CH 2=CH 2与乙二醇CH 2OH CH 2OH C .乙炔HC ≡CH 与乙醛CH 3CHO D .乙炔HC ≡CH 与乙二醇CH 2OH CH 2OH 【引例】等质量的下列烃完全燃烧生成CO 2和H 2O 时,耗氧量最多的是( A ) A .C 2H 6 B . C 3H 8 C .C 4H 10 D .C 5H 12 ③等质量的烃CxHy 完全燃烧时,耗氧量决定于x y 的值,此值越大,耗氧量越多; ④等质量的烃的含氧衍生物CxHyOz 完全燃烧时,先化成 Cx Hy ?mCO2?nH2O 的形式,耗 氧量决定于 ' 'x y 的值,此值越大,耗氧量越多;

高中有机化学计算题方法总结

方程式通式 CXHY +(x+ 4y )O2 →xCO2+ 2y H2O CXHYOz +(x+2 4z y ) O2 →xCO2+2y H2O 注意 1、有机物的状态:一般地,常温C 1—C 4气态; C 5—C 8液态(新戊烷C 5常温气态, 标况液态); C 9以上固态(不严格) 1、有机物完全燃烧时的耗氧量 【引例】完全燃烧等物质的量的下列有机物,在相同条件下,需要O 2最多的是( B ) A. 乙酸乙酯 CH 3COOC 2H 5 B. 异丁烷 CH(CH 3)3 C. 乙醇 C 2H 5OH D. 葡萄糖 C 6H 12O 6 ①等物质的量的烃C X H Y 完全燃烧时,耗氧

量决定于的x+ 4y 值,此值越大,耗氧量 越多; ②等物质的量的烃的含氧衍生物C X H Y O Z 完全燃烧耗氧量决定于的x+2 4z y 值,此值越大,耗氧量越多; 【注】C X H Y 和C X H Y O Z 混搭比较——把衍生物C X H Y O Z 分子式写成残基·不耗氧的 CO 2 · H 2O 后,剩余残基再跟烃C X H Y 比较。如比较乙烯C 2H 4和乳酸C 3H 6O 3,后者就可写成 C 2H 41CO 21H 2O ,故等物质的量的二者耗氧量相同。 【练习】燃烧等物质的量的下列各组物质,耗氧量不相同的是( B ) A .乙烷CH 3CH 3与丙酸C 2H 5COOH B .乙烯CH 2=CH 2与乙二醇CH 2OH CH 2OH C .乙炔HC ≡CH 与乙醛CH 3CHO D .乙炔HC ≡CH 与乙二醇CH 2OH CH 2OH

高中化学计算题总结+高考真题

高中化学计算题的解法归纳【知识网络】

【典型例题评析】 例1某体积可变的密闭容器,盛有适量的A和B的混合气体,在一定条件下发生反应: A+3B2C。若维持温度和压强不变,当达到平衡时,容器体积为VL,其中C气体的体积占10%,下列推断正确的是(全国高考题) ①原混合气体的体积为1.2VL ②原混合气体的体积为1.1VL ③反应达平衡时气体A消耗掉0.05VL ④反应达平衡时气体B消耗掉0.05VL A.②③ B.②④ C.①③ D.①④ 体积差: 例3将硫酸钾、硫酸铝、硫酸铝钾三种盐混合溶于硫酸酸化的水中,测得c(SO42-)=0.105mol/L、c(Al3+)=0.055mol/L,溶液的pH=2.0(假设溶液中H2SO4完全电离为H+和SO42-),则c(K+)为 (上海高考题) A.0.045mol/L B.0.035mol/L C.0.055mol/L D.0.040mol/L 电荷守恒: )x的水溶液,当阴极上增重a g时,在阳极上同时产生bL氧气(标准状况),例4用惰性电极电解M(NO 3 从而可知M的原子量为 电子守恒: 铜和镁的合金4.6g完全溶于浓硝酸,若反应中硝酸被还原只产生4480mL的NO2气体和336mL的N2O4气体(都已折算到标准状况),在反应后的溶液中,加入足量的氢氧化钠溶液,生成沉淀的质量为(上海高考题)A.9.02g B.8.51g C.8.26g D.7.04g

例5将1.92g铜粉与一定量浓硝酸反应,当铜粉完全作用时收集到1.12L(标准状况)。则所消耗硝酸的物质的量是(上海高考题) A.0.12mol B.0.11mol C.0.09mol D.0.08mol 原子守恒|: 例8在一定条件下,将m体积NO和n体积O2同时通入倒立于水中且盛满水的容器内,充分反应后,容器内残留m/2体积的气体,该气体与空气接触后变为红棕色,则m与n的比值为(上海高考题) 方程式叠加 例9 由CO 2、H 2 和CO组成的混合气在同温同压下与氮气的密度相同。则该混合气体中CO 2 、H 2 和CO的体积 比为 (上海高考题) 十字交叉法 例10由锌、铁、铝、镁四种金属中的两种组成的混合物10g,与足量的盐酸反应产生的氢气在标准状况下为11.2L,则混合物中一定含有的金属是(全国高考题) A.锌 B.铁 C.铝 D.镁 例13第ⅡA族元素R的单质及其相应氧化物的混合物12g,加足量水经完全反应后蒸干,得固体16g,试推测该元素可能为(上海高考题) A.Mg B.Ca C.Sr D.Ba 极值法 R---->ROH 2.8/M1=( 3.58-2.8)/17 M1=61 R2O---->2ROH 2.8/(2M2+16)=( 3.58-2. 8)/18 例15在一个密闭容器中,用等物质的量的A和B发生反应:A(g)+2B(g) 。当反应达到平衡时,如果混合气体中A和B的物质的量之和与C的物质的量相等,则此时A的转化率为(全国高考题) A.40% B.50% C.60% D.70% 估算法

高中化学计算题基本计算方法与推断题总结

高中化学计算题基本计算方法与推动总结 推断题解题技巧:看其颜色,观其状态,察其变化。 1. 常见物质的颜色:多数气体为无色,多数固体化合物为白色,多数溶液为无色。 2. 一些特殊物质的颜色: 黑色:MnO2、CuO、Fe3O4、C、FeS(硫化亚铁) 蓝色:CuSO4?5H2O、Cu(OH)2、含Cu2+ 溶液、液态固态O2(淡蓝色) 红色:Cu(亮红色)、Fe2O3(红棕色)、红磷(暗红色) 黄色:硫磺(单质S)、含Fe3+的溶液(棕黄色) 绿色:FeSO4?7H2O、含Fe2+的溶液(浅绿色)、碱式碳酸铜[Cu2(OH)2CO3] 紫黑色:KMnO4 无色气体:N2、CO2、CO、O2、H2、CH4 有色气体:Cl2(黄绿色)、NO2(红棕色) 有刺激性气味的气体:NH3(此气体可使湿润pH试纸变蓝色)、SO2、HCl 有臭鸡蛋气味:H2S 产生酸雾:HCl、HNO3 3. 常见一些变化的判断: ①白色沉淀且不溶于稀硝酸或酸的物质有:BaSO4、AgCl(就这两种物质) ②蓝色沉淀:Cu(OH)2、CuCO3 ③红褐色沉淀:Fe(OH)3 Fe(OH)2为白色絮状沉淀,在空气中很快变成灰绿色沉淀,再变成Fe(OH)3红褐色沉淀 ④沉淀能溶于酸并且有气体(CO2)放出的:不溶的碳酸盐 ⑤沉淀能溶于酸但没气体放出的:不溶的碱 4. 燃烧时的主要现象 ①在氧气中:硫——蓝紫色火焰;铁——火星四射;木炭——发白光。 ②在空气中:镁带——耀眼的白光;红磷——“白烟”; 硫、氢气——淡蓝色火焰;CO、CH4——蓝色火焰 5、酸和对应的酸性氧化物的联系: ①酸性氧化物和酸都可跟碱反应生成盐和水:

高中化学计算方法总结

高中化学计算方法总结 高中化学计算方法总结 高中化学教师,在开展计算教学时,应该引导学生掌握常见的解题方法与解题技巧,以促进教学效果的提升。下面为大家总结了高中化学几种计算方法,希望帮助到大家! 一、关系式法 所谓关系式法,就是根据化学概念、物质组成、化学反应方程式中有关物质的有关数量之间的关系,建立起已知和未知之间的关系式,然后根据关系式进行计算。利用关系式的解题,可使运算过程大为简化。 其中包括守恒法。所谓“守恒”就是以化学反应过程中存在的某些守恒关系如质量守恒、元素守恒、得失电子守恒,电荷守恒等。运用守恒法解题可避免在纷纭复杂的解题背景中寻找关系式,提高解题的准确度。 例1、有一在空气中放置了一段时间的KOH固体,经分析测知其含水2.8%、含K2CO337.3% 取1g该样品投入25mL2mol /L的盐酸中后,多余的盐酸用1.0mol/LKOH溶液30.8mL恰好完全中和,蒸发中和后的溶液可得到固体的质量为多少?

【解析】本题化学反应复杂,数字处理烦琐,所发生的化学反应:KOH+HCl=KCl+H2O K2CO3+2HCl=2KCl+H2O+ CO2↑ 若根据反应通过所给出的量计算非常繁琐。 但若根据Cl—守恒,便可以看出:蒸发溶液所得KCl固体中的Cl—,全部来自盐酸中的Cl-, 即:生成的n(KCl)=n(HCl)=0.025L×2mol/L m(KCl)=0.025L×2mol/L×74.5g/mol=3.725g 例2、将纯铁丝5.21g溶于过量稀盐酸中,在加热条件下,用2.53gKNO3去氧化溶液中Fe2+,待反应后剩余的Fe2+离子尚需12mL0.3mol/LKMnO4溶液才能完全氧化,则KNO3被还原后的产物为() A、N2 B、NO C、NO2 D、NH4NO3 【解析】根据氧化还原反应中得失电子的总数相等,Fe2+变为Fe3+ 失去电子的总数等于NO3-和MnO4- 得电子的总数 设n为KNO3的还原产物中N的化合价,则

量子化学计算

物理化学专业博士研究生课程 教学大纲 课程名称:量子化学计算(Computational Quantum Chemistry) 课程编号:B07030411 学分:3 总学时数:72 开课学期:第2学期 考核方式:学习论文 课程说明:(课程性质、地位及要求的描述)。 《量子化学计算》是在学习了《结构化学》、《量子化学》之后,为物理化学专业博士研究生开设的一门方向课,在每学年第二学期讲授。 如果说《结构化学》、《量子化学》还有更多的抽象,那么《量子化学计算》则直接对各研究体系进行可与实验对比的计算机模拟。近二十年来,随着计算机硬件和软件水平的迅速发展,计算化学已成为理论化学的重要分支,主要通过量子化学方法、分子力学方法以及分子动力学模拟来解决与化学相关的问题。目前,计算化学已广泛应用于化学及相关交叉学科的各个领域,迅速成为定量预测分子的结构、性质以及反应性能的有力工具。 本课程计划安排72个学时。采用授课与上机演习相结合的教学方法,使学生在较短时间内掌握当今国际流行的常用计算软件的原理、使用方法及技巧,着重培养同学们解决化学实际问题的能力。要求同学们通过本课程的学习,能对计算化学的原理和方法有一个初步的了解,并能够在化学合成、反应机理、生物、材料等各个领域中得到应用。 教学内容、要求及学时分配: 第一章绪论 内容: 1.1量子力学历史背景 1.221世纪的理论化学计算机模拟

要求:了解量子化学的背景知识、国际国内发展现状及其未来方向学时:4 第二章从头计算法的基本原理和概念 内容: 2.1量子力学基本假设2.2定态近似 2.3从头计算法的“头” 2.4自洽场方法2.5变分法和LCAO-MO近似 2.6量子化学中的一些基本原理和 概念 2.7量子化学中的基本近似 要求:了解从头计算法的基础知识、计算化学中的一些基本原理、概念和近似。 学时:12 第三章布居分析和基组专题 内容: 3.1布居分析 3.2基组专题 要求:理解基组概念及选择的原则,掌握布居分析的计算方法和基组的计数,了解Mulliken布居分析的优缺点及改进的思路。 学时:6 第四章计算方法简介 内容: 4.1半经验方法 4.2HF方法 4.3Post-HF方法 4.4DFT方法 4.5SCF-X 方法 4.6精确模型化学理论方法——Gn 和CBS 4.7赝势价轨道从头计算法 4.8激发态的计算——CIS和CAS 4.9溶剂效应 4.10分子力学和分子动力学基础 要求:了解一些常用计算方法的基本原理及优缺点,重点掌握AM1、INDO、MNDO/PM3、HF、MP、CI、CC、DFT、CAS、溶剂效应等方法的原理,掌握选择计算方法的思路和原则。

量子化学计算实验详解

量子化学计算方法及应用 吴景恒 实验目的: (1)掌握Gaussian03W的基本操作 (2)掌握 Gaussian03W进行小分子计算的方法,比较不同方法与基组对计算结果的影响,并比较同分异构体的稳定性(3)通过运用量子力学方法计算分子的总电子密度,自旋密度,分子轨道及静电势 实验注意: (1)穿实验服;实验记录用黑色,蓝色或蓝黑色钢笔或签字笔记录;实验数据记录不需要画表格 (2)实验前请先仔细阅读前面的软件使用介绍,然后逐步按照实验步骤所写内容进行操作 (3)截图方法:调整视角至分子大小适中,按下键盘上的PrintScreen按键截图,从“Windows开始菜单”打开“画图”工具,按Ctrl+v或“编辑-粘贴”,去掉四周多余部分只留下分子图形,保存图片 (4)所有保存的文件全部存在E盘或D盘根目录用自己学号命名的文件夹下,不要带中文命名,实验完毕全部删除,不得在计算用机上使用自己携带的U盘或其他便携存储设备! (5)HyperChem里面截图时候可以用工具栏以下几个工具调整视图: Rotate out-of-plane:平面外旋转工具,转换视角用 Mgnify/Shrink:放大镜工具,转换视角用 Gaussian03W使用介绍:(注意,下面只是界面示意图,实验時切勿按下图设置) 输入文件:Gaussian输入文件,以GJF为文件后缀名 联系命令行:设定中间信息文件(以CHK为后缀名)存放的位置、计算所需的内存、CPU数量等 作业行:指定计算的方法,基组,工作类型,如:#P HF/6-31G(d) Scf=tight Opt Pop=full #作业行开始标记 P 计算结果显示方式为详细, 选择还有T(简单)和 N(常规,默认) HF/6-31G(d) 方法/基组 Opt对分子做几何优化 Pop=full进行轨道布居分析,详尽输出轨道信息和能量 电荷 多重态:分子总电荷及自旋多重态(2S+1, S=n/2, n为成单电子数) 分子结构的表示 1、直角坐标:元素符号X坐标Y坐标Z坐标(如上图所示) 2、Z矩阵(参考后附内容):元素符号(原子一)原子二键长原子三键角原子四二面角

(完整word版)高一化学必修一计算题归纳总结

高一化学必修一计算题练习 1. 将6g镁和9g铝溶于50mL M mol/L的盐酸(过量),再往上述溶液中加入100mL的NaOH溶液,溶液中的沉淀量达到最大值,则加入NaOH溶液的浓度为 A.M mol/L B.2M mol/L C.M/2 mol/L D.无法确定 2. 已知氮的氧化物和烧碱溶液发生反应的化学方程式如下: 3NO2+2NaOH→2NaNO3+NO↑+H2O NO+NO2+2NaOH→2NaNO2+H2O 现有Mmol二氧化氮和Nmol一氧化氮组成的混合气体,用浓度为VL的NaOH溶液完全吸收,则该NaOH溶液的浓度最小为(mol/L) A.M/V B.2M/3V C.2(M+N)/3V D.(M+N)/V 3. 三种正盐的混合溶液中含有0.2molNa+、0.25molMg2+、0.4molCl-,则SO42-为…() A.0.1mol B.0.3mol C.0.5mol D.0.15mol 4.硫酸铝、硫酸钾、明矾三种物质组成的混合物中,当SO2-4的浓度为0.4 mol/L时,加入等体积的0.4 mol/L的KOH溶液(混合溶液体积变化忽略不计),使生成的白色沉淀恰好溶解,那么反应后溶液中K+的浓度为() A.0.20 mol/L B.0.25 mol/L C.0.225 mol/L D.0.45 mol/L 5. 在一定条件下,PbO2与Cr3+反应,产物是Cr2O72-和Pb2+,则与1molCr3+ 反应所需PbO2的物质的量为() A. 3.0mol B. 1.5mol C. 1.0mol D. 0.75mol 6.某温度下,将Cl2通入NaOH溶液中,反应得到NaCl、NaClO、NaClO3的混合溶液,经测定ClO-与ClO3-的浓度之比为1∶3,则此反应中被还原的氯元素与被氧化的氯元素原子的物质的量之比为A.21∶5B.11∶3 C.3∶1D.4∶1 7. 含8.0 g NaOH的溶液中通入一定量H2S后,将得到的溶液小心蒸干,称得无水物7.9 g,则该无水物中一定含有的物质是( ) A.Na2S B.NaHS C.Na2S 和NaHS D.NaOH和NaHS 8. 将盛满NO2、O2的试管倒扣在水槽中,让其充分反应,结果剩余1/10体积气体。原混合气体中NO2和O2的体积比可能是() A.18 : 7 B.3 : 2 C.9 : 1 D.43 : 7 9. 向一定量的Fe、FeO、Fe2O3的混合物中加入100mL 1mol/L的盐酸,恰好使混合物完全溶解,放出224mL(标准状况)的气体.所得溶液中,加入KSCN溶液无学红色出现,那么若用足量的CO在高温下还原相同质量的此混合物,能得到铁() A、11.2g B、5.6g C、2.8g D、无法确定 10. 将一定质量的Mg和Al混合物投入500mL 稀硫酸中,固体全部溶解并产生气体.待反应完全后,向所得溶液中加入NaOH溶液,生成沉淀的物质的量与加入NaOH溶液的体积关系如图所示.则下列说法正确的是() A. Mg和Al的总质量为8g B. 硫酸的物质的量浓度为5mol?L-1 C. 生成的H2在标准状况下的体积为11.2 L D. NaOH溶液的物质的量浓度为5mol?L-1 11. 有硫酸和硝酸的混合溶液20毫升,其中含有硫酸的浓度为2mol还硝酸的浓度为1mol/L, 现向其中加入0.96g铜粉,充分反应后(假设只生成NO),最多可收集到标准状态下气体的体积是 A.89.6ml B.112ml C.168ml D.224ml 12. 将5.6LCO2气体缓慢通过一定量的Na2O2固体后,得到3.36L气体(气体体积均在标准状况下测定),所得气体的质量为() A. 3.8g B. 4.8g C. 5.4g D. 6.6g

量子化学-重要概念

(1)开壳层,闭壳层 指电子的自旋状态,对于闭壳层,采用限制性计算方法,在方法关键词前面加R 对于开壳层,采用非限制性计算方法,在方法关键词前面加U.比如开壳层的HF就是UHF.对于不加的,程序默认为是闭壳层. 一般采用开壳层的可能性是 1. 存在奇数个电子,如自由基,一些离子 2. 激发态 3. 有多个单电子的体系 4. 描述键的分裂过程 (2) 核磁是单点能计算中另外一个可以提供的数据,在计算的工作设置部分,就是以#开头的一行里,加入NMR关键词就可以了,如 #T RHF/6-31G(d) NMR Test 在输出文件中,寻找如下信息 GIAO Magnetic shielding tensor (ppm) 1 C Isotropic = Anisotropy = 这是采用上面的设置计算的甲烷的核磁结果,所采用的甲烷构形是用B3LYP密度泛函方法优化得到的. 一般的,核磁数据是以TMS为零点的,下面是用同样的方法计算的TMS(四甲基硅烷)的结果1 C Isotropic = Anisotropy = 这样,计算所得的甲烷的核磁共振数据就是,与实验值相比,还是很接近的. (3) 标准几何坐标. 找到输出文件中Standard Orientation一行,下面的坐标值就是输入分子的标准几何坐标. (4) stable 本例中采用SCF方法分析分子的稳定性.对于未知的体系,SCF稳定性是必须要做的.当分子本身不稳定的时候,所得到的SCF结果以及波函数等信息就没有

化学意义. (5)势能面 分子几何构型的变化对能量有很大的影响.由于分子几何构型而产生的能量的变化,被称为势能面.势能面是连接几何构型和能量的数学关系.对于双原子分子,能量的变化与两原子间的距离相关,这样得到势能曲线,对于大的体系,势能面是多维的,其维数取决与分子的自由度. (6)opt Opt=ReadFC 从频率分析(往往是采用低等级的计算得到的)所得到的heckpoint文件中读取初始力矩阵,这一选项需要在设置行之前加入%Chk= filename 一句,说明文件的名称. Opt=CalCFC 采用优化方法同样的基组来计算力矩阵的初始值. Opt=CalcAll 在优化的每一步都计算力矩阵.这是非常昂贵的计算方法,只在非常极端的条件下使用. 有时候,优化往往只需要更多的次数就可以达到好的结果,这可以通过设置MaxCycle来实现.如果在优化中保存了Checkpoint文件,那么使用Opt=Restart可以继续所进行的优化.当优化没有达到效果的时候,不要盲目的加大优化次数.这是注意观察每一步优化的区别,寻找没有得到优化结果的原因,判断体系是否收敛,如果体系能量有越来越小的趋势,那么增加优化次数是可能得到结果的,如果体系能量变化没有什么规律,或者,离最小点越来越远,那么就要改变优化的方法. (7) 频率分析的计算要采用能量对原子位置的二阶导数.HF方法,密度泛函方法(如B3LYP),二阶Moller-Plesset方法(MP2)和CASSCF方法(CASSCF)都可以提供解析二阶导数.对于其他方法,可以提供数值二阶导数. 一般的,对于HF方法,采用计算的频率乘以矫正因子, 方法频率矫正因子零点能矫正因子 HF/3-21G HF/6-31G(d) MP2(Full)/6-31G(d) MP2(FC)/6-31G(d) SVWN/6-31G(d)

高中化学常见题型解法归纳之欧阳文创编

化学常见题型的一般处理 方法 1、有关N A的计算 (1)涉及22.4的换算应注意“标况”“气体”两个条件,不涉及22.4的气体问题的可在任意条件下进行换算,标况下有些物质不是气态(水,溴,SO3,碳4以上的有机物等); (2)关于原子数、质子数、中子数、电子数、共价键数(共用电子对数)的求算注意对象的转化要正确,出现18O、13C之类的同位素对质量数和中子数均有影响, NaHSO4晶体中阴阳离子为1:1 ,NaHSO4溶液,Na2O2中阴阳离子为1:2,;氧化还原反应转移电子数的求算注意与涉及物质的系数对应; (3)涉及存在可逆反应、弱电解质电离、水解、胶体微粒物质的量的计算,其数值无法求

算,要比算得值小; (4)混合物的问题,可将其作为单一物质算两次,若数值相同,则可求;若两次数值不同,则无法求算。 2、离子方程式常见错误 (1)原子不守恒或电荷不守恒;(2)该拆的没拆(例HI、浓硝酸、浓盐酸)或相反; (3)忽略氧化还原反应的发生(氧化性离子:MnO4-、NO3-、ClO-、Fe3+等,还原性离子:S2-、SO32-、I-、Fe2+等)或漏掉多个反应中的一个(NH4HCO3与NaOH等); (4)少量、过量问题(一定涉及两个离子反应。若同步进行,注意少量物质定为1;若又先后顺序,注意强者优先)。 3、离子共存问题 (1)注意题干的说法,如:无色溶液、由水电离出的H+为10—12、与Al反应放氢气(若为酸性不能存在NO3—)、酸性(碱性)溶液、一定(可

能)共存的是; (2)离子不共存的条件:离子间反应生产沉淀、气体、弱电解质或发生氧化还原、络合反应(Fe3+与SCN—)及双水解(Al3+、Fe3+与CO32—、HCO3—、S2—、[Al(OH)4]—); (3)多数阳离子在酸性条件下共存,多数阴离子在碱性条件下共存,即离子反应多发生于阴阳离子间,同电性离子一般共存。 4、化学平衡问题 (1)三段式的求算:为避免体积变化的影响,列三段式最好用物质的量。反应速率用反应浓度,平衡常数用平衡时浓度,平衡转化率用物质的量,单位一定要写对; (2)平衡移动问题:条件改变→平衡移动→条 (原因)(方向)(结果) 件改变 要弄清题中的条件改变是平衡移动的原因还是结果,从而正确判断平衡移动方向。 用平衡移动原理解释现象的论述题也从“原因”

量子化学理论与软件介绍

量子化学是应用量子力学的规律和方法来研究化学问题的一门学科。将量子理论应用于原子体系还是分子体系是区分量子物理与量子化学的标准之一。 主要分为:①分子轨道法(简称MO法,见分子轨道理论);②价键法(简称VB法,见价键理论);③密度泛函理论。以下只介绍分子轨道法。 ①分子轨道法:分子体系中的电子用单电子波函数满足Pauli不相容原理的直积(如Slater 行列式)来描述,其中每个单电子波函数通常由原子轨道线性组合得到(类似于原子体系中的原子轨道),被称作分子轨道,分子轨道理论是目前应用最为广泛的量子化学理论方法。 o HF方法:它是原子轨道对分子的推广,即在物理模型中,假定分子中的每个电子在所有原子核和电子所产生的平均势场中运动,即每个电子可由一个单电子函数(电子的坐标的函数)来表示它的运动状态,并称这个单电子函数为分子轨道,而整个分子的运动状态则由分子所有的电子的分子轨道组成(乘积的线性组合),这就是分子轨道法名称的由来。分子轨道法的核心是哈特里-福克-罗特汉方程,简称HFR方程,它是以三个在分子轨道法发展过程中做出卓著贡献的人的姓命名的方程。1928年D.R. 哈特里提出了n个将电子体系中的每一个电子都看成是在由其余的n-1个电子所提 供的平均势场中运动的假设。这样对于体系中的每一个电子都得到了一个单电子方程(表示这个电子运动状态的量子力学方程),称为哈特里方程。使用自洽场迭代方式求解这个方程(见自洽场分子轨道法),就可得到体系的电子结构和性质。哈特里方程未考虑由于电子自旋而需要遵守的泡利原理。1930年,B.A.福克和J.C.斯莱特分别提出了考虑泡利原理的自洽场迭代方程,称为哈特里-福克方程。它将单电子轨函数(即分子轨道)取为自旋轨函数(即电子的空间函数与自旋函数的乘积)。泡利原理要求,体系的总电子波函数要满足反对称化要求,即对于体系的任何两个粒子的坐标的交换都使总电子波函数改变正负号,而斯莱特行列式波函数正是满足反对称化要求的波函数。将哈特里-福克方程用于计算多原子分子,会遇到计算上的困难。C.C.J.罗 特汉提出将分子轨道向组成分子的原子轨道(简称AO)展开,这样的分子轨道称为原子轨道的线性组合(简称LCAO)。使用LCAO-MO,原来积分微分形式的哈特里-福克方程就变为易于求解的代数方程,称为哈特里-福克-罗特汉方程,简称HFR 方程。 o CI方法:组态相互作用(Configuration Interaction)方法。用HF自洽场方法计算获得的波函数和各级激发的波函数为基展开体系波函数。完全的组态相互作用(Full-CI)是指定基组下最精确的方法,但其计算量约以基函数的阶乘规模增加,目前仅限于对小分子作为Benchmark以检测其他方法的可靠性,在实际应用中常采用截断CI方法,如

高中化学 关系式法计算方法总结

方法总论 关系式法 关系式是表示两种或多种物质之间的量在变化时成正比关系的一种简化的式子,根据关系式确定的数量关系进行化学计算的方法叫关系式法。关系式法广泛用于两个或多个互相联系的化学式或多步反应计算的一种常用方法,其关键是根据有关化学式或反应式及物质间转化的定量关系,找出关系式和关系量。该法不仅可使计算化繁为简、化难为易、减少误差,而且已知数与未知数各有固定的位置,层次清楚,有助于打开解题的思路。建立关系式可以通过化学式、反应方程式、化学基本概念、溶解度、溶质质量分数等多个方面进行。 一.根据题目所给等量关系找关系式 根据不同物质中所含同种元素质量相等找关系式:即若不同物质中某元素的质量相等,则该元素的原子个数必然相等。从而可以建立关系式。 1.264 kg硫铵与_____kg碳铵所含氮元素的质量相当。316。 根据物质的质量、体积、密度或物质的量相等找关系式:即①若不同种物质的质量相等,则每种物质的总式量必相等;②若不同种气态物质在相同条件下体积相等,则每种物质的分子个数或物质的量必相等;③不同种气态物质在相同条件下密度相等,则每种物质的相对分子质量相等;④若不同种物质的物质的量相等,则每一种物质的分子个数相等,若是相同条件下的气态物质,则体积也相同。 2.相同条件下,相同质量的二氧化硫气体与三氧化硫气体中氧元素质量比是_____及氧原子个数比是_____,两种物质的体积比是_____和物质的量之比是_____。5/6,5/4. 二.根据化学反应实质找关系式 根据不同活泼金属失电子数相等找关系式。 3.铁、镁、铝三种金属分别与足量的稀盐酸反应生成等质量的氢气时,参加反应的铁、镁、铝的质量比为__________。12:28:9。 根据反应前后质量相等找关系式。

四应用量子化学计算方法进行分子结构优化

实验四 应用量子化学计算方法进行分子结构优化 以及异构化反应研究 Experiment 4. Study on Molecular Structure Optimization and Isomerization Reaction by Using Quantum Chemistry Method 4.1 目的要求 Purpose (1)了解量子化学计算的原理和用途以及几种常用的量子化学计算方法。 (2)熟悉常用量子化学计算软件Gaussian 03的基本使用方法和操作步骤。 (3)掌握如何使用Gaussian 03软件进行分子结构优化和异构化反应过渡态计算。 (4)本实验4学时。 4.2 背景介绍 Background Information 量子化学(quantum chemistry )以量子力学为理论基础,以计算机为工具,主要通过计算来阐述物质(化合物、晶体、离子、过渡态、反应中间体等)的结构、性质、反应性能及反应机理,研究物质的微观结构与宏观性质的关系,揭示物质和化学反应所具有的特性的内在本质及其规律性[1-4]。随着量子化学计算方法不断发展,计算量以及计算速度不断提高,所计算的体系越来越复杂,现在可以计算有机分子甚至较大分子量的生物分子。 目前常用的量子化学计算软件有Gaussian (https://www.sodocs.net/doc/cb16587917.html, )、GAMESS (https://www.sodocs.net/doc/cb16587917.html,/GAMESS )、Spartan (https://www.sodocs.net/doc/cb16587917.html, )和Molpro (https://www.sodocs.net/doc/cb16587917.html, )等。Gaussian 软件是使用最为广泛的量子化学计算软件,支持几乎所有的量子化学计算方法,可以计算得到分子的几乎一切性质,如稳定结构、能量、振动频率、红外和拉曼光谱、NMR 化学位移、轨道能级、静电势、极化率、电离能、电子亲和力、电子密度分布、过渡态和反应途径等。可以模拟在气相和溶液中的体系,模拟基态和激发态等问题。它最早的版本是1970年的Gaussian 70,最新的版本是Gaussian 09。本实验使用的版本为Gaussian 03。 4.3 实验原理 Experimental Principles 4.3.1 量子化学计算方法和特点 多体理论是量子化学的核心问题。n 个粒子构成的量子体系的性质原则上可通过求解n 粒子体系的薛定谔(Schr?dinger )方程得到体系的波函数来描述。 22 ,111122p q p p i p pq j pi P i p q i j p i Z Z Z E m R ri r ψψ<

公司量化指标计算方法

公司量化指标计算方法 办公室 1、特殊工种/工序资格一次评定合格率 对特殊工种/工序需要进行资格评定的人员,可以采取抽查几批的办法,对每批计算出一次评定合格率,再把几批一次评定合格率相加除以批次之和。 2、办公设施完好率 办公设施完好率即对主要办公设施进行检(抽)查,完好的办公设施除以所检(抽)查办公设施总和。 3、年度失窃次数 本年度被发现失窃次数之和。 工会 经有效评价合格的人数1、职工培训有效性评价合格率=————————————— — 接受有效性评价的总人数 全厂职工年内接受培训的总时间(学时)2、年度人均接受培训时间=——————————————————

全厂职工人数 内部培训完成项目+外出培训完成项目3、培训计划完成率=——————————————————— 内部培训项目+外出培训项目 本年度提出合理化建议数 4、合理化建议人均提出率=————————————— 全厂职工人数 已采纳和实施数 5、合理化建议落实率=—————————————— 本年度提出合理化建议数 采购部 1、计划按时完成率 采购部计划完成率=按时完成计划数 / 应完成计划数 个人计划完成率=按时完成计划数 / 应完成计划数 影响因素:a.计划要求时间不合理;b.一份计划包含多项物资,其中一项没有完成,记为该计划没有完成。 2、按时交付率 统计方法:

原材料、摩擦副组件按年度签订意向性合同,每个月按采购计划向供方下达订单,通知供方本月交货的型号、数量、价格、交货期,要求供方审核无误后盖章确认,我公司按供方确认的交货时间接收。 按时交付的数量 / 总的订货数量=按时交付率 3、质量合格率 统计方法: (1)、摩擦副: 质量不合格有:进货检验不合格、装配废品、市场退回产品。 将出现的不合格分项进行统计,气缸套的不合格分为:金相、尺寸、外观、标识等。 分项不合格数量 / 交付总量X1000000=分项质量合格率(PPM) 各分项质量合格率相加得到总的质量合格率 (2)原材料 我公司对原材料主要监控其成分。 不合格数量 / 总进货量X100%=质量合格率(%) 4、超额运费统计 记录每一笔超额运费,每月月底分析超额运费产品的原因,进行整改和预防。 5、产品价格 制定物资采购的最高限价,对于超出限价的采购进行审核,分析原因。对于采购价格的分析,限于目前的知识水平和计算机的应用水平,还不能确定明确的指标。

高中化学常用公式总结—读

高中化学常用公式总结 1. 有关物质的量(mol )的计算公式 (1)物质的量(mol )()= 物质的质量物质的摩尔质量() g g mol / (2)物质的量(mol )() = ?微粒数(个) 个6021023./mol (3)气体物质的量(mol )= 标准状况下气体的体积() .(/) L L mol 224 (4)溶质的物质的量(mol )=物质的量浓度(mol/L )×溶液体积(L ) 2. 有关溶液的计算公式 (1)基本公式 ①溶液密度(g/mL )= 溶液质量溶液体积()() g mL ②溶质的质量分数()= ?+溶质质量溶质质量溶剂质量(g g ) () 100% ③物质的量浓度(mol/L )= 溶质物质的量溶液体积() () mol L (2)溶质的质量分数、溶质的物质的量浓度及溶液密度之间的关系: ①溶质的质量分数= ????物质的量浓度溶质的摩尔质量溶液密度(mol /L)1(L)(g /mol) 1000(mL)(g /mL) 100% ②物质的量浓度= ???1000(mL)(g /mL)(g /mol)1(L) 溶液密度溶质的质量分数 溶质摩尔质量 (3)溶液的稀释与浓缩(各种物理量的单位必须一致): ①浓溶液的质量×浓溶液溶质的质量分数=稀溶液的质量×稀溶液溶质的质量分数(即溶质的质量不变) ②浓溶液的体积×浓溶液物质的量浓度=稀溶液的体积×稀溶液物质的量浓度[即c (浓)·V (浓)=c (稀)·V (稀)] (4)任何一种电解质溶液中:阳离子所带的正电荷总数=阴离子所带的负电荷总数(即整个溶液呈电中性) 3. 有关溶解度的计算公式(溶质为不含结晶水的固体) (1)基本公式: ① 溶解度饱和溶液中溶质的质量溶剂质量(g)100(g) (g) (g) = ② 溶解度饱和溶液中溶质的质量(g)(g) =

相关主题