搜档网
当前位置:搜档网 › c++高精度计算阶乘的计算方法

c++高精度计算阶乘的计算方法

c++高精度计算阶乘的计算方法

c++高精度计算阶乘的计算方法

这实际上是最没有技术含量的问题,但是又会经常用到,所以还是得编写,优化它的计算。下面我们给大家介绍一下c++高精度计算阶乘吧!

?

?首先看小于等于12的阶乘计算(计算结果不会超出32位范围):

?

?int factorial(int n) {

?

?if (n == 1 || n == 0)

?

?return 1;

?

?return factorial(n-1)*n;

?

?}

?

?这个递归程序简单明了,非常直观,然而一旦n >; 12,则超过32位int型的范围出现错误结果,所以上面这个递归程序仅适合n for (i = 1; i for (j = 1; j C[i+j-1] += A[i]*B[j]; // 当前i+j-1位对应项+ A[i] * B[j]

?

?C[i+j] += C[i+j-1]/10; // 它的后一位+ 它的商(进位)

?

?C[i+j-1] %= 10; // 它再取余即可

阶乘的计算和处理程序设计

阶乘的计算及处理程序设计 一、问题描述 要求输入一个自然数n,求n!,同时统计结果中有几个0。 二、课题分析 1)计算n!。 2)统计0的个数。 三、数据结构的设计 x:输入的数n i:n! b:储存数据i上的各位上的数,从而判断b是否为0 j:统计0的个数 四、处理结构的设计 建立两个函数f1和f2,使f1函数起到求阶乘的作用,f2函数起到求0个数的作用。

求阶乘流程图

计算0的个数流程 五、源程序 1)主要结构体: f1函数: long int f1(int x) { long int i; //声明长整型变量i if (x==0||x==1) //采用递归函数f1求阶乘i=1; else i=f1(x-1)*x; return (i); }

f2函数: int f2(int i) {int j=0; int b=0; while(i>=10) //循环结构,判断末位是否为零,再去末位{b=i %10; if(b==0)j++; i=i/10; } return (j); } 2)整体: #include long int f1(int x) { long int i; if (x==0||x==1) i=1; else i=f1(x-1)*x; return (i); } int f2(int i) {int j=0; int b=0; while(i>=10) {b=i %10; if(b==0)j++; i=i/10; } return (j); } void main() {long int f1(int x); int f2(int x); long int k; int n,i; printf("please input n:"); scanf("%d",&n); k=f1 (n); i=f2 (k); printf("%d! is %ld\nthere are %d zero!\n",n,k,i);

N阶乘的递归调用展开式

long fact(int n) 1 { 2 long k; 3 if (n<0) 4 { 5 printf( “Data error!\n”); 6 exit(0); 7 } 8 else if (n==0||n==1) k=1; 9 else k=n*fact(n-1); 10 return k; 11 } main() { int n; long f; printf(“Please input an integral number:\n”); scanf(“%d”, &n); f=fact(n); printf(“%d!=%ld\n”, n, f); }

求fact(4)的详解过程, 执行了的语句用红色表示long fact(4) 1 { 2 long k; 3 if (4<0) 4 { 5 printf( “Data error!\n”); 6 exit(0); 7 } 8 else if (4==0||4==1) k=1; 9 else k=4*fact(4-1); /*断点1:调用fact(3)*/ 10 return k; 11 }

long fact(3) 1 { 2 long k; 3 if (3<0) 4 { 5 printf( “Data error!\n”); 6 exit(0); 7 } 8 else if (3==0||3==1) k=1; 9 else k=3*fact(3-1); /*断点2:调用fact(2)*/ 10 return k; 11 }

long fact(2) 1 { 2 long k; 3 if (2<0) 4 { 5 printf( “Data error!\n”); 6 exit(0); 7 } 8 else if (2==0||2==1) k=1; 9 else k=2*fact(2-1); /*断点3:调用fact(1)*/ 10 return k; 11 }

高精度计算

高精度计算 由于计算机具有运算速度快,计算精度高的特点,许多过去由人来完成的烦琐、复杂的数学计算,现在都可以由计算机来代替。 计算机计算结果的精度,通常要受到计算机硬件环境的限制。例如,pascal 要计算的数字超过19位,计算机将按浮点形式输出;另一方面,计算机又有数的表示范围的限制,在一般的微型计算机上,实数的表示范围为l0-38 -l038。例如,在计算N!时,当N=21时计算结果就超过了这个范围,无法计算了。这是由计算机的硬件性质决定的,但是,我们可以通过程序设计的方法进行高精度计算(多位数计算)。 学习重点 1、掌握高精度加、减、乘、除法。 3、理解高精度除法运算中被除数、除数、商和余数之间的关系。 4、能编写相应的程序,解决生活中高精度问题。 学习过程 一、高精度计算的基本方法 用free pascal程序进行高精度计算,首先要处理好以下几个基本问题:【数据的输入与保存】 (1)一般采用字符串变量存储数据,然后用length函数测量字符串长度确定其位数。 (2)分离各位数位上的数字 分离各数位上的数通常采用正向存储的方法。以“163848192”为例,见下表:A[9] A[8] A[7] A[6] A[5] A[4] A[3] A[2] A[1] 1 6 3 8 4 8 1 9 2 基本原理是A[1]存放个位上的数字,A[2]存放十位上的数字,……依此类推。即下标小的元素存低位上的数字,下标大的元素存高位上的数字,这叫“下标与位权一致”原则。 【计算结果位数的确定】 (1)高精度加法:和的位数为两个加数中较大数的位数+1。 (2)高精度减法:差的位数为被减数和减数中较大数的位数。 (3)高精度乘法:积的位数为两个相乘的数的位数之和。 (4)高精度除法:商的位数按题目的要求确定。 【计算顺序与结果的输出】 高精度加、减、乘法,都是从低位到高位算起,而除法相反。输出结果都是从高位到低位的顺序,注意:高位上的零不输出(整数部分是零除外)。 高精度加法 【参考程序】 var a,b:array[1..10000] of byte; i,w,la,lb:integer;

阶乘运算

//阶乘各算法的 C++ 类实现 #include #include #include #include using namespace std; class Factorial { static const int MAXN = 5001; // 最大阶乘数,实际用不到这么大int *data[MAXN]; // 存放各个数的阶乘 int *nonzero; // 从低位数起第一个非0数字 int maxn; // 存放最大已经计算好的n的阶乘int SmallFact(int n); // n <= 12的递归程序 void TransToStr(int n, int *s); // 将数n倒序存入数组中 void Multply (int* A, int* B, int* C, int totallen); // 执行两个高精度数的乘法public: Factorial(); ~Factorial(); void Calculate(int n); // 调用计算阶乘 int FirstNonZero(int n); // 返回阶乘末尾第一个非0数字int CountZeros(int n); // 返回阶乘末尾有多少个0 int SecondNum(int n); // 返回阶乘左边的第二个数字 bool CanDivide(int m, int n); // 判断数值 m 是否可以整除 n! void Output(int n) const; }; int Factorial::SmallFact(int n) { if (n == 1 || n == 0) return 1; return SmallFact(n-1)*n; } void Factorial::TransToStr(int n, int *tmp) { int i = 1; while (n) { tmp[i++] = n%10; n /= 10; } tmp[0] = i-1; } void Factorial::Multply (int* A, int* B, int* C, int totallen) { int i, j, len; memset(C, 0, totallen*sizeof(int));

高精度数计算

C语言课程设计-高精度数计算 源代码: #include #include #include int main() { int a,b; int c; int i; int *Numa,*Numb,*Sum; printf("请输入第一个加数的位数(小于1000位),加数由系统随机生成:"); scanf("%d",&a); printf("请输入第二个加数的位数(小于1000位),加数由系统随机生成:"); scanf("%d",&b); Numa=(int *)malloc(a*sizeof(int)); Numb=(int *)malloc(b*sizeof(int)); srand( (unsigned)time( NULL ) );//产生随机种子 //随机产生加数a for(i=0;i

{ printf("%d",Numa[i]); } printf("\n"); printf("随机产生的加数b为:\n"); for(i=0;i=b)//加数a大 { c=a; Sum=(int *)malloc((c+1)*sizeof(int)); tag=0; for(i=0;i=10)//如果和大于10 { Sum[c-i]=Sum[c-i]-10; tag=1;//标志进位 } else { tag=0; } } else//有进位 { Sum[c-i]=Numa[a-i-1]+Numb[b-i-1]+1; if(Sum[c-i]>=10)//如果和大于10 { Sum[c-i]=Sum[c-i]-10; tag=1;//标志进位 } else { tag=0; } }

计算N的阶乘

北华航天工业学院 课程设计报告(论文) 设计课题:计算N的阶乘 专业班级: 学生姓名: 指导教师: 设计时间:2010年12月16日

北华航天工业学院电子工程系 微机原理与接口技术课程设计任务书 指导教师:刘金梅教研室主任: 2010年12 月18 日

内容摘要 本次课程设计编写计算N!的程序。数值N由键盘输入,结果在屏幕上输出,通过编制一个阶乘计算程序,了解怎样在汇编语言一级上实现高级语言中的数学函数。其难点在于随着N的增大,其结果远非寄存器所能容纳。这就必须把结果放在一个内存缓冲区中。然而乘法运算只限于两个字相乘,因此要确定好算法,依次从缓冲区中取数,进行两字相乘,并将DX中的高16位积作为产生的进位。 索引关键词:N的阶乘汇编语言内存缓冲区

目录 序言————————————————————5 正文————————————————————5 一、程序算法————————————————-—-5 二、源程序—————————————————-—-6 三、程序运行与调试—————————————-—11 四、N的阶乘程序流动图——————————-—-—11 心得体会——————————————————13 参考文献——————————————————13

序言 本文是关于微型计算机原理写文件课程设计。编写程序,将内存区域中用调试程序(DEBUG)设置好的一连串数据(以Ctrl+z为结束符)做为一个文件存入磁盘,文件名为DATA.ASM。内存区域的段地址和偏移地址在程序中输入。 随着计算机的高速发展,微型计算机已经应用到各个领域,微型计算机原理应用技术已经成为电子信息的核心产业。 微型计算机原理是计算机科学与技术、通讯工程、电气工程、机电工程的核心课程。 通过这次课程设计,是我们更好地理解了课程中所学的理论知识,并把实际问题转化为理论知识,学会如何把学到的知识用于解决实际问题,培养我们的动手能力。 正文 一、程序算法 阶乘的定义为N!=N(N-1)(N-2)……2,从左至右依次计算,结果保存在缓冲区BUF中。缓冲区BUF按结果由高到低依次排列。程序首先将BP初始化为N,N 不等于0或1则将N送入BUF缓冲区最低字节单元中。然后使BP为N-1,以后BP依次减1,直到变化为1为止。每次让BP与BUF中的字节单元按由低到高的次序相乘。低位结果AX仍保存在相应的BUF字节单元中,高位结果DX则送到进位字单元CY中,作为高字相乘时从低字来的进位,初始化CY为0.计算结果的长度随着乘积运算而不断增长。由字单元LEN指示。LEN单元初始化为1。当最高字单元与BP相乘时。若DX不为0,则结果长度要扩展。

20以内的阶乘和

1、程序实现目标:输入1~20的数字n,求n以内数据的阶乘之和。 1! + 2! + 3! +......+n! = ? void GetCount(int Num ,float pOutput[]) { } void main() { float pNumber[2] = {0}; Number = 20; GetCount(Number ,pNumber); } ========================================================= 20!可以存放在float中,注意unsigned long完全存放不下20!,更不要说阶乘和了。 float的范围是-3.4*10(负的38次方),3.4*10(正的38次方) ========================================================= #include #include #include void GetCount(int Num, float pOutput[]) { float sum=0; float num=1; int i=1; if(Num<0 || Num >20) //输入参数范围判断 { // printf("Num is not [0,20]. \n"); pOutput[0]=0; return; } if(pOutput==NULL) //函数参数有效性判断 { // printf("pOutput is NULL. \n"); pOutput[0]=0; return; } for(i=1; i<=Num; i++) { num*=i; //累计求当前的数的阶乘即i! sum+=num; //阶乘求和 }

电力系统谐波分析的高精度FFT算法

查看文章 电力系统谐波分析的高精度FFT 算法 2009-11-09 11:35 原文出处:https://www.sodocs.net/doc/cc7281534.html,/periodical/periodical.articles/zgdjgcxb/zgdj99/zgdj9903/990315.htm 电力系统谐波分析的高精度FFT算法 张伏生 耿中行 葛耀中 摘要 快速傅立叶变换存在较大的误差,无法直接用于电力系统谐波分析。本文对FFT的泄漏误差进行了分析,根据Jain和Grandke提出的插值算法提出了多项余弦窗插值的新算法,对FFT的结果进行修正,极大地提高了计算精度,使之适用于电力系统的准确谐波分析。文中给出了该算法进行谐波分析模拟计算的算例,计算结果表明,不同的加窗算法计算精度不同,新算法的计算精度显著提高。 关键词 傅立叶变换 电力系统 谐波 中图分类号 TM714 FFT ALGORITHM WITH HIGH ACCURACY FOR HARMONIC ANALYSIS IN POWER SYSTEM Zhang Fusheng Xian Jiaotong University Xian,710049 China Geng Zhongxing Research Center for Aviation Engineering and Technology,Beijing 100076 China Ge Yaozhong Xian Jiaotong University Xian,710049 China ABSTRACT The FFT has a higher error in the harmonic analysis of the electric power system, especially for the phases. This paper discussed the leakage of FFT and presented a new amending algorithm, poly-cosin window interpolation, which base d on the interpolating algorithm proposed by K. Jain and T. Grandke. This new algorithm obviously improves the accuracy of th e FFT, so it can be applied to the precision analysis for electrical harmonic. The simulating result shows that applying deferent w indows has the deferent effects to the accuracy, and the Blackman-Harris window has the highest accuracy. KEY WORDS Fourier transform Electric power system Harmonic 1 引言 近年来,随着电力电子技术的广泛应用,电力系统谐波污染日益严重,已成为影响电能质量的公害,对电力系统的安全、经济运行造成极大的影响。所以对电网中的谐波含量进行实时测量,确切掌握电网中谐波的实际状况,对于防止谐波危害,维护电网的安全运行是十分必要的。 电力系统的谐波分析,通常都是通过快速傅立叶变换(FFT)实现的。然而FFT存在栅栏效应和泄漏现象,使算出的信号参数即频率、幅值和相位不准,尤其是相位误差很大,无法满足准确的谐波测量要求。为了提高FFT 算法的精度,V.K.Jain 等提出了一种插值算法,对FFT的计算结果进行修正,可以有效地提高计算精度。在此基础上,T.Grand ke 又利用海宁( Haning)窗减少泄漏,进一步提高了计算精度。 海宁窗w(n)=0.5-0.5cos(2πn/N) 是一种余弦窗,它仅包括两项。如果增加余弦项的项数,可进一步减少泄漏。本文分析了多项余弦窗的特性,并提出了对加窗后信号进行插值的算法。该算法能极大地提高FFT计算的精度,从而满足谐波测量中对谐波参数的精度要求。文中给出了计算实例,实例表明该算法具有很高的计算精度,即使对于幅值很小的偶次谐波也能准确地求出其各项参数,尤其是对于提高相位计算的精度更为明显。 2 离散傅立叶变换的泄漏与栅栏效应 在谐波测量中,所要处理的信号均是经过采样和A/D转换得到的数字信号。设待测信号为x(t),采样间隔为Δt秒,采样频率f s =1/Δt 满足采样定理,即f s 大于信号最高频率分量的两倍。则采样信号为x[n]=x(n Δt),并且采样信号总是有限长度的,即n=0,1,…,N-1。也就是说,所分析的信号的持续时间为T=N Δt,这相当于对无限长的信号做了截断,因而造成离散傅立叶变换的泄漏现象。 设信号为单一频率信号 x m (t)=A m e j ωm t (1) 矩形窗为 (2) 持续时间为T的信号相当于x m 与w T 的乘积 灵秀空间 主页 博客 相册|个人档案|好友

输入正整数n,计算n的阶乘c++实验报告

实验五 一、实验内容 1、掌握3种循环结构:while,do-while,for的区别与联系,以及他们之间相互转换的方法,并能正确使用他们. 2,掌握与循环语句相关的break语句和continue语句的使用方法. 二、实验目的 1、掌握3种循环结构:while,do-while,for的区别与联系,以及他们之间相互转换的方法,并能正确使用他们. 2,掌握与循环语句相关的break语句和continue语句的使用方法. 三、实验步骤 实践教程例题1 1.输入正整数n,计算n的阶乘. 2.实践教程例2 输入若干字符,统计其中数字字符.白字符和其它字符的个数,输入EOF结束. 3、实践教程例3 N个人围坐成一圈,从1开始顺序编号;游戏开始,从第一个人开始由1到m循环报数,报到m的人退出圈外,问最后留下的那个人原来的序号。 4`书2.3 设计程序将输入的百分制成绩转换为五分制输出,90分以上为5分,80~89为4分,70~79为3分,60~69为两分,60分以下为1分。 书2.5 编译打印如下图形 * * * * * * * * * * * * * * * * * * * * * * * * *

4、书2.7 输入n,求1!+2!+3!+…+n!。 四、实验数据及处理结果 实践教程例1 #include using namespace std; int main (){ int n,i; double result=0; cout<<"请输入正整数:"<>n; if(n<1){ cout<<"输入错误!"<

采用汇编语言实现阶乘运算

汇编语言程序设计报告 课程设计题目:采用汇编语言实现阶乘运算 学号:10081437 姓名:张子琦 院系:测试与光电工程学院 专业:测控技术与仪器 指导教师:陈振华

采用汇编语言实现阶乘运算 学生姓名:张子琦班级:10081437 指导老师:陈振华 摘要:汇编语言是微型计算机原理及应用的基础,微机主机和接口所要实现的功能都要通过汇编语言来实现。尽管汇编语言程序设计编程效率低,但其运行效率高、速度快。因此掌握汇编语言是学好微机原理和接口设计的第一步。编写计算N!的程序。数值由键盘输入,结果在屏幕上输出。[1] 关键字:汇编语言N!键盘输入屏幕输出 指导老师签名:

Factorial implemented in assembly language Student name :Ziqi Zhang Class:10081437 Supervisor:Zhenhua Chen Abstract:Assembly language is the basis of the principles and applications of the microcomputer, the microcomputer host functions and interfaces to achieve should be achieved through the assembly language. Despite the low efficiency of assembly language programming programming, but it’s high operating efficiency, and speed. Therefore, the assembly language is the first step to learn Microcomputer Principle and Interface Design. Written calculation of N! Procedures. Numerical keyboard input, output results on the screen. Key words:Assembly language N! Keyboard input Screen output Signature of Supervisor:

阶乘排列组合公式计算

阶乘排列组合公式计算 加法原理:做一件事,完成它可以有N类加法,在第一类办法中有M1种不同的方法,在第二类办法中有M2种不同的方法,……,在第N类办法中有MN种不同的方法。那么完成这件事共有N=M1+M2+...+MN 种不同的方法。即一次性完成的用加法原理。 乘法原理:做一件事,完成它需要分成N个步骤,做第一步有M1种不同的方法,做第二步有M2种不同的方法,……,做第N步有MN种不同的方法,那么完成这件事共有 N=M1×M2×... ×MN 种不同的方法。即二次以上完成的用乘法原理。 排列:从N个不同元素中,任取M(M<=N)个元素,按照一定的顺序排成一列,叫做从N个不同元素中取出M个元素的一个排列。 排列数:从N个不同元素中取出M(M<=N)个元素的所有排列的个数,叫做从N个不同元素中取出M个元素的排列数。记作:Pmn 排列数公式:Pmn =n(n-1)(n-2)...(n-m+1) 全排列:N个不同元素全部取出的一个排列,叫做N个不同元素的一个全排列。 自然数1到N的连乘积,叫做N的阶乘。记作:n! 。0!=1。 全排列公式:Pnn =n! 排列数公式还可写成:Pmn = n!/(n-m)! 组合:从N个不同元素中,任取M(M<=N)个元素并成一组,叫做从N个不同元素中取出M个元素的一个组合。 排列与元素的顺序有关,组合与元素的顺序无关。 组合数:从N个不同元素中取出M(M<=N)个元素的所有组合的个数,叫做从N个不同元素中取出M个元素的组合数。记作:Cmn 组合数公式:Cmn = Pmn / Pmm = n(n-1)(n-2)...(n-m+1)/m! = n!/m!/(n-m)! 组合性质1:Cmn = Cn-mn ( C0n =1) 组合性质2:Cmn+1 = Cmn + Cm-1n

Moldflow高精度高效率分析

高精高效模流分析技术 MoldFlow 3D分析技术的引进与推广 工程部 2013年1月9日 一、 3D分析技术的引进 模具是生产各种工业产品的重要工艺装备,随着塑料工业的迅速发展以及塑料制品在航空、航天、电子、机械、船舶和汽车等工业部门的推广应用,产品对模具的要求越来越高,传统的模具设计方法已无法适应产品更新换代和提高质量的要求。计算机辅助工程(CAE)技术已成为塑料产品开发、模具设计及产品加工中这些薄弱环节的最有效的途经。同传统的模具设计相比,CAE技术无论在提高生产率、保证产品质量,还是在降低成本、减轻劳动强度等方面,都具有很大优越性。因此,不断加强自身的CAE技术是现代企业赢得市场竞争的关键,同时,这甚至影响着未来企业的生存。 模具行业最被广泛应用的CAE技术当数模流分析技术,即将实体划分为有限元进行各项分析,有限元分析一般可分为中面有限元,表面有限元和三维有限元,三者中三维有限元分析精度最接近实际,但由于其3D有限元数量的庞大给计算机带来了巨大的计算量,其分析速度一直制约着CAE技术的发展。但随着计算机产业的发展,计算机的计算方式和运算速度不断地得到提升,三维有限元分析已不再是案台上的花瓶。 公司使用的模流分析软件是MoldFlow,其分析方式有中性面分析、双层面分析和3D分析,各种分析均有一一对应的网格。 目前公司分析模式:一般采用双层面分析,少数精度要求高的产品采用3D分析。 模式形成原因:软件使用上,刚从MPI6.1过渡到MoldFlow2012,6.1的分析思路和分析经验告诉我们:双层面分析精度基本能满足一般要求,3D分析速度是双层面的数倍。 为什么要推广3D分析 1、因为3D分析精度高 它是最接近于实际模型的分析 2、因为双层面分析具有局限性

用汇编语言计算N阶乘(0到FFFFH)

一、设计题目 编写计算N!的程序(数值N由键盘输入,结果在屏幕上输出。N的范围为0-65535,即刚好能被一个16位寄存器容纳)。 二、开发目的 由于当N值较大时(N>10),N的阶乘计算很繁琐并且计算容易出错。 所以可以编写计算N!的程序,利用计算机强大的计算能力计算N!。这不仅能节省繁琐计算的时间,而且得到的N!的积比起手工算的要准确。 三、设计方案 N的阶乘为1*2*3……(N-1)*N,N的范围为(0000H—FFFFH),N!以字为单位存在一个或几个定义的数据段中。 若已算到(n-1)!,假如它占4个字的空间,接下来它乘以n的原理,如图1所示。

图1 (n-1)!* n的原理 因此计算N!的算法可以这样编写,当前n!的值为被乘数,内容存在str2中,单位为字,n+1的值为乘数,存在str1中,单位也为字。被乘数从str2首地址中内容开始与乘数相乘,得到32位的积,它的低16位覆盖掉当前被乘数所在存储空间的内容。接着str2下一个字的内容与乘数相乘,也得到32位的积,前一个积的高16位与现在积的低16位相加,它们的和覆盖掉当前被乘数所在存储空间的内容,若它们的和有进位,把进位加到现在积的高16位。直到把str2中内容乘完。然后乘数增1,循环上面的内容。 直到执行完(N-1)!*N 输入的N为4位16进制数,输出也为16进制数。 四、程序流程图

五、程序清单 data1 segment input1 db 'please input the number :','$' input2 db 10,?,10 dup(?) ;输入的16进制数 error db 'Out of range','$' output1 db 'The answer is 1','$' output2 db 'The answer is :','$' str1 dw 100 dup(?) ;保存1—N(后一个数覆盖前一个数)str2 dw 7000h dup(?) ;N!乘积的值(1) p dw 100 dup(?) ;上一个乘积的高16位 data1 ends data2 segment str3 dw 7fffh dup(?) ;N!乘积的值(2) data2 ends code segment assume cs:code,ds:data1,es:data2 org 100h ;程序从偏移地址100h开始执行 start: mov ax,data1 ;程序初始化 mov ds,ax mov ax,data2 mov es,ax ;初始化结束 mov ah,9 lea dx,input1 int 21h

天文数的阶乘计算

天文数的阶乘计算 在C语言里unsigned long int型的的整数的仅可表示0~4294967295之间的数,而12! = 479001600,13! = 6227020800。可见,用unsigned long int型的整数做阶乘运算时最多只能计算到12的阶乘。用函数double sqrt(double x)做开方算运算时,只能计算到16位有效数字。long double型的实数虽然可表示10-4931~10-4932的数,但其有效数字也只有18~19位。 我编写了一个"天文数字计算"程序突破了这一限制,可以把数字的长度扩充到无穷多位。除了能做加、减、乘、除、求模等基本运算外还可以做阶乘、乘方、开平方等运算。 例如:10000! = ?、(2002^2000)%9999 = 9394、2002的平方根的小数点后第10000位是4。 下面这个程序只是我用编写的"天文数字计算"里的一个计算。 因为在程序代码中使用了中文,所以这个程序如果不在中文DOS下运行,可能会出现乱码,但不影响程序的计算结果。 注:因为DOS能访问的内存有限,所以在DOS下可把计算结果扩充到30000多位。但如果用VC把它编绎成Windows程序,则可以计算到"真正的无穷多位"(与机子配置有关),一般计算到几十万位是没有问题的。 /* 此程序在TC2.0、TC3.0,BC,VC下都可编绎 */ #define M 20000 /* 结果位数,DOS能访问的内存有限,不要超过 30000 位*/ #define N (M+5) main() { int Num; reGISter int i,j,k,flag; register unsigned int n,m,pc; unsigned char str_n[5],result_0[N],result_1[N]; void fun_print_result(char *result,int flag); int fun_mul(char *a,char *b,char *c,int flag);

微机原理课程设计报告计算N的阶乘

科技学院 课程设计报告 ( 2012—2013 年度第一学期) 课程:微机原理及应用 题目:计算N的阶乘 院系:动力工程系 班级: 学号: 学生姓名: 指导教师: 设计周数:一周 成绩: 日期:2013年1 月11 日

《微机原理及应用》课程设计 任务书 一、目的与要求 1.通过对微机系统分析和具体设计,使学生加深对所学课程的理解。 2.掌握汇编语言程序设计的基本方法和典型接口电路的基本设计方法。 3.培养学生分析问题、解决问题的能力。 4.培养学生对微型计算机应用系统的基本设计能力。 5.提高学生的实践动手能力和创新能力。 二、主要内容 设计题目:计算N的阶乘。数值N由键盘输入,N的范围为0~65535,结果在屏幕上显示。 1.针对所选择的设计题目进行硬件设计,合理选用所需元器件,绘制系统结构框图、硬件接线图,并在实验系统上完成电路的连接和调试。 2.根据所选题目的要求对微机系统进行程序设计,绘制程序总体流程图并编写源程序上机调试。 3.写出课程设计报告,对整个设计过程进行归纳和综合,对设计中所存在的问题和不足进行分析和总结,提出解决的方法、措施、建议和对这次设计实践的认识和收获。 三、进度计划 四、设计成果要求 1.系统硬件设计合理,软件编程达到设计要求。 2.系统硬件结构图和软件流程图绘制清楚规范。 3.设计报告完整规范。 五、考核方式 根据设计任务的完成情况、课程设计报告撰写情况及演示答辩情况采用五级记分制评定成绩。 学生姓名: 指导教师:

一、课程设计目的与要求 1.通过对微机系统分析和具体设计,使学生加深对所学课程的理解。 2.掌握汇编语言程序设计的基本方法和典型接口电路的基本设计方法。 3.培养学生分析问题、解决问题的能力。 4.培养学生对微型计算机应用系统的基本设计能力。 5.提高学生的实践动手能力和创新能力 二、课程设计正文 1.程序正文 CRLF MACRO MOV AH,02H MOV DL,0DH INT 21H MOV AH,02H MOV DL,0AH INT 21H ENDM ;回车换行 DATA SEGMENT MESS1 DB ‘INPUT THE NUMBER ACCORDING TO HEXNUM!’,0DH,0AH, ‘$’ MESS2 DB ‘THE RESULT IS:’,0DH,0AH, ‘$’ ERROR DB ‘INPUT ERROR!’,0DH,0AH, ‘$’ LEN DW 1 CYY DW ? BUF DW 256 DUP (0) DATA ENDS STACK SEGMENT STA DW 32 DUP (?) TOP DW ? STACK ENDS CODE SEGMENT ASSUME CS:CODE,DS:DATA,ES:DATA,SS:STACK START: MOV AX,DATA MOV DS,AX MOV ES,AX MOV SP,TOP

n的阶乘程序报告

HUNAN UNIVERSITY 程序设计训练报告 题目求n! 学生姓名 学生学号 专业班级 学院名称 指导老师 2013 年 7 月 11 日

目录 第一部分程序功能简介 (3) 第二部分本人完成的主要工作 (3) 第三部分设计方案 (4) (一)设计分析 (4) (二)模块的功能及程序说明 (5) (三)核心源程序模块 (7) (四)核心算法流程图 (8) (五)操作方法简介 (9) (六)实验结果 (9) (七)设计体会 (10) 第四部分附录 ....................... 错误!未定义书签。 (一)程序中主要变量的功能说明........ 错误!未定义书签。 (二)源程序代码...................... 错误!未定义书签。

第一部分程序功能简介 该程序是求一个大数n的阶乘(n!),n的值范围从1~100之间变化。输出结果从右往左每四个数之间用一个“,”隔开。 第二部分本人完成的主要工作 刚开始,我尝试着通过递归函数(如下)将100!的结果算出 结果发现无法得到正确结果(100的阶乘输出为0),询问后知道由于100的阶乘结果太大,用长字符串也会溢出导致无法显示,所以只能将阶乘后结果的个、十、百、千...位依次赋数给数组a[200]来解决这一问题。 数组a[200]的引入也让n阶乘结果的位数昭然若揭,又使用for循环使输出结果从右往左每四个数之间用一个“,”隔开。 最终设计出一个程序求一个大正整数数的阶乘(n!),n的值范围从1~100之间变化(输出结果从右往左每四个数之间用一个“,”隔开)。然后对程序进行编译,运行,并不断完善细节,不断优化。

高精度算法详解(C++版)

1、高精度加法 #include #include #include using namespace std; int main() { char a1[100],b1[100]; int a[100],b[100],c[100],lena,lenb,lenc,i,x; memset(a,0,sizeof(a)); memset(b,0,sizeof(b)); memset(c,0,sizeof(c)); gets(a1); gets(b1); lena=strlen(a1); lenb=strlen(b1); for(i=0;i<=lena-1;i++) a[lena-i]=a1[i]-48; for(i=0;i<=lenb-1;i++) b[lenb-i]=b1[i]-48; lenc=1; x=0; while(lenc<=lena||lenc<=lenb) { c[lenc]=a[lenc]+b[lenc]+x; x=c[lenc]/10; c[lenc]%=10; lenc++; } c[lenc]=x; if(c[lenc]==0) lenc--; for(i=lenc;i>=1;i--) cout< #include #include using namespace std; int main() { char a1[1000],b1[1000],n[1000]; int a[1000],b[1000],c[1000],la,lb,lc,i,x; memset(a,0,sizeof(a));

阶乘

阶乘、排列、组合公式计算 ... 附:阶乘、排列、组合公式计算程序 加法原理:做一件事,完成它可以有N类加法,在第一类办法中有M1种不同的方法,在第二类办法中有M2种不同的方法,...,在第N类办法中有MN 种不同的方法。那么完成这件事共有 N=M1+M2+...+MN 种不同的方法。 乘法原理:做一件事,完成它需要分成N个步骤,做第一步有M1种不同的方法,做第二步有M2种不同的方法,...,做第N步有MN种不同的方法,那么完成这件事共有N=M1×M2×... ×MN 种不同的方 法。 排列:从N个不同元素中,任取M(M<=N)个元素,按照一定的顺序排成一列,叫做从N个不 同元素中取出M个元素的一个排列。 排列数:从N个不同元素中取出M(M<=N)个元素的所有排列的个数,叫做从N个不同元素中 取出M个元素的排列数。记作:Pmn 排列数公式:Pmn =n(n-1)(n-2)...(n-m+1) 全排列:N个不同元素全部取出的一个排列,叫做N个不同元素的一个全排列。 自然数1到N的连乘积,叫做N的阶乘。记作:n! (0!=1) 全排列公式:Pnn =n! 排列数公式还可写成:Pmn = n!/(n-m)! 组合:从N个不同元素中,任取M(M<=N)个元素并成一组,叫做从N个不同元素中取出M个 元素的一个组合。 排列与元素的顺序有关,组合与元素的顺序无关。 组合数:从N个不同元素中取出M(M<=N)个元素的所有组合的个数,叫做从N个不同元素中 取出M个元素的组合数。记作:Cmn 组合数公式:Cmn = Pmn / Pmm = n(n-1)(n-2)...(n-m+1)/m! = n!/m!/(n-m)!

排列组合和排列组合计算公式

排列组合公式/排列组合计算公式 排列A------和顺序有关 组合 C -------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法. "排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A(n,m)表示. A(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号

c(n,m) 表示. c(n,m)=A(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=A(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为 c(m+k-1,m). 排列(Anm(n为下标,m为上标)) Anm=n×(n-1)....(n-m+1);Anm=n!/(n-m)!(注:!是阶乘符号);Ann(两个n分别为上标和下标)=n!;0!=1;An1(n为下标1为上标)=n

相关主题