搜档网
当前位置:搜档网 › 我国工业余热利用现状

我国工业余热利用现状

我国工业余热利用现状
我国工业余热利用现状

我国工业余热利用现状

摘要:工业发展带来了巨大的污染,工业余热的利用是节能减排的重要环节。本文主要介绍了工业余热的资源特点,概述了工业余热的利用方式,中国目前低温工业余热技术,以及分析了工业余热利用中存在的问题。总结出目前应该大力发展利用低温余热技术。

关键词:工业余热;低温余热利用技术;节能减排

0引言

工业部门余热资源总量极为丰富,“十二五”期间可以开发利用的潜力超过1亿吨标准煤。“十二五”是我国节能减排承前启后的关键时期,国务院和有关部委已就节能减排工作作出全面的决策部署,明确提出单位GDP能耗降低16%左右、单位GDP二氧化碳排放降低17%左右、规模以上工业增加值能耗降低21%左右等多项节能减排目标。工业部门能源消费约占全国能源消费的70%。

目前余热利用最多的国家是美国,它的利用率达到60%,欧洲的达到50%,我国30%。就余热利用来看,我国还有很大的利用空间。中、高温余热发电已经形成了比较完备的产业,而低温余热发电则刚刚开始。

1.工业余热资源特点

工业消耗的能源部门品种包括原煤、洗煤、焦炭、油品、天然气、热力、电力等。工业余热资源特点主要有:多形态、分散性、行业分布不均、资源品质较大差异等特点。

对钢铁、水泥、玻璃、合成氨、烧碱、电石、硫酸行业余热资源的调查分析结果显示,上述工业行业余热资源量丰富,约占这7个工业行业能源消费总量的1/3。“十二五”时期,综合考虑行业现状与发展趋势,这7个工业行业余热资源总量高达3.4亿吨标准煤。

2010年末,余热资源开发利用总量折合为8791万吨标准煤。其中,余热资源开发利用量超过1000万吨标准煤的有钢铁、合成氨、硫酸、水泥4个行业,分别为3560万吨标准煤、2450万吨标准煤、1244万吨标准煤、1124万吨标准煤。

从余热资源的行业分布来看,上述7个工业行业中,钢铁、水泥、合成氨行业的余热资源量位居前三,分别为1.71亿吨标准煤、9300万吨标准煤、3454万吨标准煤,占这7个工业行业余热资源总量的比重分别为50.3%、27.3%、10.2%;硫酸、电石、烧碱、玻璃余热资源总量则较少,分别为1940万吨标准煤、1408万吨标准煤、495万吨标准煤、311万吨标准煤,合计占7个工业行业余热资源总量的122%。

从工业余热资源的地区分布来看,“十二五”时期,上述7个工业行业余热资源可开发利用潜力居前六位的地区是河北、江苏、山东、辽宁、山西、河南,分别为1507万吨标准煤、680万吨标准煤、664万吨标准煤、530万吨标准煤、419万吨标准煤、361万吨标准煤。

从余热资源的来源来看,可分为高温烟气和冷却介质等六类,其中高温烟气余热和冷却介质余热占比最高,分别占50%和20%,而其他来源分别是废水、废气余热占11%,化学反应余热8%,可燃废气、废液和废料余热7%,高温产品和炉渣的余热4%。

从余热资源品位来看,约46%为400℃及以上的高品质余热资源,其余约54%则为400℃以下的中低品质余热资源。

从余热量占各行业燃耗量的比例来看,建材行业的余热占燃耗量的比例最大,约占40%,其他各行业的余热资源也丰富。各行业余热资源在该行业的燃耗量的比例如下表1-1:

表1-1 各行业余热占该行业燃耗量的比例

2.工业余热利用技术

工业余热资源来源于工业生产中各种炉窖、余热利用装置和化工过程中的反应等。这些余热能源经过一定的技术手段加以利用,可进一步转换成其他机械能、电能、热能或冷能等。利用不同的余热回收技术回收不同温度品位的余热资源对降低企业能耗,实现我国节能减排、环保发展战略目标具有重要的现实意义。

余热温度范围广、能量载体的形式多样,又由于所处环境和工艺流程不同及场地的固有

条件的限制,生产生活的需求,设备型式多样,如有空气预热器,窑炉蓄热室,余热锅炉,低温汽轮机等。根据佘热的温度范围,可以将目前的工业余热技术分为中高温余热回收技术和低温回收技术。中高温回收技术主要有三种技术:余热锅炉、燃气轮机、高温空气燃烧技术。低温回收技术主要有有机工质空肯循环发电、热泵技术、热管技术、温差发电技术、热声技术。

从目前工业余热现状来看,高温余热回收技术已经在我国的钢铁、水泥、冶金等行业广泛应用。但除了高温余热外,还有大量的低温工业余热未得到利用,我国我国对于低温余热的利用还处于尝试和发展阶段,低温余热回收技术不成熟,导致这部分余热多直接排向环境,造成了巨大的能源浪费。因此,本文着重概述低温余热回收技术。

3.有机工质朗肯循环发电系统

3.1有机工质朗肯循环发电系统的原理

有机朗肯循环是将热能转换为机械能的系统,与常规的蒸汽发电装置的热力循环原理相似,但有机工质低温热发电不是用水作工质,而是用有机物为工质的朗肯循环发电系统, 其工作原理如图4-1所示。系统由蒸发器、透平、冷凝器和工质泵四大部分组成, 有机工质在蒸发器中从低温热流中吸收热量, 生成具一定压力和温度的蒸汽, 蒸汽推动透平机械做功, 从而带动发电机或拖动其它动力机械。从透平机排出的有机蒸汽在冷凝器中向冷却水放热, 凝结成液态, 最后借助工质泵重新回到蒸发器, 如此不断地循环下去。

图3-1 有机工质朗肯循环发电原理图

3.1.2有机工质朗肯循环发电系统的特点

有机工质朗肯循环采用有机工质(如R123、R245fa、R152a、氯乙烷、丙烷、正丁烷、异丁烷等)作为循环工质的发电系统,由于有机工质在较低的温度下就能气化产生较高的压力,推动涡轮机(透平机)做功,故有机工质循环发电系统可以在烟气温度200℃左右,水温在80℃左右实现有利用价值的发电。

目前,对低温热能发电技术的研究主要集中在以下几个方面:工质的热力学特性和环保性能;混合工质的应用;热力循环的优化等。国外有机朗肯循环低温热发电技术主要应用于地热发电,但未来可能应用于太阳能热电、工业余热、生物质能和海洋温差能等。

目前美国、法国等国的余热发电技术的最低温度是80℃,我国自主研发的低温发电机组,通过提升热电转换介质的性能,已经实现了最低发电温度为60℃能实现稳定发电。

3.2有机工质朗肯循环发电系统国内外研究案例

国内外对于低温热能利用的研究主要开始于20世纪70年代的石油危机时期。其中,有机物朗肯循环的研究和应用最为广泛。早在1924年,就有人开始研究采用二苯醚作为工质

的有机物朗肯循环。到目前为止,全世界已有2OOO多套ORC装置在运行,并且有十几家生产制造企业,生产出单机容量为14000 kW的ORC发电机组。

有机工质低温发电设备的制造及生产在国内还是一个空白。清华大学柯玄龄、梁秀英等在这方面进行了深入系统的研究, 并研制出产品, 应用于工程实践。近年来, 浙江大学、上海交通大学习等主要对有机工质和热力循环进行了一定的研究,但总体来说国内对有机朗肯循环系统的研究和应用工作较少,所以开展这方面的研究工作是很有意义的。

国内外对低温余热朗肯循环系统做了大量的研究,其研究案例见表4.1,

表3.1国内外低温余热回收有机介质循环发电系统的研究案例

从表 4.1里可以看出,目前国内外对低温余热发电的有机朗肯循环系统的理论研究很

多,并且着重在烷烃类工质对循环系统的研究较多,且针对工业余热不同温区来选择适于ORC回收工程应用的工质;混合工质有利于提高ORC循环的效率而得到研究者关注。

3.3有机工质朗肯循环发电系统国内外应用案例

国外ORC 系统动力回收研究开展较早,上世纪初始,美国和日本就开始将其应用于工程实践。目前, 以色列的低温废热发电技术居世界领先地位, 日本、美国、俄罗斯等在引进以色列的废热发电设备和技术基础上, 也进行了大量的研究工作, 并开发了有机朗肯循环余热锅炉发电机组系统等, 取得了极其明显的经济效益。国际上,以色列一直在研发及制造低温热源的有机朗肯循环(0rganic Rankine Cycle,简称 ORC)纯低温余热发电技术及设备。

国内外低温余热回收有机介质循环发电系统的应用案例见表4.2,

表3.2 国内外低温余热回收有机介质循环发电系统的应用案例

从表4.2可以看出,国内外对余热发电的实际应用都在相继展开。未来余热发电是节能的一个大趋势。国外ORC 技术已成功商业化,涌现出许多ORC设计与制造厂商,如以色列ORMAT 公司、意大利Turboden、德国GMK 公司等,GE、三菱等著名叶轮机械设计制造企业也成立了专门的ORC 公司。

3.4有机工质朗肯循环发电系统经济性分析

例如某水泥厂余热发电站,一条3000吨/天的新型干法水泥生产线,窑头与窑尾配备有余热锅炉,用的是凝汽式汽轮机,该系统设计出来效果为每小时的平均发电总量为3500kW,参照发电机组的真实规格,必须用3000kW的汽轮机组。某项目的总投资数额高达60万元,一年平均运转300多天,则1年的发电总量可达到2270万kWh。这种情况下和采用标准煤生产相比,能够节约1.3万吨的煤,减少约2.2万吨二氧化碳的排放量,然后除掉系统自身耗费电量的10%,则每年供电量能够达到1905万kWh,而1吨熟料的发电能力能够达到26.5kWh。相比之下,应用纯低温余热发电技术来发电,整个发电系统一共投资1962万元,外界购电价格按照0.5元/kWh进行计算,除去余热电站供电所花费的成本,则每吨熟料的成本大约能下降11.5元,进一步降低了水泥工业生产成本,提升企业在市场上的竞争力。

以某冷却塔低温余热利用系统用于发电为例,扣除泵的耗功后,1t热水的发电量为1kW.h,每年按照7000h计算,则年发电量为70000kW.h,电价按0.5元计算,年经济效益可达35万元,相当于减少CO2排放量650t,经济和环保效益显著。

随着国家节能减排力度不断加码,水泥余热发电项目的魅力日益显著。预计,到2015年,我国余热余压发电要实现新增装机2000万千瓦。按照每千瓦造价5000元计算,“十二五”期间水泥余热余压发电将形成1000亿元投资规模。

结论:固然纯低温余热发电系统的投资非常高,但在短短几年中基本上可收回成本,可以说构建出低温余热电站,既能变废为宝,充分利用能源,降低对环境的污染,又能增加企业受益,可谓一举两得。

4.热泵技术

4.1热泵技术的原理

热泵就是在两个热源之间工作,消耗一定的功(W),使低温热源供给热量(Q1),在高温热源处获得热量(Q2),亦即以消耗少量高质能为代价,达到提高温位以利于利用。

热泵大概分两类:一是蒸汽压缩式;二是吸收式,后者是热泵的主流。

压缩式热泵由蒸发器、冷凝器、压缩机、节流装置及水源、热水侧管路等部分组成。压缩式热泵由蒸发器、冷凝器、压缩机、节流装置及水源、热水侧管路等部分组成。机械压缩式热泵系统的工作过程如下:低佛点工质流经蒸发器时蒸发成蒸汽,此时从低温位处吸收热量,来自蒸发器的低温低压蒸汽,经过压缩机压缩后升温升压,达到所需温度和压力的蒸汽流经冷凝器,在冷凝器中,将从蒸发器中吸取的热量和压缩机耗功所相当的那部分热量排出。放出的热量就传递给高温热源,使其温位提高。蒸汽冷凝降温后变成液相,流经节流阀膨胀后,压力继续下降,低压液相工质流入蒸发器,由于沸点低,因而很容易从周围环境吸收热量而再蒸发,又形成低温低压蒸汽,依此不断地进行重复循环。

吸收式热泵是利用工质的吸收循环实现热泵功能的一类装置,它采用热能直接驱动,而

不是依靠电能、机械能等其他资源。溴化锂吸收式热泵机组回收利用低温热源(如废热水)的热能,制取所需的工艺或采暖用高温热媒,实现从低温向高温输送热能的设备,它以低温热源为驱动热源,在采用低温冷却水的条件下,制取比低温热源温度高的热媒。它与第一类溴化锂吸收式热泵机组的区别在于,它不需要更高温度的热源来驱动。但需要较低温度的冷却水。

4.2热泵技术的特点

我国许多行业对热源的需求温度多集中在75~200℃之间,且存在着低温余热大量浪费的情况,可以把热能由低温位热源转移到高温位热源的中高温热泵技术有着巨大的应用空间。对高温热泵的研究多集中在适宜工质的选择和制热效率提高这两个方面。对高温热泵的研究多集中在适宜工质的选择和制热效率提高这两个方面。

全世界有超过1.3亿台热泵机组在正常运行,总供热量超过了 4.7E+10GJ/年,目前,工业热泵主要应用在酿造、纺织、木材、食品加工、石油化工、海水淡化、热电以及冶金等领域。在国外,利用吸收式热泵系统回收余热技术的研究已有多年的发展。在溴化锂吸收式制冷技术上我国已经积累了雄厚的技术基础,但在吸收式热泵系统的应用技术上还比较落后。

4.3热泵技术国内外的研究案例

早在20世纪80年代,日本大型节能技术研究开发项目项目就把高温热泵列入了重点研究方向之一,该项目总的目标是将制热性能系数(COP)提高到6~8,出口热水温度提高到150~300℃。在美国IEA热泵中心和 IIR的热泵发展计划以及欧洲大型热泵研究计划中,中高温热泵技术都是研究的重点。

2007年太原理工大学根据山西某热电厂冷凝抽汽工况条件设计了基于单效吸收式热泵机组的新型热电联产系统。改造后的热电联产系统统在原有汽轮机抽汽量不变的条件下回收汽轮机冷凝余热,实现热网供热负荷增大、热电厂一次能源利用率提高、节能减排的目标,实际运行工况良好,经济效益和社会效益显著。

大庆石油学院结合油田的实际情况,通过对油田污水热源和油田用热要求的分析,探讨了采用单效第一类吸收式热泵为油田的生产过程供热的可行性、节能和经济效益。

清华大学2008年提出了基于Co-ah循环的热电联产集中供热方法,其中对热电厂的冷凝余热利用双效吸收热泵机组配合单效吸收热泵机组的方式,其设计目标是实现依靠热电厂冷凝乏汽、冷凝余热及汽轮机抽汽并以此对热网回水进行升温。

4.4热泵技术国内外的应用案例

美国B.C.L.(Battdle Clumber Labs)与A.C.公司(Adolphcooc Compange)合作,共同研发出较为完善的吸收式AHT系统,1983年已能规模化生产,并将它用于回收炼油厂中汽提塔和蒸馆塔塔顶蒸汽的冷凝余热,以及造纸厂制浆工艺和食品加工过程中泄漏蒸汽的余热。

1981年以来,日本的三洋公司已为日本和全球各地建立了 20套大型吸收热泵装置,部分机组已成功运行十年以上。同时在日本的千叶工厂,已将吸收式热泵装置集成于橡胶装置中的凝聚釜顶废热的回收系统中,并且取得了良好的效果,据记载其改造投资回收期只有15年。

辽河油田曙光采油厂曙五联合站采用高温热泵技术!以清华大学研发的HTR01为工质,从 5640m3/d的含油污水(温度为71℃)中提取2797KW的热量,将2355m3/d、53℃的进站原油加热到85℃。机组自2010 年投产以来,运转正常,热泵机组总耗电折合人民币 192.37万元,产生的加热效果相当于以往消耗价值1053万元燃油或690.74万元天燃气的加热效果,经济效益显著。

云驾岭煤矿等就以18~20℃矿井涌水和20~40℃的坑口电厂凝气冷却水为热源,采用高温热泵和低温热泵结合:高温热泵产生的 70~75℃的热水作为矿区地面建筑冬季采暖,低温热泵则产生 60℃左右的热水用于井筒保温和职工浴室喷淋。采用热泵技术以来,矿区每年节约煤炭消耗4000~5000t,减排 CO212000~14000t,节能减排效果非常显著.

5.热管技术

5.1热管技术的原理

以热管作为传热元件的废热锅炉称为热管式废热锅炉,由外筒体、内筒体、饱和汽包、热管四部分组成。工作时废气(或工艺气)由上部进入,经外筒体和内筒体环隙流动,经热管换热后气体由下部流出;水由内筒体下部进入,经热管加热后,进汽包,汽水分离后,产生饱和蒸汽,并网或直接使用。

5.2热管技术的特点

热管的二次间壁换热特性是实现安全、可靠及长周期运行的重要保证。热管的热流变换及自吹灰特性是防止工业上换热设备露点腐蚀及灰尘堵塞的重要技术保证。热管的均温热屏蔽及分离式热管技术的完善, 将可能解决化学反应器中温度分布不均匀、反应过程偏离最佳反应温度的缺陷、石油裂解中由于管壁温度不均匀而出现的过热分解以及核反应堆安全壳体的散热等等问题。液态金属热管的出现及材料价格的下降, 可实现在超高温反应设备中实现连续取热。

5.3热管技术的国内外应用现状

早在1942 年,Gauler 就曾提出热管的原理。 1962 年,L. Trefethen 再次提出类似于Gauler 的传热元件,但因故未能实施。直到1964 年,Grover等人独立地提出了类似于Gauler 的传热元件,并且取名热管,此后吸引了很多的科学技术工作者从事热管研究,使热管得到了很快的发展。热管自1964 年正式在美国发明问世, 至今已有50年的历史, 常作为一种传热元件, 但作为一项传热技术, 则仍处于发展阶段。

我国的热管技术开发研究一开始有明确为工业化服务的目标, 因此重点在于开发碳钢-水热管换热器。经过多年的努力, 我国的热管技术工业化应用已处于国际先进水平。目前, 气-气热管换热器、热管蒸汽发生器等热管节能产品已广泛用于冶金、石油、化工、动力及陶瓷等工业领域。

6.半导体温差发电

6.1半导体温差发电原理

温差发电器是一种基于塞贝克效应,直接将热能转化为电能的热电转换器件。1982 年,德国物理学家塞贝克发现了温差电流现象,即两种不同金属构成的回路中,若两种金属结点温度不同,该回路中就会产生一个温差电动势。由于材料的限制,热电能量转换的效率很低,所以很少能在工程技术上得到实际应用。20世纪五十年代以后,随着半导体技术的迅速发展,半导体温差发电技术引起了世界范围内的极大关注。

图6-1 温差电池示意图

如图6-1所示,将端置于高温,处于低温端的就可得到电动势

式中:为赛贝拉系数,其单位是V/K。是由材料本身的电子能带结构决定的。

6.2 半导体温差发电的特点

半导体温差发电是一种新型的发电方式,具有体积小,无噪音和有害物质排放,寿命长,可靠性高,性能稳定,安全无污染等一系列优点,符合绿色环保的要求。而且温差发电不受温度的限制,有温差存在就能发电,选择合适的半导体材料类别,可以在很宽的温度范围内(300K-1400K)利用热能。特别适合低品位热源的回收利用。温差发电作为一种热—电能量直接转换方式,与现行的机—电变换系统相比,转换过程中不需要机械运动部件,不需要附加的驱动、传动结构,没有震动和噪声。

但是由于受到热点转换效率的制约(目前一般不超过14%,远低于普通发电机40%的效率)和成本的限制,温差电技术除了在航天和军事等尖端技术领域应用外,很少用于工业和民间。

目前国内外对半导体温差发电的研究主要在半导体热点材料、热点转换效率的提高等方面。主要在太阳能、汽车尾气、低温冷能利用方面有所应用。相信半导体温差发电技术会在未来有更广泛的应用。

6.3 半导体温差发电的国内外研究案例

最早的温差发电机于1942年由前苏联研制成功,发电效率为1.5%~2%。从20世纪六十年代开始陆续有一批温差发电机成功用于航天军事等领域。近年随着技术的发展,半导体温差发电技术已经成为研究热点。

河南省科学院能源研究所从不可逆过程热力学的角度出发,推导出了稳态条件下的半导体温差发电性能的基本表述方程,并进一步分析推导了循环效率与材料优值系数ZT之间的函数关系及其影响。首次得到了低温半导体热电堆内部温度场在发电循环建立后能够达到平衡状态的时间域(6~10秒),以及冷端温度对系统稳定性的影响。

哈尔滨工业大学胥大川针对温差电转换效率低这个问题,讨论了如何改进热点摸块的设计,以提高温差发电器的性能,促进温差发电器在实际中的应用。

西安交通大学陈浩在国内首次研究了半导体热电堆的发电堆的发点问题,提出了求解的方法和分析的公式,为国内温差发电的设计提供了理论和实验依据。

6.4 半导体温差发电的国内外应用案例

厦门纳米克热电电子有限公司自2001年起开始自主研发半导体温差发电技术,经过三年多的努力,成功研发出拥有自主知识产权的模块产品。其耐温性能、疲劳性能、输出功率等均达到国际先进标准,而制造成本仅为国外同类厂商的的20%。

在我国的西气东输工程中,直径超过3m的输气管道总长度达到6000km。为此我国研制以天然气为燃料的热电发电器,它将作为输气管道阴极保护电源应用在西气东输工程。

7.热声技术

7.1 热声技术的原理

热声效应是由热在弹性介质(常为高压惰性气体)中引起声学自激振荡的物理现象。热声效应可分为两类:一类用热能来产生声波,即热致声效应;另一种是用声波来产生制冷效应,即声致冷效应。

7.2 热声技术的特点

热声技术应用的范围相当广泛,将来会给整个能源工业带来很大的影响,它的简单、环保、节能高效的特性符合当今时代的需求。热声技术近十几年来的研究已经取得了飞速发展作为发动机,其转换效率已达到30%以上,完全可以同内燃机(转换效率在25%~40%之间)相媲美;作为制冷剂,完全无运动部件的热声驱动脉冲管制冷机已达到液氢温度以下(低于20K),而热声驱动的室温行波热声制冷机则在-20℃获得了300W以上的制冷量,显示了热机制冷技术子啊室温以及深低温制冷领域应用的巨大潜力。

但是就现在的情况而言,由于设计水平没有达到优化的程度,材料的选择和制造技术都在完善之中,并且制造的成本会高于普通的现有技术,这也是行业研究的主要方向。

7.3 热声技术的国内外研究案例

南京大学声学研究所的韩飞等人对Rijke管内的非线性效应进行了比较深入的研究。指出了Rijke管内引起非线性效应的两个因素,并通过计算声波的增长率和实验分析声波的频谱,发现非线性效应限制了管内声波振幅的增长,并且导致了二次高阶谐波的产生。

西安交通大学的刘继平研究管受热气体层流流动时发现:由于气体密度随温度增加而减少,动力粘度和导热系数随温度增加而增加,在一定的加热条件下,加热管内会形成压力与流量关系的奇异性,产生不稳定性。认为这是Rijke管震荡的原因所在。

中国科学院理化所的李青老师对热声发动机起振的非线性饱和过程进行了研究,认为热声热机其回热器实际就是一个由声感和流容构成的储能部件—谐振器,声感对于维持系统起振起到了举足轻重的作用,声感是实现并维持热声转换的关键的时变网络参数。提出了定量判断系统工作能力的指标调制度。

中南大学制冷与低温研究所的刘益才经过计算表明,与环境温度温差为250K的余热或者废热,采用热声技术的效率可以接近30%,接近了内燃机的热转换效率。

8.其他

8.1 斯特林热气机循环发电系统

斯特林热气机循环发电系统是利用低温余热发电的废热回收装置,可回收100℃至300℃的废热,能达到20%的发电效率。从数据来看,其发电效率优于目前市场的低温蒸汽循环发电系统和有机工质发电系统的发电效率,该装置在100℃的废热条件下发电效率达7.3%,150℃的条件下发电效率达13.7%,200℃的条件下发电效率达18.4%,250℃的条件下发电效率达22.1%,300℃的条件下发电效率达25.0%。

8.2超临界二氧化碳循环发电系统

超临界二氧化碳发电系统是超临界二氧化碳液体为郎肯循环系统的工质,以二氧化碳透

平专用涡轮机为核心技术的最新余热发电技术。此发电系统在余热发电方面有较宽泛的应用优势,各项技术指标都优于在用的水蒸汽浪肯循环系统和当前最先进的有机浪肯循环系统,特别是在发电效率和设备体积方面有着明显的优势。超临界二氧化碳热机是一种平台技术,目前可提供的功率范围为250Kwe至50Mwe的设计,效率可达30%。应用范围包括燃气轮机、固定式动力发电机组、工业废热回收、太阳能热量、地热、混合内燃机等的循环热能。

9.工业余热利用存在的问题

从技术发展看,低温有机朗肯循环技术是利用低温工业余热、地热、太阳能的经济有效方案,但国内未掌握该技术。我国许多行业对热源的需求温度多集中在70~250℃之间,且存在着低温余热大量浪费的情况,可以把热能由低品位热源转移到高品位热源的中高温热泵技术有着巨大的应用空间。由于在工业过程中产生余热的热源一般水质都比较差)如油田含油污水(其中除了含有石油类物质,还有硫化氢、盐类等)对普通的热泵换热器会产生严重的腐蚀,必须采用特制的钛管换热管或者其他抗腐蚀材料,并通过清水与含油污水换热后再进入热泵机组。一批高性能的热电转换材料出现,温差发电技术的性价比相对提高,使温差发电技术在工业和民用产业中推广应用成为可能。

10.结论

当前中高温余热利用技术普及率不高,低温余热未被利用是我国余热利用率低的原因之一。将原被遗弃的工业余热应用于溴化锂吸收式制冷,满足生产或生活的需要,这无疑是提高能源利用率的一个有力措施,尤其是在不同季节交替需要供暖与制冷负荷的企业,应优先考虑采用溴化锂吸收式制冷。在中高温热泵技术的实际应用中,要结合余热源的具体情况采取相应措施,发现问题并解决问题。国内外对温差发电的研究较少,但半导体温差发电用于工业余热利用是可行的,其发电1.89年其发电成本就相当于目前工业用电成本,目前国内尚未普及温差发电的应用。温差发电技术可以灵活利用各种不同等级和形式的热能,适用于工业余热。热声技术作为一种新型的工业余热利用方式,目前尚未广泛研究和应用。

参考文献

2020年余热回收利用行业发展趋势分析

余热回收行业分析报告 一、行业概况 余热,在能源利用设备中没有被利用的能源,包括高温废气余热、冷却介质余热、废汽废水余热、高温产品和炉渣余热、可燃废气废液和废料余热、以及高压流体余压等。在钢铁冶金、石化、水泥建材、玻璃等行业中都具有排烟温度高于280℃的工业锅炉、流化床锅炉、导热油炉、冶炼炉、冶金炉、高炉热风炉、加热炉,其余热回收利用空间较大。根据调查,各行业的余热总资源约占其燃料消耗总量的17%-67%,可回收利率达60%。 二、市场现状 根据《工业绿色发展规划(2016-2020年)》,“十三五”期间,全面推广余热余压回收利用技术,推进低品质热源的回收利用。余热的回收利用途径很多,总体分为热回收(直接利用热能)和动力回收(转变为动力或电力再用)两大类。根据温度范围,可分为中高温余热回收技术和低温余热回收技术。中高温余热回收技术包括:余热锅炉,燃气轮机。低温余热回收技术包括:热泵技术,热管技术,温差发电机。

余热锅炉运行环境恶劣,需要根据不同运行环境进行设计和生产,产品多为非标品,要有丰富设计经验,进入壁垒高,因此行业集中度比较高。 - 1.钢铁冶金 钢铁行业能耗约占全国工业总能耗的15%,其中余热资源约占37%,节能空间大。钢铁冶金行业余热回收利用主要包括,烧结废气、高炉煤气、转炉煤气、电炉烟气、轧钢加热炉烟气。除了宝钢、重钢等个别钢铁企业工业化水平达到了国际水平,其余厂家能耗水平都很高;全国有25吨以上的转炉达240座,按3座配备一套发电系统可配置发电量为3000Kw的电站80座;炼钢厂中的电熔炉,目前全国有20多座,其中65吨级可发电量在5000Kw/座以上。

工业余热利用现状

工业余热利用现状集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

我国工业余热利用现状 摘要:工业发展带来了巨大的污染,工业余热的利用是节能减排的重要环节。本文主要介绍了工业余热的资源特点,概述了工业余热的利用方式,中国目前低温工业余热技术,以及分析了工业余热利用中存在的问题。总结出目前应该大力发展利用低温余热技术。 关键词:工业余热;低温余热利用技术;节能减排 0引言 工业部门余热资源总量极为丰富,“十二五”期间可以开发利用的潜力超过1亿吨标准煤。“十二五”是我国节能减排承前启后的关键时期,国务院和有关部委已就节能减排工作作出全面的决策部署,明确提出单位GDP能耗降低16%左右、单位GDP二氧化碳排放降低17%左右、规模以上工业增加值能耗降低21%左右等多项节能减排目标。工业部门能源消费约占全国能源消费的70%。 目前余热利用最多的国家是美国,它的利用率达到60%,欧洲的达到50%,我国30%。就余热利用来看,我国还有很大的利用空间。中、高温余热发电已经形成了比较完备的产业,而低温余热发电则刚刚开始。 1.工业余热资源特点 工业消耗的能源部门品种包括原煤、洗煤、焦炭、油品、天然气、热力、电力等。工业余热资源特点主要有:多形态、分散性、行业分布不均、资源品质较大差异等特点。 对钢铁、水泥、玻璃、合成氨、烧碱、电石、硫酸行业余热资源的调查分析结果显示,上述工业行业余热资源量丰富,约占这7个工业行业能源消费总量的1/3。“十二五”时期,综合考虑行业现状与发展趋势,这7个工业行业余热资源总量高达亿吨标准煤。 2010年末,余热资源开发利用总量折合为8791万吨标准煤。其中,余热资源开发利用量超过1000万吨标准煤的有钢铁、合成氨、硫酸、水泥4个行业,分别为3560万吨标准煤、2450万吨标准煤、1244万吨标准煤、1124万吨标准煤。 从余热资源的行业分布来看,上述7个工业行业中,钢铁、水泥、合成氨行业的余热资源量位居前三,分别为亿吨标准煤、9300万吨标准煤、3454万吨标准煤,占这7个工业行业余热资源总量的比重分别为%、%、%;硫酸、电石、烧碱、玻璃余热资源总量则较少,分别为1940万吨标准煤、1408万吨标准煤、495万吨标准煤、311万吨标准煤,合计占7个工业行业余热资源总量的122%。 从工业余热资源的地区分布来看,“十二五”时期,上述7个工业行业余热资源可开发利用潜力居前六位的地区是河北、江苏、山东、辽宁、山西、河

工业余热回收、工业余热利用

工业余热回收、余热利用 余热概念:所谓工业余热(又称废热)是指工业生产中各种热能装置所排出的气体、液体和固体物质所载有的热量。余热属于二次能源,是燃料燃烧过程所发出的热量在完成某一工艺过程后所剩余的热量。这种热量若不加以回收利用,立即排放到大气和江河中,不仅所谓工业余热(又称废热)是指工业生浪费能源,而且还会污染环境。

以钢铁工业为例: 钢铁工业是环境污染、能源消耗大户,烟气除尘、余热回收利用是钢铁工业保护环境、节约能源的对策之一。电炉在生产过程中产生大量含尘、CO的高温烟气,平均每吨钢产生的烟尘量为18-20kg,随烟气带走的热量约150M .严重浪费能源、污染环境。随着电炉技术迅速、全面的发展,其烟气余热回收利用及除尘技术也得到了发展。

热管是余热回收装置的主要热传导元件,与普通的热交换器有着本质的不同。热管余热回收装置的换热效率可达98%以上,这是普通热交换器无法比拟的。 热管余热回收装置体积小,只是普通热交换器的1/3。 其工作原理如右图所示:左边为烟气通道,右边为清洁空气(水或其它介质)通道,中间有隔板分开互不干扰。高温烟气由左边通道排放,排放时高温烟气冲刷热管,当烟气温度>30℃时,热管被激活便自动将热量传导至右边,这时热管左边吸热,高温烟气流经热管后温度下降,热量被热管吸收并传导至右边。常温清洁空气(水或其它介质)在鼓风机作用下,沿右边通道反方向流动冲刷热管,这时热管右边放热,将清洁空气(水或其它介质)加热,空气流经热管后温度升高。

?1、安全可靠性高 常规的换热设备一般都是间壁换热,冷热流体分别在器壁的两侧流过,如管壁或器壁有泄露,则将造成停产损失。热管余热回收器则是二次间壁换热,即热流要通过热管的蒸发段管壁和冷凝段管壁才能传到泠流体。 ?2、热管余热回收器传热效率高,节能效果显著。 ?3、热管余热回收器具有良好的防腐蚀能力 热管管壁的温度可以调节,可以通过适当的热流变换把热管管壁温度调整在低温流体的露点之上,从而可防止露点腐蚀,保证设备的长期运行。由于避开烟气露点,使灰尘不易粘结于肋片和管壁上。同时热管在导热时会产生自振动,使灰不易粘附在管壁和翅片上,因而不会堵灰。

余热回收技术

余热回收技术 1、热管余热回收器 热管余热回收器即是利用热管的高效传热特性及其环境适应性制造的换热装置,主要应用于工业节能领域,可广泛回收存在于气态、液态、固态介质中的废弃热源。按照热流体和冷流体的状态,热管余热回收器可分为:气—气式、气-汽式、气—液式、液—液式、液—气式。按照回收器的结构形式可分为:整体式、分离式和组合式。 2、间壁式换热器 换热器是化工,石油,动力,食品及其它许多工业部门的通用设备,在生产中占有重要地位.在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。在三类换热器中,间壁式换热器应用最多。常见间壁式换热器如:冷却塔(或称冷水塔) 、气体洗涤塔(或称洗涤塔) 、喷射式热交换器、混合式冷凝器。 3、蓄热式换热器 蓄热式换热器用于进行蓄热式换热的设备,一般用于对介质混合要求比较低的场合。换热器内装固体填充物,用以贮蓄热量。一般用耐火砖等砌成火格子(有时用金属波形带等)。

蓄热式换热分两个阶段进行。第一阶段,热气体通过火格子,将热量传给火格子而贮蓄起来。第二阶段,冷气体通过火格子,接受火格子所储蓄的热量而被加热。这两个阶段交替进行。通常用两个蓄热器交替使用,即当热气体进入一器时,冷气体进入另一器。常用于冶金工业,如炼钢平炉的蓄热室。也用于化学工业,如煤气炉中的空气预热器或燃烧室,人造石油厂中的蓄热式裂化炉。 4、节能陶瓷换热器 陶瓷换热器是一种新型的换热设备,在高温或腐蚀环境下取代了传统的金属换热设备。用它的特殊材质——SIC质,把窑炉原来用的冷空气变成了热空气来达到余热回收的目的。由于其可长期在浓硫酸、盐酸和碱性气、液体中长期使用。抗氧化,耐热震,高温强度高,抗氧化性能好,使用寿命长。热攻工业窑炉。把换取的热风作为助燃风送进窑炉与燃气形成混合气进行燃烧,可节能25%-45%,甚至更多的能源。 5、喷射式混合加热器 喷射式混合加热器是射流技术在传热领域的应用,喷射式混合加热器是通过汽、水两相流体的直接混合来生产热水的设备。喷射式混合加热器具有传换效率高,噪音低(可达到65dB以下),体积小,安装简单,运行可靠,投资少。利用喷射式混合加热器回收发电厂、造纸厂、化工厂的余热,加热采暖循环水

余热回收利用

余热回收利用(S-CO2)动力循环-应用海运 业 摘要 船舶动力的主要来源是柴油机,它已经发展成为一种高效的发电装置,用于推进和辅助用途。然而,只有小于50%的燃料能源转化为有用的工作,其余的损失。这是公认的,约占总能量的转换在30%型柴油机是在排拒天然气。最近授权的EEDI [ 1 ]系统大型船舶归功于任何可回收的能源设计的船。而一些节能的设备正在酝酿,利用风能和太阳能发电研究中,它被公认为从发动机废气和冷却水的余热回收仍然可以利用,以产生能量,从而提高能源效率的工厂。从废气中回收热能的方法之一是将热量传递给一个能量回收的介质。在大型船舶上,所用的是水和蒸汽,从而产生了我用于加热燃料油或用于涡轮机的电能生产。本文提出了一种替代流体(超临界二氧化碳)作为一种手段,通过一个碳回收的能量闭环循环燃气轮机(布雷顿循环)它明显在较低的温度和无腐蚀性,无毒,不易燃,热稳定。在超临界状态下,S-CO2已高密度的结果,如涡轮机的部件的尺寸减小。超临界二氧化碳气体涡轮机可以在一个高的循环热效率,即使在温和的温度下产生的功率对550℃。周期可以在宽范围的操作压力为20。在一个典型的发动机安装在近海供应船的排气气体的能量回收量的案例研究,提出了理论计算的热量进行的UT的功率可由发动机的超临界CO2气轮机厂产生的废气和提取 . 关键词:余热,S-CO2布雷顿循环,水, 一、引言 今天的大多数船舶使用柴油发动机的推进和电力生产。通常被认为具有实际应用潜力的热排阻式柴油机为了浪费热量恢复是排气和外套冷却液。热通常是从一个以蒸汽的形式大型海轮主推进发动机的废气是最优选的介质用于燃料和货物加热,包括国内服务所需的加热。冷却水的热量通常以新鲜水的形式回收。从辅助余热回收辅助发动机,直到最近,没有考虑经济实用的除的情况下,大型客运船舶或船舶电力推进系统的操作。国际海事组织和国际海

我国工业余热利用现状分析

我国工业余热利用现状分析 工业发展带来了巨大的污染,工业余热的利用是节能减排的重要环节。本文主要介绍了工业余热的资源特点,概述了工业余热的利用方式,中国目前低温工业余热技术,以及分析了工业余热利用中存在的问题。总结出目前应该大力发展利用低温余热技术。 1.工业余热资源特点 工业消耗的能源部门品种包括原煤、洗煤、焦炭、油品、天然气、热力、电力等。工业余热资源特点主要有:多形态、分散性、行业分布不均、资源品质较大差异等特点。 对钢铁、水泥、玻璃、合成氨、烧碱、电石、硫酸行业余热资源的调查分析结果显示,上述工业行业余热资源量丰富,约占这7个工业行业能源消费总量的1/3。综合考虑行业现状与发展趋势,这7个工业行业余热资源总量高达3.4亿吨标准煤。 余热资源开发利用量超过1000万吨标准煤的有钢铁、合成氨、硫酸、水泥4个行业,分别为3560万吨标准煤、2450万吨标准煤、1244万吨标准煤、1124万吨标准煤。 从余热资源的行业分布来看,上述7个工业行业中,钢铁、水泥、合成氨行业的余热资源量位居前三,分别为1.71亿吨标准煤、9300万吨标准煤、3454 万吨标准煤,占这7个工业行业余热资源总量的比重分别为50.3%、27.3%、10.2%;硫酸、电石、烧碱、玻璃余热资源总量则较少,分别为1940万吨标准煤、1408万吨标准煤、495万吨标准煤、311万吨标准煤,合计占7个工业行业余热资源总量的122%。 从工业余热资源的地区分布来看,上述7个工业行业余热资源可开发利用潜力居前六位的地区是河北、江苏、山东、辽宁、山西、河南,分别为1507万吨标准煤、680万吨标准煤、664万吨标准煤、530万吨标准煤、419万吨标准煤、361万吨标准煤。 从余热资源的来源来看,可分为高温烟气和冷却介质等六类,其中高温烟气余热和冷却介质余热占比最高,分别占50%和20%,而其他来源分别是废水、废

【免费下载】冶炼炉渣干法粒化余热回收技术

★新型高温炉渣余热回收技术研究分析及对策建议 2012年7月,国务院正式发布《“十二五”国家战略性新兴产业发展规划》,在重点发展方向和主要任务中明确提出“积极开发和推广用能系统优化技术,促进能源的梯次利用和高效利用”,确定了“中低品位余热余压回收利用技术”作为高效节能产业发展的重大行动之一。为了贯彻落实国家节约能源,保护环境的政策,建设资源节约型社会和环境友好型社会,实现可持续发展的战略目标,六院自筹资金积极开展冶炼炉渣余热回收利用技术研究。 目前我国主要采用水淬工艺处理高温炉渣。水冲渣之后产生大量蒸汽,同时生成污染性酸性气体。蒸汽直接排入大气无法进行热量回收,酸性气体造成大气的污染。由于冲渣后的水温度较低,是一种很难高效利用的低品位热源,使用热泵等技术进行利用效率低、污染大且很难在短期内回收投资。冶炼炉渣显热为高品位余热资源,有很高的回收价值,随着国际竞争的日益加剧和能源的持续紧缺,冶金行业面临着多项维系可持续发展战略的问题,其中如何高效地回收冶炼炉渣显热是其中的重要问题之一,因此有必要转变思路采用环保高效的余热利用工艺进行余热回收。 六院十一所成功开发出一种新型高温炉渣余热回收技术——离心空气粒化结合两级流化床余热回收工艺,该工艺能够高效环保地进行炉渣的余热回收,代表了国际上最为先进的高温炉渣余热吸收工艺。 一、国内外相关研究开展情况 高温炉渣余热回收的工艺主要有湿法工艺和干法工艺两种。湿法工艺是指用水或水与空气的混合物使熔融渣冷却,然后再运输的方案,一

般也称为水淬工艺。干法工艺即依靠高压空气或其他方法实现熔融金属冷却、粒化的工艺。湿法处理工艺是将高炉渣作为一种材料来加以利用,并没有对其余热量进行充分的利用。从节能和环保的角度来看,湿法工艺都无法避免处理渣耗水量大的问题。干式粒化工艺是在不消耗新水的情况下,利用高炉渣与传热介质直接或间接接触进行的高炉渣粒化和显热回收的工艺,几乎没有有害气体排出,是一种环境友好的新式处理工艺。 (一)国外研究状况 20 世纪70年代,国外就已开始研究干式粒化炉渣的方法。前苏联、英国、瑞典、德国、日本、澳大利亚等国都开展过高温炉渣(包括高炉渣、钢渣等) 干式粒化技术的研究。日本钢管公司(NKK)开发的转炉钢渣风淬粒化工艺和双内冷却转筒粒化工艺因为处理能力不高、运行不稳定、粒度不均匀等缺点不适合在现场大规模连续处理高炉渣。英国克凡纳金属公司(KvaernerMetals)提出转杯离心粒化气流化床热能回收技术,该法因为热量回收效率高,粒化后渣质量较好,粒度均匀,强度较高,粒径小于2mm等优势具有较好的发展前景。该法曾经于20世纪80年代初期在英国钢铁公司年产1万吨的高炉上进行了为期数年的工业试验,未实现大范围的工业化应用。澳大利亚也对该法的粒化和传热过程进行过一些数值计算和实验研究工作。对高炉渣中显热的回收目前在国际上仍然处于工业试验性阶段,还没有任何一种干式处理工艺实现了工业应用,但已有的各类技术研究积累了很多相关的理论知识和实践经验。 (二)国内研究状况 目前,国内冶金企业对于高温炉渣全部采用水淬工艺进行处理。高

各行业余热回收可利用的环节

余热是指能利用而未被利用的热能。我国能源利用率低,工业装备相对落后。如化工、石油化工、建材、轻纺、冶金、动力、造纸、电子电器等行业。在生产中大量的热能直接排空,既浪费能源有污染环境。余热回收就是将浪费的热能回收利用。是提高能源利用率,降低生产成本,保护环境最直接、经济的手段之一。工业燃油、燃气锅炉设计制造时为了防止锅炉尾部受热面腐蚀和堵灰,标准状态排烟温度不低于180-220摄氏度,造成部分热能排空;浪费。热管换热器可将烟灰中越50%的热能回收,回收的热能根据用户的需求加热水、空气或其他介质。节省燃料费用,降低生产成本,减少废气排放,节能环保一举两得改造投资一年内回收,经济效益显著。余热回收应用范围:包括高温废气余热、冷却介质余热、废气废水余热、高温产品和炉渣余热、化学反应余热、可燃废气废液和废液余热以及高压流体余压等七种。根据调查,各行业的余热总资源约占其燃料消耗总量的17%~67%,可回收利用的余热占约余热总资源的60%。 1、化工及石油化工行业中的应用:(1)小合成氨上、下煤气余热回收(2)中合成氨上、下行煤气余热回收(3)合成氨吹风气燃烧的余热回收(4)合成氨一段炉烟气余热回收(5)30万吨/年合成氨二段转化炉的余热回收(5) 聚酯化纤酯化工艺余热制冷技术 (6)炭黑生产过程余热利用和尾气发电(供热)技术(7)合成氨节能改造综合技术(8)大中型硫酸生产装置低位热能回收技术2、在硫酸工业中的应用:(1)在硫酸生产沸腾焙烧炉沸腾层内的余热回收;一年产10万吨硫酸的工厂可回收5.5万吨蒸汽;(2)从沸腾中出来 SO高温炉气中回收余热;一个年产10万吨硫酸的工厂可回收10.5万吨蒸汽,可发电价的 2 值约600万元;3、在盐酸、硝酸炉的应用:基本同2; 4、在石油化工中的应用:(1)烃类热解路中的余热回收;(工作温度约750~900摄氏度)(2)乙苯脱氢反应器中的余热回收:(3)水泥窑炉中的余热回收:(4)各种陶瓷倒燃炉及隧道窑中的余热回收; 5、在冶金工业中的应用:(1)扎钢连续加热和均热炉中的余热回收;(2)坯件加热炉中的余热回收;(3)线材退火炉中的余热回收;(4)烧结机中的余热回收:已一台180M2的烧结机

工业余热的现状与利用

工业余热现状与利用 姚** 北京科技大学机械学院,100083 摘要:工业余热指工业生产中各种热能装置所排出的气体、液体和固体物质所载有的热量。余热属于二次能源,是燃料燃烧过程所发出的热量在完成某一工艺过程后所剩余的热量。我国能源利用率相比发达国家较低,至少50%的工业耗能以各种形式的余热被直接废弃。工业余热节能潜力巨大,近年来已经成为我国节能减排工作的重要组成部分。 关键字:工业余热节能减排热管 0引言 当前,我国能源利用仍然存在着利用效率低、经济效益差,生态环境压力大的主要问题。节能减排、降低能耗、提高能源综合利用率作为能源发展战略规划的重要内容,是解决我国能源问题的根本途径,处于优先发展的地位。 实现节能减排、提高能源利用率的目标主要依靠工业领域。处在工业化中后期阶段的中国,工业是主要的耗能领域,也是污染物的主要排放源。我国工业领域能源消耗量约占全国能源消耗总量的70%,主要工业产品单位能耗平均比国际先进水平高出30%左右。除了生产工艺相对落后、产业结构不合理的因素外,工业余热利用率低,能源没有得到充分综合利用是造成能耗高的重要原因。 我国能源利用率仅为33%左右,比发达国家低约10%。至少50%的工业耗能以各种形式的余热被直接废弃。因此从另一角度看,我国工业余热资源丰富,广泛存在于工业各行业生产过程中,余热资源约占其燃料消耗总量的17%~67%,其中可回收率达60%,余热利用率提升空间大,节能潜力巨大。工业余热回收利用又被认为是一种“新能源”,近年来成为推进我国节能减排工作的重要内容。[1] 1工业余热资源 工业余热来源于各种工业炉窑热能动力装置、热能利用设备、余热利用装置和各种有反应热产生的化工过程等。目前,各行业的余热总资源约占其燃料消耗总量的17%~67%,可回收利用的余热资源约为余热总资源的60%。合理充分利用工业余热可以降低单位产品能耗,取得可观的经济效益。 工业余热按其能量形态可以分为三大类,即可燃性余热、载热性余热和有压性余热。 1)可燃性余热 可燃性余热是指能用工艺装置排放出来的、具有化学热值和物理显热,还可作燃料利用的可燃物,即排放的可燃废气、废液、废料等,如放散的高炉气、焦炉气、转炉气、油田伴生气、炼油气、矿井瓦斯、炭黑尾气、纸浆黑液、甘蔗渣、木屑、可燃垃圾等。 2)载热性余热 常见的大多数余热是载热性余热,它包括排出的废气和产品、物料、废物、工质等所带走的高温热以及化学反应热等,如锅炉与窑炉的烟道气,燃气轮机、内燃机等动力机械的排气,焦炭、钢铁铸件、水泥、炉渣的高温显热,凝结水、冷却水、放散热风等带走的显热,以及排放的废气潜热等。 3)有压性余热 有压性余热通常又叫余压(能),它是指排气排水等有压液体的能量。另外,因为工业余热的温度是衡量其质量(品位)的重要标尺,而其温度的高低亦影响了余热回收利用的方式,所以余热也通常按温度高低分为:高温余热,T≥650℃;中温余热,230 ℃≤T<650℃;低温余热,T<230℃。 余热资源来源广泛、温度范围广、存在形式多样.从利用角度看,余热资源一般具有以下共同点:由于工艺生产过程中存在周期性、间断性或生产波动,导致余热量不稳定;余热介质性质恶劣,如烟气中含尘量大或含有腐蚀性物质;余热利用装置受场地等固有条件限制。 2工业余热利用现状 2.1工业余热利用总体现状 我国能源利用率仅为33%左右,比发达国家低

余热余能资源利用现状与前景分析

余热余能资源利用现状与前景分析 摘要:概括了我国钢铁工业余热余能资源分布、利用状况,分析了行业能耗指标,余热余能资源回收利用的潜能,可以指导钢铁企业充分利用余热余能资源,提高能源回收利用率,实现节能减排和降低企业能源成本。 关键词: 余热余能节能减排前景分析 引言:钢铁行业是高耗能行业,在消耗能源推动能源转变的同时会产生大量的余热余能,但是我国能源利用效率较低。当然随着钢铁技术的发展,越来越多的余能回收技术得到广泛的应用,且做到较好的节能和降本成效,缓冲了当前经济形势对行业造成的冲击。但是企业对余热余能的利用还处在较低水平,主要表现在余热余能资源的利用深度和已回收能源的有效利用程度两个方面,那么如何提高这两方面的水平,对面临着节能减排任务和严峻的经营形势压力的钢铁行业具有重要的积极意义。 1.余热余能利用的现状分析 节能减排是现代工业和生态环境所要必需的,各个国家都采取了相应的措施。在余热余能利用上,日本新日铁公司的余热余能回收率已达到92%以上,其企业能耗费用占产品成本的 14%。我国比较先进的企业,如宝山钢铁股份有限公司的余热余能回收率达到 68%,其能源费用占企业产品成本的21.3%。而大多数钢铁企业的余热余能回收率不到50%。能源费用占产品成本的 30%以上。我国的钢铁企业也在探索新技术、新思路。首钢在曹妃甸地区正在建设一个具有国际先进水平的钢铁联合企业。新建的首钢京唐钢铁联合有限责任公司采用国际先进工艺装备,以建设具有国际竞争力的板材精品基地为发展目标,建设规模为年产钢坯970 万 t。生产流程为原料、焦化、烧结、球团、炼铁、炼钢、连铸、热轧、冷轧的长流程生产工艺。各生产工序均配置了先进的工艺设备,具备了实施循环经济的条件。按照循环经济的理念,通过科学规划,建立起物质循环、能源循环及废弃物再资源化生产体系,使企业在节能、节水、降耗及资源综合利用等方面的技术经济指标均达到国际先进水平。 1.1资源的分布与利用 ( 1) 资源分布按工序: 铁前 ( 铁、烧、焦) 余热余能资源量几乎占到了总量的四分之三,尤其以炼铁工序最为突出,这与钢铁行业铁前区域能源消耗占总能耗的 60% 以上基本保持一致,是节能挖潜的重点。 按资源类别: 产品显热 ( 包括主要产品和附属产品) 及废烟气显热是余热资源存在的主要形式,约占70% ,这主要是由钢铁生产伴随不断加热、冷却的工艺过程决定的。 ( 2) 资源利用

钢铁冶金余热利用分析

钢铁冶金余热利用分析 【摘要】近些年,我国钢铁冶金工业迅猛发展,产能和产量快速增长,而钢铁行业是高能耗行业,也是对环境污染较严重的行业,但我国钢铁冶金行业余热利用方面存在的一些问题,这会造成很大的资源损失。所以,我们要加快技术研究,充分利用余热,节约资源。 【关键词】钢铁冶金余热利用分析 前言 目前,我国钢铁重点企业的吨钢可比能耗与国际先进水平比较高9% ,约59 kg t,有人估计就目前世界水平而言,我国的重点钢铁企业吨钢可比能耗比世界先进水平15 %。所以,必须把冶金企业可能的节能空间进行正确的评估和计算给企业提供节能的目标和方向。文章从我国钢铁冶金行业的余热利用现状入手,结合我国钢铁冶金行业余热利用方面存在的问题,分析寻找解决这一困扰钢铁冶金行业发展以及我国节能减排工作问题的出路。 一、我国钢铁冶金行业余热利用现状分析 1、高温余热利用较好,中低温余热利用率较低 在过去的“十一五”,我国钢铁冶金行业节能减排成效显著,能源利用效率明显提高,重点大中型钢铁企业的吨钢综合能耗大幅降低,特别是在钢铁冶金行业高温余热利用方面。但在中低温余热利用率较低,各企业一般只回收利用了烟气温度较高的部分,如用它

来预热助燃空气,而通过空气预热器后约400~500℃的中温烟气则大部分企业没有加以利用,至于温度更低的如300℃以下的低温烟气更谈不上充分利用。而钢铁冶金行业本就是高耗能、高污染的产业,而炼铁系统能耗占钢铁工业总能耗高达69%,其中烧结工序能耗占据10%,是仅次于炼铁的第二大耗能工序,但是烧结工序中只有50%左右的热能得到了有效的利用,其余的热量都被烧结烟气和冷却机废气所带走,造成了巨大的浪费。 2、钢铁冶金余热利用设备陈旧,各企业之间利用水平发展悬殊我国钢铁冶炼行业还不够成熟,余热利用设备十分陈旧,这对资源回收利用造成很大的影响。根据对117家冶金企业余热资源情况的调查结果,我国钢铁工业余热回收利用的大方向是正确的(回收后用于生产的占70%,用于生活的占30%),但热回收率低,回收设备比较落后,109家企业使用的余热回收利用设备有几十种,其中使用较多的有:管式换热器142台、余热锅炉102台、片状管换热器74台、辐射式换热器62台、余热锅炉-换热器联合装置52台、热管换热器21台、喷流式换热器16台,汽化冷却装置133套 各企业余热回收利用水平参差不齐,相差悬殊。以高炉煤气的放散率为例,对国内18个重点冶金企业高炉煤气平均放散率在11.99%左右,其中放散率6%以下的企业只有鞍钢、重钢、湘钢三个企业;包钢、武钢等12家企业的放散率为6.36%~20.44%;宣钢、上钢一厂、唐钢三家企业的放散率高达22.35%~25.78%。38家地方骨干

余热回收方案

能量回收系统

第一部分:能量回收系统介绍 压缩空气是工业领域中应用最广泛的动力源之一。由于其具有安全、无公害、调节性能好、输送方便等诸多优点,使其在现代工业领域中应用越来越广泛。但要得到品质优良的压缩空气需要消耗大量能源。在大多数生产型企业中,压缩空气的能源消耗占全部电力消耗的10%—35%。 根据行业调查分析,空压机系统5年的运行费用 组成:系统的初期设备投资及设备维护费用占到总费用的25%,而电能消耗(电费)占到75%,几乎所有的系统浪费最终都是体现在电费上。 根据对全球范围内各个行业的空气系统进行评估,可以发现:绝大多数的压缩空气系统,无论其新或旧,运行的效率都不理想—压缩空气泄漏、人为用气、不正确的使用和不适当的系统控制等等均会导致系统效率的下降,从而导致客户大量的能耗浪费。据统计,空气系统的存在的系统浪

费约15—30%。这部分损失,是可以通过全面的系统解决方案来消除的。 对压缩空气系统节能提供全面的解决方案应该从压缩空气系统能源审计 开始。现代化的压缩空气系统运行时所碰到的 疑难和低效问题总是让人觉得很复杂和无从下 手。其实对压缩空气系统进行正确的能源审计 就可以为用户的整个压缩空气系统提供全面的 解决方案。对压缩空气系统设备其进行动态管理,使压缩空气系统组件 充分发挥效能。 通过我们在压缩空气方面的专业的、全面的空气系统能源审计和分析采 取适合实际的解决方案,能够实现为客户的压缩空气系统降低 10%—50%的电力消耗,为客户带来新的利润空间。 经过连续近二十年的经济高速增长,中国已经成为全球制造业的中心,大规模的产量提升,造成巨大的资源消耗和能量需求,过快的发展正逐步制约国家经济实力的进一步提升,因此,2005年《国务院关于加强节能工作的决定》明确目标指出: ?到“十一五”期末(2010年),万元GDP能耗比“十五”期末降低20% 左右,平均年节能率为4.4%。 ?重点行业主要产品单位能耗总体达到或接近本世纪初国际先进水平。 ?压缩机作为制造行业的能耗大户,受到越来越多的关注,节能潜力巨大。 ?压缩机在工矿企业的平均耗能占整个企业的约30%,部分行业的压缩机 耗电量占总耗电量的比例高达70% ?从投资成本结构分析,压缩机的节能重心在能耗上,针对于电机驱动类 型的压缩机,能耗可以近似等于电耗。 平均全球各地区平均使用空压机负荷的百分比

关于我国冶金行业中余热利用现状的探讨

选课课号:(2012-2013-1)-BG11191-320401-1课程类别:公选课 《冶金工程概论》课程考核 (课程论文) 题目:关于我国冶金行业中余热利用现状的 探讨 学生姓名: 学号: 授课教师: 班级: 教师评语: 成绩: 重庆科技学院冶金与材料工程学院 2012年11月中国重庆

关于我国冶金行业中余热利用现状的探讨 陈宏林热动11-03 2011441386 摘要:钢铁冶金行业是我国工业企业节能减排的重点行业,同时增强节能减排和资源的综合利用对钢铁冶金行业提高经济效益和保持可持续发展同样起着至关重要的作用。本文介绍了我国在工业生产中余热资源利用的基本现状,探讨了余热利用技术的进展,并结合我国钢铁冶金行业余热利用方面存在的问题,为科学合理地进行余热利用提出了相关建议。 关键词:冶金;余热利用;现状 Discussion On The Status quo of Waste Heat Utilization in China's Metallurgical Industry Chen Honglin Energy and Power Engineering 11-03 2011441386 Abstract: Iron and steel metallurgy industry is energy saving and emission reduction of China's industrial enterprises in key industries, while enhancing energy conservation and comprehensive utilization of resources to enhance economic efficiency and maintain the sustainable development of the iron and steel metallurgy industry also plays a vital role. Introduced the status of waste heat utilization in China, discussed the advances of waste heat utilization technologies, Combined with the existing problems in China's iron and steel metallurgy industry, waste heat utilization, and put forward relevant proposals for scientific and rational utilization of waste heat. Key words: Metallurgy; waste heat utilization; current situation 1 前言 钢铁冶金行业是我国基础工业中最为重要的行业之一,同时也是一个高能耗的行业,是我国六大行业中的能耗“大户”,据国家统计数据显示,冶金行业总的能耗量占到我国总能耗的10%左右。国家早在“十一五”规划的时候就规定要将单位GDP能耗在“十五”的基础上下降20%,而钢铁冶金行业的节能减排工作就直接关系到了这一目标是否能够实现,钢铁冶金行业成为我国工业企业节能减排的重点行业,同时增强节能减排和资源的综合利用对钢铁冶金行业提高经济效益和保持可持续发展同样起着至关重要的作用。文章从我国钢铁冶金行业的余热利用现状人手,结合我国钢铁冶金行业余热利用方面存在的问题,为科学合理地进行余热利用提出了相关建议。自上世纪六七十年代以来,世界各国余热利用技术发展很快。目前,我国的余热利用技术也得到了长足进步,但是与世界先进水平还有

锅炉余热回收

锅炉烟气余热回收 简介: 工业燃油、燃气、燃煤锅炉设计制造时,为了防止锅炉尾部受热面腐蚀和堵灰,标准状态排烟温度一般不低于180℃,最高可达250℃,高温烟气排放不但造成大量热能浪费,同时也污染环境。热管余热回收器可将烟气热量回收,回收的热量根据需要加热水用作锅炉补水和生活用水,或加热空气用作锅炉助燃风或干燥物料。节省燃料费用,降低生产成本,减少废气排放,节能环保一举两得。改造投资3-10个回收,经济效益显著。 (一)气—气式热管换热器 (1)热管空气预热器系列 应用场合:从烟气中吸收余热,加热助燃空气,以降低燃料消耗,改善燃烧工况,从而达到节能的目的;也可从烟气中吸收余热,用于加热其他气体介质如煤气等。 设备优点: *因为属气/气换热,两侧皆用翅片管,传热效率高,为普通空预器的5-8倍; *因为烟气在管外换热,有利于除灰; *因每支热管都是独立的传热元件,拆卸方便,且允许自由膨胀; *通过设计,可调节壁温,有利于避开露点腐蚀 结构型式:有两种常用的结构型式,即:热管垂直放置型,烟气和空气反向水平流动,热管倾斜放置型,烟气和空气反向垂直上下流动。 (二)气—液式热管换热器 应用场合:从烟气中吸收热量,用来加热给水,被加热后的水可以返回锅炉(作为省煤器),也可单独使用(作为热水器),从而提高能源利用率,达到节能的目的。 设备优点: *烟气侧为翅片管,水侧为光管,传热效率高; *通过合理设计,可提高壁温,避开露点腐蚀; *可有效防止因管壁损坏而造成冷热流体的掺混; 结构型式:根据水侧加热方式的不同,有两种常用的结构型式:水箱整体加热式(多采用热管立式放置)和水套对流加热式(多采用热管倾斜放置)

余热回收方案

余热回收方案 一、能量使用情况与节能要求 1.1 车间供热需求 为了保证产品质量和产能产值,三号车间的两个产品半成品仓库,冬季需要控制室内温度为22℃~40℃,以保证产品的质量,无人员值守故不需考虑温控与新风、人员舒适度问题,但须考虑入库人员的安全。 两个仓库占地面积基本相似,均为:12.65x 7=88.55m2。 仓库层高为6m,每个仓库体积为532m3。 VA装配车间,需要控制室内温度为22℃~30℃,以保证工艺的正常生产,装配车间有操作工人,需要考虑操作人员的舒适性因此提出需要对车间的温度、湿度、新风量进行控制。 装配车间占地面积15x23=345m2,层高为 2.5m,总体积为862.5m3。 武汉市地处中国中部,夏季室内温度>25℃,因此夏季不需要对生产车间供热,冬季室内温度<25℃,需要对室内供热。 车间供热需求为季节性,夏季停运,冬季投用。 1.2节能要求 公司要求不采用高品位的电能和蒸汽热能对车间供热,需要采用余热回收途径对车间供热,

1.3 车间耗热量 ①根据仓库的性质,估算每个仓库的供热负荷为25kW。 ②根据装配车间的性质,估算VA装配车间供热负荷为120kW。 1.4余热利用条件 1.4.1 可利用的热能 钢化玻璃工段有两台玻璃炉,其作用是玻璃软化后处理。玻璃高温处理后由冷风急速冷却。根据加工产品的不同,所需急冷温度由65~165℃。急冷后的热风直接排入大气,外排热风温度为45℃~65℃。外排热风仅为热空气,不含有毒有害气体。 为外排热风,每台玻璃炉配三台20000m3/h轴流风机。 根据估算,每台轴流风机按120%配置,维持室温25℃,每台轴流风机的热风可提供热负荷为100kW。 合计的余热足够满足车间的供热需求。 1.4.2可用余热回收型式。 根据现场情况,受热车间与玻璃炉间距比较近,可以将热风引入受热车间,由热风直接供暖。 该供暖方式简单易行,投资省,运行费用低,余热回收利用充分。 二、余热利用方案 2.1余热回收

工业余热回收利用途径与技术

工业余热回收利用途径与技术 余热资源普遍存在,特别在钢铁、化工、石油、建材、轻工和食品等行业的生产过程中,都存在丰富的余热资源,所以充分利用余热资源是企业节能的主要内容之一。 余热利用的潜力很大,在当前节约能源中占重要地位。余热资源按其来源不同可划分为六类:1高温烟气的余热2高温产品和炉渣的余热3冷却介质的余热4可燃废气、废液和废料的余热5废汽、废水余热6化学反应余热余热资源按其温度划分可分为三类: 7高温余热(温度高于500℃的余热资源)8中温余热(温度在200-500℃的余热资源)低温余热(温度 低于200℃的烟 气及低于100℃ 的液体) 行业余热资源来源占燃料消耗量的比例治金轧钢加热炉、均热炉、平炉、转炉高炉、焙烧窑等33%以上化工化学反应热,如造气、变换气、合成气等的物理显热;可燃化学热,如炭黑尾气、电石气等的燃料热15%以上建材高温烟气、窑顶冷却、高温产品等约40%玻搪玻璃熔窑、搪瓷窑、坩埚窑等约20%造纸烘缸、蒸锅、废气、黑液等约15%纺织烘干机、浆纱机、蒸煮锅等约15%机械煅造加热炉、冲天炉、热处理炉及汽锤排汽等约15% 、管路敷设技术通过管线敷设技术不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

推荐:余热利用的现状

余热利用的现状 【学员问题】余热利用的现状? 【解答】节能降耗是冶金企业长期的战略任务。冶金企业从原料、焦化、烧结到炼铁、炼钢、连铸以及轧钢的生产过程中产生大量含有可利用热量的废气、废水、废渣,同时在各工序之间存在着含有可利用能量的中间产品和半成品。充分回收和利用这些能量,是企业现代化程度的标志之一。 在各种工业炉窑的能量支出中,废气余热约占15%~35%,这些废气净化处理后是一种输送和使用方便、燃烧后又无需排渣和除尘、不易造成环境污染的优质能源。若能按工艺要求提供合适热值的煤气作能源,还有利于改善产品质量。但是由于企业生产结构和工业炉窑配置等原因,目前我国许多冶金企业仍排放大量废气。这是造成企业能源消耗高的一个重要原因。本文将介绍国内各冶金企业废气余热回收利用的现状及存在的主要问题。 余热回收种类及原则 冶金企业常用的废气余热利用方式有:①安装换热器;②在换热器后安装余热锅炉;③炉底管汽化冷却;④发电(热电联产);⑤制冷。回收后的热量主要用于预热助燃空气、预热煤气和生产蒸汽。对电炉而言,预热废钢或进料可减少电炉的电能消耗,缩短熔炼时间;对加热炉而言,预热空气、燃料或工件,烟气余热返回炉内,可使火焰稳定、提

高燃料温度和燃烧效率以及炉子的热效率。 工业炉窑余热回收差的原因,除了排烟温度高和换热器能力小之外,鲜为人注意的是烟气和热风的显热未能有效保存,烟气由炉膛冒出、吸入冷风,地下烟道漏水、漏气,旁通烟道短路和管道绝热不良,使多数炉子在回收装置前的烟气热损失高达30%~50%,回炉热风的显热损失为20%~33%.针对这种情况,提出了一系列降低出炉烟温的措施和能充分保存与回收余热的排烟-供风系统,使上述两项热损失分别降到5%和3%左右,同时开发了各种高效、经济的换热器和能使用全热风的燃烧装置,回收后烟温可下降到180~250℃,不再需要安装价格昂贵而利用率不高的余热锅炉,使炉气余热从炉外回收转到炉内回收的方向来,正是在这种形势下提出了余热全自回收的新概念:首先设法降低炉子排出的烟温和烟量,并使余热回收过程中的各项热损失减少,然后通过高效换热器将余热最大限度地回收并全部送入炉内。 利用方式 (1)烧结废气 在钢铁生产过程中,烧结工序的能耗约占总能耗的10%,仅次于炼铁工序而位居第二。在烧结工序总能耗中,有近50%的热能以烧结机烟气和冷却机废气的显热形式排入大气,既浪费了热能又污染了环境。由于烧结废气的温度不高,以往人们对这部分热能的回收利用重视不够。但实际上大有文章可做,因为烧结废气不仅数量大,而且可供回收的热量也大。不过,烧结余热回收装置的投资费用较大,是否对烧结机或冷却机实施余热回收

水泥工业余热回收

水泥工业余热回收 简介: 在水泥生产中,回转窑、冷却机、悬浮预热器、烘干机等都是重要的热工设备。在保证满足工艺条件要求的基础上,提高这些热工设备的热效率是水泥生产节能降耗的关键。根据近年来工业应用开发的实践,热管技术在以下几方面已获得了较为成功的应用。 窑尾冷却机的余热利用: 水泥生产回转窑尾冷却机低温段排出的废气温度一般为200~300℃,这部分余热的品位较低,它的最好用途是产生低压蒸汽,作为生活用水,冬天用来取暖和浴室用水;夏天可作为溴化锂制冷机的热源制取冷气供生产车间及生活区降温,或作为其他工段余热锅炉的换热器加热锅炉给水。某厂φ3.5m×145 m 的水泥回转窑后配1.37 m ×30.48 m 炉篦振动式冷却机,废气排量为(标准状态)51673m3/h,废气温度约为240℃,在烟道中安装热管热水器一台,加热生活用水,具体参数如表一。 表一热管换热器参数 项目 废气水 设计值设计值实测值 流量(标准状态)(m3/h)51673 5.25 8.4 进口温度/℃210 6 28 出口温度/℃180 50 85 热管根数/根598 蒸发段面积/m245.13 冷凝段面积/m221.26 回收热量/kw 320 557 投资回收期/年<1

小水泥窑尾废气余热利用: 许多小水泥厂的烧成回转窑窑尾排出的废气温度在450~600℃左右,由于产量较小,废气量也比较少,一般均将回收的余热产生压力为0.3~0.8MPa的低压蒸汽供生产工艺或者说生活使用,其流程如图所示。从干法中空回转窑尾排出的废气经过旋风除尘后进入热管蒸汽发生器,废气温度从600℃左右降至200℃以下,入布袋收尘系统,经引风机排入烟囱。 其优点是: 将高温废气降至200℃以下,可直接进入布袋收尘器; 每吨熟料可回收0.4~0.5吨的低压蒸汽; 结构紧凑压力降小,一般小于500Pa; 不易积灰,管壁温度可调整在烟气露点以上,可以达到自清灰目

相关主题