搜档网
当前位置:搜档网 › 最优化Armijo算法确定步长的最速下降法分解

最优化Armijo算法确定步长的最速下降法分解

最优化Armijo算法确定步长的最速下降法分解
最优化Armijo算法确定步长的最速下降法分解

数学与计算科学学院

实验报告

实验项目名称使用非精确线搜索Armijo算法确定步长的最速下降法

所属课程名称最优化方法

实验类型算法编程

实验日期

班级

学号

姓名

成绩

,其中为步长。如果步长足够小,则可以保证每一次迭代都在减

的值变化到使得在两次迭代之间的差值足够小,比如直到两次迭代计算出来的基本没有变化,则说明此时已经达

就是使得函数最小时的

其迭代公式为,其中代表梯度负方向,表示梯度方向上的搜索步

其最小值在处,函数值为。但是此函数具有狭窄弯曲的山谷,最小

附录1:源程序

附录2:实验报告填写说明

1.实验项目名称:要求与实验教学大纲一致。

2.实验目的:目的要明确,要抓住重点,符合实验教学大纲要求。

3.实验原理:简要说明本实验项目所涉及的理论知识。

4.实验环境:实验用的软、硬件环境。

5.实验方案(思路、步骤和方法等):这是实验报告极其重要的内容。概括整个实验过程。

对于验证性实验,要写明依据何种原理、操作方法进行实验,要写明需要经过哪几个步骤来实现其操作。对于设计性和综合性实验,在上述内容基础上还应该画出流程图、设

计思路和设计方法,再配以相应的文字说明。对于创新性实验,还应注明其创新点、特色。

6.实验过程(实验中涉及的记录、数据、分析):写明具体实验方案的具体实施步骤,包括实验过程中的记录、数据和相应的分析。

7.实验结论(结果):根据实验过程中得到的结果,做出结论。

8.实验小结:本次实验心得体会、思考和建议。

9.指导教师评语及成绩:指导教师依据学生的实际报告内容,给出本次实验报告的评价。

使用精确搜索算法确定步长的最速下降法

数学与计算科学学院 实验报告 实验项目名称使用精确搜索算法确定步长的最速下降法 所属课程名称最优化方法 实验类型算法编程 实验日期 201 班级 学号 姓名 成绩 一、实验概述: 【实验目的】

(1) 掌握精确搜索算法确定步长的最速下降法; (2) 使用计算机语言表达最优化方法。 【实验原理】 最速下降法又称为梯度法,是1847年由著名数学家Cauchy 给出的。他是解析法中最古老的一种,其他解析方法或是它的变形,或是受它的启发而得到的,因此它是最优化方法的基础。 设无约束问题中的目标函数 f : Rn R1一阶连续可微。 最速下降法的基本思想是:从当前点k x 出发,取函数 f (x)在点k x 处下降最快的方向作为我们的搜索方向k p .由 f (x)的 Taylor 展式知 ()()()() k k k k T k k f x f x tp t f x p o tp -+=-?+ 略去t 的高阶无穷小项不计,可见取()k k p f x =-?时,函数值下降得最多。于是,我们可以构造出最速下降法的迭代步骤。 解无约束问题的的最速下降法计算步骤 第 1 步 选取初始点(0)x ,给定终止误差ε ,令k:=0; 第 2 步 计算?f (k x ),,若‖?f (k x )‖≤ ε ,停止迭代.输出k x .否则 进行第三步 第 3 步 取()k k p f x =-?; 第 4 步进行一维搜索,求k t ,使得 1()(())min (()) k k k k k k f x f x t f x f x t f x +=-?=-? 令,k:=k+1,转第2 步。 由以上计算步骤可知,最速下降法迭代终止时,求得的是目标函数驻点的一个近似点。 【实验环境】 计算机 VC++

最速下降法求解线性代数方程组

最速下降法求解线性代数方程组 要求:对于给定的系数矩阵、右端项和初值,可以求解线性代数方程组 一、最速下降法数学理论 在基本迭代公式k k k k P t X X +=+1中,每次迭代搜索方向k P 取为目标函数)(X f 的负梯度方向,即)(k k X f P -?=,而每次迭代的步长k t 取为最优步长,由此确定的算法称为最速下降法。 为了求解问题)(min X f ,假定我们已经迭代了k 次,获得了第k 个迭代点k X 。现在从k X 出发,可选择的下降方法很多,一个非常自然的想法是沿最速下降方向(即负梯度方向)进行搜索应该是有利的,至少在k X 邻近的范围内是这样。因此,去搜索方向为 )(k k X f P -?=. 为了使目标函数在搜索方向上获得最多的下降,沿k P 进行一维搜索,由此得到第1+k 个跌带点,即 )(1k k k k X f t X X ?-=+, 其中步长因子k t 按下式确定 ))((m in ))((k k k k k k X f t X f X f t X f ?-=?-, ))(,(1k k k X f X ls X -?=+. (1) 显然,令 ,2,1,0=k 就可以得到一个点列 ,,,210X X X ,其中0X 是初始点,由计算者任意选定。当)(X f 满足一定的条件时,由式(1)所产生的点列}{k X 必收敛于)(X f 的极小点。

二、最速下降法的基本思想和迭代步骤 已知目标函数)(X f 及其梯度)(X g ,终止限21,εε和3ε. (1)选定初始点0X ,计算)(),(0000X g g X f f ==;置0=k . (2)作直线搜索:),(1k k k g X ls X -=+;计算)(),(1111++++==k k k k X g g X f f . 用终止准则检验是否满足:若满足,则打印最优解))(,(11++k k X f X ,结束;否则,置1+=k k ,转(2) (3)最速下降法算法流程图如图所示.

最速下降法无约束最优化

《MATLAB 程序设计实践》课程考核 实践一、编程实现以下科学计算法,并举一例应用之。(参考书籍《精通MATLAB 科学计算》,王正林等著,电子工业出版社,2009年) “最速下降法无约束最优化” 最速下降法: 解: 算法说明:最速下降法是一种沿着N 维目标函数的负梯度方向搜索最小值的方法。 原理:由高等数学知识知道任一点的负梯度方向是函数值在该点下降最快的方向,那么利用负梯度作为极值搜索方向,达到搜寻区间最速下降的目的。而极值点导数性质,知道该点的梯度=0,故而其终止条件也就是梯度逼近于0,也就是当搜寻区间非常逼近极值点时,即:当▽f(a )→0推出f(a )→极值)(x f ,f(a )即为所求。该方法是一种局部极值搜寻方法。 函数的负梯度表示如下: -g(x )=-▽f(x)=-?????1 )(x x f 2)(x x f ?? … T N x x f ?????)( 搜索步长可调整,通常记为αk (第k 次迭代中的步长)。该算法利用一维的线性搜索方法,如二次逼近法,沿着负梯度方向不断搜索函数的较小值,从而找到最优解。 方法特点(1)初始值可任选,每次迭代计算量小,存储量少,程序简短。即使从一个不好的初始点出发,开始的几步迭代,目标函数值下降很快,然后慢慢逼近局部极小点。(2)任意相邻两点的搜索方向是正交的,它的迭代路径胃绕道逼近极小点。当迭代点接近极小点时,步长变得很小,越走越慢。(3)全局收敛,线性收敛,易产生扭摆现象而造成早停。 算法步骤:最速下降法的基本求解流程如下: 第一步 迭代次数初始化为k=0,求出初始点0x 的函数值f 0=f (0x )。 第二步 迭代次数加1,即k=k+1,用一维线性搜索方法确定沿负梯度方向-1-k g 的步长1k -α,其中1k -α=ArgMinaf (111k /----k k g g x α)。 第三步 沿着负梯度方向寻找下一个接近最小值的点,其中步长为1k -α,得到下一点的坐标为:1111/-----=k k k k k g g x x α。

自适应信号处理课后题答案

自适应信号处理课后题答案 1.求下列R 的特征值设 (1)?? ?? ? ?????=4202630341R (2)?? ? ???-=2)3/exp(6)3/exp(632ππj j R 解:(1)令λ为R 的特征值,则 (2)令λ为R 的特征值: 0)d e t (=-I R λ 0)d e t (=-I R λ 即: 042 2630 34=---λ λ λ 即: 02) 3/exp(6)3/exp(63=---λ ππλ j j 于是R 1的三个特征值分别为: 于是R 2 的两个特征值为: 1451454321-=,+=,λλλ= 5,021==λλ 2.证明任何两个实数的单输入自适应线性组合器的特征向量矩阵均为: ?? ????-= 111121Q 证明:由已知条件知相关矩阵为R : ? ? ? ???=a b b a R 则R 的特征值为:b a b a -=+=21,λλ 当b a +=1λ时,??? ???--=-b b b b I R λ,则特征向量为:]1,1[11q x = 当b a -=2λ时,? ? ? ???=-b b b b I R λ,则特征向量为:]1,1[22-=q x 则特征向量为: ?? ? ???-=111121Q 3.如图3.1所示,若自适应系统的输入和期待响应分别为:

(1))6/2cos(],6/)1(2sin[),6/2sin(10k d k x k x k k k πππ=-== (2)6/)]5.1(2[]6/)2(2[]6)1(2[1)6/2(04,,2--+-=+==k j k k j k j k k j k e d e e x e x ππππ 试计算最佳权向量和最小均方误差输出,并说明在两种情况下的自适应系统有什么不同? 解:(1)由题中条件知: 5.0][2 0=k x E 5.0][2 1=k x E [] 25.010=* k k x x E []00=k k x d E 4/3][1-=k k x d E 于是输入相关矩阵为: ??????=5.025.025.05.0R ? ?????-=4/30P 则最优权为:?? ? ???-==* -1547.15774.01 P R W opt 最小均方误差为:3889.0][2 min -=-=opt T k W P d E ζ (2)由题中已知条件知: 4][2 0=k x E 6/26/22 12][ππj j k e e x E -++= 6/308][πj k k e x d E =* 6/6/144][ππj j k k e e x d E -*+= 6/46/21022][ππj j k k e e x x E --*+= 6/46 /21122][ππj j k k e e x x E +=* 于是输入相关矩阵为: ??????++++=---6/26/26/46 /26/46/2222224ππππππj j j j j j e e e e e e R ?? ????+=-6/6 /6 /3448πππj j j e e e P R 的逆不存在, 则最优权为: ??? ? ????-=j c c W o p t 3234 最小均方误差为:0][2 min =-=opt T k W P d E ζ

最优化算法实验3-最速下降法

最速下降法Matlab实现 实验目的: 1.掌握迭代法求解无约束最优化问题的基本思想 2.通过实验掌握最速下降法的Matlab算法的基本步骤 实验内容: 1.迭代法求解无约束最优化问题的基本思想 给定一个初始点x(0), 按照某一迭代规则产生一个迭代序列{x(k)}. 使得若该序列是有限的, 则最后一个点就是原问题的极小点; 否则, 若序列{x(k)} 是无穷点列时, 它有极限点且这个极限点即为原问题的极小点. 设x(k) 为第k 次迭代点, d(k) 为第k 次搜索方向, a(k)为第k 次步长因子, 则第k 次迭代完成后可得到新一轮(第k + 1 次) 的迭代点 x(k+1) = x(k) + a(k) d(k). 2.无约束优化问题迭代算法的一般框架 步0 给定初始化参数及初始迭代点x(0). 置k := 0. 步1 若x(k) 满足某种终止准则, 停止迭代, 以x(k) 作为近似极小点. 步2 通过求解x(k) 处的某个子问题确定下降方向d(k). 步3 通过某种搜索方式确定步长因子a(k), 使得f(x(k) + a(k) d(k)) < f(x(k)). 步4 令x(k+1) := x(k) + a(k) d(k), k := k + 1, 转步1. 3. 最速下降法的基本步骤 步0 选取初始点x(0) ∈R^n, 容许误差0 ≤e ?1. 令k := 1. 步1 计算g(k) = ?f(x(k)). 若‖g(k)‖≤e, 停算, 输出x(k)作为近似最优解. 步2 取方向d(k)= ?g(k). 步3 由线搜索技术确定步长因子a(k),即 min f(a(k))=f(x(k)+a(k)d(k)). 步4 令x(k+1) := x(k) + a(k)d(k)), k := k + 1, 转步1.

数值分析与算法变步长梯形求积法计算定积分

变步长梯形求积法计算定积分 1.原理: 变步长求积法的主要思想是利用若干小梯形的面积代替原方程的积分,当精度达不到要求时,可以通过增加点数对已有的区间再次划分,达到所需精度时即可;其中由于新的式子中有原来n点中的部分项,故可以省略一些计算,符合了计算机计算存储的思想。 主要公式:T2n=T n/2+(h/2)*Σf(x k+; 2.C++语言实现方式: 通过每次的T n值和新增的函数值点计算T2n,再通过判断|T n-T2n|的大小来判断是否达到精度要求。 3.源程序如下: #include"" #include"" double f(double x)//预先输入的待积分函数 { double s; s=log(x*x); return(s); } double ffts(double a,double b,double eps) { int n,k; double fa,fb,h,t1,p,s,x,t; fa=f(a);

fb=f(b); n=1; h=b-a; t1=h*(fa+fb)/2; p=eps+1; while(p>=eps) { s=0; for(k=0;k<=n-1;k++) { x=a+(k+*h; s=s+f(x); } t=t1/2+h*s/2; p=fabs(t1-t); cout<<"步长n为:"<

最速下降法

最速下降法 %% 最速下降法图示 % 设置步长为0.1,f_change为改变前后的y值变化,仅设置了一个退出条件。syms x;f=x^2; step=0.1;x=2;k=0; %设置步长,初始值,迭代记录数 f_change=x^2; %初始化差值 f_current=x^2; %计算当前函数值 ezplot(@(x,f)f-x.^2) %画出函数图像 axis([-2,2,-0.2,3]) %固定坐标轴 hold on while f_change>0.000000001 %设置条件,两次计算的值之差小于某个数,跳出循环 x=x-step*2*x; %-2*x为梯度反方向,step为步长,!最速下降法! f_change = f_current - x^2; %计算两次函数值之差 f_current = x^2 ; %重新计算当前的函数值 plot(x,f_current,'ro','markersize',7) %标记当前的位置 drawnow;pause(0.2); k=k+1; end hold off fprintf('在迭代%d次后找到函数最小值为%e,对应的x值为%e\n',k,x^2,x)

wolfe准则 unction [alpha, newxk, fk, newfk] = wolfe(xk, dk) rho = 0.25; sigma = 0.75; alpha = 1; a = 0; b = Inf; while (1) if ~(fun(xk+alpha*dk)<=fun(xk)+rho*alpha*gfun(xk)'*dk) b = alpha; alpha = (alpha+a)/2; continue; end if ~(gfun(xk+alpha*dk)'*dk>= sigma*gfun(xk)'*dk) a = alpha; alpha = min([2*alpha, (b+alpha)/2]); continue; end break; end newxk = xk+alpha*dk; fk = fun(xk); newfk = fun(newxk);

用MATLAB实现最速下降法

实验的题目和要求 一、所属课程名称: 最优化方法 二、实验日期: 2010年5月10日~2010年5月15日 三、实验目的 掌握最速下降法,牛顿法和共轭梯度法的算法思想,并能上机编程实现相应的算法。 二、实验要求 用MA TLA B实现最速下降法,牛顿法和共轭梯度法求解实例。 四、实验原理 最速下降法是以负梯度方向最为下降方向的极小化算法,相邻两次的搜索方向是互相直交的。牛顿法是利用目标函数)(x f 在迭代点k x 处的T aylor 展开式作为模型函数,并利用这个二次模型函数的极 小点序列去逼近目标函数的极小点。共轭梯度法它的每一个搜索方向是互相共轭的,而这些搜索方向k d 仅仅是负梯度方向k g -与上一次接 待的搜索方向1-k d 的组合。 五.运行及结果如下: 最速下降法: 题目:f=(x-2)^2+(y-4)^2 M文件: fu ncti on [R,n]=stee l(x0,y0,e ps) syms x; syms y ; f=(x-2)^2+(y-4)^2; v=[x,y]; j=jac obi an(f ,v); T=[s ubs(j(1),x,x0),subs (j (2),y,y0)]; temp=s qrt((T(1))^2+(T (2))^2); x 1=x0;y 1=y 0; n=0; sym s k k; w hi le (temp>eps ) d=-T; f1=x 1+kk*d(1);f2=y1+k k*d(2); fT=[su bs(j (1),x,f1),sub s(j(2),y,f2)]; fu n=sqrt((fT(1))^2+(fT(2))^2);

最速下降法求解这一无约束的最优化问题

第五题: 解:选择类型为: 2/13()x t y t x e x =+ 其中123,,x x x 是待求参数。根据最小二乘原理,参数123,,x x x 是下面优化问题的解。 []2 8 1231 m in (,,)()i i i f x x x y t y == -? 用最速下降法求解这一无约束的最优化问题。 zuiyouhua.m function sh=zuiyouhua(x0) % x0为初始猜测值 syms x y z a al; %====================================== t=[0.2,1,2,3,5,7,11,16]; r1=[5.05,8.88,11.63,12.93,14.15,14.73,15.30,15.60]; minf=0; for i=1:8 r(i)=x*exp(y/t(i))+z-r1(i); %构造最小二乘最优化的目标函数 minf=r(i)^2+minf; end %====================================== f1=diff(minf,x); f2=diff(minf,y); f3=diff(minf,z); %求目标函数的梯度 F=[f1,f2,f3]; %====================================== Fx1= -subs(F,{x,y,z},x0); Fx=Fx1/norm(Fx1); k=0; %====================================== %最速下降法核心迭代程序 while 1 x1=x0+a*Fx; P=subs(minf,{x,y,z},x1); xx1=xianxing(P); %调用线性搜索函数 al=huangjing(P,xx1); %调用黄金分割法函数; x0=x0+al*Fx; Fx1= -subs(F,{x,y,z},x0); Fx=Fx1/norm(Fx1); if norm(Fx1)<5e-4 sh=x0; return; end end %====================================== function xx=xianxing(Pa) %一维搜索法线性搜索函数 aa=findsym(Pa); a1=1; h=0.5; k=0; t1=2; while 1 a2=a1+h; Pa1=subs(Pa,aa,a1); Pa2=subs(Pa,aa,a2); if Pa2< Pa1 h=t1*h; a0=a1; a1=a2; k=k+1; if k>1000 disp('迭代步数太多,可能不收敛!'); end else if k==0 h=-h; a0=a2; else c1=min(a0,a2); d1=max(a0,a2); xx=[c1,d1]; return; end end end %====================================== function al1=huangjing(Pb,xx2)

研究生自适应信号处理考试题

k ε2006年研究生自适应信号处理考试题 1. 简述人工自适应系统的特点和建立自适应系统一般应该满足的要求。(10%) 特点:随时间变化,针对变化的环境自我优化,能通过训练适应变化的任务,自我设计、修复,少量训练可以改变整个系统的结构,输入的变化可能影响系统的性能,系统的调节都针对特定的优化目标。 构造自适应系统,一般有两种形式,一种是开环系统,另一种是闭环系统。无论那种形式,系统的处理器都必须是可调节的。 2. 一个滤波器的特性函数为()2 115726 w ξ=-+,根据特征曲面搜索的最速下降法和牛 顿法,试分别写出其参数w 的调整算法。(15%) ()()()2 111115726 7 571349 13 577()7 5713 k k k k k k k k k k k w w w w w w w w w w w w w w w w w w ξξξξξμμ+++=-+'+'''=- ''+=- =+-?=-+解: 牛顿法:() ()= ()=() () w 调整算法最速下降法: 3. 设线性组合器110-+=k k k x w x w y ,画出它的原理图;当输入信号为 52sin k x k π=,期望输出信号为5 2cos 2k d k π=时,求出自相关矩阵R ,互相关矩阵P ,特性函数,梯度和最佳权值。(20%) 原理图:

[] k 2 k 12 k-1k-12T T k 20.5 0.5cos x x 5 R=E 2x x 0.5cos 0.5 52P=E 5=E[d ]+W RW-2P W =2+0.5[k k T T x x πππξ-? ? ????=????????????? ? ? ?=???? k k k-1k-1解:自相关矩阵 互相关矩阵d x d x 0 -sin 特性函数0001112 20101121 cos 25 ]225cos 1 522=cos 2sin 2 55 =20.5 0.5cos 520.5cos 0.55πωωπωωπωωππωωωωωππ? ????? ????-???????????????????? ++?? ????????? 0 -sin 0.5(+)+ 梯度2RW-2P =201010 1*252+cos 5 22cos ++2sin 5522W 55 ωπωπωωππωωππ ???????????????????? ?????????? T 0 -2-sin = 最佳权值=[2cot -2csc ] 4. 设滤波器的自相关矩阵为300021018R ?? ?= ? ???,摄动为125P ?? ? = ? ??? ,写出最速下降法 的权值调整算法,给出它们的收敛条件。(10%)

自适应噪声消除算法的性能比较与仿真

第9卷 第19期 2009年9月167121819(2009)1925835205  科 学 技 术 与 工 程 Science Technol ogy and Engineering  Vol 19 No 119 Oct .2009 Ζ 2009 Sci 1Tech 1Engng 1 自适应噪声消除算法的性能比较与仿真 江清潘 常太华3  朱红路 马 军 1 (华北电力大学控制科学与工程学院,北京102206;湖北省汉江河道管理局1,潜江433100) 摘 要 在信号处理中,噪声往往是非平稳和随时间变化的,传统方法很难解决噪声背景中的信号提取问题。通过对自适应噪声消除原理的研究,介绍了基于参考信号和基于预测原理的两种自适应噪声消除(ANC,Adap tive Noise Cancellati on )方法,分析对比了基于最小均方(L M S,LeastMean Squares )、递推最小二乘(RLS,Recursive Least Squares )和平方根自适应滤波(QR -RLS,recursive least squares based on QR decompositi on )三种噪声消除算法的性能。仿真结果表明:这几种算法都能从高背景 噪声中有效地抑制干扰提取出有用信号,显示出了良好的收敛性能。相比之下,RLS 算法和QR -RLS 算法呈现出更快的收敛速度、更强的稳定性和抑噪能力。 关键词 自适应噪声消除 自适应滤波器 噪声中图法分类号 TP27412; 文献标志码 A 2009年6月15日收到国家自然科学基金(50776030)资助 第一作者简介:江清潘(1986—),男,福建三明人,硕士在读,研究方向:电力生产过程建模、燃烧优化。E 2mail:jqpgg m @g mail 1com jqphd2007@yahoo 1cn 。 3 通信作者简介:常太华(1951—),女,山西榆社人,教授,研究方向: 信息融合及检测新技术。 在信号处理领域中噪声消除是一个非常重要的问题,对噪声环境中系统的正常工作有着很大的影响。隐藏在有用信号中的背景噪声往往是非平稳且随时间变化的,信号和噪声的统计特性往往无法知晓,而且背景噪声中的有用信号往往微弱而不稳定,此时采用传统方法很难解决噪声环境中的信号提取问题 [1] 。近年来自适应噪声消除(ANC )系 统成为消除噪声的研究热点,利用自适应滤波器具有在未知环境下良好运行并跟踪输入统计量随时间变化的能力,通过不断调整抽头权系数来适应发生变化的信号和噪声的统计特性,达到消除噪声干扰的目的 [2] 。 根据噪声知识的了解情况,ANC 系统可采用基于参考信号和基于预测原理的两种噪声消除方法。在噪声相关知识足够了解的情况下可选取一个与噪声信号相关的参考信号进行噪声干扰对消。在 噪声相关知识了解不够充分时可根据自适应滤波器的预测原理,利用噪声信号的时间不相关性来达到噪声消除的目的。 ANC 系统的核心是自适应滤波器,通过自适应 算法对滤波器权系数进行调整以实现最佳滤波。不同的自适应滤波器算法具有不同的收敛速度、稳态失调和算法复杂度,基于上述两种噪声消除方法对比分析了基于L MS 、RLS 和QR -RLS 三种算法的噪声消除效果。仿真结果表明,这几种算法都能从高背景噪声中提取有用信号。相比之下,在基于参考信号的方法中,RLS 算法体现出了更好的收敛性能和抑制干扰的能力。在基于预测的消噪方法中,QR -RLS 算法呈现出了更快的收敛速度、更强的稳 定性和抑噪能力。 1 自适应噪声消除原理及算法 111 噪声消除原理 自适应滤波器噪声消除系统是以噪声干扰为处理对象,将其抑制或者进行衰减,以提高输出端的信噪比质量。分析了基于参考信号和基于预测原理的两种自适应噪声消除方法。

非线性方程组-最速下降法(梯度法)

梯度法(又名,最速下降法) (该法总可以收敛,但是,在接近真解时收敛的速度会放慢。) 梯度法又称为最速下降法,用于求解实系数非线性方程组 12(,,,)0, 1,2,,i n f x x x i n == (7-15) 的一组根。梯度法首先是定义一个目标函数 2 12121 (,,,)(,,,) n n i n i x x x f x x x =Φ= ∑ (7-16) 使目标函数2 1 n i i f =Φ= ∑ 达到最小的12,,,n x x x 是我们寻找的一组解,这是非 线性最小二乘法问题。 如果第(0,1,2,)k k = 步求得一组解1 2 ,,,n k k k x x x ,使得 12(,,,)n k k k x x x ε Φ< (7-17) 则认为1 2 ,,,n k k k x x x 是原方程组满足一定精度的()ε要求的一组解。 梯度法的计算过程是: (1)先给定一组不全为零的初值1 2 000,,,n x x x ,第k 步的一组根为1 2 ,,,n k k k x x x ; (2)计算目标函数1 2 (,,,)n k k k x x x Φ 的值;(单独子程序:fn =TargetFunction) (3)若1 2 (,,,)n k k k x x x εΦ< ,则认为1 2 ,,,n k k k x x x 是满足一定精度()ε的一组 解,否则,作如下修正计算 1 α +=?Φ=-?i k i i k k k i i x x x x x (7-18) 其中

121212********* 1111222 (,,,) (,,,)(,,,)(,,,)(,,,)(,,,)(,,,)*,1,2,,α ==?Φ= ??? ??Φ ? ? ???Φ+-Φ?Φ=??Φ+-Φ?Φ= ?Φ+-Φ?Φ = ?==∑ n k j j n n n n n n k k k k n j j x x k k k k k k k k k k k k k k k k k k n n n k i i x x x x x h x x x x x x h x x h x x x x x h x x x h x x x x h h H x i n ??? ???? ??? ? ?????? (7-19) H 为控制收敛的常数,通常选为(10-5~10-6),收敛精度ε 选为(10-6~10 -8 )。 (4)重复修正1 k i x +,直到 12111 (,,,)n k k k ε +++ΦΦΦ< ,计算终止。

最优化牛顿法最速下降法共轭梯度法matlab代码

牛顿法 迭代公式:(1)2()1()[()]()k k k k x x f x f x +-=-?? Matlab 代码: function [x1,k] =newton(x1,eps) hs=inline('(x-1)^4+y^2'); 写入函数 ezcontour(hs,[-10 10 -10 10]); 建立坐标系 hold on; 显示图像 syms x y 定义变量 f=(x-1)^4+y^2; 定义函数 grad1=jacobian(f,[x,y]); 求f 的一阶梯度 grad2=jacobian(grad1,[x,y]); 求f 的二阶梯度 k=0; 迭代初始值 while 1 循环 grad1z=subs(subs(grad1,x,x1(1)),y,x1(2)); 给f 一阶梯度赋初值 grad2z=subs(subs(grad2,x,x1(1)),y,x1(2)); 给f 二阶梯度赋初值 x2=x1-inv(grad2z)*(grad1z)'; 核心迭代公式 if norm(x1-x2)

end end end 优点:在极小点附近收敛快 缺点:但是要计算目标函数的hesse 矩阵 最速下降法 1. :选取初始点xo ,给定误差 2. 计算一阶梯度。若一阶梯度小于误差,停止迭代,输出 3. 取()()()k k p f x =? 4. 10 t ()(), 1.min k k k k k k k k k k t f x t p f x tp x x t p k k +≥+=+=+=+进行一维搜索,求,使得令转第二步 例题: 求min (x-2)^4+(x-2*y)^2.初始值(0,3)误差为0.1 (1)编写一个目标函数,存为f.m function z = f( x,y ) z=(x-2.0)^4+(x-2.0*y)^2; end (2)分别关于x 和y 求出一阶梯度,分别存为fx.m 和fy.m function z = fx( x,y ) z=2.0*x-4.0*y+4.0*(x-2.0)^3; end 和 function z = fy( x,y )

自适应滤波算法原理及其应用

自适应滤波算法原理与应用 经典的滤波算法包括,维纳滤波,卡尔曼滤波,自适应滤波。维纳滤波与卡尔曼滤波能够满足一些工程问题的需求,得到较好的滤波效果。但是他们也存在局限性,对于维纳滤波来说,需要得到足够多的数据样本时,才能获得较为准确的自相关函数估计值,一旦系统设计完毕,滤波器的长度就不能再改变,这难以满足信号处理的实时性要求;对于卡尔曼滤波,需要提前对信号的噪声功率进行估计,参数估计的准确性直接影响到滤波的效果。在实际的信号处理中,如果系统参数能够随着输入信号的变化进行自动调整,不需要提前估计信号与噪声的参数,实现对信号的自适应滤波,这样的系统就是自适应滤波系统。 1.基本自适应滤波算法 自适应滤波算法的基本思想是根据输入信号的特性自适应调整滤波器的系数,实现最优滤波。 图1 自适应滤波结构框图 若自适应滤波的阶数为M ,滤波器系数为W ,输入信号序列为X ,则输出为: 1 0()()()M m y n w m x n m -==-∑ (1) ()()()e n d n y n =- (2) 其中()d n 为期望信号,()e n 为误差信号。 1 1 ()()()M M j i ij m i y n w m x n m y w x -===-→=∑∑ (3) 令 T T 01112[,,,],[,,,]M j j j Nj W w w w X x x x -==L L (4) 则滤波器的输出可以写成矩阵形式: T T j j j y X W W X == (5) T T j j j j j j j e d y d X W d W X =-=-=- (6) 定义代价函数:

自适应波束成形算法LMS、RLS、VSSLMS分解

传统的通信系统中,基站天线通常是全向天线,此时,基站在向某一个用户发射或接收信号时,不仅会造成发射功率的浪费,还会对处于其他方位的用户产生干扰。 然而,虽然阵列天线的方向图是全向的,但是通过一定技术对阵列的输出进行适当的加权后,可以使阵列天线对特定的一个或多个空间目标产生方向性波束,即“波束成形”,且波束的方向性可控。波束成形技术可以使发射和接收信号的波束指向所需要用户,提高频谱利用率,降低干扰。 传统的波束成形算法通常是根据用户信号波达方向(DOA)的估计值构造阵列天线的加权向量,且用户信号DOA在一定时间内不发生改变。然而,在移动通信系统中,用户的空间位置是时变的,此时,波束成形权向量需要根据用户当前位置进行实时更新。自适应波束成形算法可以满足上述要求。 本毕业设计将对阵列信号处理中的波束成形技术进行研究,重点研究自适应波束成形技术。要求理解掌握波束成形的基本原理,掌握几种典型的自适应波束成形算法,熟练使用MATLAB仿真软件,并使用MA TLAB仿真软件对所研究的算法进行仿真和分析,评估算法性能。 (一)波束成形: 波束成形,源于自适应天线的一个概念。接收端的信号处理,可以通过对多天线阵元接收到的各路信号进行加权合成,形成所需的理想信号。从天线方向图(pattern)视角来看,这样做相当于形成了规定指向上的波束。例如,将原来全方位的接收方向图转换成了有零点、有最大指向的波瓣方向图。同样原理也适用用于发射端。对天线阵元馈电进行幅度和相位调整,可形成所需形状的方向图。 波束成形技术属于阵列信号处理的主要问题:使阵列方向图的主瓣指向所需的方向。 在阵列信号处理的范畴内,波束形成就是从传感器阵列重构源信号。虽然阵列天线的方向图是全方向的,但阵列的输出经过加权求和后,却可以被调整到阵列接收的方向增益聚集在一个方向上,相当于形成了一个“波束”。 波束形成技术的基本思想是:通过将各阵元输出进行加权求和,在一时间内将天线阵列波束“导向”到一个方向上,对期望信号得到最大输出功率的导向位置即给出波达方向估计。 “导向”作用是通过调整加权系数完成的。对于不同的权向量,上式对来自不同方向的电波便有不同的响应,从而形成不同方向的空间波束。

最速下降法

随着人工智能、模糊控制、模式识别、人工网络等新技术的应用和发 展。可以让它们与广义预测控制相结合,建立高精度、多模态的预测模型。 使广义预测控制在异常情况下可以稳定运行,推进广义预测控制的进一步 发展。 2.2.1最速下降法 最速下降法是无约束最优化中是比较有效的方法,它是以d}=一可(x})作为下 降方向的算法。其迭代格式为 xx+i=xx一。*Of (xk) 上式中,一般通过精确线搜索准则求得步长因子。*,当然也不排除可以利用非精确 线搜索准则来求得步长因子。*。不管最速下降法采取何种线搜索准则,它均具有全 局收敛性,但是这也不能直接就认为最速下降算法就是一个良好的优化算法。在实际 试验中,有很多优化问题利用最速下降法并不是下降的特快,反而下将的十分缓慢。 这是因为出现了锯齿现象:就是在计算过程中,最速下降法开始几步还是挺快的,但 是当目标函数f (x)的等高线接近于一个球的时候,就出现了类似锯齿现象,前进十 分缓慢,降低了算法的效能。 2.2.12.2.2 牛顿法 牛顿法也是无约束最优化问题中的一种经典算法,它是利用目标函数.f (x)的二 次泰勒展开式,并将二次泰勒展开式进行极小化。其迭代格式为 x}+}=xA十d} (2-5) 其中步长因子。、=l} d、为02f (x} )d + Of (xA ) = 0的解。当目标函数f(x)是正定二次函数的时候,牛顿法可以一步达到最优解;当目标函数f (x)是非二次函数的时候, 牛顿法经过有限次迭代之后就不能确保求得目标函数f (x)的最优解。我们知道目标 函数f (x)在极小点附近是很接近于二次函数的,所以,假如初始点非常靠近无约束 最优化问题((1-1)的最优解x的时候,并且}Z.f (x.)正定的时候,那么牛顿法就会有 很快的收敛速度,而由此算法产生的点列也具有了超线性收敛速度,同时还在一定条 件下具有二次收敛性;假如初始点与无约束最优化问题(1-1)的最优解x’相距比较 远的时候,这时的}Z.}(x})就不一定是正定的了,也就存在了一个问题,那就是此时 的牛顿方向就不一定是下降方向,有可能是上升方向,此时由此算法产生的点列可能 也就不收敛于无约束最优化问题((1-1)的最优解了。综上所述,让步长“R =1即“*恒 取常数是不合适的。经过研究学者们发现了一个方法可以改善这个情况,那就是利用 已有的线搜索方法来确定步长因子,也就是步长因子是可变的。其迭代格式为 x1. }, = x:一a}.OZ f (x}.)一,Of (x,. ) C 2-6 ) 2.2.2牛顿法 牛顿法也是无约束最优化问题中的一种经典算法,它是利用目标函数.f (x)的二 次泰勒展开式,并将二次泰勒展开式进行极小化。其迭代格式为 x}+i=xA+d}(2-5) 其中步长因子。、=l} d、为02f (x} )d + Of (xA ) = 0的解。当目标函数f(x)是正定二次函数的时候,牛顿法可以一步达到最优解;当目标函数f (x)是非二次函数的时候, 牛顿法经过有限次迭代之后就不能确保求得目标函数f (x)的最优解。我们知道目标 函数f (x)在极小点附近是很接近于二次函数的,所以,假如初始点非常靠近无约束

自适应均衡算法的研究进展

自适应均衡算法的研究进展 摘要:简述了能补偿或减小现代通信系统中的码问干扰问题的自适应均衡算法的基本原理及其特点.介绍了最小均方误差算法、递归最小二乘算法等几类主要的自适应均衡算法,并阐述了近年来出现的主要的自适应均衡算法的原理,对误码率、收敛速度、运算量及稳态误差等评价指标进行了分析.结合分析结果和自适应均衡算法的实际应用前景,探讨了这一领域需要进行进一步研究的问题,并对今后的研究进行了展望. 关键词:自适应均衡;最小均方误差算法;递归最小二乘算法 自适应均衡算法取得了较大的发展,是目前通信领域研究的热点.在现代通信系统中,码间干扰是制约通信质量的重要因素.为了减小码间干扰,需要对信道进行适当的补偿,以减小误码率,提高通信质量.接收机中能够补偿或减小接收信号码间干扰的补偿器称为均衡器.对于大多数采用均衡器的数字通信系统,信道特性是未知的,甚至是时变的.能准确地补偿信道的传输特性、动态地跟踪信道的变化、及时调整均衡滤波器系统参数的功能,称为自适应均衡器的智能特性.由于计算机硬件的限制,人们希望自适应均衡算法收敛快速、计算量小,且系统的误码率低.在此基础上,对于这种算法的研究主要集中在最小均方(LMS)类、递归最小平方(RLS)等几个方面。 1 LMS类自适应均衡算法 LMS算法是基于随机梯度准则的最小均方误差准则的近似,即简单地用瞬时误差来代替误差均值.这个近似带来的好处是省去了计算输入信号自相关矩阵所需要的巨大的计算量,使抽头系数的迭代公式变得非常简单.在大多数信噪比比较高且信道为缓慢时变的情况下,只要收敛步长在一定的范围内,LMS算法都能较好地收敛.但这种近似同时带来了2个缺点:1)引入了抽头系数的噪声项.导致稳态失调量较大;2)收敛相对缓慢,对非平稳信号的适应性差,使得算法的信道跟踪补偿能力下降.针对这两个问题,人们提出多种改进的LMS自适应滤波算法,主要有:变步长LMs算法、变换域LMs算法. 1.1 变步长LMS自适应滤波算法 收敛速率是LMs算法的一个关键问题,步长在算法收敛过程中起着非常重要的作用.采用大步长,每次调整抽头系数的幅度就大,体现在性能上就是算法收敛速度和跟踪速度快,当均衡器抽头系数接近最优值时,抽头系数将在最优值附近一个较大的范围内来回抖动而无法进一步收敛,因而会有较大的稳态剩余误差;反之,采用小步长,每次调整抽头系数的幅度就小,算法收敛速度和跟踪速度慢,但当均衡器抽头系数接近最优值时,抽头系数将在最优值附近一个较小的范围内来回抖动而无法进一步收敛,因而稳态剩余误差较小.考虑开始阶段和收

wolf-powell算法搜索步长

%利用wolf-powell线性搜索步长 function alpha1=wolfpowell(f,x,x0,d) g=jacobian(f,x); %求函数f的梯度 sigma1=0.25; %给定常数1 sigma2=0.7; %给定常数2 beta1=5; %步长初始值 theta1=0.5; %步长变化比例1 theta2=0.7; %步长变化比例2 %求步长alpha1 if subs(f,x,x0+d)<=subs(f,x,x0)+sigma1*subs(g,x,x0)*d'&&subs(g,x,x0+d)*d'>=sigm a2*subs(g,x,x0)*d' alpha1=1; %满足第一个条件的最大步长 else alpha1=beta1; while subs(f,x,x0+alpha1*d)>subs(f,x,x0)+sigma1*alpha1*subs(g,x,x0)*d' alpha1=theta1*alpha1; end while subs(f,x,x0+alpha1/theta1*d)<=subs(f,x,x0)+sigma1*alpha1/theta1*subs(g,x,x0)*d' alpha1=alpha1/theta1; end end %使步长满足第二个条件 while subs(g,x,x0+alpha1*d)*d'subs(f,x,x0)+sigma1*alpha2*subs(g,x,x0)*d' i=i+1;

相关主题