搜档网
当前位置:搜档网 › 任意角和弧度制及任意角的三角函数知识点与题型归纳

任意角和弧度制及任意角的三角函数知识点与题型归纳

任意角和弧度制及任意角的三角函数知识点与题型归纳
任意角和弧度制及任意角的三角函数知识点与题型归纳

●高考明方向

1.了解任意角的概念.

2.了解弧度制的概念,能进行弧度与角度的互化

3.理解任意角的三角函数(正弦、余弦、正切)的定义.

★备考知考情

1.三角函数的定义与三角恒等变换等相结合,

考查三角函数求值问题.

2.三角函数的定义与向量等知识相结合,

考查三角函数定义的应用.

3.主要以选择题、填空题为主,属中低档题.

一、知识梳理《名师一号》P47

知识点一角的概念

(1)分类???

??

按旋转方向不同分为正角、负角、零角.

按终边位置不同分为象限角和轴线角.

(2)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z}.

《名师一号》P47 对点自测 1、2 注意:

1、《名师一号》P48 问题探究 问题1、2

相等的角终边相同,终边相同的角也一定相等吗? 相等的角终边一定相同,但终边相同的角却不一定相等,终边相同的角有无数个,它们之间相差360°的整数倍.

角的表示形式是唯一的吗?

角的集合的表示形式不是唯一的,如:终边在y 轴的负半轴上的角的集合可以表示为{x |x =k ·360°-90°,k ∈Z},也可以表示为{x |x =k ·360°+270°,k ∈Z}. (补充)

2、正角 > 零角 > 负角

3、下列概念应注意区分

小于90°的角;锐角;第一象限的角;0°~90°的角.4、(1)终边落在坐标轴上的角

1)终边落在x轴非负半轴上的角

{x|x=2kπ,k∈Z}

2)终边落在x轴非正半轴上的角

{x|x=2kπ+π,k∈Z}

终边落在x轴上的角

{x|x=kπ,k∈Z}

3)终边落在y轴非负半轴上的角

{x|x=2kπ+π

2

,k∈Z}

4)终边落在y轴非正半轴上的角

{x|x=2kπ+3π

2

,k∈Z}

终边落在y轴上的角

{x|x=kπ+π

2

,k∈Z}

(2) 象限角(自己课后完成)

知识点二弧度的定义和公式

(1)定义:长度等于半径长的弧所对的圆心角

叫做1弧度的角,弧度记作rad.

(2)公式:①弧度与角度的换算:

360°=2π弧度;180°=π弧度;

②弧长公式:l=|α|r;

③扇形面积公式:S扇形=1

2

lr和

1

2

|α|r2.

关键:基本公式180?

→=rad

π

《名师一号》P47 对点自测3

注意:

1、《名师一号》P48 问题探究问题3

在角的表示中角度制和弧度制能不能混合应用?

不能.在同一个式子中,采用的度量制度是一致的,不可混用.

2、弧长公式与扇形面积公式

(扇形的圆心角为α弧度,半径为r )

弧长公式||l r α= 扇形面积公式1

2

S lr =

(补充)(将扇形视为曲边三角形,记l 为底,r 为高)

知识点三 任意角的三角函数

(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α= ,cos α= ,tan α= (x ≠0). (补充)

1

2、各象限角的三角函数值符号规律:

(补充)关键:立足定义

正弦……一二正,横为零

余弦……一四正,纵为零

正切……一三正,横为零,纵不存在

3、特殊角的三角函数值(自己课后完成)

知识点三任意角的三角函数

(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x轴上,余弦线的起点都是原点,正切线的起点都是(1,0).

如图中有向线段MP,OM,AT分别叫做角α的

正弦线,余弦线和正切线.

《名师一号》P47 对点自测6

注意:

《名师一号》P48 问题探究问题4

如何利用三角函数线解不等式

及比较三角函数值的大小?

(1)先找到“正值”区间,即0~2π间满足条件的范围,然后再加上周期.

(2)先作出角,再作出相应的三角函数线,最后进行比较大小,应注意三角函数线的有向性.

也可以利用相应图象求解

二、例题分析:

(一)角的表示及象限角的判定

例1.《名师一号》P48 高频考点例1

(1)写出终边在直线y=3x上的角的集合;

(2)已知α是第三象限角,求α

2

所在的象限.

【思维启迪】(1)角的终边是射线,应分两种情况求解.

(2)把α写成集合的形式,从而α

2

的集合形式也确定.

解:(1)当角的终边在第一象限时,角的集合为

{α|α=2kπ+π

3

,k∈Z},

当角的终边在第三象限时,角的集合为

{α|α=2kπ+4

3

π,k∈Z},

故所求角的集合为

{α|α=2kπ+π

3

,k∈Z}∪{α|α=2kπ+

4

3

π,k∈Z}

={α|α=kπ+π

3

,k∈Z}.

(2)∵2kπ+π<α<2kπ+3

2

π(k∈Z),

∴kπ+π

2

<

α

2

3

4

π(k∈Z).

当k=2n(n∈Z)时,2nπ+π

2

<

α

2

<2nπ+

3

4

π,

α

2

是第二象限角,

当k=2n+1(n∈Z)时,2nπ+3π

2

<

α

2

<2nπ+

7

4

π,

α

2

是第四象限角,

综上知,当α是第三象限角时,

α

2

是第二或第四象限角.

注意:《名师一号》P48 高频考点例1 规律方法

(1)若要确定一个绝对值较大的角所在的象限,一般是先将角化为2kπ+α(0≤α<2π)(k∈Z)的形式,然后再根据α所在的象限予以判断.

(2)利用终边相同的角的集合可以求适合某些条件的

角,方法是先写出这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需角.

(二) 弧度制的定义和公式

例1.《名师一号》P48 高频考点 例2

(1)已知扇形周长为10,面积是4,求扇形的圆心角. (2)已知扇形周长为40,当它的半径和圆心角取何值时, 才使扇形面积最大?

解:(1)设圆心角是θ,半径是r , 则?????

2r +r θ=101

2

θ·r 2=4??????

r =1,

θ=8

(舍),????

?

r =4,θ=12

故扇形圆心角为1 2 .

(2)设圆心角是θ,半径是r,则2r+rθ=40.

S=1

2

θ·r2=

1

2

r(40-2r)=r(20-r)

=-(r-10)2+100≤100,

当且仅当r=10时,S max=100,θ=2.

所以当r=10,θ=2时,扇形面积最大.

《名师一号》P47 对点自测4

注意:《名师一号》P48 高频考点例2 规律方法

1.弧度制下l=|α|·r,S=1

2

lr,此时α为弧度.

在角度制下,弧长l=nπr

180

,扇形面积S=

nπr2

360

此时n为角度,它们之间有着必然的联系.2.在解决弧长、面积及弓形面积时要注意合理应用圆心角所在的三角形.

(三)三角函数的定义及应用

例1.《名师一号》P48 高频考点例3

(1)已知角θ的顶点为坐标原点,始边为x轴的正半轴,若

P(4,y)是角θ终边上一点,且sinθ=-25 5

则y=________.

解:(1)r=x2+y2=16+y2,且sinθ=-25 5

所以sinθ=y

r=

y

16+y2

=-

25

5

所以θ为第四象限角,解得y=-8.

《名师一号》P47 对点自测5

(3)(2015·日照模拟)已知点P(sinθcosθ,2cosθ)位于第三象限,则角θ是第________象限角.

解:(3)因为点P (sin θcos θ,2cos θ)位于第三象限, 所以sin θcos θ<0,2cos θ<0,即???

??

sin θ>0,cos θ<0,

所以θ为第二象限角.

※(2)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP →

的坐标为________.

解: (2)如图,连接AP ,分别过P ,A 作PC ,

AB 垂直x 轴于C ,B 点,过A 作AD ⊥PC 于D 点, 由题意知BP 的长为2.

∵圆的半径为1,∴∠BAP =2. 故∠DAP =2-π

2

.

∴DP =AP ·sin ?

????

?2-π2=-cos2.

∴PC =1-cos2,DA =AP cos ?

????

?2-π2=sin2.

∴OC =2-sin2,故OP →=(2-sin2,1-cos2).

注意:《名师一号》P48 高频考点 例2 规律方法 1.利用定义求三角函数值.在利用三角函数的定义求角α的三角函数值时,若角α终边上点的坐标是以参数的形式给出的,则要根据问题的实际及解题的需要对参数进

行分类讨论.任意角的三角函数值仅与角α的终边位置有关,而与角α终边上点P 的位置无关.

2.三角函数值的符号及角的位置的判断.已知一角的三角函数值(sin α,cos α,tan α)中任意两个的符号,可分别确定出角终边所在的可能位置,二者的交集即为该角的终边位置,注意终边在坐标轴上的特殊情况.

3.与向量等问题形成的交汇问题,抓住问题的实质,寻找相应的角度,然后通过解三角形求得解. 练习:

若一个角α的终边在直线3=-y x 上, 求3

10sin cos +αα

的值。 答案:0

注意:立足定义是根本!

三角函数的定义是三角函数的基础,

由三角函数的定义可得同角三角函数的基本关系及各象限角的三角函数值符号等。

利用三角函数的定义解题时应

先确定点的坐标及点的位置。

(四)以三角函数的定义为载体的创新问题

《名师一号》P49 特色专题

三角函数的概念是考查三角函数的重要工具,在高考命题中很少单独考查,但常结合三角函数的基础知识、三角恒等变换和向量等知识综合考查,涉及的知识点较多,且难度不大.

【典例】如图所示,质点P在半径为2

的圆周上逆时针运动,其初始位置为

P0(2,-2),角速度为1,那么点

P到x轴的距离d关于时间t的函数

图象大致为( )

A B C D

【规范解答】 用t 表示出OP 与x 轴正方向所成的角,然后利用三角函数的定义得到d 的函数表达式即可.

∵P 0(

2,-

2),∴∠P 0Ox =π

4

.

按逆时针转时间t 后,得∠POP 0=t ,∠POx =t -π

4.

由三角函数定义,知点P 的纵坐标为 2sin ? ??

???t -π4.

因此d =2?????

??

?sin ? ?????t -π4.

令t =0,则d =2???????

?sin ? ?????-π4=

2,当t =π

4

时,d

=0,

故选C.

【名师点评】 解决本题的关键有以下两点: (1)结合圆周运动,准确理解题意,

根据三角函数定义,表示出d =2sin t -π

4是关键.

(2)涉及函数图象判定问题,

结合函数的性质、特殊化思想是快捷求解的有效途径.

练习:《名师一号》P49对应训练 如图,已知l 1⊥l 2,圆心在l 1上、半径为 1 m 的圆O 在t =0时与l 2相切于点A , 圆O 沿l 1以1 m/s 的速度匀速向上移动, 圆被直线l 2所截上方圆弧长记为x ,

令y =cos x ,则y 与时间t (0≤t ≤1,单位:s)的函数y

=f (t )的图象大致为( )

A B C D

解析 圆半径为1,设弧长x 所对的圆心角为α,则

α=x ,如图所示,cos α2

=1-t ,即cos x

2

=1-t ,则y

=cos x =2cos 2

x 2

-1=2(1-t )2-1=2(t -1)2-1(0≤t

≤1).其图象为开口向上,在[0,1]上的一段抛物线.

课后作业

计时双基练P241 基础1-11、培优1-4

课本P48-49变式思考1、2、3;对应训练

预习第三章第二节同角三角函数的基本关系

(完整版)任意角与弧度制题型小结

任意角与弧度制 【知识梳理】 1.按旋转方向分 2. (1)角的终边在第几象限,则此角称为第几____;(2)角的终边在__上,则此角不属于任何一个象限. 3. 所有与角α终边相同的角,连同角α在内,可构成一个集合S=_________________,即任一与角α终边相同的角,都可以表示成角α与__________的和. 【常考题型】 题型一、象限角的判断 【例1】已知角的顶点与坐标原点重合,始边落在x轴的非负半轴上,作出下列各角,并指出它们是第几象限角. (1)-75°;(2)855°;(3)-510°. 【类题通法】象限角的判断方法 (1)根据图形判定,在直角坐标系中作出角,角的终边落在第几象限,此角就是第几象限角. (2)根据终边相同的角的概念.把角转化到0°~360°范围内,转化后的角在第几象限,此角就是第几象限角. 【对点训练】 在直角坐标系中,作出下列各角,在0°~360°范围内,找出与其终边相同的角,并判定它是第几象限角. (1)360°;(2)720°;(3)2 012°;(4)-120°. 题型二、终边相同的角的表示 【例2】(1)写出与α=-1 910°终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来. (2)分别写出终边在下列各图所示的直线上的角的集合.

(3)写出终边落在图中阴影部分(包括边界)的角的集合. 【类题通法】 1.终边相同的角常用的三个结论 (1)终边相同的角之间相差360°的整数倍. (2)终边在同一直线上的角之间相差180°的整数倍. (3)终边在相互垂直的两直线上的角之间相差90°的整数倍. 2.区域角是指终边落在坐标系的某个区域的角,其写法可分三步 (1)先按逆时针方向找到区域的起始和终止边界; (2)由小到大分别标出起始、终止边界对应的一个角α,β,写出所有与α,β终边相同的角; (3)用不等式表示区域内的角,组成集合. 【对点训练】 已知角α的终边在如图所示的阴影部分内,试指出角α的取值范围. 题型三、确定n α及 n α 所在的象限 【例3】 若α是第二象限角,则2α,α 2 分别是第几象限的角? 【类题通法】 1.n α所在象限的判断方法 确定n α终边所在的象限,先求出n α的范围,再直接转化为终边相同的角即可. 2.αn 所在象限的判断方法

任意角及弧度制知识点总结

任意角及弧度制知识点总结 1、角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。射线的起始位置称为始边,终止位置称为终边。 2、象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何象限。 3. 终边相同的角的表示: (1)α终边与θ终边相同(α的终边在θ终边所在射线上)?2()k k αθπ=+∈Z ,注意:相等的角的终边一定相同,终边相同的角不一定相等.如与角 1825-的终边相同,且绝对值最小的角的度数是___,合___弧度。 (2)α终边与θ终边共线(α的终边在θ终边所在直线上) ?()k k αθπ=+∈Z . (3)α终边与θ终边关于x 轴对称?2()k k αθπ=-+∈Z . (4)α终边与θ终边关于y 轴对称?2()k k απθπ=-+∈Z . (5)α终边与θ终边关于原点对称?2()k k απθπ=++∈Z . (6)α终边在x 轴上的角可表示为:,k k Z απ=∈;α终边在y 轴上的角可表 示为:,2k k Z παπ=+∈;α终边在坐标轴上的角可表示为:,2k k Z π α=∈.如α 的终边与6 π 的终边关于直线x y =对称,则α=____________。 4、α与2α的终边关系:由“两等分各象限、一二三四”确定.如若α是第二象 限角,则2 α 是第_____象限角 5.弧长公式:||l R α=,扇形面积公式:211||22 S lR R α==,1弧度(1rad)57.3≈. 如已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积。 6、任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意 一点(异于原点),它与原点的距离是0r =>,那么sin ,cos y x r r αα==, ()tan ,0y x x α=≠,cot x y α=(0)y ≠,sec r x α=()0x ≠,()csc 0r y y α=≠。三角 函数值只与角的大小有关,而与终边上点P 的位置无关。如

任意角的三角函数练习题及答案详解

任意角的三角函数 一、选择题 1.以下四个命题中,正确的是( ) A .在定义域内,只有终边相同的角的三角函数值才相等 B .{α|α=k π+6 π,k ∈Z }≠{β|β=-k π+6 π ,k ∈Z } C .若α是第二象限的角,则sin2α<0 D .第四象限的角可表示为{α|2k π+2 3π<α<2k π,k ∈Z } 2.若角α的终边过点(-3,-2),则( ) A .sin α tan α>0 B .cos α tan α>0 C .sin α cos α>0 D .sin α cot α>0 3.角α的终边上有一点P (a ,a ),a ∈R ,且a ≠0,则sin α的值是( ) A . 2 2 B .- 2 2 C .± 2 2 D .1 4.α是第二象限角,其终边上一点P (x ,5),且cos α=42 x ,则sin α的值为 ( ) A .410 B .46 C .42 D .-410 5.使lg (cos θ·tan θ)有意义的角θ是( ) A .第一象限角 B .第二象限角 C .第一或第二象限角 D .第一、二象限角或终边在y 轴上 6.设角α是第二象限角,且|cos 2α|=-cos 2α,则角2α 是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 7.点P 是角α终边上的一点,且 ,则b 的值是( ) A 3 B -3 C ±3 D 5 8.在△ABC 中,若最大的一个角的正弦值是 ,则△ABC 是( ) A 锐角三角形 B 钝角三角形 C 直角三角形 D 等边三角形 9.若α是第四象限角,则 是( ) A 第二象限角 B 第三象限角 C 第一或第三象限角 D 第二或第四象限角 10.已知sin α=4 5 ,且α为第二象限角,那么tan α的值等于 ( )

任意角与弧度制知识点汇总

任意角与弧度制 知识梳理: 一、任意角和弧度制 1、角的概念的推广 定义:一条射线OA由原来的位置,绕着它的端点O按一定的方向旋转到另一位置OB,就形成了角α,记作:角α或α ∠可以简记成α。 2、角的分类: 由于用“旋转”定义角之后,角的范围大大地扩大了。可以将角分为正角、零角和负角。 正角:按照逆时针方向转定的角。 零角:没有发生任何旋转的角。 负角:按照顺时针方向旋转的角。 3、“象限角” 为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于x轴的正半轴。 角的终边落在第几象限,我们就说这个角是第几象限的角 角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。例1、(1)A={小于90°的角},B={第一象限的角},则A∩B=(填序号). ①{小于90°的角} ②{0°~90°的角} ③ {第一象限的角} ④以上都不对 (2)已知A={第一象限角},B={锐角},C={小于90°的角},那么A、

B 、 C 关系是( ) A .B=A∩C B .B∪C= C C .A ?C D .A=B=C 4、常用的角的集合表示方法 1、终边相同的角: (1)终边相同的角都可以表示成一个0?到360?的角与)(Z k k ∈个周角的和。 (2)所有与?终边相同的角连同?在内可以构成一个集合 {}Z k k S ∈?+==,360| αββ 即:任何一个与角?终边相同的角,都可以表示成角?与整数个周角的和 注意: 1、Z ∈k 2、α是任意角 3、终边相同的角不一定相等,但相等的角的终边一定相同。终边相同的角有无数个,它们相差360°的整数倍。 4、一般的,终边相同的角的表达形式不唯一。 例1、(1)若θ角的终边与 58π角的终边相同,则在[]π2,0上终边与4 θ 的角终边相同的角为 。 (2)若βα和是终边相同的角。那么βα-在 例2、求所有与所给角终边相同的角的集合,并求出其中的最小正角,最大负角: (1) 210-; (2)731484'- . 例3、求θ,使θ与 900-角的终边相同,且[] 1260180, -∈θ.

任意角三角函数练习题

1-2-1任意角的三角函数 1.以下四个命题中,正确的是( ) A .在定义域内,只有终边相同的角的三角函数值才相等 B .{α|α=k π+6π,k ∈Z }≠{β|β=-k π+6 π,k ∈Z } C .若α是第二象限的角,则sin2α<0 D .第四象限的角可表示为{α|2k π+2 3π<α<2k π,k ∈Z } 2.若角α的终边过点(-3,-2),则( ) A .sin α tan α>0 B .cos α tan α>0 C .sin α cos α>0 D .sin α cot α>0 3.角α的终边上有一点P (a ,a ),a ∈R ,且a ≠0,则sin α的值是( ) A .22 B .-22 C .±22 D .1 4.α是第二象限角,其终边上一点( P x ,且cos 4x α= ,则sin α的值为( ) A .410 B .46 C .42 D .-410 5.使lg (cos θ·tan θ)有意义的角θ是( ) A .第一象限角 B .第二象限角 C .第一或第二象限角 D .第一、二象限角或终边在y 轴上 6.设角α是第二象限角,且cos cos 22αα=- ,则角2α 是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 7.若α是第四象限角,则 2α 是( ) A.第二象限角 B.第三象限角 C.第一或第三象限角 D.第二或第四象限角 8.若α 为第二象限角,则下列各式恒小于0的是( ) A.sin cos αα+ B.tan sin αα+ C cos tan αα- D sin tan αα- 9.已知角α的终边落在直线y =3x 上,则sin α=________. 10.已知P (-3,y )为角α的终边上一点,且sin α=1313 ,那么y 的值等于________. 11.已知锐角α终边上一点P (1,3),则α的弧度数为________.

任意角的概念与弧度制

任意角的概念与弧度制 1、角的概念的推广: 角可以看作平面内一条射线绕端点从一个位置(始边)旋转到另一个位置(终边)形成的图形.规定按照逆时针方向旋转而成的角叫做正角;按照顺时针方向旋转而成的角叫做负角:射线没有旋转时称零角.任意角的概念与弧度制 1.角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形. 正角:按逆时针方向旋转所形成的角. 负角:按顺时针方向旋转所形成的角. 零角:如果一条射线没有做任何旋转,我们称它形成了一个零角. 要点诠释: 角的概念是通过角的终边的运动来推广的,既有旋转方向,又有旋转大小,同时没有旋转也是一个角,从而得到正角、负角和零角的定义. 2.终边相同的角、象限角 终边相同的角为 角的顶点与原点重合,角的始边与轴的非负半轴重合.那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角. 要点诠释: (1)终边相同的前提是:原点,始边均相同; (2)终边相同的角不一定相等,但相等的角终边一定相同; (3)终边相同的角有无数多个,它们相差的整数倍. 3、终边相同的角与象限角: 与角终边相同的角构成一个集合,;顶点与坐标原点重合,始边与轴正半轴重合,角的终边在第几象限,就把这个角叫做第几象限的角.知识点二:弧度制 弧度制 (1)长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1,或1弧度,或1(单

位可以省略不写). (2)弧度与角度互换公式: 1rad=≈°=57°18′,1°=≈(rad) (3)弧长公式:(是圆心角的弧度数), 扇形面积公式:. 要点诠释: (1)角有正负零角之分,它的弧度数也应该有正负零之分,如等等,一般地, 正角的弧度数是 一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定. (2)角的弧度数的绝对值是:,其中,是圆心角所对的弧长,是半径. 3、弧度制的概念及换算: 规定长度等于半径长的圆弧所对的圆心角叫做1弧度的角.弧度记作rad.注意在用弧度制时,“弧度”或“rad”可以略去不写. 在半径为的圆中,弧长为的弧所对圆心角为,则 所以,rad,(rad),1(rad). 4、弧度制下弧长公式: ;弧度制下扇形面积公式. 类型一:象限角 1.已知角; (1)在区间内找出所有与角有相同终边的角;

(完整版)三角函数定义练习题

三角函数的定义练习题 一、选择题 1.已知a 是第二象限角,5 sin ,cos 13 a a ==则( ) A .1213 B .513 - C .513 D .-1213 2.已知角的终边上一点(),且 ,则 的值是( ) A. B. C. D. 3.已知点P(sin ,cos )落在角θ的终边上,且θ∈[0,2π),则θ值为( ) A. B. C. D. 4.把表示成θ+2k π(k ∈Z)的形式,使|θ|最小的θ值是( ) A. B. C. D. 5.若α是第四象限角,则π-α是( ) A. 第一象限角 B. 第二象限角 C. 第三象限角 D. 第四象限角 6.cos ( )-sin( )的值是( ). A. B .- C .0 D. 7.4tan 3cos 2sin 的值( ) A .小于0 B .大于0 C .等于0 D .不存在 8.已知3α=-,则角α的终边所在的象限是() A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.设角θ的终边经过点(3,4)P -,那么sin 2cos θθ+=( ) A . 15 B .15- C .2 5 - D .25 10.若0sin <α,且0tan >α,则α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 11.若cos α=-,且角α的终边经过点P(x,2),则P 点的横坐标x 是( ) (A)2 (B)±2 (C)-2 (D)-2 12.若α是第四象限角,5 tan 12 α=-,则sin α= (A)15. (B)15-. (C)513. (D)513 -.

必修4-任意角和弧度制-练习题整理

1、下列六个命题:其中正确的命题有 . ①时间经过3小时,时针转过的角是90°②小于90°的角是锐角③大于90°的角是钝角④若α 是锐角,则α 的终边在第一象限 ⑤若α 的终边在第二象限,则α 是钝角⑥若α 的终边在第四象限,则α 是负角 2、练习:角度与弧度互化: 0°= .;30° ;45° ;3π ;2π ;120° ;135° ;150° ; 54π ,-43π 、310 π 、-210° 、75° ,0330 ,0900 23π- ,405° , -280° , 1680° , π411- ,5π ,67π 780° ,-1560° ,67.5° ,π310- , 12π ,4 7π 3、在0°~360°间,找出与下列角终边相同角:(将下列角化成0360()k k Z α?+∈的形式) -150° 、1040° 、-940° .0 300 01125 0660- -1050° 01485- 4、下列各对角中终边相同的角是( ) A.πππk 222+-和(k ∈z ) B.-3π和322π C.-97π和911π D. 9 122320ππ和 5、用弧度制表示下列角的集合。 (1)x 轴上的角; (2)第四象限角; (3)与 6 π的终边关于x 轴对称的角; (4)终边在直线y=x 上。 (5) 终边落在一、三象限角平分线上 6、写出角的终边在下图中阴影区域内角的集合(包括边界). 7、若α 是第二象限的角,则2 α所在的象限是( ) A .第一、二象限 B .第一、三象限 C .第二、四象限 D .第二、三象限 8、若角α是第三象限角,则2 α角的终边在 . 9、若α是第四象限角,则π-α一定在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 10、已知:α是第三象限角,求(1)2α (2) 2α (3) 3 α终边所在的位置

高二数学任意角和弧度制知识点总结

高二数学任意角和弧度制知识点总结 在中国古代把数学叫算术,又称算学,最后才改为数学。小编准备了高二数学任意角和弧度制知识点,希望你喜欢。 1.任意角 (1)角的分类: ①按旋转方向不同分为正角、负角、零角. ②按终边位置不同分为象限角和轴线角. (2)终边相同的角: 终边与角相同的角可写成+k360(kZ). (3)弧度制: ①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角. ②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,||=,l是以角作为圆心角时所对圆弧的长,r 为半径. ③用弧度做单位来度量角的制度叫做弧度制.比值与所取的r 的大小无关,仅与角的大小有关. ④弧度与角度的换算:360弧度;180弧度. ⑤弧长公式:l=||r,扇形面积公式:S扇形=lr=||r2. 2.任意角的三角函数 (1)任意角的三角函数定义: 设是一个任意角,角的终边与单位圆交于点P(x,y),那么

角的正弦、余弦、正切分别是:sin =y,cos =x,tan =,它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数. (2)三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦. 3.三角函数线 宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。至元明清之县学一律循之不变。明朝入选翰林院的进士之师称“教习”。到清末,学堂兴起,各科教师仍沿用“教习”一称。其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。而相应府和州掌管教育生员者则谓“教授”和“学正”。“教授”“学正”和“教谕”的副手一律称“训导”。于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。设角的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P,过P作PM垂直于x轴于M.由三角函数的定义知,点P的坐标为(cos_,sin_),即P(cos_,sin_),其中cos =OM,sin =MP,单位圆与x轴的正半轴交于点A,单位圆在A点的切线与的终边或其反向延长线相交于点T,则tan =AT.我们把有向线段OM、MP、AT叫做的余弦线、正弦线、正切线. 这个工作可让学生分组负责收集整理,登在小黑板上,每周一

任意角的三角函数典型例题精析

任意角的三角函数·典型例题精析 例1下列说法中,正确的是 [] A.第一象限的角是锐角 B.锐角是第一象限的角 C.小于90°的角是锐角 D.0°到90°的角是第一象限的角 【分析】本题涉及了几个基本概念,即“第一象限的角”、“锐角”、“小于90°的角”和“0°到90°的角”.在角的概念推广以后,这些概念容易混淆.因此,弄清楚这些概念及它们之间的区别,是正确解答本题的关键. 【解】第一象限的角可表示为{θ|k·360°<θ<90°+k·360°,k∈Z},锐角可表示为{θ|0°<θ<90°},小于90°的角为{θ|θ<90°},0°到90°的角为{θ|0°≤θ<90°}.因此,锐角的集合是第一象限角的集合当k=0时的子集,故(A),(C),(D)均不正确,应选(B). (90°-α)分别是第几象限角? 【分析】由sinα·cosα<0,所以α在二、四象限;由sinα·tanα<0,所以α在二、三象限.因此α为第二象限的角,然后由角α的 【解】(1)由题设可知α是第二象限的角,即 90°+k·360°<α<180°+k·360°(k∈Z), 的角. (2)因为180°+2k·360°<2α<360°+2k·360°(k∈Z),所以2α是第三、第四象限角或终边在y轴非正半轴上的角. (3)解法一:因为90°+k·360°<α<180°+k·360°(k∈Z), 所以-180°-k·360°<-α<-90°-k·360°(k∈Z).

故-90°-k·360°<90°-α<-k·360°(k∈Z). 因此90°-α是第四象限的角. 解法二:因为角α的终边在第二象限,所以-α的终边在第三象限.将-α的终边按逆时针旋转90°,可知90°-α的终边在第四象限内. 【说明】①在确定形如α+k·180°角的象限时,一般要分k为偶数或奇数讨论;②确定象限时,α+kπ与α-kπ是等效的. 例3已知集合E={θ|cosθ<sinθ,0≤θ≤2π},F={θ|tanθ<sinθ},那么E∩F是区间 [] 【分析】解答本题必须熟练掌握各个象限三角函数的符号、各个象限的三角函数值随角的变化而递增或递减的变化情况.可由三角函数的性质判断,也可由三角函数线判断.用代入特殊值排除错误答案的方法解答本题也比较容易. 【解法一】由正、余弦函数的性质, 【解法二】由单位圆中的正弦线和正切线容易看出,对于二、四象限的角,AT<MP,即tanα<sinθ,由正弦线和余弦线可看出,当 应选(A). 可排除(C),(D),得(A). 【说明】本题解法很多,用三角函数线还可以有以下解法:因为第一、三象限均有AT>MP,即tanθ>sinθ,所以(B),(C),(D)均不成立.用排除法也有些别的方法,可自己练习. 例 4 (1)已知角α终边上一点P(3k,-4k)(k<0),求sinα,cosα,tanα的值; 【分析】利用三角函数的定义进行三角式的求值、化简和证明,是 三两个象限,因此必须分两种情况讨论.

高中数学必修四 任意角与弧度制 知识点汇总(教师版)

任意角与弧度制 知识梳理: 一、任意角和弧度制 1、角的概念的推广 定义:一条射线OA 由原来的位置,绕着它的端点O 按一定的方向旋转到另一位置OB ,就形成了角α,记作:角α或α∠ 可以简记成α。 注意: (1)“旋转”形成角,突出“旋转” (2)“顶点”“始边”“终边”“始边”往往合于x 轴正半轴 (3)“正角”与“负角”——这是由旋转的方向所决定的。 例1、若ο ο13590<<<αβ,求βα-和βα+的范围。(0,45) (180,270) 2、角的分类: 由于用“旋转”定义角之后,角的范围大大地扩大了。可以将角分为正角、零角和负角。 正角:按照逆时针方向转定的角。 零角:没有发生任何旋转的角。 负角:按照顺时针方向旋转的角。 例2、(1)时针走过2小时40分,则分针转过的角度是 -960 (2)将分针拨快10分钟,则分针转过的弧度数是 3 π . 3、 “象限角” 为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于x 轴的正半轴。 角的终边落在第几象限,我们就说这个角是第几象限的角 角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。 例1、30? ;390? ;-330?是第 象限角 300? ; -60?是第 象限角 585? ; 1180?是第 象限角 -2000?是第 象限角。 例2、(1)A={小于90°的角},B={第一象限的角},则A∩B= ④ (填序号).

①{小于90°的角} ②{0°~90°的角} ③ {第一象限的角} ④以上都不对 (2)已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是(B ) A .B=A∩C B .B ∪C= C C .A ?C D .A=B=C 例3、写出各个象限角的集合: 例4、若α是第二象限的角,试分别确定2α,2 α 的终边所在位置. 解 ∵α是第二象限的角, ∴k ·360°+90°<α<k ·360°+180°(k ∈Z ). (1)∵2k ·360°+180°<2α<2k ·360°+360°(k ∈Z ), ∴2α是第三或第四象限的角,或角的终边在y 轴的非正半轴上. (2)∵k ·180°+45°<2 α <k ·180°+90°(k ∈Z ), 当k =2n (n ∈Z )时, n ·360°+45°< 2 α <n ·360°+90°; 当k =2n +1(n ∈Z )时, n ·360°+225°<2 α <n ·360°+270°. ∴ 2 α 是第一或第三象限的角. 拓展:已知α是第三象限角,问3 α是哪个象限的角? ∵α是第三象限角,∴180°+k ·360°<α<270°+k ·360°(k ∈Z ), 60°+k ·120°< 3 α <90°+k ·120°. ①当k =3m (m ∈Z )时,可得 60°+m ·360°<3 α <90°+m ·360°(m ∈Z ). 故 3 α 的终边在第一象限. ②当k =3m +1 (m ∈Z )时,可得 180°+m ·360°<3 α <210°+m ·360°(m ∈Z ). 故 3 α 的终边在第三象限. ③当k =3m +2 (m ∈Z )时,可得 300°+m ·360°< 3 α <330°+m ·360°(m ∈Z ).

任意角、弧度制、任意角的三角函数题型归纳

第四章 三角函数、解三角形 第一节 任意角和弧度制及任意角的三角函数 ? 基础知识 1.角的概念的推广 (1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形. (2)分类? ???? 按旋转方向不同分为正角、负角、零角. 按终边位置不同分为象限角和轴线角. (3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+2k π,k ∈Z }. 终边相同的角不一定相等,但相等的角其终边一定相同. 2.弧度制的定义和公式 (1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式: 有关角度与弧度的两个注意点 (1)角度与弧度的换算的关键是π=180°,在同一个式子中,采用的度量制度必须一致,不可混用. (2)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度. 3.任意角的三角函数 (1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=y x (x ≠0). (2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线、余弦线和正切线.

二、常用结论汇总——规律多一点 (1)一个口诀 三角函数值在各象限的符号:一全正、二正弦、三正切、四余弦.(2)三角函数定义的推广 设点P(x,y)是角α终边上任意一点且不与原点重合,r=|OP|,则sin α=y r,cos α= x r,tan α= y x(x≠0). (3)象限角 (4)轴线角

高中数学人教版必修4任意角和弧度制教学设计

1.1 任意角和弧度制 1.1.1 任意角 整体设计 教学分析 教材首先通过实际问题的展示,引发学生的认知冲突,然后通过具体例子,将初中学过的角的概念推广到任意角,在此基础上引出终边相同的角的集合的概念.这样可以使学生在已有经验(生活经验、数学学习经验)的基础上,更好地认识任意角、象限角、终边相同的角等概念.让学生体会到把角推广到任意角的必要性,引出角的概念的推广问题.本节充分结合角和平面直角坐标系的关系,建立了象限角的概念.使得任意角的讨论有一个统一的载体.教学中要特别注意这种利用几何的直观性来研究问题的方法,引导学生善于利用数形结合的思想方法来认识问题、解决问题.让学生初步学会在平面直角坐标系中讨论任意角.能熟练写出与已知角终边相同的角的集合,是本节的一个重要任务. 学生的活动过程决定着课堂教学的成败,教学中应反复挖掘“探究”栏目及“探究”示图的过程功能,在这个过程上要不惜多花些时间,让学生进行操作与思考,自然地、更好地归纳出终边相同的角的一般形式.也就自然地理解了集合S={β|β=α+k·360°,k∈Z}的含义.如能借助信息技术,则可以动态表现角的终边旋转的过程,更有利于学生观察角的变化与终边位置的关系,让学生在动态的过程中体会,既要知道旋转量,又要知道旋转方向,才能准确刻画角的形成过程的道理,更好地了解任意角的深刻涵义. 三维目标 1.通过实例的展示,使学生理解角的概念推广的必要性,理解并掌握正角、负角、零角、象限角、终边相同角的概念及表示,树立运动变化的观点,并由此深刻理解推广之后的角的概念. 2.通过自主探究、合作学习,认识集合S中k、α的准确含义,明确终边相同的角不一定相等,终边相同的角有无限多个,它们相差360°的整数倍.这对学生的终身发展,形成科学的世界观、价值观具有重要意义. 3.通过类比正、负数的规定,让学生认识正角、负角并体会类比、数形结合等思想方法的运用,为今后的学习与发展打下良好的基础. 重点难点 教学重点:将0°—360°范围的角推广到任意角,终边相同的角的集合. 教学难点:用集合来表示终边相同的角. 课时安排 1课时 教学过程 导入新课 图1 思路 1.(情境导入)如图1,在许多学校的门口都有摆设的一些游戏机,只要指针旋转到阴影部分即可获得高额奖品.由此发问:指针怎样旋转,旋转多少度才能赢?还有我们所熟悉

(完整版)任意角和弧度制知识点和练习

知识点一:任意角的表示 正角:按逆时针方向旋转形成的角 1、任意角负角:按顺时针方向旋转形成的角 零角:不作任何旋转形成的角 知识点二:象限角的范围 2、角的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,则称为第几 象限角. k 360°180°k 360°270°, k k 360°270°k 360°360°, k 终边在x轴上的角的集合为k 180°,k 终边在y轴上的角的集合为k 180°90°,k 终边在坐标轴上的角的集合为k 90°,k 知识点三:终边角的范围 3、与角终边相同的角的集合为k 360°,k 4、已知是第几象限角,确定一n *所在象限的方法:先把各象限均分n等份,再从x轴的正 n 半轴的上方起,依次将各区域标上一、二、三、四,则原来是第几象限对应的标号即为一终边 n 所落在的区域. 知识点四:弧度制的转换 5、长度等于半径长的弧所对的圆心角叫做1弧度. 6、半径为r的圆的圆心角所对弧的长为I,则角的弧度数的绝对值是| | - r ° 7、弧度制与角度制的换算公式:2 360°,1°,1 180 57.3°. 180 知识点五:扇形 8、若扇形的圆心角为为弧度制,半径为r,弧长为1,周长为C,面积为S,则1 r 1 1 C 2r I,S -lr 2 22 r . 第一象限角的集合为k 360°k 360°90°,k 第二象限角的集合为 第三象限角的集合为 第四象限角的集合为 k 360°90°k 360°180°,k

例题分析 【例1】如果 角是第二象限的角,那么一角是第几象限的角?说说你的理由 2 【例3】一扇形周长为20cm 当扇形的圆心角 等于多少弧度时,这个扇形的面积最大?并求此 扇形的最 大面积? 针对练习 3. 如果一扇形的弧长为2冗cm ,半径等于2cm ,则扇形所对圆心角为( ) A.n B. 2n C.n D. 3n 2 2 4. 若a 是第四象限角,则180° + a 一定是( ) A .第一象限角 B. 第二象限角 C. 第三象限角 D. 第四象限角 5. —个半径为R 的扇形,它的周长为4R ,则这个扇形所含弓形的面积为( ) A. 1 1 2 -2 —sin2 R 2 B. !R 2 si n2 2 2 2 C. 丄R 2 D. 2 R 1 2 -R sin 2 2 2 6.若 角的终边落在第三或: 第四象限, 则 -的终边落在( ) 2 A.第一或第三象限 B.第二或第四象限 C ?第一或第四象限 D.第三或第四象限 7.某扇形的面积为1cm 2,它的周长为4cm ,那么该扇形圆心角的度数为 ( ) A. 1弧度角的大小与圆的半径无关 B.大圆中1弧度角比小圆中1弧度角大 C ?圆心角为1弧度的扇形的弧长都相等 D .用弧度表示的角都是正角 sin 1 、填空题 10. _____________________________________________________________ 若三角形的三个 内角的比等于2:3: 7,则各内角的弧度数分别为 __________________________________ . 11. 将时钟拨快了 10分钟,则时针转了 度,分针 转了 弧度. 12. __________________________________________________________________ 若角a 的 1. F 列角中终边与330°相同的角是( A .30 ° B.-30 ° C.630 2. 下列 命题正确的是( ) A .终边相同的角一定相等。 D.-630 B. 第一象限的角都是锐角 C. 锐角都是第一象限的角 D. 小于90的角都是锐角 A. 2° B. 2 8.下列说法正确的是 C. 4° D. 4 ( ) 9.已知弧度数为 2的圆心角所对的弦长也是 2,则这个圆心角所对的弧长是 A. 2 B. C. 2sin1 D. sin2

必修四-任意角与弧度制--知识点汇总(教师版)

美博教育任意角与弧度制 知识梳理: 一、任意角和弧度制 1、角的概念的推广 定义:一条射线OA 由原来的位置,绕着它的端点O 按一定的方向旋转到另一位置OB ,就形成了角α,记作:角α或α∠ 可以简记成α。 注意: (1)“旋转”形成角,突出“旋转” (2)“顶点”“始边”“终边”“始边”往往合于x 轴正半轴 (3)“正角”与“负角”——这是由旋转的方向所决定的。 例1、若οο13590<<<αβ,求βα-和βα+的范围。(0,45) (180,270) 2、角的分类: 由于用“旋转”定义角之后,角的范围大大地扩大了。可以将角分为正角、 零角和负角。 正角:按照逆时针方向转定的角。 零角:没有发生任何旋转的角。 负角:按照顺时针方向旋转的角。 例2、(1)时针走过2小时40分,则分针转过的角度是 (2)将分针拨快10分钟,则分针转过的弧度数是 . 3、 “象限角” 为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于x 轴的正半轴。 角的终边落在第几象限,我们就说这个角是第几象限的角 角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。 例1、30? ;390? ;-330?是第 象限角 300? ; -60?是第 象限角 585? ; 1180?是第 象限角 -2000?是第 象限角。

例2、(1)A={小于90°的角},B={第一象限的角},则A∩B=(填序号). ①{小于90°的角} ②{0°~90°的角} ③ {第一象限的角} ④以上都不对 (2)已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是() A.B=A∩C B.B∪C=C C.A?C D.A=B=C 例3、写出各个象限角的集合: α的终边所在位置. 例4、若α是第二象限的角,试分别确定2α, 2 解∵α是第二象限的角, ∴k·360°+90°<α<k·360°+180°(k∈Z). (1)∵2k·360°+180°<2α<2k·360°+360°(k∈Z), ∴2α是第三或第四象限的角,或角的终边在y轴的非正半轴上. α<k·180°+90°(k∈Z), (2)∵k·180°+45°< 2 当k=2n(n∈Z)时, α<n·360°+90°; n·360°+45°< 2 当k=2n+1(n∈Z)时, α<n·360°+270°. n·360°+225°< 2 α是第一或第三象限的角. ∴ 2 α是哪个象限的角? 拓展:已知α是第三象限角,问 3 ∵α是第三象限角,∴180°+k·360°<α<270°+k·360°(k∈Z), α<90°+k·120°. 60°+k·120°< 3 ①当k=3m(m∈Z)时,可得 α<90°+m·360°(m∈Z). 60°+m·360°< 3 α的终边在第一象限. 故 3 ②当k=3m+1 (m∈Z)时,可得 α<210°+m·360°(m∈Z). 180°+m·360°< 3 α的终边在第三象限. 故 3 ③当k=3m+2 (m∈Z)时,可得 α<330°+m·360°(m∈Z). 300°+m·360°< 3

(推荐)高一三角函数题型总结

题型总结 1.已知角范围和其中一个角的三角函数值求任意角三角函数值 方法:画直角三角形 利用勾股定理先算大小后看正负 例题:1.已知α∠为第二象限角,13 5 sin =α求αcos 、αtan 、αcot 的值 2.已知α∠为第四象限角,3tan -=α求αcos 、αsin 、αcot 的值 2.一个式子如果满足关于αsin 和αcos 的分式 齐次式 可以实现αtan 之间的转化 例题:1.已知 sin 2cos 5,tan 3sin 5cos ααααα -=-+那么的值为_____________. 2.已知2tan =α,则1.α αα αcos sin cos sin -+=_____________. 2.α αα α22cos sin cos sin -=_____________. 3.1cos sin +αα=_____________.(“1”的代换)

3.已知三角函数αsin 和αcos 的和或差的形式求αsin .αcos 方法:等式两边完全平方(注意三角函数中判断正负利用角的范围进行取舍) 例题:已知πα<∠<0,αsin +αcos =2 1 ,求αsin .αcos αcos -αsin 4.利用“加减πk 2”大角化小角,负角化正角,求三角函数值 例题:求值:sin(-236π)+cos 137π·tan4π -cos 13 3 π= ; 练习题 1.已知sin α=4 5 ,且α为第二象限角,那么tan α的值等于 ( ) (A)3 4 (B)43 - (C)43 (D)4 3 - 2.已知sin αcos α= 8 1,且4π<α< 2π ,则cos α-sin α的值为 ( ) (A) 2 3 (B)4 3 (C)3 (D)± 2 3

任意角的三角函数练习题及标准答案详解

任意角的三角函数练习题及答案详解

————————————————————————————————作者:————————————————————————————————日期:

任意角的三角函数 一、选择题 1.以下四个命题中,正确的是( ) A .在定义域内,只有终边相同的角的三角函数值才相等 B .{α|α=k π+ 6π,k ∈Z }≠{β|β=-k π+6 π ,k ∈Z } C .若α是第二象限的角,则sin2α<0 D .第四象限的角可表示为{α|2k π+ 2 3 π<α<2k π,k ∈Z } 2.若角α的终边过点(-3,-2),则( ) A .sin α tan α>0 B .cos α tan α>0 C .sin α cos α>0 D .sin α cot α>0 3.角α的终边上有一点P (a ,a ),a ∈R ,且a ≠0,则sin α的值是( ) A . 2 2 B .- 2 2 C .± 2 2 D .1 4.α是第二象限角,其终边上一点P (x ,5),且cos α=42 x ,则sin α的值为( ) A .410 B .46 C .42 D .-410 5.使lg (cos θ·tan θ)有意义的角θ是( ) A .第一象限角 B .第二象限角 C .第一或第二象限角 D .第一、二象限角或终边在y 轴上 6.设角α是第二象限角,且|cos 2α|=-cos 2α,则角2α 是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 7. 已知集合E={θ|cos θ<sin θ,0≤θ≤2π},F={θ|tan θ<sin θ},那么E ∩F 是区间( )

任意角和弧度制及任意角的三角函数知识点与题型归纳

?高考明方向 1. 了解任意角的概念? 2■了解弧度制的概念,能进行弧度与角度的互化 3■理解任意角的三角函数(正弦、余弦、正切)的定义. ★备考知考情 1. 三角函数的定义与三角恒等变换等相结合, 考查三角函数求值问题. 2. 三角函数的定义与向量等知识相结合,考查三角函数定义的应用. 3■主要以选择题、填空题为主,属中低档题 一、知识梳理《名师一号》P47 知识点一角的概念⑴分类:按终边位置不同分为象限角和轴线角. ⑵终边相同的角:所有与角a终边相同的角,连同角a 在内,可构成一个集合S = { 3#a+ k 360°, k€ Z}. 《名师一号》P47 对点自测1、2 1、《名师一号》P48问题探究问题1、2 相等的角终边相同,终边相同的角也一定相等吗?相等 1

的角终边一定相同,但终边相同的角却不一定相等,终边相同的角有无数个,它们之间相差360°的整数倍. 角的表示形式是唯一的吗?角的集合的表示形式不是唯一的,女口:终边在y轴的负半轴上的角的集合可以表示为{x|x= k 360°- 90°, k € Z},也可以表示为{x|x= k 360°+ 270°, k€ Z}. (补充) 2、正角> 零角> 负角 3、下列概念应注意区分 小于90°的角;锐角;第一象限的角;0°?90°的角. 4、(1)终边落在坐标轴上的角 1)终边落在x轴非负半轴上的角 {x|x= 2k n k€ Z} 2)终边落在x轴非正半轴上的角 {x|x= 2k n k€ Z} 终边落在x轴上的角 {x|x= k n, k € Z} 3)终边落在y轴非负半轴上的角 {x|x= 2kk€ Z} 4)终边落在y轴非正半轴上的角 {x|x= 2k廿号,k€ Z} 2

任意角与弧度制教案

任意角与弧度制 【基础再现】 1、角的概念的推广 定义:一条射线OA 由原来的位置,绕着它的端点O 按一定的方向旋转到另一位置OB ,就形成了角,记作:角或 可以简记成。 注意: (1)“旋转”形成角,突出“旋转” (2)“顶点”“始边”“终边”“始边”往往合于轴正半轴 (3)“正角”与“负角”——这是由旋转的方向所决定的。 2、角的分类: 由于用“旋转”定义角之后,角的范围大大地扩大了。可以将角分为正角、零角和负角。 正角:按照逆时针方向转定的角。 零角:没有发生任何旋转的角。 负角:按照顺时针方向旋转的角。 3、 “象限角” 为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于轴的正半轴。 角的终边落在第几象限,我们就说这个角是第几象限的角 角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。 【重点、难点、考点】 ααα∠αx x

一、常用的角的集合表示方法 1、终边相同的角: (1)终边相同的角都可以表示成一个0?到360?的角与个周角的和。 (2)所有与α终边相同的角连同α在内可以构成一个集合 即:任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和 注意: 1、Z ∈k 2、α是任意角 3、终边相同的角不一定相等,但相等的角的终边一定相同。终边相同的角有无数个,它们相差360°的整数倍。 4、一般的,终边相同的角的表达形式不唯一。 2、终边在坐标轴上的点: 终边在x 轴上的角的集合: {}Z k k ∈?=,180| ββ 终边在y 轴上的角的集合:{}Z k k ∈+?=,90180| ββ 终边在坐标轴上的角的集合:{}Z k k ∈?=,90| ββ 3、终边共线且反向的角: 终边在y =x 轴上的角的集合:{}Z k k ∈+?=,45180| ββ 终边在x y -=轴上的角的集合:{}Z k k ∈-?=,45180| ββ )(Z k k ∈{}Z k k S ∈?+==,360| αββ

相关主题