搜档网
当前位置:搜档网 › 31.第三十一讲 几何(3) 蝴蝶模型 沙漏与金字塔模型、勾股定理

31.第三十一讲 几何(3) 蝴蝶模型 沙漏与金字塔模型、勾股定理

31.第三十一讲 几何(3) 蝴蝶模型 沙漏与金字塔模型、勾股定理
31.第三十一讲 几何(3) 蝴蝶模型 沙漏与金字塔模型、勾股定理

第三十一讲几何(3)

沙漏与金字塔模型、勾股定理

知识点汇总:

例题练习:

1、图中四边形ABCD是边长为12厘米的正方形,从G到正方形顶点C、D连成一个三角

形,已知这个三角形在AB上截得的EF长度为4厘米,那么三角形GDC的面积是多少?

2、在长方形ABCD中,S长ABCD=36,E为AD边上三等分点,AE=2ED,求S阴。

3、如图所示,直角三角形PQR的直角边分别为5厘米和9厘米。问:图中3个正方形面积

之和比4个三角形面积之和大多少?

4、右图中的两个滑块A 、B 由一个连杆连接,分别可以在垂直和水平的滑道上滑动。开始时,滑块A 距O 点20厘米,滑块B 距O 点15厘米。问:当滑块A 向下滑到O 点时,滑块B 滑动了多少厘米?

5、如图,两个长方形大小相同,长和宽分别为12和8,求阴影部分的面积。

【本讲重要内容回顾】

小试牛刀

1.有三个正方形ABCD 、BEFG 和CHIJ ,其中正方形ABCD 的边长是10,正方形BEFG 的边长是6,那么三角形DFI 的面积是 。

2.如下图所示,长方形ABCD 内的阴影部分的面积之和为70,AB =8,AD =15

,四边形

EFGO 的面积为多少?

3.在直角边为3与4的直角三角形各边上向外作正方形,三个正方形顶点连接如图所示的六边形ABCDEF ,则这个六边形的面积是多少?

4.这是一个正方形,图中所标数的单位是厘米,阴影部分的面积是 。

5.如下图,边长分别为5、7、10的三个正方形放在一起,则其中四边形ABCD 的面积是多少?

C

4

3A

F

E

D

C

B D

C

B

A

小学奥数几何五大模型

几何五大模型 一、五大模型简介 (1)等积变换模型 1、等底等高的两个三角形面积相等; 2、两个三角形高相等,面积之比等于底之比,如图①所示, S[sub]1[/sub]:S[sub]2[/sub]=a:b; 3、两个三角形底相等,面积在之比等于高之比,如图②所示,S[sub]1[/sub]:S[sub]2[/sub]=a:b; 4、在一组平行线之间的等积变形,如图③所示, S[sub]△ACD[/sub]=S[sub]△BCD[/sub];反之,如果 S[sub]△ACD[/sub]=S[sub]△BCD[/sub], 则可知直线AB平行于CD。 例、如图,三角形ABC的面积是24,D、E、F分别是BC、AC、AD的中点,求三角形DEF的面积。

(2)鸟头(共角)定理模型 1、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形; 2、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。 如图下图三角形ABC中,D、E分别是AB、AC上或AB、AC延长线上的点 则有:S[sub]△ABC[/sub]:S[sub]△ADE[/sub]=(AB×AC):(AD×AE) 我们现在以互补为例来简单证明一下共角定理!

如图连接BE,根据等积变化模型知,S[sub]△ADE[/sub]: S[sub]△ABE[/sub]=AD:AB、S[sub]△ABE[/sub]: S[sub]△CBE[/sub]=AE:CE,所以S[sub]△ABE[/sub]: S[sub]△ABC[/sub]=S[sub]△ABE[/sub]: (S[sub]△ABE[/sub]+S[sub]△CBE[/sub])=AE:AC ,因此S[sub]△ADE[/sub]:S[sub]△ABC[/su b]=(S[sub]△ADE[/sub]:S[sub]△ABE[/sub])×(S[sub]△ABE[/sub]:S[sub]△ABC[/sub])=(AD:AB)×(AE:AC)。 例、如图在ΔABC中,D在BA的延长线上,E在AC上,且AB:AD=5:2,AE:EC=3:2, △ADE的面积为12平方厘米,求ΔABC的面积。

小学奥数-几何五大模型

模型四 相似三角形模型 (一)金字塔模型 (二) 沙漏模型 ①AD AE DE AF AB AC BC AG ===; ②22:ADE ABC S S AF AG =△△:。 所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下: ⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; ⑶连接三角形两边中点的线段叫做三角形的中位线。 三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半。 相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具。 在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形。 【例 1】 如图,已知在平行四边形ABCD 中,16AB =,10AD =,4BE =,那么FC 的长 度是多少? 【解析】 图中有一个沙漏,也有金字塔,但我们用沙漏就能解决问题,因为AB 平行于CD , 所以::4:161:4BF FC BE CD ===,所以4 10814 FC =?=+. 【例 2】 如图,测量小玻璃管口径的量具ABC ,AB 的长为15厘米,AC 被分为60等份。 如果小玻璃管口DE 正好对着量具上20等份处(DE 平行AB ),那么小玻璃管口径DE 是多大? 【解析】 有一个金字塔模型,所以::DE AB DC AC =,:1540:60DE =,所以10DE =厘米。 【例 3】 如图,DE 平行BC ,若:2:3AD DB =,那么:ADE ECB S S =△△________。 【解析】 根据金字塔模型:::2:(23)2:5AD AB AE AC DE BC ===+=, 22:2:54:25ADE ABC S S ==△△, 任意四边形、梯形与相似模型

勾股定理与几何证明答案(可编辑修改word版)

1、勾股定理与几何证明的综合问题练习一、利用勾股定理证明一些重要的几何定理 1、如图,在Rt△ABC 中,∠ACB=90°,CD 是AB 边上的高. 证明:(1)CD2=AD ?BD (这个结果表明,利用勾股定理可以导出三角形相似的一系列结果) 1 1 1 (2)AC 2+ BC 2 = CD2 练习二、将勾股定理应用于四边形 1、四边形ABCD 的对角线为AC 和BD. (1)证明:若AC ⊥BD ,则AB2+CD2=AD2+BC 2; 2、一个四边形的顶点分别在一个边长为1 的正方形各边上,其边长依次为a、b、c、d. 求证: 2 ≤a2+b2+c2+d 2≤ 4 . 假设MNPQ 分别将正方形ABCD 的四个边分成了线段:m1 m2 n1 n2 p1 p2 q1 q2 ∵MNPQ 都在正方形ABCD 的四个边上,所以有四个直角三角形 ∴a2+b2+c2+d2=m12+m22+n12+n22+p12+p22+q12+q22∵m1+m2=正方形边长即为“1”(其他同理)∴a2+b2+c2+d2=m12+(1-m1)2+n12+(1-n1)2+p12+(1-p1)2+q12+(1-q1)2整理之后得到: a2+b2+c2+d2=2*(m1-/2)2+1/2+2*(n1-/2)2+1/2+2*(p1-/2)2+1/2+2*(q1-/2)2+1/2=2*[(m1-1/2)2+(n1-1/2)2+(p1-1/2)2+(q1-1/2)2] + 2 m1、n1、p1、q1 的长都是最大为1 最小为0 它们都等于1/2 时值最小,都等于1 时值最大那么a2+b2+c2+d2的最小值就是2,最大值就是4

【小奥】2016同步讲义-五年级春季(共15讲)-第08讲-沙漏与金字塔(2)

一、 沙漏与金字塔(五下) 如图,太阳照下来在桌面上形成一个圆形的亮斑,如图1所示,我们将图形抽象成三角形,如图2所示.观察一下, 这个图形与生活中的什么东西比较像?对了,沙漏!今天,就让我们来学习一下有关“沙漏”的知识. 沙漏有一个必要条件:线段AB 平行于线段CD ,如图2所示.大沙漏中,我们总结出了如下性质: AB AO BO DC DO CO == . 这就是我们今天要研究的平行线间的比例关系——即沙漏形三角形间的比例关系,简称沙漏. 在沙漏模型中,各线段的长度有比例关系,各区域的面积也有比例关系.如图所示, 如果沙漏形的上下底之比为:a b ,四个三角形的面积之比为22 :::a ab ab b . 太阳 纸片 桌面上的太阳 D C B A O 图1 图2 第8讲 沙漏与金字塔 知识点

我们发现,沙漏模型由一组平行线和一组相交线构成,且相交线的交点在平行线之间.如果交点在两条平行线的同一侧,就会构成一种新的模型,我们形象的称之为金字塔模型.在金字塔模型中也有相应的比例关系. 一、 沙漏与金字塔认识 1、如图,AB 与CD 垂直,交点为O .已知4AO =,3CO =,5AC =,15BD =.求△BOD 的面积. 【答 案 】 54 【 解析】 由沙漏模型知, 1 3AC AO CO BD OB OD ===,所以3412OB =?=,339OD =?=.又因为△BOD A O D C B 2a 2 1a 1a 1b 2b 2b 1b 1c 1c 2c 2c 沙漏模型 金字塔模型 111 222 a b c a b c == 11 22 a b a b = 11112122 a b c a a b b c ==++ ab ab 2a 2b 例题

金字塔模型与沙漏模型

金字塔模型与沙漏模型 ADAE DEAF ①AB=AC=BC=AG 2 2 ②S△ADE:S△ABC=AF:AG 所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变他们都相似),与相似三角形相关,常用的性质及定理如下: (1)相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似 比; (2)相似三角形面积的比等于它们相似比的平方; (3)连接三角形两边中点的线段我们叫做三角形的中位线; 三角形中位线定理:三角形的中位线长等于他所对应的底边长的一半。 相似三角形 对应角相等、对应边成比例的两个三角形叫做相似三角形。如果三边分别对应A,B,C 和a,b,c:那么:A/a=B/b=C/c,即三边边长对应比例相同。 判定方法 定义 对应角相等,对应边成比例的两个三角形叫做相似三角形。 预备定理 平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。(这 是相似三角形判定的定理,是以下判定方法证明的基础。这个引理的证明方法需要平行线与 线段成比例的证明) 1判定定理 常用的判定定理有以下6条: 判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个 三角形相似。(简叙为:两角对应相等,两个三角形相似。)(AA) 判定定理2:如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两 个三角形相似。(简叙为:两边对应成比例且夹角相等,两个三角形相似。)(SAS)判定定理3:如果两个三角形的三组对应边成比例,那么这两个三角形相似。(简叙为:三边对应成比例,两个三角形相似。)(SSS)

判定定理4:两个三角形三边对应平行,则个两三角形相似。(简叙为:三边对应平行, 两个三角形相似。) 判定定理5:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条 直角边对应成比例,那么这两个直角三角形相似。(简叙为:斜边与直角边对应成比例,两个 直角三角形相似。)(HL) 判定定理6:如果两个三角形全等,那么这两个三角形相似(相似比为1:1)(简叙为:全等三角形相似)。 相似的判定定理与全等三角形基本相等,因为全等三角形是特殊的相似三角形。 一定相似 符合下面的情况中的任何一种的两个(或多个)三角形一定相似: 1.两个全等的三角形 全等三角形是特殊的相似三角形,相似比为1:1。 补充:如果△ABC∽△A‘B’C‘,∴AB/A’B‘=AC/A’C‘=BC/B'C’ =K 当K=1时,这两个三角形全等。(K为它们的比值)2.任意 一个顶角或底角相等的两个等腰三角形 两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三 角形相似。 3.两个等边三角形 两个等边三角形,三个内角都是60度,且边边相等,所以相似。 4.直角三角形被斜边上的高分成的两个直角三角形和原三角形 由于斜边的高形成两个直角,再加上一个公共的角,所以相似。 2性质定理 (1)相似三角形的对应角相等。 (2)相似三角形的对应边成比例。 (3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。 (4)相似三角形的周长比等于相似比。 (5)相似三角形的面积比等于相似比的平方。[1] 由(5)可得:相似比等于面积比的算术平方根。 3定理推论 推论一:顶角或底角相等的两个等腰三角形相似。 推论二:腰和底对应成比例的两个等腰三角形相似。 推论三:有一个锐角相等的两个直角三角形相似。 推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。 推论五:如果一个三角形的两边和三角形任意一边上的中线与另一个三角形的对应部 分成比例,那么这两个三角形相似。 性质

金字塔模型与沙漏模型精编版

金字塔模型与沙漏模型 ① AD AB =AE AC =DE BC =AF AG ② S △ADE :S △ABC =AF 2:AG 2 所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变他们都相似),与相似三角形相关,常用的性质及定理如下: (1) 相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; (2) 相似三角形面积的比等于它们相似比的平方; (3) 连接三角形两边中点的线段我们叫做三角形的中位线; 三角形中位线定理:三角形的中位线长等于他所对应的底边长的一半。 相似三角形 对应角相等、对应边成比例的两个三角形叫做相似三角形。如果三边分别对应A,B,C 和a ,b ,c :那么:A/a=B/b=C/c ,即三边边长对应比例相同。 判定方法 定义 对应角相等,对应边成比例的两个三角形叫做相似三角形。 预备定理 平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。(这是相似三角形判定的定理,是以下判定方法证明的基础。这个引理的证明方法需要平行线与线段成比例的证明) 1判定定理 常用的判定定理有以下6条: 判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。(简叙为:两角对应相等,两个三角形相似。)(AA ) 判定定理2:如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似。(简叙为:两边对应成比例且夹角相等,两个三角形相似。)(SAS ) 判定定理3:如果两个三角形的三组对应边成比例,那么这两个三角形相似。(简叙为:三边对应成比例,两个三角形相似。)(SSS )

几何第25讲_沙漏模型(学生版)A4

相似三角形模型,就是形状相同,大小不同的三角形.沙漏模型是特殊的相似三角形. 1 . AD AE DE AF AB AC BC AG == = (对应线段之比等于相似比) 2.2 2::ADE ABC S S AF AG =(面积比等于相似比的平方) 重难点:寻找平行线,进而找到沙漏模型,利用沙漏模型解决线段比例关系或图形的面积比例关系. 几何第25讲_沙漏模型 F G A C B D E 沙漏模型

题模一:简单沙漏模型 例1.1.1如图,DC 平行AB ,AC 和DB 交于点O ,AB :DC =3:2,则DO :OB =__________. 例1.1.2如图所示,AC 与BD 平行,AB 与CD 垂直,交点为O .已知2AO =,4OB =,3OC =,则△OBD 的面积是△AOC 面积的__________倍. 例1.1.3如图,AD 平行BC ,AC 与BD 交于点O ,AD 长12厘米,BC 长20厘米,BO 比OD 长4厘米,那么BD 长__________厘米. 题模二:梯形沙漏 例1.2.1如图,梯形ABCD 的上底AD 长为3厘米,下底BC 长为9厘米,而三角形ABO 的面积为12平方厘米.则梯形ABCD 的面积为多少平方厘米? 例1.2.2梯形ABCD 的面积是100,上底和下底的比是2:3,那么三角形ABO 的面积是多少? A B C D O A D B C O

例1.2.3如下图,梯形ABCD 的AB 平行于CD ,对角线AC 、BD 交于O ,已知△AOB 与△BOC 的面积分别为25平方厘米与35平方厘米,那么梯形ABCD 的面积是____________平方厘米. 题模三:构造沙漏 例1.3.1如图所示,已知长方形ABCD 中,△FDC 的面积为4,△FDE 的面积为2,则阴影四边形AEFB 的面积为多少? 例1.3.2如图,已知平行四边形ABCD 的面积为72,E 点是BC 上靠近B 点的三等分点,则图中阴影部分的面积为____________. 例1.3.3如图,长方形ABCD 被CE 、DF 分成四块.已知其中3块面积分别为2、5、8平方厘米,那么余下的四边形OFBC 的面积为__________平方厘米. O A B D C F A B D C E 4 ? 2 A B C O D E

几何模型(小学奥数必会6大模型)

模型一:等高模型 定义:三角形面积的大小,取决于三角形底和高的乘积。如果固定三角形的底(或高)不变,另一者变大(小)n 倍,三角形的面积也就变大(小)n 倍。 六种基本类型: 两个三角形高相等,面积比等于底之比;两个三角形底相等,面积比等于高之比公式: DC BD S S ADC ABD =??;FC ED S S ABC ABD =?? 其中,BC=EF 且两三角形的高相等公式: 1=??DEF ABC S S 夹在一组平行线之间的等积变形公式: 1==???ABD ABC BCD ACD S S

等底等高的两个平行四边形面积相等(长方形和正方形可看作特殊的平行四边形)公式: 1=CDEF ABCD S S 三角形面积等于与它等底等高的平行四边形面积的一半 公式:ABCD EDC S S 2 1 =? 两个平行四边形高相等,面积比等于他们底的比公式: EF AB S S DEFG ABCD =例题:长方形ABCD 的面积为36cm 2,E 、F 、G 为各边中点,H 为AD 边上任意一点,问阴影部分面积是多少?

()5.135.418185 .4368 1 2118362 121 362 1 2121=-=-=∴=?=??=+=++=?=++= ++∴=++==== ∴===∴=???????????????????????????BEF BEF BEF DGH BFH BEH CDH BCH ABH DGH BFH BEH CDH BCH ABH ABCD CDH DGH BCH BFH ABH BEH CGH DGH CFH BFH BEH AEH S S BF BE S S S S S S S S S S S S S S S S S S S S S S S S S S S S EB AE HC BH 阴影阴影,,,,同理,、如图,连接

【教案】 勾股定理在几何中的应用

勾股定理在几何中的应用 【教材来源】:节选自人教版八年级下册第十七章 【教学目标】: 一、知识与技能:掌握勾股定理在实际问题中的应用 二、过程与方法:经历勾股定理在实际问题中的应用过程,感受勾股定理的 应用方法 三、情感、态度与价值观:培养良好的思维意识,发展数学理念,体会勾股 定理的应用价值 【重难点、关键】: 重点:勾股定理的实际应用 难点:勾股定理的灵活应用 关键:把握好直角三角形的三边关系,充分利用勾股定理 【教学过程】 一、回顾交流(导课) 1、勾股定理的内容是什么,用文字进行描述? 2、勾股定理的简单练习 在△,∠90°, (1)如果10,2,则。 (2)如果a、b、c是连续整数,则。 (3)如果8,a:3:5,则。 3、勾股定理在实际的生产生活当中有着广泛的应用。勾股定理的发现和使用解决了许多生活中的问题,今天我们就来运用勾股定理解决一些问题,你可以吗?试一试。 二、例题分析 [问题探究1]:大家都能再数轴上表示有理数,但是对于等理数我们能不能也用数轴表示出来? 思路点拨:可以利用勾股定理在数轴上做出 (1)在数轴上找到一点A,使1; (2)过A点做垂线垂直于数轴,垂足为A,在上街区线段1; (3)连接,以O为圆心,为半径画圆弧,弧与数轴正方向的焦点C的点 思考提问:(1)请同学归纳一下出赛数轴上画出的方法 (2)你能在数轴上表示吗?试一试

[问题探究2]:在直角三角形中,∠90度,12,4,D 在上且8,E 在上,且△的面积是△的1/4,求和的长。 思路点拨: 求长时:可过D 作垂直于于F , 可求出2/38/3,2/316/3 再由△的面积是△的1/4, 求出3,因而7/3 求长时:在△中由勾股定理求的3 教师活动:给出题目组织学生探究,巡视引导学生进行思考,然后请两位同学上台演示纠正 三、随堂练习 (1)已知:如图,∠∠90°,∠60°, 4,2。求:四边形的面积。 (2).已知:如图,四边形中,∥, ⊥,⊥,∠60°,1, 求的长。 四、 本节小结 通过两个探究,领会勾股定理的应用思想,如:如何在数轴上表示无理数点,可以解决实际情景中的问题等。在解题过程中要充分利用勾股定理,要学会构造一定辅助线来帮助解题,达到活学活用的水平。 五、 作业布置 1、课后习题1、 2、3 2、趣味探索: A 、 B 、 C 、 D 、 E 、 F 、 G 都是正方形, 且G 的边长为7,求A 、B 、C 、D 、 E 、F 的面积之和 A B C D E B C D A A B C D E F G E D F B C A

金字塔模型与沙漏模型

金字塔模型与沙漏模型文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

金字塔模型与沙漏模型 ①AD AB = AE AC = DE BC = AF AG ② S△ADE:S△ABC =AF2:AG2 所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变他们都相似),与相似三角形相关,常用的性质及定理如下: (1) 相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; (2) 相似三角形面积的比等于它们相似比的平方; (3) 连接三角形两边中点的线段我们叫做三角形的中位线; 三角形中位线定理:三角形的中位线长等于他所对应的底边长的一半。 相似三角形 对应角相等、对应边成比例的两个三角形叫做相似三角形。如果三边分别对应A,B,C和a,b,c:那么:A/a=B/b=C/c,即三边边长对应比例相同。 判定方法 定义 对应角相等,对应边成比例的两个三角形叫做相似三角形。 预备定理

平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。(这是相似三角形判定的定理,是以下判定方法证明的基础。这个引理的证明方法需要平行线与线段成比例的证明)1判定定理 常用的判定定理有以下6条: 判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。(简叙为:两角对应相等,两个三角形相似。)(AA) 判定定理2:如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似。(简叙为:两边对应成比例且夹角相等,两个三角形相似。)(SAS) 判定定理3:如果两个三角形的三组对应边成比例,那么这两个三角形相似。(简叙为:三边对应成比例,两个三角形相似。)(SSS)判定定理4:两个三角形三边对应平行,则个两三角形相似。(简叙为:三边对应平行,两个三角形相似。) 判定定理5:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。(简叙为:斜边与直角边对应成比例,两个直角三角形相似。)(HL)判定定理6:如果两个三角形全等,那么这两个三角形相似(相似比为1:1)(简叙为:全等三角形相似)。 相似的判定定理与全等三角形基本相等,因为全等三角形是特殊的相似三角形。

最新勾股定理与几何证明答案

1、勾股定理与几何证明的综合问题 1 2 练习一、利用勾股定理证明一些重要的几何定理 3 4 1、如图,在Rt △ABC 中,∠ACB =90°,CD 是AB 边上的高. 证5 明: 6 (1)BD AD CD ?=2 7 (这个结果表明,利用勾股定理可以导出三角形相似的一系列结果) 8 (2) 222111CD BC AC =+ 9 10 11 12 13 14 15 练习二、将勾股定理应用于四边形 16 1、四边形ABCD 的对角线为AC 和BD . 17 (1)证明:若BD AC ⊥,则2222BC AD CD AB +=+; 18 19 20 21 22 23 24 25 26 27

2、一个四边形的顶点分别在一个边长为1的正方形各边上,其边长依次为a 、28 b 、 c 、 d . 29 求证:422222≤+++≤d c b a . 30 31 假设MNPQ 分别将正方形ABCD 的四个边分成了线段:m1 m2 n1 n2 p1 p2 q1 q2 32 ∵MNPQ 都在正方形ABCD 的四个边上,所以有四个直角三角形33 ∴a2+b2+c2+d2=m12+m22+n12+n22+p12+p22+q12+q22∵m1+m2=正方形边长即为34 “1”(其他同理)35 ∴a2+b2+c2+d2=m12+(1-m1)2+n12+(1-n1)2+p12+(1-p1)2+q12+(1-q1)2整理之36 后得到:37 a2+b2+c2+d2=2*(m1-1/2)2+1/2+2*(n1-1/2)2+1/2+2*(p1-1/2)2+1/2+2*(q1-1/38 2)2+1/2=2*[(m1-1/2)2+(n1-1/2)2+(p1-1/2)2+(q1-1/2)2] + 2m1、n1、p1、q139 的长都是最大为1最小为0它们都等于1/2时值最小,都等于1时值最大那么40 a2+b2+c2+d2的最小值就是2,最大值就是4 41 42 43 44 45 46 练习三、勾股定理结合图形变换 47 48 1、如图,在△ABC 中,∠BAC =45°,AD ⊥BC ,BD =3,CD =2,求△ABC 的面49 积。 50 51 52 53

高斯小学奥数五年级下册含答案第13讲_沙漏与金字塔

第十三讲沙漏与金字塔 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 观察故事中的第4幅图,太阳照下来在桌面上形成一个圆形的亮斑,如图1所示,我们将图形抽象成三角形,如图2所示.观察一下,这个图形与生活中的什么东西比较像?对了,沙漏!今天,就让我们来学习一下有关“沙漏”的知识.

沙漏有一个必要条件:线段AB 平行于线段CD ,如图2所示.在沙漏中,我们总结出了如下性质: 这就是我们今天要研究的平行线间的比例关系——即沙漏形三角形间的比例关系,简称沙漏. 例题1. 如图所示,梯形ABCD 的面积是 36,下底长是上底长的2倍,阴影三角形的面积是多少? 分析:图中给出的是一个梯形,梯形的上底和下底是平行的,你能找到平行线间的沙漏吗?如何利用这个沙漏呢? 练习1. 如图所示,梯形的面积是48平方厘米,下底是上底的3倍,求阴影部分的面积. 图2 A C 图1 A B C

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 在沙漏模型中,各线段的长度有比例关系,各区域的面积也有比例关系.如图所示,如果沙漏形的上下底之比为a :b ,四个三角形的面积之比为a 2:ab :ab :b 2. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 例题2. 如图,平行四边形ABCD 的面积是90.已知E 点是AB 上靠近A 点的三等分点,求阴影部分的面积. 分析:图中有没有沙漏形?它的上底与下底之比是多少? 练习2. 如图,正方形ABCD 的边长是6,E 点是BC 的中点.求△AOD 的面积. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 寻找沙漏的时候,一定把握住一点:平行线.题目中如果出现了平行线,那么只要找到平行线间的相交线就可以找到沙漏.同学们在做题的过程中一定要用心体会这一点. 小故事 沙漏 沙漏也叫做沙钟,是一种测量时间的装置.西方沙漏由两个玻璃球和一个狭窄的连接管道组成.利用上面的玻璃球的沙子穿过狭窄管道流入底部玻璃球所花费的时间来对时间进行测量.一旦所有的沙子都已流到底部玻璃球,该沙漏就可 A B C D E O A B C D E O

蝴蝶模型和沙漏模型训练题答案

蝴蝶模型&沙漏模型训练题参考答案 1、 已知四边形ABCD 和CEFG 都是正方形,且正方形ABCD 的边长为10厘米,那么图中阴影 三角形BFD 的面积为多少平方厘米 ? 【分析】 连接FC ,有FC 平行BD ,设BF 与DC 连接于O ,那么在梯形蝴蝶中有 1 ===50 2 DFO BCO DCB ABCD S S S S S ???=阴影 2、图中的四边形土地总面积为52公顷,两条对角线把它分成了4个小三角形,其中2个小三角形的面积分别是6公顷和7公顷。那么最大的一个三角形的面积是多少公顷? 7 6 【分析】 7 6E D C B A 在图形中标A 、B 、C 、D 、E 有 :6:7:5213391821 ABE BCE ADE DCE ADE DCE ADE DCE S S S S S S S S ????????==+=-===, 最大的三角形面积是21公顷 3、如图,正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点,四边形BGHF 的面积是多少平方厘米?

H F G E D C B A 【分析】延长EB 到K ,使BK=CD 。 三角形EGK 与三角形DGC 成比例,DC :EK=2:3,所以DG :GK=2:3,由于三角形DEK=90,所以EGK=90÷3/5=54,所以四边形EBFG=EGK-BKF=24。同理,EB :DC=1:2,所以BH :HC=1:2,所以三角形EBH=1/3EBD=10所以,四边形BGHF 的面积是24-10=14平方厘米 H K F G E D C B A 4、如图,ABCD 是平行四边形,面积为72平方厘米,E 、F 分别为边AB 、BC 的中点.则图形中阴影部分的面积为多少平方厘米? 【分析】连接EC ,因为AE 平行于DC ,所以四边形AECD 为梯形,有AE:DC=1:2,所以 :1:4AEG DCG S S ??=, AGD ECG AEG DCG S S S S ?????=?,且有AGD ECG S S ??=,所以:1:2AEG ADG S S ??=,而这两个 三角形高相同,面积比为底的比,即EG :GD=1:2,同理FH :HD=1:2. 有AED AEG AGD S S S ???=+,而111822 AED ABCD S S ?= ??=(平方厘米)有 EG:GD= :AEG AGB S S ??,所以 1 612 AEG AED S S ??= ?=+(平方厘米)

【小奥】2016同步讲义_五年级春季(共15讲)_第08讲_沙漏与金字塔(2)

一、沙漏与金字塔(五下) 如图,太阳照下来在桌面上形成一个圆形的亮斑,如图1所示,我们将图形抽象成三角 形,如图2所示.观察一下,这个图形与生活中的什么东西比较像?对了,沙漏!今天,就让我们来学习一下有关“沙漏”的知识. 沙漏有一个必要条件:线段AB 平行于线段CD ,如图2所示.大沙漏中,我们总结出了如下性质: 这就是我们今天要研究的平行线间的比例关系——即沙漏形三角形间的比例关系,简称沙漏. 在沙漏模型中,各线段的长度有比例关系,各区域的面积也有比例关系.如图所示,如 太阳 纸片 桌面上的太阳 D C B A O 图1 图2 第8讲 沙漏与金字塔 知识点

果沙漏形的上下底之比为:a b ,四个三角形的面积之比为22:::a ab ab b . 我们发现,沙漏模型由一组平行线和一组相交线构成,且相交线的交点在平行线之间.如果交点在两条平行线的同一侧,就会构成一种新的模型,我们形象的称之为金字塔模型.在金字塔模型中也有相应的比例关系. 一、 沙漏与金字塔认识 1、如图,AB 与CD 垂直,交点为O .已知4AO =,3CO =,5AC =,15BD =.求△BOD 的面积. 【答案】 54 【解析】 A O D C B 2 沙漏模型 金字塔模型 111 222 a b c a b c == 11 22 a b a b = 11112122 a b c a a b b c ==++ 例题

由沙漏模型知, 1 3 AC AO CO BD OB OD ===,所以3412OB =?=,339OD =?=.又因为△BOD 中OB 和OD 垂直,所以△BOD 的面积是912254?÷=. 2、如图所示,梯形ABCD 的面积是36,下底长是上底长的2倍,阴影三角形的面积是多少? 【答案】 16 【解析】 由于下底长是上底长的2倍,因此组成该梯形的四个小三角形的面积之比是1:2:2:4,阴影三角形的面积是4 36161224 ?=+++. 3、如图,梯形ABCD 中,:2:5AB CD =.已知△COD 的面积是5,那么梯形的面积是多少? 【答案】 9.8 【解析】 如图所示,梯形中各部分的面积份数.因为△COD 的面积是5,所以梯形的面积是()52541010259.8÷?+++=. A O D C B B A

勾股定理和初中几何所有的公式

1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全

等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半

1、勾股定理与几何证明的综合问题

1、勾股定理与几何证明的综合问题 练习一、利用勾股定理证明一些重要的几何定理 1、如图,在Rt △ABC 中,∠ACB =90°,CD 是AB 边上的高. 证明: (1)BD AD CD ?=2 (这个结果表明,利用勾股定理可以导出三角形相似的一系列结果) (2)2 22111CD BC AC =+ 2、如图,锐角△ABC 中,CD 是AB 边上的高,我们称线段AD 与AC 的比值为锐角∠A 的余弦函数(想想看,这符合函数的定义吗?为什么?),记为AC AD A =∠cos 。 证明:bc a c b A 2cos 2 22-+=∠. 3、如图,在△ABC 的BC 边上任取一点D ,并记:BC =a ,AB =c ,AC =b ,AD =p ,BD =m ,DC =n . (1)证明:() 222p mn a nc mb +=+

(2)上面这个结果称为Stewart 定理,它的理论价值要比实际用处更重要些。相对而言,它 的两个特例在应用上显得更重要些。根据提示写出它的特例形式: ① 当b =c 即等腰三角形时, ; ② 当m =n 即AD 为中线时, ; 练习二、将勾股定理应用于四边形 1、四边形ABCD 的对角线为AC 和BD . (1)证明:若BD AC ⊥,则2222BC AD CD AB +=+; (2)证明:若2222BC AD CD AB +=+,则BD AC ⊥. (提示:证明逆命题的一般方法是什么?) 2、一个四边形的顶点分别在一个边长为1的正方形各边上,其边长依次为a 、b 、c 、d . 求证:422 222≤+++≤d c b a .

八年级数学培优专题讲解《勾股定理》含答案

八年级数学培优专题讲解《勾股定理》 【培优图解】 【技法透析】 勾股定理是几何中重要的定理之一,它是把直角三角形的“形”与三边关系这一“数”结合起来,是数形结合思想方法的典范. 1.勾股定理反逆定理的应用 主要用于计算和证明等. 2.勾股数的推算公式 ①若任取两个正整数m、n(m>n),那么m2-n2,2mn,m2+n2是一组勾股数. ②如果k是大于1的奇数,那么k, 21 2 k- , 21 2 k+ 是一组勾股数. ③如果k是大于2的偶数,那么k, 2 1 2 k?? - ? ?? , 2 1 2 k?? + ? ?? 是一组勾股数, ④如果a,b,c是勾股数,那么na,nb,nc(n是正整数)也是勾股数. 3.创设勾股定理运用条件 当勾股定理不能直接运用时,常需要通过等线段代换、作辅助线段等途径,为勾股定理的运用创造必要的条件,有时又需要由线段的数量关系去判断线段的位置关系.在有等边三角形、正方形的条件下,可将图形旋转60°或90°,旋转过程中角度、线段的长度保持不变,在新的位置上分散条件相对集中,以便挖掘隐含条件,探求解题思路. 【名题精讲】

考点1运用勾股定理解有关"折叠"问题 例1 如图,折叠长方形ABCD一边,点D落在BC边的点F处,若AB=8cm,BC =10 cm,求EC的长. 【切题技巧】由图形易知△ADF≌△AFE,从而AD=AF,DE=EF. 先在Rt△ABF中用勾股定理求出BF, 再在Rt△EFC中由勾骰定理列方程可求EC的长. 【规范解答】 【借题发挥】图形折叠问题一般是“全等形”,或“等腰三角形”等对称图形问题,勾股定理是常常用到的计算方法,体现了勾股定理作为主要计算工具在解决与直角三角形相关图形变换的综合题中的具体应用. 【同类拓展】1.把一张长方形纸片(长方形ABCD)按如图17-2所示的方式折叠,使顶点B和点D重合,折痕为EF.若AB=3cm,BC=5cm,则重叠部分△DEF的面积是_______cm2. 考点2运用勾股定理的逆定理求角度 例2 如图,在正方形ABCD中,PA=1,PB=2,PC=3,P在正方形内部,试求∠APB的度数. 【切题技巧】 【规范解答】

金字塔模型与沙漏模型

金字塔模型与沙漏模型 ①AD AB = AE AC = DE BC = AF AG ② S△ADE:S△ABC =AF2:AG2 所谓的相似三角形,就就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变她们都相似),与相似三角形相关,常用的性质及定理如下: (1) 相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; (2) 相似三角形面积的比等于它们相似比的平方; (3) 连接三角形两边中点的线段我们叫做三角形的中位线; 三角形中位线定理:三角形的中位线长等于她所对应的底边长的一半。 相似三角形 对应角相等、对应边成比例的两个三角形叫做相似三角形。如果三边分别对应A,B,C与a,b,c:那么:A/a=B/b=C/c,即三边边长对应比例相同。 判定方法 定义 对应角相等,对应边成比例的两个三角形叫做相似三角形。 预备定理 平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。(这就是相似三角形判定的定理,就是以下判定方法证明的基础。这个引理的证明方法需要平行线与线段成比例的证明) 1判定定理 常用的判定定理有以下6条: 判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。(简叙为:两角对应相等,两个三角形相似。)(AA) 判定定理2:如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似。(简叙为:两边对应成比例且夹角相等,两个三角形相似。)(SAS) 判定定理3:如果两个三角形的三组对应边成比例,那么这两个三角形相似。(简叙为:三边对应成比例,两个三角形相似。)(SSS)

金字塔模型与沙漏模型

金字塔模型与沙漏模型 AD AE DE AF AB=AC=BC=AG ②S △ADE S A ABC =AF: A G 叶心. 所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变, 不论大 小怎样改变他们都相似),与相似三角形相关,常用的性质及定理如下: (1)相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; (2)相似三角形面积的比等于它们相似比的平方; (3)连接三角形两边中点的线段我们叫做三角形的中位线; 三角形中位线定理:三角形的中位线长等于他所对应的底边长的一半。 相似三角形 对应角相等、对应边成比例的两个三角形叫做相似三角形。如果三边分别对应A,B,C 和a,b,c:那么:A/a=B/b=C/c,即三边边长对应比例相同。 判定方法 定义 对应角相等,对应边成比例的两个三角形叫做相似三角形。 预备定理 平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。 (这是相似三角形判定的定理,是以下判定方法证明的基础。这个引理的证明方法需要平 行线与线段成比例的证明) 1判定定理 常用的判定定理有以下6条: 判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个 三角形相似。(简叙为:两角对应相等,两个三角形相似。)(AA) 判定定理2:如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个 三角形相似。(简叙为:两边对应成比例且夹角相等,两个三角形相似。)(SAS)判定定理3:如果两个三角形的三组对应边成比例,那么这两个三角形相似。(简叙 为:三边对应成比例,两个三角形相似。)(SSS) 判定定理4:两个三角形三边对应平行,则个两三角形相似。(简叙为:三边对应 平行,两个三角形相似。) 判定定理5:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和

相关主题