搜档网
当前位置:搜档网 › 大气探测学-复习题及答案

大气探测学-复习题及答案

大气探测学-复习题及答案
大气探测学-复习题及答案

第1章绪论

1.大气探测学研究的对象、范围和特点是什么?

大气探测是对表征大气状况的气象要素、天气现象及其变化过程进行个别或系统的连续的观察和测定,并对获得的记录进行整理。研究范围是近地层大气、高空大气以及一些特殊区域的大气(如大气边界层,城市热岛环流,峡谷风场,海陆风场等)。大气探测的特点:随着科学技术的发展,大气探测的要素量和空间范围越来越大。分为近地面层大气探测、高空大气层探测和专业性大气探测。近几十年来,作为主动遥感的各种气象雷达探测和作为被动遥感的气象卫星探测,以及地面微波辐射探测等获得较多信息的大气探测方法,正在逐步进入常规大气探测领域。这些现代大气探测技术应用于大气科学的研究领域,极大的丰富了大气探测的内容。

2.大气探测的发展主要有那几个时期?

①创始时期。这是在16世纪末发明第一批大气探测仪器以前的漫长时期,这期间发明了相风鸟、雨量器和风压板等,不能对大气现象进行连续记录。

②地面气象观测开始发展时期。16世纪末,随着气象仪器的发明,开始了气象要素定量测量阶段。

③高空大气探测的开始发展时期。这时期陆续有人采用系留气球、飞机及火箭携带仪器升空,进行高空大气探测。

④高空大气探测迅速发展时期。这时期,前苏联、德国、法国、芬兰等国家都开始研制无线电探空仪,以及其他高空探测技术,为高空大气探测事业开辟了新的途径。

⑤大气探测的遥感时期。1945年美国首次将雷达应用于气象观测,后来发射了气象火箭和探空火箭,把探测高度延伸到了500千米。

⑥大气探测的卫星遥感时期。这个时期,大气探测不仅从根本上扩大了探测范围,也提高了对大气探测的连续性。

3.简述大气探测原理有那几种方法?

①直接探测。将探测元件直接放入大气介质中,测量大气要素。应用元件的物理、化学性质受大气作用而产生反应作用的原理。

②遥感探测。根据电磁波在大气中传播过程中信号的变化,反演出大气中气象要素的变化,分为主动遥感和被动遥感。

③施放示踪物质。向大气施放具有光学或金属性质的示踪物质,利用光学方法或雷达观测其随气流传播和演变规律,由此计算大气的流动状况。

④模拟实验。有风洞模拟和水槽模拟。风洞模拟大气层边界层风、温及区域流场状况。水槽模拟大气层环流、洋流、建筑物周围环境流场特征。可调控温度场,模拟大气边界层的温度层结。

4.大气探测仪器的性能包括那几个?

①精确度。即测量值与实际值的接近程度。又包括仪器的精密度和准确度。精密度考察的是连续测量值彼此相互间的接近程度。准确度考察的是测量值与实际值的接近程度。探测仪器的精确度取决于感应元

件的灵敏度和惯性。

②灵敏度。即单位待测量的变化所引起的指示仪表输出的变化。

③惯性(滞后性)。即仪器的动态响应速度。具有两重性,大小由观测任务所决定。

④分辨率。即最小环境改变量在测量仪器上的显示单位。

⑤量程。即仪器对要素测量的最大范围。取决于所测要素的变化范围。

5.如何保证大气探测资料的代表性和可比性?

代表性分为空间代表性和时间代表性。要保证大气探测资料的空间代表性,原则上要确定台站地形具有典型性。站址的选择、观测站的建立要防止局地地形地物造成大气要素不规则变化。一般说来,平原地区的台站资料代表性较好,山区、城市台站资料代表性较差。要保证时间代表性,则要保证大气要素观测的同时性。

要保证大气探测资料的可比性,则要求观测时间、观测方法、仪器类型、观测规范、站台地理纬度、地形地貌条件等的一致性。

第2章云的观测

1.叙述积状云、层状云、波状云的基本特征。

积状云:积状云包括积云,积雨云和卷云,积状云一般个体比较明显,云块之间多不相连;

层状云:层状云包括卷层云,高层云,雨层云和层云,它们的共同特征是云体均匀成层;

波状云:波状云包括卷积云,高积云和层积云,它们的共同特征是云块常成群,成行,呈波状排列。2.叙述卷积云与高积云、高积云与层积云各有何异同?

①卷积云与高积云

共同点:云块比较小,一般成群,成行,呈波状排列;

不同点:卷积云呈白色细鳞片状,像微风吹拂水面而成的小波纹;而高积云在厚薄,形状上有很大差异,薄的云呈白色,能见日月轮廓,厚的云呈暗灰色,日月轮廓分辨不清,常呈扁圆状,瓦块状,鱼鳞片或水波状的密集云条。

②高积云与层积云

共同点:云块在厚薄,形状上都有很大差异,云块一般成群,呈层,呈波状排列;

不同点:高积云云块较小,轮廓分明常呈扁圆状,瓦块状,鱼鳞片或水波状的密集云条,层积云云块一般较大,有的成条,有的成片,有的成团;高积云薄的云块呈白色,能见日月轮廓,厚的云块呈暗灰色,日月轮廓分辨不清,层积云常呈灰白色或灰色,结构比较松散,薄的云块可辨太阳的位置。

3.叙述卷层云与高层云、高层云与雨层云、雨层云与层云有何异同?

①卷层云与高层云

相同点:云体均匀成层;

不同点:卷层云呈透明或乳白色,透过云层日月轮廓清楚,地物有影,常有晕的现象;

高层云呈灰白色或灰色,运抵常有条文结构,常布满全天;

②高层云与雨层云

相同点:云体均匀成层,常布满全天;

不同点:高层云呈灰白色或灰色,云底常有条纹结构;雨层云低而漫无定形,能完全遮蔽日月,呈暗灰色,云底常有碎雨云;

③雨层云与层云

相同点:云体均匀成层;

不同点:云层云低而漫无定形,能完全遮蔽日月,呈暗灰色,云底常伴有碎雨云,层云呈灰色,很象雾;雨层云云层厚度常达到4000-5000米,层云云底很低但不接触地面。

4.叙述荚状、堡状、絮状云的形成机理,各代表什么气层状况?

荚状云:在山区由于谷地聚集充沛的水汽,受地形抬升作用,常常在山脊上空形成荚状云,另外由于过山气流,或上升、下沉气流汇合而形成的驻波也会产生荚状云,多预示晴天;

堡状云:包括堡状层积云和堡状高积云,,堡状层积云是由于较强的上升气流突破稳定层之后,局部垂直发展所形成;堡状高积云是由于中云的局部对流强烈而在局部垂直发展而形成的;如果天空出现堡状层积云而且大气中对流持续增强,水汽条件也具备,则往往预示有积雨云发展,甚至有雷阵雨发生;堡状高积云一般预示有雷雨天气;

絮状云:絮状云有絮状高积云,是由强烈的湍流作用将使空气抬升而形成,预示将有雷阵雨天气来临。5.叙述碎积云、碎层云、碎雨云的外形与成因有何不同?

从外形上看:

碎积云通常个体很小,轮廓不完整,形状多变,多为白色碎块;碎层云的云体为不规则的碎片,形状多变,移动较快,呈灰色或灰白色;碎雨云的云体低而破碎,形状多变,移动较快,呈灰色或暗灰色;

从成因上看:

碎积云往往是破碎了的或初生的积云,当大气中对流增强时,碎积云可以发展成淡积云,若有强风和湍流时,淡积云的云体会变的破碎,形成碎积云;碎层云往往是由消散中的层云或雾抬升而形成;碎雨云常出现在许层云,积雨云或厚的高层云下,是由于降水物蒸发,空气湿度增大,在湍流作用在下水气凝结而成。

6.简述对流云从淡积云Cu hum发展到鬃积雨云Cb cap的物理过程。

淡积云cu hum云体不大,轮廓清晰,底部较平,顶部呈圆弧形突起,垂直发展不旺盛,云底较扁平;

当大气对流运动增强时,淡积云向浓积云发展此时轮廓仍然清晰,云底仍然较平,但云体个体高大而且底部比较阴暗,云的垂直发展旺盛,垂直高度一般大于水平宽度,顶部的圆弧形开始重叠突起,变得象花椰菜的样子;

当对流继续增强,云继续垂直发展,云顶就开始冻结,云顶花椰菜形的轮廓渐渐模糊,即形成了秃积雨云,此时云的丝絮状就够还不太明显,云体的其余部分仍有浓积云的特性;

到积雨云发展的成熟阶段会形成鬃积雨云,它的云顶呈白色,丝絮状结构明显,常呈马鬃状和铁砧状,底部阴暗,气流混乱。

以上就是从淡积云Cu hum——浓积云Cu cong ——秃积雨云Cb calv——鬃积雨云Cb cab 的过程。

第3章能见度的观测

1.影响能见度的因子有哪些?

影响能见度的因子有大气透明度、目标物和背景的亮度对比和观测者的视力指标——对比视感域ε。

大气透明度是影响能见度的主要因子。大气中的气溶胶粒子通过反射、吸收、散射等机制削弱光通过大气的能量。导致目标物固有亮度减弱。所以,大气中杂质愈多,愈浑浊,能见度就愈差。

在大气中目标物能见与否,取决于本身亮度,又与它同背景的亮度差异有关。比如,亮度暗的目标物在亮的背景衬托下,清晰可见;或者亮的目标物在暗的背景下,同样清晰可见。表示这种差异的指标是亮度的对比值K。

在白天当,当K=0时,难以准确辨别目标物。当K逐渐增大,即亮度差异逐渐增大,当K值增大到某一值时,才能准确地辨别目标物。这个亮度对比值叫做对比视感域,用ε表示。

2.气象能见度的定义是什么?

影响目标物能见度的因子很多,而气象工作中,需要能见度只反映大气透明状况,这就必须选定和统一实行某种观测方法,以固定其它因子,使测定的最大水平能见距离只表达大气透明程度的单一因子影响。这样测出的能见度是气象能见度。气象能见度分白天气象能见度和夜间气象能见度。

第4章天气现象的观测

1.连续性、间歇性和阵性降水,应按那些特征进行判断?

a)连续性:雨或雪不间断地下,而且比较均匀,强度变化不大,一般下的时间长,范围广,降水量也比较大。

b)间歇性:雨或雪时下时停,或强度有明显变化,但变得比较缓慢。下的时间时短时长。

c)阵性:骤降骤停或强度变化突然,下降速度快,强度大,但往往时间不长,范围也不大。

2.如何区别吹雪和雪暴?

吹雪是本地或附近有大量积雪时,强风将积雪吹起所致。能见度<10km。

雪暴是本地或附近有大量积雪,强风将地面积雪成团卷起,不能分辨是否在降雪,能见度<1km。区别就在雪暴不能分辨是否在降雪,且能见度有差别。

3.阐述浮尘与霾;霾与轻雾;浮尘、扬沙和沙尘暴间的区别。

形成浮尘的沙尘是由远处传播而来,而霾不是。一般浮尘的能见度更小,并且垂直能见度也不大。霾常出现在干燥时期,浮尘不一定。

霾由大量极细微沙尘均匀漂浮在空气中,使空气混浊,能见距离<10km 。常出现在气团稳定较干燥时期。

浮尘出现在冷空气过境前后无风或风小时,由远处沙尘经高空气流传播而来。或由 或

天气

过后尚未下沉的沙尘浮游在空中所致。能见距离小于1km ,垂直能见度也很差。

霾和轻雾的组成不同,霾是大量沙尘漂浮在空气中,而轻雾是由水滴组成。并且霾常出现在气团稳定较干燥时期,而轻雾不一定。

轻雾由细小水滴组成的稀薄雾幕。水平能见距离<10km 。呈灰白色。早晚较多出现。

浮尘是由远处沙尘经高空气流传播而来,或由扬沙、沙尘暴天气过后尚未下沉的沙尘浮游在空中所致。而扬沙、沙尘暴则是由本地或附近的沙尘被吹起所致。浮沉出现在风较小时,但扬沙和沙尘暴出现时风力较大,沙尘暴还常伴有强对流或雷雨过境。一般说来,浮尘和沙尘暴天气的能见度比扬沙更小。

扬沙由于本地或附近的沙尘被吹起,使能见度显著下降,能见距离一般为1-10km 。天空混浊,风力较大。在北方春夏,冷空气过镜或空气不稳定时出现。

沙尘暴成因与扬沙相似,但能见度<1km 。风力很大。常伴有强对流或雷雨过境。

第5章 温度的观测

1.什么叫温标?常用温标有哪几种?如何换标?

温标是为了定量地表示温度,而选定的一个衡量温度的标尺。

常用温标有:开尔文温标(绝对温标)(K);摄氏温标 (℃);华氏温标(F)。 换标公式为:

K ——C 换算:273.15K C =+;273.15C K =-

C ——F 换算:()5329C F =-;9

325F C =+ K ——F 换算:()532273.159K F =-+;()9

273.15325

F K =-+

2.试述玻璃温度表测温原理。

液体玻璃温度表的感应部分是一个充满液体的玻璃球,示度部分为玻璃毛细管。由于玻璃球内的液体的热膨胀系数远大于玻璃,当温度升高时,液体柱升高,反之下降。液柱的高度即指示温度的数值。

设0 ℃时表内液体的体积为V0,此时球部和这段毛细管的容积也为V0,当温度升高 t ? 时,毛细管中液体柱的长度变化为L ?,则体积的改变量为:

()0V t S L μγ-?=??

式中 μ 为液体的热膨胀系数; γ 玻璃球的热膨胀系数;S 为毛细管的截面积。将上式改写成

()0

V L t S

μγ?=-? 等式左边称作温度表的灵敏度。表示温度改变1℃引起的液体高度变化,灵敏度高的仪器,刻度精密。 3.最高最低温度标测温原理。

最高温度表:

毛细管较细,液体为水银。在玻璃球部焊有一根玻璃针,其顶端伸至毛细管的末端,使球部与毛细管之间的通道形成一个极小的狭缝。升温时,球部水银膨胀,水银热膨胀系数大于玻璃热膨胀系数,水银被挤进毛细管内;但在降温时,毛细管内的水银不能通过狭缝退回到球部,水银柱在此中断。因此,水银柱顶可指示出一段时间内的最高温度。 最低温度表:

毛细管较粗,内装透明的酒精,游标悬浮在毛细管中,观测时将游标调整到酒精柱的顶端,然后将温度表平放。升温时,酒精从游标和毛细管之间的狭缝过,游标不动;温度下降时,液柱顶端表面张力使游标向球部方向移动,因此,游标指示的温度只降不升,远离球部的一端将指示出一定时段的最低温度。

7.说明温度热滞系数的物理意义及特性。

物理意义:

元件在d ? 的时间内与周围介质交换的热量为:()dQ hs T d θτ=--

其中:T:元件温度;θ:环境温度;S :有效散热面积;h :热交换系数元件得到(或失去)热量dQ 后,增(或降)温dT ,则有:

dQ CMdT = 其中C 为比热;M 为元件的质量。

合并上面两式,移项得:()dT hs

T d CM θτ=--

令:

1

(

)

hs CM λ-=为热滞系数,则:

1

()dT T d θτλ=--

λ的单位为秒。

热滞系数特性:元件的热容量越大,散热面积越小,则λ越大。热交换系数h 的大小取决于环境介质

性质和通风量。

8.如何测定温度表的热滞系数?

测温元件温度和介质温度的差值降至初始差值的36.8%时的时间为λ。也就是说 t θ-的改变量

达到了起始差值的11e ??

- ?

?

?即63.2%时所需要的时间为λ。 这个时间常数在实验中可以用这样的方法来测定:

把温度表加热(或冷却)到高于(或低于)介质温度若干度后,把它放入介质中,然后用秒表测定温度变化到36.8%的时间,这个时间就是该温度表的热滞系数值。

9.一支热滞系数为100S 的温度表,温度30℃时,观测环境20℃的空气温度,精度要求为0.1 ℃,需要多少时间才能观测?

解: T-θ为感应元件温度与环境温度之差,

则:

0ln

T T θτλθ-=-3020100ln 0.1-==460.52s ≈8min

即约需要8分钟通风后即可读取数据. 11.气温测量中防止辐射误差方法有主要哪几种?

防止辐射误差的方法主要有:

1.屏蔽技术:使太阳辐射,地面反射辐射不能直接照射到测温元件上。(百叶箱,各种类型的防辐射罩);

2.增加元件的反射率(热敏电阻涂成白色);

3.人工通风,加快元件散热(阿斯曼通风干湿表);

4.采用体积小,并具有较大的散热系数的测温元件。

第6章 湿度的观测

1.简述干湿球温度表的测湿原理。

由于蒸发,湿球表面不断有耗散蒸发潜热,使湿球温度下降;由于湿球与四周空气有温差,则在稳定平衡时,湿球温度表蒸发支出的热量应等于与四周热空气交换得到的热量: ()

w Q h T T =-;

其中,h :热扩散系数;T 为干球温度;TW 为湿球温度.

单位时间通过单位湿球面积蒸发水分的质量:

[()]

s w M k r T r =-,其中,k :水汽扩散系数

式中g 为空气的混合比;gs(Tw)为湿球温度TW 时的饱和混合比;k 为水汽扩散系数.

湿球蒸发消耗的热量为:

()[()]

m w s w Q kL T r T r =-

0.622()()0.622

s w s w e r p

e T r T p

==m 令Q=Q ,并设:

?()[()]()w

s

w

w

kL T r T r h T T -=-

?

0.622[()]()s w w kL

e T e h T T p -=-

故 ()()

0.622()

()()

s w w w s w w ph

e e T T T kL T e T Ap T T =-

-=--

其中

()10.622w h A L T κ

=

称为干湿表系数。

2.干湿球温度表A 值与哪些因素有关?

从A 值的定义

()10.622w h A L T κ

=

可知,热扩散系数h 和水汽扩散系数k 是通风速度的函数,所以,

A 值必然与风速有关。

445

5.93110 1.3510/ 4.8010/A v v ---=?+?+? d=10mm 4

556.40310 4.310/ 5.1510/A v v ---=?+?+? d=4mm

由上述公式得:

A 值随风速变化大,风速增加,A 迅速减小;但是V>3m/s 时,A 基本不变;不同类型的温度表A 值有差异,但是在风速高的时候,差异很小;元件的特征尺度d 越小,A 随风速的变化越小。 3.为什么采用人工通风的干湿球温度表能提高测量精度?

因为干湿表系数受风速影响大,如果用人工通风的干湿球温度表,可以保持枫树的稳定从而使A 值保持稳定,以减小实验误差。 4.简述露点仪的测量原理。

若使空气通过一个光洁的金属镜面时等压降温,直到镜面上出现露(或霜),读取这瞬间的镜面温度,就是露点(或霜点)温度。

如图所示:

先降温,镜面出现露点时,记为:1d T -

再升温,最后一个露珠消失时,记为:1d T +

这是一次完整记录,一般5次取平均:11,55

d

di d di T T T T -

-++

==∑∑;2d d d T T T -++=

即得到露点温度。

6.测量湿度的方法有哪几种?简述原理。

(1)干湿球温度表 原理为:

()()

0.622()

()()

s w w w s w w ph

e e T T T kL T e T Ap T T =-

-=--

其中 A 为干湿表系数,()10.622w h A L T κ

=

(2)毛发湿度表

原理为:湿度从0~100%时,毛发伸长2.5%,伸长量与湿度变化成正比

lg 1.0860.918

h U L =+,其中,

0L L L ?=

?

(3)吸湿称重法

原理为::利用吸湿剂P2O5吸收一定容积空气中的水汽,只要精确测定空气的容积和吸湿剂的重量变化,即可直接计算出1立方米空气中所含的水量,即:

2121

w m m V V ρ-=

-(克/立方米)

水汽压:

2121

216.6m m T e V V -=

-,

1010

01

:PT V V P T =其中

同上有:

2020

02

P T V V P T =

其中:V :为容器的容积(初始容积); P0、T0为初始容器内的气压和温度; P1、T1为抽气后容器内的气压和温度; P2、T2为进气后容器内的气压和温度; m2、m1为吸湿后和吸湿前干燥管的质量。 (4)光谱吸收法

根据空气中水对红外辐射的吸收原理确定空气湿度的方法。主要以两束波长不同的光线,一束波长λ=1.37μm ,对水汽有很强的吸收;另一束波长λ=1.24μm (参考光),对水汽不吸收。将两束光线交替通过被测气层,并比较这两束光线的能量,确定大气(含水量)湿度。

(5)氯化锂测湿:测量其饱和溶液水汽压与环境水汽压平衡时的露点 (6)碳膜湿敏元件

根据高分子聚合物吸湿后膨胀,使悬浮于其中的碳粒子接触率减小,元件的电阻增大;反之当湿度降低时,聚合物脱水收缩,使碳粒子相互接触率增加,元件的电阻减小。通过测量元件的电阻值的变化,即可确定大气中的湿度。

(7)露点仪原理:

若使空气通过一个光洁的金属镜面时等压降温,直到镜面上出现露(或霜),读取这瞬间的镜面温度,就是露点(或霜点)温度,在利用露点计算出当时的大气温度。

露点温度的测量: 一般5次取平均 先降温,镜面出现露点时,记为:

1

d T -

再升温,最后一个露珠消失时,记为:1

d T +

这是一次完整记录

11,55d

di d di T T T T -

-++

==∑∑;2d d d T T T -++=

第7章 大气压力的观测

1.简述动槽式、定槽式水银气压表的观测原理。

水银气压表的读数原理为:

如图所示,利用一根抽成真空的玻璃管插入水银槽内,由于大气压力的作用,玻璃管内的水银柱将维持一定的高度。当管内水银柱对水银槽面产生的压力与作用于水银槽面的大气压力相平衡时,水银柱将维持一定高度。如果在水银柱旁边树立一标尺,标尺的零点对准水银面,就可直接读取水银柱的高度(hg H ),即可求得大气压力(h P )

()(,)[,(,)]

h hg hg P t g h H t g t ρ??=

式中()

hg t ρ为温度 t C ?时水银密度,(,)g t ?为测站纬度为?、海拔高度为h 处的重力加速度。

为了便于比较,国际上统一规定,

hg

ρ以温度0C ?为标准,g 以纬度为45?的海平面为标准.如果不在标

准条件下,则读得的水银柱高度必须订整到标准条件下。

即:

()()()045,00,45,0h hg hg P C g H C g ρ=????????

因此

()()()()()

(),0,45,0,,045,0hg hg hg hg t g h H C g H t g h C g ρ??ρ??=??????????

其中

()()0h

g t

hg C ρρ?为温度订正因子,

()

()

??g ,h g 45C,0为重力(纬度高度)订正因子;

()()43

2

01.3595110.;45,0

9.80665.

C k g m g m s ρ--

?=??=

hg

动槽是水银气压表的读数原理为:

它的主要特点是标尺上有一个固定的零点。每次读数时,须将水银槽的表面调到这个零点处,然后读出水银柱顶的刻度。在读数时,先读温度表,再调水银面与象牙针相切,再调游标尺与水银柱顶相切,最后读数。读数结束后,将象牙针与水银面断开。

定槽式水银气压表的读数原理为:

它的水银槽是一个固定容积的铁槽,没有皮囊、水银面调节螺钉以及象牙针。当气压变化时,水银柱在玻璃管内上升或下降所增加或减少的水银量,必将引起水银槽内的水银减少或增加,使槽内的水银面向下或向上变动。即整个气压表的基点随水银柱顶的高度变动。如图所示:

当气压升高1mmHg ,表内水银柱上升x mm ,而槽内水银面同时下降y mm ,则有 1x y +=

因为水银槽内水银体积的减少,必将等于管内水银体积的增加,即(体积相等):

'

()x a y A a ?=- 1y x =-

式中a 为水银柱玻璃管的内横截面积;A 为水银槽的内横截面积; a ’为插进水银槽中的玻璃管尾端的外横截面积。

因而有

A a x A a a '

-=

'-+

1A a a a a x A a a A a a '-+-==-

''-+-+ 从上式可看到,定槽式水银气压表的刻度1mm 长度将短于1mm ,实际等于

A a A a a '

-'-+ ,以补偿

气压表水银面基点的变动,这种刻度的标尺又称补偿标尺。 2.水银气压表误差主要有哪些?说明原理。

①仪器误差

由于制造条件的技术及材料的物理特性等因素,导致水银气压表具有一定的仪器误差。气压表主要的仪器误差有:

1、仪器基点和标尺刻度不准确;

2、真空度不良;

3、毛细管液面张力误差:这是由于液面的表面张力所造成的一种指向液体内部的压力。这个压力的大小随液体的种类和液体表面的曲率而变化。在槽式气压表中,这个误差是由于内管的压力比槽部大而产生的一个使水银柱偏低的误差。

由拉普拉斯公式,弯曲液面产生的附加压力(压力差)为:

24cos s P R d σσθ=

=-

式中Ps 为毛细管内与槽内弯曲液面的压力差;s 为表面的张力系数;R 为液面的曲率半经;q 为液面与管壁接触角。

压力Ps 使得水银气压的读数偏低。偏低值主要随着管的直径d ,液面与管壁接触角θ而变。 d 越大,影响越小;θ越小,曲率越大,影响越大。

设Ps 作用下,使水银柱降低了?h ,则:

4cos h g d σθ

ρ?=-

?

4cos h gd σθ

ρ?=-

式中ρ为水银的密度;g 为重力加速度。

②温度误差:铜尺的长度随温度变化的伸缩带来的误差。

③气压表读数的重力误差

0(0,,)

H g h ?还需订正到标准状态下即

45(0,,0)

h H g

其中

,45045,0

(0,,0)(0,,)h

h g H g H g h g ??=

由于纬度和高度不同,会造成g 值的差异。因而重力订正分纬度重力订正和高度重力订正。 6.简述沸点气压计测压原理。

将一个装有纯净液体的容器与待测空气相通,将溶液加热到沸点,溶液表面的饱和蒸汽压将达到大气压力的数值,测定它的沸点温度就可计算出大气压力。

大气压力与沸点温度的关系为:

log p B P A t C

=-

-

0()log p B

t C C

A P =

+-

这种方法的优点是将复杂的气压的测量转化为温度的测量。

第8章 风的观测

1.旋转式风速表主要有哪几种?简述它们的测量原理。

旋转风速表的感应部分是一个固定在旋转轴上的感应部件,固定在旋转轴上。在稳定的风力作用下,感应部件受到扭力矩而开始旋转,转速与风速成一定关系。因此,测量转速可以得到风速。感应部件有风杯式和螺旋桨式两种,风杯式绕竖直轴转,螺旋桨式则安装在支架的水平轴上,支架可绕竖直轴,随风向变化转动。

旋转风速表主要有以下几种:

①. 蜗杆风速表:根据齿轮转速与风速的关系,测量转速,得到风速; ②. 电感式旋转风速表:将转速转化为电感、电压来测量; ③. 光电式旋转风速表:将转速测量转化为光电频率的测量;

④. 悬浮式旋转风速表:将光电式旋转风速表的转轴悬浮起来,减小摩擦。 2.简述直热式热线微风仪的测量原理。

直热式热线风速仪的感应部分是一根直径约为5-10μm 的铂金属丝,紧绷在支架上,长度约几个至20mm 。由于较大的电流流经铂丝,它的温度要比环境空气温度高200-500℃。

直热式热线风速仪的铂金属丝,一丝两用,它既用来感应风速,又以它的电阻值确定热线的温度,它的感应方程为:

()()

()()22110.2410.24n t t t n

t t t i R K v t R R t i R

K v R R K K R θθθρθαθρα?=-?

?=+-???????=?-?

?=??

第9章 高空风的观测

1.简述经纬仪气球测风原理。

气球以速度w 上升,测得方位角α(相对正北)、仰角δ。在t 时刻气球上升的高度为:H=wt 气球在水平方向上的投影距离为:L=Hctg δ。水平风速为:v=L/t 假如连续测量,测得多组数据。第i 个点处测得αi 、δi ,则可得

()()

()()

22

i i 1i i+1i i 1i i i+1i

2

2

2i i 1i i+1i i 1i i+1i

L sin(-)+(L -L )cos(-)v =

t -t L (-)+w(t -t )ctg Hsec (-) t -t a a a a a a d d d d ++++-?

双经纬仪测风是在已知基线长度的两端,架设两架经纬仪同步观测,分别读出气球的仰角、方位角,利用三角法或矢量法计算气球高度和风向风速。 2.单经纬仪测风的优缺点有哪些? 优点:测量简单,节省人力;

缺点:有上升下沉气流时,会使气球上升速度偏大或偏小,并且气球本身上升速度在不同高度有变化。

第10章 辐射能的观测

1. 气象辐射能的测量项目有那些? 短波辐射:

(1)太阳短波辐射通量

太阳直接辐射S :垂直于太阳入射光的辐射通量。 (2)水平面太阳直接辐射

h=太阳高度角 z=天顶矩 (3)散射辐射D :

太阳辐射经过大气或云的散射,以短波形式到达地面的辐射通量。

'sinh cos S S S z

==

(4)总辐射 Q

太阳直接辐射S ′和天空散射辐射D 到达水平面的总量,即: Q=S ′+D

白天太阳被云遮蔽时, Q=D ,夜间Q=0 (5)短波反射辐射 Rk

总辐射到达地面后被下垫面(地表)向上反射的那部分短波辐射分量Rk ;下垫面的反射率表示

为: Ak=Rk/Q

地球长波辐射通量

(1) 大气长波辐射通量L ↓,也称大气逆辐射;

4

a a L T εσ↓= (10.4)

εa 为大气的比辐射率;σ斯蒂芬-波尔兹曼常数; 为大气温度。

(2)地表长波辐射通量L ↑

4

s s L T εσ↑= εs 为地表的比辐射率;σ斯蒂芬-波尔兹曼常数;s T 为地表的温度。

(3)全辐射

短波辐射和长波辐射之和,称为全辐射。

净辐射(辐射平衡)

向下的短波辐射、长波辐射之和与向上的短波辐射、长波辐射之和的差值,即

'()()n k R Q L Q L S D L R L =↓+↓-↑+↑=++↓-↑-↑

夜间,短波辐射为0,则:n R L L =↓-↑

第11章 降水和蒸发的观测

1.我国气象台站降水观测包括哪三个要素?它们的单位是什么?

降水量:降落在地面上未经蒸发、渗透或流失的液态或固态降水的积水量。以积水的深度表示,单位为mm ,取一位小数。

降水时数:降水持续的时间,以h,min 为单位。 降水强度:单位时间内的降水量,以mm/h 为单位。 2.降水观测的仪器主要有哪三种?简述测量原理?

降水观测的仪器主要有雨量器、虹吸式雨量计、翻斗式雨量计。 雨量器原理:

包括:

(1)雨量筒:用于承接降水量; (2)雨量杯:用于测量降水量;

若承接口的半径为R ,量杯的半径为r ,则降水量1mm 时,在量杯中应为hmm ,即:

2

2R h r

我国现用的雨量器R=10cm,r=2cm 。由此可知,桶内积水深度为1mm 时,量杯内水深为25mm ,因此,可将量杯上每2.5mm 刻制一条线,代表降水量为0.1mm 。

虹吸式雨量计的测量原理

包括:承接口、漏斗、自记系统(自计钟、自记纸、自记笔)、浮子、浮子室、虹吸管、盛水器等。当有液体降水时,降水从承接口经漏斗进入浮子室。浮子室是一个圆桶容器,内装浮子,外接虹吸管,降水使浮子上升,带动自记笔在钟筒自记纸上画出记录曲线。当自记笔尖升到自记纸刻度的10mm 时,浮子室内的水恰好上升到虹吸管顶端,虹吸管开始迅速排水,使自记笔尖回到刻度“0”线,重新开始记录。因此,自记曲线的坡度可以表示降水强度。

翻斗式雨量计的测量原理

翻斗式雨量计由感应器、记录器、电源组成;

感应器安装在室外,由承接器、上翻斗、计量翻斗、 计数翻斗、干簧管组成; 记录器安装在室内由:计数器、记录系统、电路控制系统组成;

感应器的工作过程是,承接器中收集的降水通过漏斗进入上翻斗,当降水积到一定量时,由于水的重力作用,使翻斗翻转,使降水进入汇集漏斗。由汇集漏斗进入计量翻斗,当计量翻斗中的降水量为0.1mm 时,计量翻斗将降水倒入计数翻斗,使计数翻斗翻转1次。

计数翻斗翻转时,与它相联的磁钢对干簧管扫描一次。干簧管因磁化而瞬时闭合一次,这样,降水量每达到0.1mm ,就送出一个开关信号,通过记录器在记录纸上记下0.1mm 的降水量。即:

降水→承接器→上翻斗→汇集漏斗→计量翻斗→计数翻斗翻转一次→送出一个信号→记录一个0.1mm 的降水量。

3、蒸发量观测的仪器有哪些?简述E601蒸发器和Lysimeter 蒸散量测定仪的测量原理?

蒸发量观测的仪器有小型蒸发器;E601蒸发器;Lysimeter 蒸散量测量仪(蒸渗仪)。 E601蒸发器的测量原理:

主要由:蒸发桶、水圈、溢流筒、测针组成;

蒸发桶器口面积为3000cm2。在桶壁上开有溢流孔,用胶管与溢流孔相连,以承接因降水从蒸发桶内溢出的水量。桶涂成白色,以减少太阳辐射。水圈是装置在蒸发桶外围的套,用以减少太阳辐射及溅水对蒸发的影响。测针用于测量蒸发器内的水面高度。

观测时,调整测针与水面相切,从游标尺上读出水面高度,读数可精确到0.1mm,则:

蒸发量=前一日水面高度+降水量-测量时水面高度

其中降水量以雨量器的观测值为准。

Lysimeter 蒸散量测定仪的测量原理:

土壤表面与植被系统的蒸散量的测量是较复杂的。包括土壤表面的蒸发、植被的蒸腾等,它们与土壤含水量、水的径流、渗漏及大气的温度、湿度和风速有关。

蒸散量=当日土柱重量-前日土柱重量-降水量-浇灌量

若降水量=0;浇灌量=0,则:

蒸散量=当日土柱重量-前日土柱重量

第12章自动气象观测系统

1.为什么要研制自动气象站?

研制自动气象站是经济发展,社会发展,行业发展的要求。对于旅游业,重大活动等都有很大的帮助。另外这对于气象行业是一次革命,使整个行业网络化,自动化。

2.动气象站主要有哪几种?

主要有无人自动气象站,有线遥测自动气象站,长期自动气候观测站。

3.自动气象站主要测量要素有哪些?

主要测量要素有:气温、地温、湿度、气压、风向、风速、雨量、辐射

4.自动气象站数据时如何传递的?

自动气象站由电子设备或计算机控制的自动进行气象观测和资料收集传输的气象站,一般由传感器、变换器、数据处理装置、资料发送装置、电源等部分组成。变换器将传感器感应的气象参数转换成电信号(比如电压、电流、频率等);数据处理装置则将对这些电信号进行处理,再转换成对应的气象要素值。经过处理的气象要素数据按规定的格式编排,经资料发送装置用有线或无线方式传给用户,或存贮在介质上,由用户定期回收。电源是为气象站正常工作提供动力的,在野外通常使用太阳能电池。整个系统由一部微机自动管理。

航概复习知识要点

航空航天概论要点 第一章航空航天发展概况 1.1 航空航天基本概念 航空:载人或不载人的飞行器在地球大气层中的航行运动。航空按其使用方向有军用航空和民用航空之分。军用航空泛指用于军事目的的一切航空活动,主要包括作战、侦察、运输、警戒、训练和联络救生等。民用航空泛指利用各类航空器为国民经济服务的非军事性飞行活动。民用航空分为商业航空和通用航空两大类。航天是指载人或不载人的航天器在地球大气层之外的航行活动,又称空间飞行或者宇宙航行。航天实际上又有军用和民用之分。 1.2 飞行器的分类、构成与功用 在地球大气层内、外飞行的器械称为飞行器。在大气层内飞行的飞行器称为航空器。 1.3 航空航天发展概况 1783年6月5日,法国的蒙哥尔费兄弟用麻布制成的热气球完成了成功的升空表演。

1852年,法国人H.吉法尔在气球上安装了一台功率约为2237W的蒸汽机,用来带动一个三叶螺旋桨,使其成为第一个可以操纵的气球,这就是最早的飞艇。 1903年12月17日,弟弟奥维尔·莱特,驾驶“飞行者”1号进行了试飞,当天共飞行了4次,其中最长的一次在接近1min的时间里飞行了260m的距离。这是人类历史上第一次持续而有控制的动力飞行。 1947年10月14日,美国X-1研究机,首次突破了“声障”。 火箭之父:俄国的K.齐奥尔科夫斯基 1957年10月4日,世界上第一颗人造地球卫星从苏联的领土上成功发射。 1969年7月20日,“阿波罗”11号飞船首次把两名航天员N.阿姆斯特朗和A.奥尔德林送上了月球表面。 1986年1月28日,“挑战者”号发射升空不久即爆炸,7名航天员全部罹难。 2003年美国当地时间2月1日,载有7名航天员的“哥伦比亚”号航天飞机结束任务返回地球,在着陆前16分钟发生意外,航天飞机解体坠毁,机上航天员全部罹难。 1.4 我国的航空航天工业 新中国自行设计并研制成功的第一架飞机是歼教1。 我国自行设计制造并投入成批生产和大量装备部队的第一种飞机是初教6。 我国第一架喷气式战斗机是歼5型飞机,是一种高亚声速歼击机。 歼6飞机是我国第一代超声速战斗机,可达1.4倍声速。 我国第二代超声速战斗机包括歼7和歼8系列。 歼8系列飞机的研制成功,标志着我国的军用航空工业进入了一个自行研究、自行设计

大气探测学-习题及答案-单元复习要点

单元复习要点 〈〈大气探测学》第1单元复习要点 1、名词解释: 大气探测的精确度、灵敏度、惯性、分辨率、量程、代表性、比较性。 2、简述大气探测的对象、任务和特点。 3、熟记三族、十属、二十类云的中文名和国际简写。 4、解释积状云、层状云、波状云的形成机理和基本特征。 5、解释卷积云与高积云、高积云与层积云各有何异同? 6、解释卷层云与高层云、高层云与雨层云、雨层云与层云有何异同? 7、解释荚状、堡状、絮状云、钩状云的形成机理,各代表什么气层状况? 8、解释碎积云、碎层云、碎雨云的外形与成因有何不同? 9、简述对流云从淡积云Cu hum发展到鬃积雨云Cb cap的物理过程。 10、熟记CK CM、CL云码所代表的云属、云状及其天气意义和演变规律。 11、能见度的器测法主要有哪几种,说明它们的优缺点和探测原理。 12、请写出水平均一大气的目标物亮度方程,并说明方程各项的意义。 13、请写出人眼所见目标物的总视亮度方程,并说明方程各项的意义。 14、请写出目标物一水平天空背景亮度对比度衰减规律方程,并说明各项意义。 15、说明浮尘与霾;霾与轻雾;浮尘、扬沙、沙尘暴及尘卷风天气现象的形成机理,并写出其符号。 16、简述形成连续性、间歇性和阵性降水的物理机理及判断特征。

17、译出下列电码:10025, 11308, 29060, 39665, 40026, 52146, 54000, 60032。 〈〈大气探测学》第2单元复习要点 1. 什么叫温标?常用温标有哪几种?如何换标? 2. 试述玻璃温度表测温原理。 3. 试述最高最低温度表测温原理。 4. 试述双金属片测温原理。 5. 试述平衡和不平衡电桥测温原理。 6. 推导线性化输出平衡电桥电阻r1,r2,r3的计算式。 7. 说明温度热滞系数的物理意义及特性。 8. 如何测定温度表的热滞系数? 9. 一支热滞系数为100S的温度表,温度30C时,观测环境20C的空气温度,精度要求为0.1C,需要多少时间才能观测? 10. 百叶箱气温日变化振幅A0 =10C,要求日振幅误差小于0.1C,计算热滞系数。 11. 气温测量中一般采用哪些方法预防辐射误差? 12. 简述干湿球温度表的测湿原理。 13. 干湿球温度表A值与哪些因素有关? 14. 为什么采用人工通风的干湿球温度表能提高测量精度? 15. 简述露点仪的测量原理。 16. 影响露点仪测量精度的因素有哪些? 17. 测量湿度的方法有哪几种?简述原理。

(完整版)大气探测学习题整理

大气探测从原理上区分有哪几种方法? 大气探测从原理上一般分为直接测量和遥感测量 直接测量:探测器(感应)直接放入大气介质中,测量大气要素。直接测量包括现场测量和遥测两种方式。遥感探测:通过大气中传播的要素信息反演出大气要素的时空分布。遥感测量课一份为主动遥感和被动遥感 大气探测的”三性”要求是哪些?如何保证大气探测资料的代表性和可比性? 三性:准确性、代表性、比较性。准确性反映测量值与真实状况的差别,我们希望准确性要适当的高(即误差要小到慢速使用目的的要求)。代表性是指所测得的某一要素值,在所规定的精度范围内,不仅能够反映观测站该要素的局地情况,而且能够代表观测站周围一定范围内该要素的平均情况。代表性分为空间代表性和时间代表性,指观测资料所能代表的空间范围是时间间隔。我们对观测资料的代表性要求,与分析和应用的各种现象的时间和空间尺度两者均有关 代表性分为空间代表性和时间代表性。要保证大气探测资料的空间代表性,原则上要确定台站地形具有典型性。站址的选择、观测站的建立要防止局地地形地物造成大气要素不规则变化。一般说来,平原地区的台站资料代表性较好,山区、城市台站资料代表性较差。要保证时间代表性,则要保证大气要素观测的同时性 要保证大气探测资料的可比性,则要求观测时间、观测方法、仪器类型、观测规范、站台地理纬度、地形地貌条件等的一致性 淡积云、浓积云、秃积雨云、鬃积雨云,它们之间的区别界限是什么? 由淡积云-浓积云-秃积雨云-鬃积雨云的对流增强时依次发展形成的为低空积状云的四个阶段。当对流减弱,云内下沉气流占主导作用时,云体将逐渐瓦解消散,演变成其它的云。(1)淡积云;云的个体不大,轮廓清晰,底部较平,顶部呈圆弧形凸起,垂直发展不旺盛,云底较扁平,薄的云块呈白色,厚的云块中部有淡影。分散在空中,晴天常见。浓积云:云的个体高大,轮廓清晰,底部较平、阴暗,垂直发展旺盛,垂直高度一般大于水平宽度,顶部呈圆弧形重叠凸起,很象花椰菜。秃积雨云:这种云是浓积云向鬃积雨云发展的过渡阶段。云顶已开始冻结,云顶花椰菜形的轮廓渐渐模糊,丝絮状结构还不太明显,云体其余部分仍具有浓积云特征。这是积雨云的初始阶段,存在时间较短促。鬃积雨云:这种云是积雨云发展的成熟阶段。由秃积雨云发展而成。云顶白色,丝絮状结构明显,常呈马鬃状和铁砧状,底部阴暗,气流混乱 云的观测的主要内容是什么? 主要内容是判定云状、估计运量、测定云高、选定云码 简述云形成的基本过程 云的形成过程是空气中的水汽由各种原因达到过饱和而发生凝结或凝华的过程 水汽要凝结成水滴或凝华成冰晶而形成云,必须具备两个基本条件:一是要有水汽凝结核,二是要有水汽过饱和,二者缺一不可。大气中一般不缺乏凝结核,因此,形成云的最关键问题,还在于应有水汽的过饱和 气象能见距离为10千米,问在10千米处有一以天空为背景视角大于30′的白色建筑物是否能见?为什么? 不能。能见度是指视力正常(对比视感阈为0.05)的人,在当时天气条件下,能够从天空背景中看到和辨认出目标物(黑色,大小适度)的最大水平距离;所以在10千米处有一以天空未背景视角大于30°的白色建筑物不能看见 浮尘与霾、霾与轻雾的区别 形成浮尘的沙尘是由远处传播而来,而霾不是。一般浮尘的能见度更小,并且垂直能见度也不大。霾常出现在干燥时期,浮尘不一定。霾和轻雾的组成不同,霾是大量沙尘漂浮在空气

最新大气探测学复习题

大气探测学复习题 1、大气探测按照探测方法分:目测(云、能、天)、直接探测(探测仪 器与被测大气直接接触,如玻璃液体温度表测量气温的方法。目前直接探测正向遥测方向发展,如自动站的温度传感器)和遥感(又称间接探测,指仪器与被测大气不直接接触进行的探测,分为主动遥感和被动遥感)三种。 2、大气探测按照探测范围分:地面气象观测和高空气象探测两种。按 照探测平台分:地基探测、空基探测和天基探测。按照探测时间分:定时观测和不定时观测。WMO又把定时观测分为基本天气观测和辅助天气观测,两者均参与全球气象资料的交换。 3、一个比较完整的现代化大气探测系统,包括探测平台(基础)、探测 仪器(核心)、通讯系统(纽带)、资料处理系统(不可或缺)。 4、大气探测学主要研究内容:研究大气探测系统的建立原则和方法, 以便获得有代表性的全球三维空间分布的气象资料;制定大气探测技术规范来统一各种观测技术和方法,使其标准化,确保气象资料具有可比较性;研制探测仪器标准计量设备,制定计量校准方法,确保测量结果的准确性。 5、传感器或测量系统的校准是确定测量数据有效性的第一步。校准是 一组操作,是指在特定条件下,建立测量仪器或测量系统的指示值雨相应的被测量(即需要测量的量)的已知值之间的关系。主要确定传感器或测量系统的偏差或平均偏差、随机误差、是否存在任何阈值或非线性响应区域、分辨率和滞差。 6、校准结果有时可以用一个校准系数或一序列校准系数表示,也可以 采用校准表或校准曲线表示。 7、随机误差是不可重复的,也是不可消除的,但是它能够通过在校准 时采用足够次数的重复测量和统计方法加以确定。 8、根据国际标准化组织(ISO)的定义,标准器可分基准、二级标准、 国际标准、国家标准、工作标准、传递标准、移运式标准等。基准设置在重要的国际机构或国家机构中。二级标准通常设置在主要的校准实验室中。工作标准通常是经过用二级标准校准的实验室仪器。工作标准可以再野外场地作为传递标准使用。传递标准既可用于实验室也可在野外场地使用。

大气探测学复习思考题版

大气探测学复习思考题(2011版)一、写出下列云状的国际简写或由国际简写写出云状学名 浓积云Cu cong 碎积云Fc 淡积云Cu hum 秃积雨云Cb calv 鬃积雨云Cb cap 荚状层积云Sc lent 堡状层积云Sc cast 透光层积云Sc tra 积云性层积云Sc cug 蔽光层积云Sc op 层云St 碎层云Fs 雨层云Ns 碎雨云Fn

透光高层云As tra 蔽光高层云As op 透光高积云Ac tra 蔽光高积云Ac op 堡状高积云Ac cast 荚状高积云Ac lent 积云性高积云Ac cug 絮状高积云Ac flo 毛卷云Ci fil 密卷云Ci dens 伪卷云Ci not 钩卷云Ci unc 匀卷层云Cs nebu 毛卷层云Cs fil 卷积云Cc 二、解释名词 大气科学、大气探测、气象资料的代表性、气象资料的准确性、气象资料的比

较性、云、、云量、天气现象、气象能见度、气象光学距离、气温、摄氏温标、华氏温标、热电现象、热滞系数、百叶箱、湿度、露点温度、盖﹒吕萨克尺度、气压、本站气压订正、海平面气压订正、风、阵风、降水量、蒸发量、积雪、太阳常数、直接辐射、雾、环日辐射、散射辐射、全辐射、净辐射、日照时数、高空测风、单经纬仪定点测风、双经纬仪基线测风、一次雷达、二次雷达、测风雷达的测角原理、等信号强度法、自动气象站、遥感、主动式大气遥感探测、被动式大气遥感探测、激光雷达、声雷达、可见光探测、红外辐射探测、微波探测、大气边界层探测、气象塔、对比视感阈 三、简述或论述下列各题 1.为什么要提出气象观测资料的“三性”? 2.什么是观测资料的测站代表性和区域代表性? 3.怎样来衡量观测资料的代表性和准确性?它们之间有何关系?怎样保证比较性? 4.淡积云、浓积云、秃积雨云、鬃积雨云,它们之间的区别界限是什么? 5.碎积云、碎层云、碎雨云,它们之间在外形及成因上有何不同? 6.卷层云和高层云、高层云和雨层云、雨层云和层云,各有何异同之处? 7.卷积云和高积云、高积云和层积云,各有何异同之处?

大类招生共用《大气探测学》知识点总结

《大气探测学》知识点总结 说明: 1、不要求记住公式,试卷上会给出公式,但需明白公式中各项意义 2、考题题型有判断题、填空题、单选题、简答题与计算题 复习提纲: 一.绪论 大气探测的定义 大气探测是对表征大气状况的气象要素、天气现象及其变化过程(以及化学成分)进行个别或系统的、连续的观察和测定,并对获得的记录进行整理。 大气探测的发展历史 始创时期(16世纪之前) 相风乌、雨量器、风压板等 地面气象观测发展阶段( 16世纪末开始) 1593年,意大利人伽里略发明了气体温度表 1643年,托里拆利发明了水银气压表 1783年,瑞士德索修尔发明了毛发湿度表 高空气象探测发展阶段( 18世纪末开始) 二十世纪初,无线电探空仪 四十年代中期,气象火箭 大气遥感发展阶段( 20世纪40年代开始) 二十世纪四十年代初,天气雷达 1960年4月,气象卫星 我国气象探测的组织 基准气候站:一般300-400公里设一站 基本气象站:一般不大于150公里设一站 一般气象站:一般50公里左右设一站 高空气象站:一般300公里设一站,每天探测2次或3-4次。(8:00,20:00北京时) 大气探测原理 直接测量:感应元件置于待测介质之中,根据元件性质的变化,得到描述大气状况的气象参数。如:温度表 遥感探测:根据大气中声、光、电磁波等信号传播过程中性质的变化,反演出大气要素的时空变化。可以分为主动遥感和被动遥感两种方式。如:雷达卫星 大气探测仪器的性能指标和误差 准确度:仪器的测量值(已做各种订正后)与真值的符合程度。准确度考察的是测量值与实际值的接近程度。反映的是系统误差和随机误差的合成大小,常用相对误差来表示,其值越小,准确度越高。 灵敏度:仪器的灵敏度就是它的示度在被测要素改变单位物理量时所移动的距离、旋转的角度或显示输出量的大小。 惯性(滞后性):具有两重性,一般要求惯性的大小由观测任务所决定 自动平均能力:探空仪惯性小;湍流探测惯性很小;地面气象台站观测惯性适当大点 分辨率:仪器的分辨率——导致一个测量系统响应值变化的最小的环境改变量,它和量程及

《大气探测学》课后答案

《大气探测学》习题参考答案 第1章绪论 1.大气探测学研究的对象、范围和特点是什么? 大气探测是对表征大气状况的气象要素、天气现象及其变化过程进行个别或系统的连续的观察和测定,并对获得的记录进行整理。研究范围是近地层大气、高空大气以及一些特殊区域的大气(如大气边界层,城市热岛环流,峡谷风场,海陆风场等)。大气探测的特点:随着科学技术的发展,大气探测的要素量和空间范围越来越大。分为近地面层大气探测、高空大气层探测和专业性大气探测。近几十年来,作为主动遥感的各种气象雷达探测和作为被动遥感的气象卫星探测,以及地面微波辐射探测等获得较多信息的大气探测方法,正在逐步进入常规大气探测领域。这些现代大气探测技术应用于大气科学的研究领域,极大的丰富了大气探测的内容。 2.大气探测的发展主要有那几个时期? ①创始时期。这是在16世纪末发明第一批大气探测仪器以前的漫长时期,这期间发明了相风鸟、雨量器和风压板等,不能对大气现象进行连续记录。 ②地面气象观测开始发展时期。16世纪末,随着气象仪器的发明,开始了气象要素定量测量阶段。 ③高空大气探测的开始发展时期。这时期陆续有人采用系留气球、飞机及火箭携带仪器升空,进行高空大气探测。 ④高空大气探测迅速发展时期。这时期,前苏联、德国、法国、芬兰等国家都开始研制无线电探空仪,以及其他高空探测技术,为高空大气探测事业开辟了新的途径。 ⑤大气探测的遥感时期。1945年美国首次将雷达应用于气象观测,后来发射了气象火箭和探空火箭,把探测高度延伸到了500千米。 ⑥大气探测的卫星遥感时期。这个时期,大气探测不仅从根本上扩大了探测范围,也提高了对大气探测的连续性。 3.简述大气探测原理有那几种方法? ①直接探测。将探测元件直接放入大气介质中,测量大气要素。应用元件的物理、化学性质受大气作用而产生反应作用的原理。 ②遥感探测。根据电磁波在大气中传播过程中信号的变化,反演出大气中气象要素的变化,分为主动遥感和被动遥感。 ③施放示踪物质。向大气施放具有光学或金属性质的示踪物质,利用光学方法或雷达观测其随气流传播和演变规律,由此计算大气的流动状况。 ④模拟实验。有风洞模拟和水槽模拟。风洞模拟大气层边界层风、温及区域流场状况。水槽模拟大气层环流、洋流、建筑物周围环境流场特征。可调控温度场,模拟大气边界层的温度层结。 4.大气探测仪器的性能包括那几个? ①精确度。即测量值与实际值的接近程度。又包括仪器的精密度和准确度。精密度考察的是连续测量值彼此相互间的接近程度。准确度考察的是测量值与实际值的接近程度。探测仪器的精确度取决于感应元件的灵敏度和惯性。 ②灵敏度。即单位待测量的变化所引起的指示仪表输出的变化。 ③惯性(滞后性)。即仪器的动态响应速度。具有两重性,大小由观测任务所决定。 ④分辨率。即最小环境改变量在测量仪器上的显示单位。 ⑤量程。即仪器对要素测量的最大范围。取决于所测要素的变化范围。 5.如何保证大气探测资料的代表性和可比性? 代表性分为空间代表性和时间代表性。要保证大气探测资料的空间代表性,原则上要确定台站地形具有典型性。站址的选择、观测站的建立要防止局地地形地物造成大气要素不规则变化。一般说来,平原地区的台站资料代表性较好,山区、城市台站资料代表性较差。要保证时间代表性,则要保证大气要素观测的同时性。 要保证大气探测资料的可比性,则要求观测时间、观测方法、仪器类型、观测规范、站台地理纬度、地形地貌条件等的一致性。 第2章云的观测

大气探测学能见度知识点

大气探测学 第3章能见度的观测 1、能见度主要受悬浮在大气中的固体和液体微粒引起的大气消光的影响。其估计值依赖于个人的视觉和对“可见”的理解水平,同时受光源特征和透射率的影响。 2、能见度概念得到广泛应用,一是因为它是表征气团特性的要素之一,二是因为它是与特定判据或特殊应用相对应的一中业务性参量。 3、一般意义上的能见度,是指目标物的能见距离,即观测目标物时,能从背景上分辨出目标物轮廓和形体的最大距离。当能从背景上分辨出目标物轮廓和形体时,通常称目标物“能见”。 4、目标物的最大能见距离有两种定义法。一种是消失距离,它是指当观测者逐渐退离目标物,直至目标物从背景上可以辨别时的最大能见距离。另一种是发现距离,它是指当观测者从远处逐渐走近目标物,直至将目标物从背景上辨认出来时的最大能见距离。 5、目标物的消失距离要比发现距离大。 6、按照观测者与目标物的相对位置,能见度分为水平能见度、垂直能见度和倾斜能见度。 7、垂直能见度和倾斜能见度对地面向上观测云或其他空中目标物以及从空中向下观测目标物有影响。 8、能见度影响因子:目标物的背景的亮度对比、观测者的视力—对比视感阈(白天)、大气透明度。 9、目标物和背景的色彩不同也影响到能见与否,但色彩的感觉只有在足够的光亮度条件下才能产生。亮度对比相对于色彩对比在目标物识别中显得更重要,是起决定作用的因素。 10、最小亮度的对比值叫做人眼的对比视感阈,取决于两个因素:视场内照明情况,即场光亮度;目标物视张角。场光亮度越低,目标物视张角越小。白天,对比视感阈变化不大,黄昏时,对比视感阈迅速增大。 11、柯什密得提出将0.02作为正常视力的人,在白昼野外,观测比较大的物体(如视张角大于0.5°)时的对比视感阈值,此值对应于消失距离值。而对应于发现距离,对比视感阈可取为0.05。 12、在白天光照条件下眼睛的感光效率在波长为550nm时达到最大值。在夜间暗光条件下,最大感光效率与507nm波长相对应。 13、大气透明程度是影响能见度的主要因子。 14、大气中气体分子及悬浮微粒通过散射、吸收及反射等机制对光起衰减作用,导致目标物固有亮度减弱,这一现象称之为物光减弱。 15、空气元对场入射光的散射,使空气层本身有了亮度,从而使空气层像一层亮纱附加在目标物上,使目标物亮度增强,这一现象称之为气幕光增强。 16、纯大气分子影响时,最大能见度可达277km,而在雾和沙尘暴天气中的能见度可低达几十米,甚至只有几米。 17、目标物的能见与否与目标物和背景的亮度对比有关。由于大气中分子和悬浮微粒的影响,人眼见到的目标物亮度(称之为视亮度)与目标物固有亮度是不一样的,同样,背景的视亮度与其固有亮度也不同。 18、气幕光的强度随着水平空气柱长度的增加而增加,当空气柱为无穷长时,此

大气探测复习题讲解

大气探测学 1、按照探测方法分,大气探测分目测、直接探测和遥感三种。 2、所谓遥感,又称为间接探测,就是指仪器与被测大气不直接接触进行的探测。遥感又分为主动遥感和被动遥感。主动式大气遥感是指遥感器向大气发射信号,并通过接收被大气散射、吸收或折射后的信号,从中反演气象要素的方法和技术。被动式大气遥感是指遥感器接收大气自身发射或散射的自然信号,从中反演气象要素的方法和技术。 3、按照探测范围分,大气探测分为地面气象观测和高空气象探测两种。 4、地面气象观测是指在地面上以目力或仪器对近地面层的大气状况和天气现象进行的观测。 5、高空气象探测,是指对自由大气各气象要素的直接或间接探测。 6、常规的高空气象探测,是指利用气球携带无线电探空仪对空中气温、湿度、气压和风进行的探测,其最大探测高度为35km,又称为无线电高空气象探测。 7、按照大气平台分,大气探测分为地基探测、空基探测和天基探测。 8、按照探测时间分,大气探测分为定时观测和不定时观测。 9、一个比较完整的现代化大气探测系统,包括探测平台、探测仪器、通信系统和资料处理系统四部分。 10、根据国际标准化组织(ISO)的定义,标准器可分为基准、二级标准、国际标准、国家标准、工作标准、传递标准、移云式标准等。

11、在气象测量中,铂电阻温度传感器已基本取代了400多年的玻璃温度表,其测量误差不超过+-0.2℃。 12、目前湿敏电容传感器的测量准确度在0℃以上只能达到3%-5%RH,在0℃以下为5%-8%RH,在低湿条件下其测量准确度虽然高于铂电阻通风干湿表,但在5℃以上时要比铂电阻通风干湿表低。 13、短波辐射的测量准确率达到1%-2%,长波辐射的测量准确率达到2W.m-2 14、大气探测在未来15-20年内,大气探测将向以下几个方发展。(1)、地面气象观测以自动气象站为主,组成自动遥测网。 (2)、电子探空仪、GPS探空仪取代机械探空仪应用于业务系统。(3)、各种遥感设备加入到大气探测业务中,成为中、小尺度系统监测的重要设备。 (4)、GNSS(全球导航卫星系统)技术应用于大气探测中,与进一步发展的卫星监测网组成互为补充的天基、地基综合监测网。 (5)、气象卫星遥感探测向全天侯、多光谱、更高分辨率定量探测方向发展。 15、天基观测系统以极轨、静止两个系列气象卫星和气象小卫星为主,实现对地球全天侯、多光谱、三维的定量观测。 16、空基观测系统以GPS气球探空系统为主,实现对大气水汽总量和垂直分布的监测。 17、地基观测系统由地面常规观测系统、地基高空观测系统、地基特种观测系统、地基移动观测系统组成。

航空气象知识点

第1-4章选择填空,名词解释;5、6章简答 选择 10个(20分);填空 10个(20分);名词解释 15分;电码翻译 30分;简答 10个(30分) 第一章大气的状态及运动 1、本站气压:气象台气压表直接测得的气压。由于各测站所处地理位置及海拔高度不同,本站气压常有较大差异。 2、场面气压:指航空器着陆区(跑道入口端)最高点的气压。场面气压也是由本站气压推算出来的,为了准确计算飞机起降时相对于跑道的高度。 3、场面气压高度:指飞机相对于起飞或着陆机场跑道的高度。在起飞和着陆阶段为了使气压高度表指示场面气压高度,需按场压来拔正气压式高度表,使得高度指针位于零值刻度。 4、测高仪表:无线电高度表、气压式高度表 无线电高度表:测高原理:天线向地面发射无线电波,经地面反射后,再返回飞机。测高是测量电波往返传播的时间Δt。 特点:较精确地测得飞机距地表的距离,对地形变化敏感,既是优点也是缺点。 用途:①用于校正仪表②复杂气象条件下的飞机起飞和着陆 气压式高度表:高灵敏度的空盒气压表 注意:高度表刻度盘是在标准大气条件下按照气压随高度的变化规律而确定的。 含义:在标准海平面上(气压为1个标准大气压)高度值为零。 5、理想气体状态方程 气温、气压和空气湿度的变化都会对飞机性能和仪表指示造成影响,这种影响主要是通过它们对空气密度的影响实 现的: 6、密度高度 指飞行高度上的实际空气密度在标准大气中所对应的高度。密度高度表示了密度随高度变化的特征。 密度高度对飞行的影响:低密度高度能增加飞机操纵的效率;高密度高度则降低飞机操纵的效率。 飞机操纵的效率:指飞机的操作性能,这种操作性能受大气密度影响很大。机翼的升力(或螺旋桨的推力)受其周边的空气速度和空气密度所影响,在高密度高度的地区,需要额外的动力来弥补薄空气的不足,升力下降,发动机功率下降,喷气发动机的推力下降,飞机性能变坏且起飞和降落的距离加长,上升率和升限也降低。根据实测结果,当气压维持不变,气温每升高10℃,起飞所需跑道长度增加13%,落地增加5%;反之亦然。因此同一机场,夏季所需起降距离将比冬季长。 7、基本气象要素变化对飞行的影响 (1)对高度表指示的影响 气压:实际中标准大气“零点”气压不是标准气压时

2016年大气探测学复习题解析

大气探测学课程作业_B 历次成绩完成时间查看详情 2015-01-12 16:49:21 1.36.0 大气探测学课程作业_B 大气探测学课程作业_B 用户名:wanghailing1448最终成绩:36.0仅显示答错的题 一单选题 1. 气象雷达在探测时,用雷达方程计算获取目标物信息,影响雷达方程的因子不包括___。 A.雷达参数 B.气象因子 C.距离因子 D.雷达位置 本题分值: 4.0 用户得分:0.0 用户解答: C.距离因子 标准答案: D.雷达位置 2. ___以一定的时间间隔作为时间单位,并以一定的起始瞬时计量时间的系统。 A.时制 B.日界 C.真太阳时 D.北京时 本题分值: 4.0 用户得分:0.0 用户解答: B.日界 标准答案: A.时制 3. 湿度脉动量测量仪器中最为简单也是最为常用的是() A.Lyman-α湿度仪 B.红外湿度计

C.微波折射仪 D.露点湿度表 本题分值: 4.0 用户得分:0.0 用户解答: D.露点湿度表 标准答案: A.Lyman-α湿度仪 4. 某量的真值与其测量结果之间的差值称为___。 A.相对误差 B.绝对误差 C.过失误差 D.系统误差 本题分值: 4.0 用户得分: 4.0 用户解答: B.绝对误差 标准答案: B.绝对误差 5. 测湿系数与风速的关系,随着风速的增大___。 A.先减小后增大 B.减小 C.先减小后不变 D.先增大后不变 本题分值: 4.0 用户得分:0.0 用户解答: D.先增大后不变 标准答案: C.先减小后不变 6. 最常用的风速传感器是___。 A.机械传送

B.电接式传送 C.多齿光盘 D.格雷码盘 本题分值: 4.0 用户得分:0.0 用户解答: A.机械传送 标准答案: C.多齿光盘 7. ()指单位容积空气中所含的水汽质量。单位用kg/m。 A.混合比 B.比湿 C.绝对湿度 D.水汽压 本题分值: 4.0 用户得分:0.0 用户解答: D.水汽压 标准答案: C.绝对湿度 8. 所谓有效能见度是指四周视野中___以上的范围都能看到的最大水平距离。 A.三分之一 B.二分之一 C.四分之一 D.五分之一 本题分值: 4.0 用户得分: 4.0 用户解答: B.二分之一 标准答案: B.二分之一 二判断题

大气探测学——复习题.

1大气探测研究的对象,范围,特点 对象:大气探测是对表征大气状况的气象要素、天气现象及其变化过程进行个别或系统的、连续的观测和测定;为天气、气候预测预报诊断分析提供第一手资料。包括:直接探测(仪器的感应部分直接置于探测的大气介质中);遥感探测(遥感探测技术手段)和目测项目(云、天气现象的演变过程)。 范围:大气探测分为近地面层大气探测、高空大气层探测和专业性大气探测。近地面层大气探测:主要是对近地层大气状况进行观测和探测。包括:地面气象观测和近地面层大气探测 特点:大气探测学是从事大气科学研究、教学的基础。为天气、气候诊断分析、预报及环境保护部门、国家及全球气象资料网络系统等提供大气观测资料。 2大气探测的发展主要有几个时期 创始时期,地面气象观测开始发展时期,高空大气探测的开始发展时期,高空大气探测迅速发展时期,大气探测的遥感时期,大气探测的卫星遥感时期 3简述大气探测原理有哪几个方法 直接测量:感应元件置于待测介质之中,根据元件性质的变化,得到描述大气状况的气象参数。 遥感探测:根据电磁波在大气中传播过程中信号的变化,反演出大气中气象要素的变化。可以分为主动遥感和被动遥感两种方式。 4大气探测仪器的性能包括哪几个 精确度,灵敏度,惯性(滞后性),分辨率,量程 5如何保证大气探测资料的代表性和可比性 观测站观测资料代表性的好坏,原则上可以从台站地形是否具有典型性方面进行评定。站址的选择、观测站的建立需要考虑空间的代表性,防止局地地形地物造成大气要素不规则变化。一般说来,平原地区的台站资料代表性较好,山区、城市台站资料代表性较差。湍流大气中,气象要素变化快,要取一定时段的平均值作为测量值。 观测资料的比较性是建立在一致的基础上,即要求观测时间、观测方法、仪器类型、观测规范、台站地理纬度、地形地貌条件等的一致性。没有这些一致性,也就谈不上比较性。 1、熟记云状的分类、特征及其国际简写。 低云积云Cu 淡积云 碎积云 浓积云Cu hum Fc Cu cong 积雨云Cb 秃积雨云 鬃积雨云Cb calv Cb cap 层积云Sc 透光层积云 避光层积云 积云性层积云 堡状层积云 荚状层积云Sc tra Sc op Sc cug Sc cast Sc lent 层云St 层云 碎层云St Fs 雨层云Ns 雨层云 碎雨云Ns Fn

大气探测知识要点

第一章:总论 大气探测:又称之为气象观测,是指对表征大气状况的气象要素、天气现象及其变化过程进行个别或系统的、连续的观察和测定,并对获得的记录进行整理的过程和方法。 大气探测的发展历史: 世界地面气象探测网的建立是大气探测史上的第一次革命。 高空气象要素探测系统的发展是大气探测发展的第二次革命。 1960年美国发射第一颗气象卫星泰罗斯-1号,是遥感技术发展的标志,是大气探测的第三次革命。 随着科学与技术的发展,大气探测取得了显著的发展,主要表现在探测能力显著增强,自动化水平迅速提高,观测方法、观测网的设计和观测工具的配合得到重视,直接探测和遥感技术并存,各取所长,综合利用。 观测站的分类: (1)国家基准气候站(基准站):是国家气候站的骨干;一般300-400公里设一站,每天观测24次。(2)国家基本气象站(基本站):是国家天气气候网中的主体;一般不大于150公里设一站,每天观测8次。 (3)国家一般气象站(一般站):是国家天气气候站的补充;一般50公里左右设一站,每天观测3次或4次。 (4)无人值守气象站(无人站):用于天气气候站网的空间加密;观测项目和发报时次可根据需要而定。 (5)高空气象站:一般300公里设一站,每天探测2次或3-4次。 时制:人工器测日照采用真太阳时, 日界:人工器测日照以日落为日界, 对时:台站观测时钟采用北京时。未使用自动气象站的台站,观测用钟表要每日19时对时,保证误差在30秒之内。 地面气象观测场设置:观测场一般为25m×25m的平整场地。 仪器设施布置:要注意互不影响,便于观测操作。 大气探测资料必须具有代表性、准确性、比较性。“三性”是大气探测工作的基本要求。 “三性”的联系:互相联系、互相制约。观测资料质量的好坏,均以观测资料的“三性”衡量。 第二章云的观测 云是由大气中水汽凝结(凝华)而形成的微小水滴、过冷水滴、冰晶、雪晶,由它们单一或混合组成的,形状各异飘浮在天空中可见的聚合体。其底部不接触地面 我国地面气象观测规范中,按云的外形特征、结构特点和云底高度,将云分为三族,十属,二十九类。

3-大气科学专业大气探测方向

大气科学专业(大气探测方向)培养方案 一、培养目标 本专业培养具有扎实的大气科学基本理论、专业知识和专业技能,能够在大气探测、 大气物理、大气环境、气象学、气候学、应用气象和相关学科从事科研、教学、科技开发 及相关管理工作的高级专门人才。 二、培养要求(培养规格) 本专业学生主要学习大气科学等各方面的基本理论和基本知识,受到科学思维与科 学实验(包括野外实习和室内实验)等方面的基本训练,具有良好的科学素质,具有利用 现代电子信息技术、气象雷达和气象卫星遥感技术进行大气科学基本业务、科学研究、理 论分析、数据处理和计算机应用的基本技能。具有较强的知识更新能力和广泛的科学适应 能力。 1系统地掌握本专业的数学、物理、电子技术、计算机等基础理论和基本知识; 2、具有扎实的大气科学基础理论和实验技能,掌握现代大气探测和遥感技术和分析方法; 3、了解相近专业的一般原理和方法; 4、了解国家科技发展、环境保护、知识产权、专业服务等有关政策和法规; 5、了解大气科学及相关学科的理论前沿和发展动态,具有研究、开发新系统、新技术的初步能力; 6、掌握文献检索、资料查询的基本方法,具有一定的科学研究和实际工作能力。 三、主干学科:大气科学 四、主要课程、核心课程和特色课程 1)主要课程:数字电子线路、大气物理学、天气学、电路分析基础、天气学分析、气象统计方法、现代大气探测学、气象观测仪器检定与维护、卫星气象学、雷达气象学、模拟电子线路、雷达原理和信号处理、动力气象学、气象卫星资料的多学科应用、中尺度气象学、中尺度数值模拟与预报、大气激光探测、专业英语、电磁场理论、嵌入式系统设计、信号与系统、数字信号处理、微波技术与天线。 2)核心课程:计算机基础、大气科学概论、线性代数、概率统计、高等数学、大学物理、Fortran语言程序设计、大气物理学、天气学、天气学分析、现代大气探测学、雷达气象学、卫星气象学、雷达原理和信号处理、信号与系统。 3)特色课程:卫星气象学、雷达气象学、气象卫星资料多学科应用。

(完整版)大气探测学-复习题及答案(2)

第1章绪论 1.大气探测学研究的对象、范围和特点是什么? 大气探测是对表征大气状况的气象要素、天气现象及其变化过程进行个别或系统的连续的观察和测定,并对获得的记录进行整理。研究范围是近地层大气、高空大气以及一些特殊区域的大气(如大气边界层,城市热岛环流,峡谷风场,海陆风场等)。大气探测的特点:随着科学技术的发展,大气探测的要素量和空间范围越来越大。分为近地面层大气探测、高空大气层探测和专业性大气探测。近几十年来,作为主动遥感的各种气象雷达探测和作为被动遥感的气象卫星探测,以及地面微波辐射探测等获得较多信息的大气探测方法,正在逐步进入常规大气探测领域。这些现代大气探测技术应用于大气科学的研究领域,极大的丰富了大气探测的内容。 2.大气探测的发展主要有那几个时期? ①创始时期。这是在16世纪末发明第一批大气探测仪器以前的漫长时期,这期间发明了相风鸟、雨量器和风压板等,不能对大气现象进行连续记录。 ②地面气象观测开始发展时期。16世纪末,随着气象仪器的发明,开始了气象要素定量测量阶段。 ③高空大气探测的开始发展时期。这时期陆续有人采用系留气球、飞机及火箭携带仪器升空,进行高空大气探测。 ④高空大气探测迅速发展时期。这时期,前苏联、德国、法国、芬兰等国家都开始研制无线电探空仪,以及其他高空探测技术,为高空大气探测事业开辟了新的途径。 ⑤大气探测的遥感时期。1945年美国首次将雷达应用于气象观测,后来发射了气象火箭和探空火箭,把探测高度延伸到了500千米。 ⑥大气探测的卫星遥感时期。这个时期,大气探测不仅从根本上扩大了探测范围,也提高了对大气探测的连续性。 3.简述大气探测原理有那几种方法? ①直接探测。将探测元件直接放入大气介质中,测量大气要素。应用元件的物理、化学性质受大气作用而产生反应作用的原理。 ②遥感探测。根据电磁波在大气中传播过程中信号的变化,反演出大气中气象要素的变化,分为主动遥感和被动遥感。 ③施放示踪物质。向大气施放具有光学或金属性质的示踪物质,利用光学方法或雷达观测其随气流传播和演变规律,由此计算大气的流动状况。 ④模拟实验。有风洞模拟和水槽模拟。风洞模拟大气层边界层风、温及区域流场状况。水槽模拟大气层环流、洋流、建筑物周围环境流场特征。可调控温度场,模拟大气边界层的温度层结。 4.大气探测仪器的性能包括那几个? ①精确度。即测量值与实际值的接近程度。又包括仪器的精密度和准确度。精密度考察的是连续测量值彼此相互间的接近程度。准确度考察的是测量值与实际值的接近程度。探测仪器的精确度取决于感应元

《大气探测学》知识点

第三章:能见度的观测 1.能见度是一个复杂的心理---物理现象,主要受悬浮在大气中的固体和液体微粒引起的大气消光的影响。 2.能见度用气象光学视程表示。气象光学视程是指白炽灯发出色温为2700K的平行光束的光通量,在大气中削弱至初始值的5%所通过的路径长度。 3.目标物的最大能见度距离有两种定义法。一种是消失距离,另一种是发现距离。消失距离要比发现距离大。在气象上通常采用的是消失距离。 4.影响目标物最大能见距离的因子有:目标物和背景的亮度对比、观测者的视力--对比视感阈(白天)、大气透明度。其中,大气透明程度是主要因子。 5.透射能见度仪是通过测量水平空气柱的平均消光系数来测量能见度的,它是最接近气象光学距离定义的测量方法。 6.光在大气中衰减是由空气分子和气溶胶粒子等的散射和吸收所引起的。 7.能见度仪的误差因子:a、校准误差;b、系统的电子设备的不稳定性;c、消光系数作为低通信号进行远距离输送时受到电磁场的干扰,最好是对此类信号进行数字化;d、来源于日出或日落的干扰和初始定向不良;e、大气污染沾污光学系统;f、距地大气状况导致不具代表性的消光系数或背离科什米得定律或使得得出的散射系统不同于相应的消光系数。

8.散射仪与透射仪相比,对污染的敏感性相对较低,常被用作日常监测仪器,或用来对气象光学距离提供近似估计,目前较多的用语自动气象观测系统。透射仪仅用语一些对能见度测量要求较高的测站,如机场,或作为散射仪的检定标准。 第四章天气现象的观测 1.降水类型的自动识别,可采用光学、声波、电磁波(雷达)等多种探测技术,其中以光学原理为基础的降水类型识别技术研究得较为深入。 2.基于光学原理进行降水类型识别的技术,主要有光强衰减多要素判断法、降水粒子光强闪烁法和降水粒子下落速度法等。 3.漏斗云或龙卷的出现常可通过天气雷达来确定。现代多普勒天气雷达已成为识别中尺度气旋的十分有效的设备。 4.从风速的测量值的离散序列即可确定飑。若风速测量设备的输出值与风向传感器、温度或适度传感器组合在一起,则就有可能识别出线飑。 5.雷暴主要通过使用闪电计数器来监测。利用一定时间间隔内的闪电次数,并与降水率或风俗联合应用,即可确定弱、中度和强雷暴。 第九章 1.蒸发式海洋和陆地水分进入大气的唯一途径,是地球水文循环的主要环节之一。 2.由于地形和天气系统引起的降水分布的不均匀性,造成降水量测量值的代表性较差。

大气探测学复习 第七章 地面风

地面风的观测内容风向风速。 风就是指空气的水平运动 风向是指风的来向 风速单位时间内气流走过的速度 瞬时风速 3S内的平均风速 最大风速在某个时间段出现的10min平均最大风速值 极大风速某个时间段内出现的最大风速值(3S) 测量仪器风杯风速计,风向标,超声风速仪,热线风速仪,皮托管 测风仪器的安装高度最好在10~20米之间 安装地点要求尽量开阔空旷,远离障碍物, 风向传感器传送和指示风向的方法有哪些? 有机械传送、电接式传送、电位计式传送、光电转换即格雷码盘等,其中最常用的是格雷码盘。 风速传感器传送和指示风速的方法有哪些? 传送和指示风速的方法有机械式、电接式、电机式、磁感式和光电式即多齿光盘等,其中最常用的风速传感器是多齿光盘 试述风向标测定风向的原理。各种风标各有什么优点? 当风的来向与风向标成某一个交角时,风对风向标产生压力,这个力可分解成平行和垂直于风向标的两个分力。由于风向标头部受风面积较小,尾翼受风面积较大,因而感受的风压不相等,垂直于尾翼的风压产生风压力矩,使风向标绕垂直轴旋转,直至风向标头部正好对着风的来向时,由于翼板两边受力平衡,风向标就稳定在某一位置。 特点:双叶型、菱型、流线型等。双叶型风向标稳定性也较好,但是尾翼对气流的破坏较严重,引起了尾翼后的涡流。菱型风向标是比较理想的风向标,它的体积和重量都较小,灵敏性、稳定性都很好。流线性风向标具有菱型风向标的优点,但是制造上较难,容易变形。 从风标响应的观点来说,对风标应有怎样的要求? 灵敏性:在小风速或风向改变不大的情况下,能很快地反映出风向变化来 稳定性:当风向改变时,由风向标本身惯性作用引起的摆动要小 为什么现在常见的风杯形风速器均采用三杯圆锥形? 实验认为三杯优于四杯,一方面是三杯的旋转力矩在整个回旋过程中分布比较均匀,转动比较稳定;另一方面,同样的材料和结构,单位质量所得到的旋转力矩是三杯大于四杯,因此比较灵敏,目前新型转杯风速表均是采用三杯的,试验还认为,锥形杯的性能比半球形的好。

大气探测学复习 第四章 温度

温度: 从宏观上讲,温度是反映物体冷热程度的一个物理量;从微观上讲,温度是描述大量分子运动平均动能的一个物理量,也就是说它反映了大量分子无规则运动的剧烈程度。 温度表测温原理 达到热平衡的不同物体具有相同的温度。 温标: 衡量温度的尺度。 换算:t=5/9(τ-32) T=273.16+t 热平衡 当两个冷热不同的物体相互接触时就会发生热传导现象,较热的物体总是将热量传送到较冷的物体,直到这两个物体的冷热程度相同为止。 地温测量内容 地表温度,地表最高最低温,5,10,15,20厘米地温(曲管地温表),40,80,160,320厘米地温(直管地温表) 气温测量内容 地面气温,高空气温 试述玻璃液体温度表的测温原理,并比较水银与酒精温度表的优缺点。 玻璃液体温度表是利用装在玻璃容器中的测温液体随温度改变引起的体积膨胀,从液柱位置的变化来测定温度的 优缺点:水银不沾湿玻璃,不易变质,易得到纯度高的,酒精容易沾湿玻璃,易变质,不易制取纯度高的 最高温度表 最高温度表的构造与一般温度表不同,它的感应部分内有一玻璃针,伸入毛细管,使感应部分与毛细管之间形成一窄道。当温度升高,感应部分水银体积膨胀,挤入毛细管;而温度下降时,毛细管内的水银,由于通道窄,不能缩回感应部分,因而能指示出上次调整后这段时间内的最高温度。 最低温度表 最低温度表中的感应液是酒精,它的毛细管内有一哑铃形游标。当温度下降,酒精柱相应下降,酒精柱顶端张力带动游标下降;当温度上升,酒精膨胀,酒精柱经过游标周围慢慢上升,而游标仍停在原位置,因此它能指示上次调整以来这段时间内的最低温度。 热滞现象

由于温度表在与被测介质建立热平衡需要一定的时间,所以温度表反映出介质的温度变化,总是落后于实际变化的,温度表的这种性质称为热惯性或热滞现象,由此引起的误差称为热惯性误差或热滞误差. 热滞系数值大小与哪些因素有关? 和温度表在时间dτ内吸收(或损失)的热量,热交换系数,实现热量交换作用的温度表的表面积,温度,介质温度有关。 金属电阻温度表原理 金属或合金的电阻随温度变化的特性。 双金属片测温原理是什么?试从测温公式讨论如何提高双金属片的测温灵敏度? 双金属片是将两种膨胀系数不同的金属片焊接在一起。如果膨胀系数大的金属片在下面,膨胀系数小的金属片在上面,当温度升高时,双金属片将成凹形,温度降低时成凸形,随着温度的变化,双金属片的曲率也就随之变化,这样就可利用双金属片曲率随温度变化的特性来测量温度。 热电偶测温原理 将两个不同的金属导体连接成一个闭合回路。若两端接触点的温度不同,就会产生温差电动势,回路中就有电流产生。接触点的温差越大,回路中电动势也就越大,这种现象叫热电现象。 测温方法主要有哪两种? 一种是测定热电偶回路中温差电动势的电位计法;另一种是测定热电偶回路中电流的检流计法 金属电阻温度表与热敏电阻温度表的测温特性有何不同? 金属电阻温度表:金属导体电阻的阻值随温度的升高而增大根据电阻和温度的这种关系,只要测定金属电阻的阻值,就可知导体所处环境的温度。 半导体热敏电阻的阻值随温度的升高而减小,因此它具有负温度系数,根据电阻和温度的这种关系,只要测定电阻的阻值,就可知半导体所处环境的温度。 常用的金属电阻温度表使用的金属是哪一种,为什么? 铂,铂电阻的性能稳定,电阻率大,易于提纯,而且电阻与温度的线性关系较好,工艺性能也好,可以加工成极细的铂丝,常用来制作标准温度表。 温度表在介质温度保持不变、呈线性变化或周期性变化时,其热滞误差各有何特点? 不变:(t-θ)/(t0-θ)=e-τ/λτ一定时,λ愈小,t愈趋近于θλ一定时,τ愈长,t愈趋近于θτ=λ时,t-θ= (t0-θ)e-1 线性:介质温度呈线性变化时:θ=θ0+βτ式中β=dθ/dτ是介质温度的变化率,是一个常数,设初始条件τ=0时,t=t0 =θ0 ,则

相关主题