搜档网
当前位置:搜档网 › 弹簧振子的简谐振动

弹簧振子的简谐振动

弹簧振子的简谐振动
弹簧振子的简谐振动

弹簧振子的简谐振动

弘毅学堂汪洲2016300030016

实验目的:

(1)测量弹簧振子的振动周期T。

(2)求弹簧的倔强系数k和有效质量

m

实验器材

气垫导轨、滑块、附加砝码、弹簧、光电门、数字毫秒计。

实验原理:

在水平的气垫导轨上,两个相同的弹簧中间系一滑块,滑块做往返振动,如图2.2.4所示。如果不考虑滑块运动的阻力,那么,滑块的振动可以看成是简谐运动。

设质量为1m 的滑块处于平衡位置,每个弹簧的伸长量为0x ,当1m 距平衡点x 时,1m 只受弹性力10()k x x -+与10()k x x --的作用,其中1k 是弹簧的倔强系数。根据牛顿第二定律,其运动方程为

1010()()k x x k x x mx

-+--= 令

12k k =

则有

kx mx

-= ① 方程①的解为

00sin()x A t ω?=+

说明滑块做简谐振动。式中,A 为振幅,0?为初相位,0ω叫做振动系统的固有圆频率。有

0ω=

10m m m =+

式中,m 为振动系统的有效质量,0m 为弹簧的有效质量,1m 为滑块和砝码的质量。

0ω由振动系统本身的性质所决定。振动周期T 与0ω有下列关系

222T πω=

==② 在实验中,我们改变1m ,测出相应的T ,考虑T 与m 的关系,从而求出k 和0m 。 实验内容:

(1)按气垫导轨和计时器的使用方法和要求,将仪器调整到正常工作状态。

(2)将滑块从平衡位置拉至光电门左边某一位置,然后放手让滑块振动,记录A T 的值。要求记录5位有效数字,共测量10次。

(3)再按步骤(2)将滑块从平衡位置拉至光电门右边某一位置测量B T ,重复步骤(2)共测量10次。

取A T 和B T 的平均值作为振动周期T ,与T 相应的振动系统有效质量是10m m m =+,其中1m 就是滑块本身(未加砝码块)的质量,0m 为弹簧的有效质量。

(4)在滑块上对称地加两块砝码,再按步骤(2)和步骤(3)测量相应的周期。有效质量20m m m =+,其中2m 为滑块本身质量加上两块砝码的质量和。

(5)再用30m m m =+和40m m m =+测量相应的周期T 。式中,

3m =1m +“4块砝码的质量”

4m =1m +“6块砝码的质量”

注意记录每次所加砝码的号码,以便称出各自的质量。

(6)测量完毕,先取下滑块、弹簧等,再关闭气源,切断电源,整理好仪器。 (7)在天平上称出两弹簧的实际质量并与其有效质量进行比较。 数据处理:

1、用逐差法处理数据 由下列公式

2

21

104()T m m k

π=+

2

22

204()T m m k

π=+

2

23

304()T m m k

π=+

2

24

404()T m m k

π=+③

22

23

1

314()T T m m k π-=-, 23122

31

4()

m m k T T π-'=- 22

24

2

424()T T m m k π-=-,24222

424()

m m k T T π-''=-④

故1

()2

k k k '''=

+ 如果由④式得到k '和k ''的数值是一样的(即两者之差不超过测量误差的范围),说明②式中T 与m 的关系是成立的。将平均值k 代入④式,得

2

024i i i kT m m π

=- (i=1,2,3,4)

4

001

14i i m m ==∑

平均值0m 就是弹簧的有效质量。

2、用作图法处理数据

以2

i T 为纵坐标,i m 为横坐标,作2

i i T m -图,得直线。其斜率为24k π,截距为

2

04m k

π,由此可以求出k 和0m 。 预习思考:

(1)如果实验中分别采用两次和三次遮光来测量振动周期,对二者的振幅分别有什么要求?

采用两次遮光时,振幅应为△L/2。采用三次遮光时,振幅应大于△L/2。

(2)仔细观察,可以发现滑块的振幅是不断减小的,那么为什么还可以认为滑块是做简谐振动?实验中应如何保证滑块做简谐振动?

滑块的前几次振动减小的振幅可以忽略不计。

减少滑块和导轨间的阻力。

习题:

(1)整理实验数据,用逐差法求弹簧的倔强系数k和有效质量

m。

m1=0.326948kg

=0.361461kg

m2

m3=0.39638kg

由公式可得:

k '=4.1522/kg s k ''=4.1202/kg s

∴1

()2

k k k '''=

+=4.1362/kg s 01m =7.870g 02m =7.973g 03m =7.608g 04m =8.241g ∴0m =7.923g

(2)弹簧的实际质量与有效质量相比,哪一个大?求出两者之比。

弹簧的实际质量为17.791g 。所以弹簧的实际质量比有效质量大,两者之比为2.246。

(3) 用作图法处理实验数据,并计算出弹簧的倔强系数k 和有效质量0m 。

从图中可以得知,直线的斜率为9.566,截距为0.0678,代入公式中可得:

k =4.1272/kg s 0m =6.78g

(4)将二滑块用一小弹簧联结起来使之振动,滑块是否作简谐振动,周期和滑块质量及倔强系数有何关系?

滑块会作简谐振动,周期和滑块质量及倔强系数的关系为2T π=

弹簧振子的简谐振动

弹簧振子的简谐振动 弘毅学堂汪洲 26 实验目的: (1)测量弹簧振子的振动周期T。 (2)求弹簧的倔强系数k和有效质量0m 实验器材 气垫导轨、滑块、附加砝码、弹簧、光电门、数字毫秒计。 实验原理: 在水平的气垫导轨上,两个相同的弹簧中间系一滑块,滑块做往返振动,如图2.2.4所示。如果不考虑滑块运动的阻力,那么,滑块的振动可以看成是简谐运动。

设质量为1m 的滑块处于平衡位置,每个弹簧的伸长量为0x ,当1m 距平衡点x 时,1m 只受弹性力10()k x x -+与10()k x x --的作用,其中1k 是弹簧的倔强系数。根据牛顿第二定律,其运动方程为 1010()()k x x k x x mx -+--=&& 令 12k k = 则有 kx mx -=&& ① 方程①的解为 00sin()x A t ω?=+ 说明滑块做简谐振动。式中,A 为振幅,0?为初相位,0ω叫做振动系统的固有圆频率。有 0k m ω=

且 10m m m =+ 式中,m 为振动系统的有效质量,0m 为弹簧的有效质量,1m 为滑块和砝码的质量。 0ω由振动系统本身的性质所决定。振动周期T 与0ω有下列关系 222T πω= == ② 在实验中,我们改变1m ,测出相应的T ,考虑T 与m 的关系,从而求出k 和0m 。 实验内容: (1)按气垫导轨和计时器的使用方法和要求,将仪器调整到正常工作状态。 (2)将滑块从平衡位置拉至光电门左边某一位置,然后放手让滑块振动,记录A T 的值。要求记录5位有效数字,共测量10次。 (3)再按步骤(2)将滑块从平衡位置拉至光电门右边某一位置测量B T ,重复步骤(2)共测量10次。 取A T 和B T 的平均值作为振动周期T ,与T 相应的振动系统有效质量是 10m m m =+,其中1m 就是滑块本身(未加砝码块)的质量,0m 为弹簧的有效质量。 (4)在滑块上对称地加两块砝码,再按步骤(2)和步骤(3)测量相应的周期。有效质量20m m m =+,其中2m 为滑块本身质量加上两块砝码的质量和。 (5)再用30m m m =+和40m m m =+测量相应的周期T 。式中, 3m =1m +“4块砝码的质量” 4m =1m +“6块砝码的质量” 注意记录每次所加砝码的号码,以便称出各自的质量。

气垫弹簧振子的简谐振动实验报告

××大学实验报告 学院:×× 系:物理系专业:×× 年级:××级 姓名:×× 学号:×× 实验时间:×× 指导教师签名:_______________ 实验四:气垫弹簧振子的简谐振动 一.实验目的与要求: 1. 考察弹簧振子的振动周期与振动系统参量的关系。 2. 学习用图解法求出等效弹簧的倔强系数和有效质量。 3. 学会气垫调整与试验方法。 二.实验原理: 1.弹簧的倔强系数 弹簧的伸长量x 与它所受的拉力成正比 F=kx k=X F 2.弹簧振子的简谐运动方程 根据牛顿第二定律,滑块m 1 的运动方程为 -k 1(x+x 01)-k 2(x-x 02)=m 2 2dt x d ,即-(k 1+k 2)x=m 2 2dt x d 式中,m=m 1+m 0(系统有效质量),m 0是弹簧有效质量,m 1是滑块质量。令 k=k 1+k 2,则 -kx= m 2 2dt x d 解为x=A sin (ω0t+ψ0 ),ω0= m k = m k k 2 1+ 而系统振动周期 T 0=0 2ωπ=2π k m

当 m 0《 m 1时,m 0=3 s m ,m s 是弹簧的实际质量(m 0与m s 的关系可简单写成 m 0=3 m s )。 本实验通过改变m 1测出相应的T ,以资考察T 和m 的关系,从而求出m 0和 k 。 三.主要仪器设备: 气垫导轨、滑块(包括挡光刀片)、光电门、测时器、弹簧。 四.实验内容及实验数据记录: 1.气垫导轨水平的调节 使用开孔挡光片,智能测时器选在2pr 功能档。让光电门A 、B 相距约60cm (取导轨中央位置),给滑块以一定的初速度(Δ t 1和Δt 2控制在20-30ms 内),让 它在导轨上依次通过两个光电门.若在同一方向上运动的Δ t 1和Δt 2的相对 误差小于3%,则认为导轨已调到水平.否则重新调整水平调节旋钮。 2.研究弹簧振子的振动周期与振幅的关系 先将测时器设置于6pd (测周期)功能档。按动选择钮,屏幕显示6pd 时,按动执行键,显示为0。每按一次选择键,显示加1;当达到预定值(如预置数为n =6,则表示测3个周期的时间)后,将滑块拉离平衡点6.00厘米(即选定某一振幅),再按执行键,放手让其运动,进入测周期操作。当屏幕上显示预置数减为0后,显示屏上出现总时间t ;由此可得周期T = n t 2。 再重新测量几次并取平均值。并测量滑块和弹簧的质量,利用T 0= 2ωπ =2π k m 计算弹簧的倔强系数。取不同的振幅测量,探讨周期与振幅是否有关。 3.观测简谐振动周期T 与m 的关系,并求出k 与弹簧的有效质量m 0。

《弹簧振子》模型

“弹簧振子”模型 太原市第十二中学 姚维明 模型建构: 【模型】常见弹簧振子及其类型问题 在简谐运动中,我们对弹簧振子(如图1,简称模型甲)比较熟悉。在学习过程中,我们经常会遇到与此相类似的一个模型(如图2,简称模型乙)。认真比较两种模型的区别和联系,对于培养我们的思维品质,提高我们的解题能力有一定的意义。 【特点】①弹簧振子做简谐运动时,回复力F=-kx ,“回复力”为振子运动方向上的合力。加速度为m kx a -= ②简谐运动具有对称性,即以平衡位置(a=0)为圆心,两侧对称点回复力、加速度、位移都是对称的。这是解题的关键。 模型典案: 【典案1】把一个小球挂在一个竖直的弹簧上,如图2。当它平衡后再用力向下拉伸一小段距离后轻轻放手,使小球上下振动。试证明小球的振动是简谐振动。 〖证明〗设弹簧劲度系数为k ,不受拉力时的长度为l 0,小球质量为m ,当挂上小球平衡时,弹簧的伸长量为x 0。由题意得mg=kx 0 容易判断,由重力和弹力的合力作为振动的回复力 假设在振动过程中的某一瞬间,小球在平衡位置下方,离开平衡位置O 的距离为x,取向下的方向为正方向 则回复力F=mg+[-k(x 0+x)]=mg-kx 0-kx= -kx 根据简谐运动定义,得证 比较: (1)两种模型中,弹簧振子都是作简谐运动。这是它们的相同之处。 (2)模型甲中,由弹簧的弹力提供回复力。因此,位移(x),回复力(F),速度(v),加速度(a),各量大小是关于平衡位置O 点对称的。 (3)模型乙中,由弹簧的弹力和重力两者的合力提供回复力。弹簧的弹力大小关于平衡位置是不对称...的,这点要特别注意。但是,回复力(加速度)大小关于平衡位置是对称..的。在解题时我们经常用到这点。 【典案2】如图3所示,质量为m 的物块放在弹簧上, 弹簧在竖直方向上做简谐运动,当振幅为A 时,物体对弹 簧的最大压力是物重的1.8倍,则物体对弹簧的最小压力是 物重的多少倍?欲使物体在弹簧振动中不离开弹簧,其振幅 最大为多少? 〖解析〗1)选物体为研究对象,画出其振动过程的几个 特殊点,如图4所示, O 为平衡位置,P 为最高点,Q 为最低点。 图2 m 图3 P 点

第九章简谐振动自测题

第九章简谐振动自测题 一、选择题 1、对于一个作简谐振动的物体,下列说法正确的是( (A)物体处在正的最大位移处时,速度和加速度都达到最大值 (B)物体处于平衡位置时,速度和加速度都为零 (C)物体处于平衡位置时,速度最大,加速度为零 (D)物体处于负的最大位移处时,速度最大,加速度为零 2、对一个作简谐振动的物体,下面哪种说法是正确的( (A)物体位于平衡位置且向负方向运动时,速度和加速度都为零 (B)物体位于平衡位置且向正方向运动时,速度最大,加速度为零 (C)物体处在负方向的端点时,速度和加速度都达到最大值 (D)物体处在正方向的端点时,速度最大,加速度为零 3、一弹簧振子作简谐振动,当运动到平衡位置时,下列说法正确的是:() (A)速度最大(B)加速度最大 (C)频率最小(D)周期最小 4、一弹簧振子作简谐振动,当运动到最大振幅处时,下列说法正确的是:() (A)速度最大(B)加速度最大 (C)频率最小(D)周期最小 5、一质点作简谐振动,振动方程为二Acos(‘t ?「),当质点处于最大位移时则 有() (A)=0 ;(B)V =0 ;(C)a =0 ;(D)- 0. 6 —质点作简谐振动,振动方程为x=Acos( 7 + ■'),当时间t=T 2( T为周期)时,质点的速度为() (A)A sin :(B)-A sin :(C)-A cos :(D A cos 7、将一个弹簧振子分别拉离平衡位置1m和2 m后,由静止释放(形变在弹性限度内),则它们作简谐振动时的() (A)周期相同(B)振幅相同(C)最大速度相同(D)最大加速度相同 8、一作简谐振动的物体在t=0时刻的位移x=0,且向x轴的负方向运动,则其初相位为()

弹簧振子的简谐振动

弹簧振子的简谐振动 弘毅学堂汪洲 2016300030016 实验目的: (1)测量弹簧振子的振动周期T。 (2)求弹簧的倔强系数k和有效质量 m 实验器材 气垫导轨、滑块、附加砝码、弹簧、光电门、数字毫秒计。 实验原理: 在水平的气垫导轨上,两个相同的弹簧中间系一滑块,滑块做往返振动,如图2.2.4所示。如果不考虑滑块运动的阻力,那么,滑块的振动可以看成是简谐运动。

设质量为1m 的滑块处于平衡位置,每个弹簧的伸长量为0x ,当1m 距平衡点x 时,1m 只受弹性力10()k x x -+与10()k x x --的作用,其中1k 是弹簧的倔强系数。根据牛顿第二定律,其运动方程为 1010()()k x x k x x mx -+--= 令 12k k = 则有 kx mx -= ① 方程①的解为 00sin()x A t ω?=+ 说明滑块做简谐振动。式中,A 为振幅,0?为初相位,0ω叫做振动系统的固有圆频率。有 0ω= 且 10m m m =+

式中,m 为振动系统的有效质量,0m 为弹簧的有效质量,1m 为滑块和砝码的质量。 0ω由振动系统本身的性质所决定。振动周期T 与0ω有下列关系 222T πω= == ② 在实验中,我们改变1m ,测出相应的T ,考虑T 与m 的关系,从而求出k 和0m 。 实验内容: (1)按气垫导轨和计时器的使用方法和要求,将仪器调整到正常工作状态。 (2)将滑块从平衡位置拉至光电门左边某一位置,然后放手让滑块振动,记录A T 的值。要求记录5位有效数字,共测量10次。 (3)再按步骤(2)将滑块从平衡位置拉至光电门右边某一位置测量B T ,重复步骤(2)共测量10次。 取A T 和B T 的平均值作为振动周期T ,与T 相应的振动系统有效质量是10m m m =+,其中1m 就是滑块本身(未加砝码块)的质量,0m 为弹簧的有效质量。 (4)在滑块上对称地加两块砝码,再按步骤(2)和步骤(3)测量相应的周期。有效质量 20m m m =+,其中2m 为滑块本身质量加上两块砝码的质量和。 (5)再用30m m m =+和40m m m =+测量相应的周期T 。式中, 3m =1m +“4块砝码的质量” 4m =1m +“6块砝码的质量” 注意记录每次所加砝码的号码,以便称出各自的质量。 (6)测量完毕,先取下滑块、弹簧等,再关闭气源,切断电源,整理好仪器。 (7)在天平上称出两弹簧的实际质量并与其有效质量进行比较。 数据处理: 1、用逐差法处理数据 由下列公式 221 104()T m m k π=+

弹簧振子的简谐振动

弹簧振子的简谐振动 弘毅学堂汪洲26 实验目的: (1)测量弹簧振子的振动周期T。 (2)求弹簧的倔强系数k和有效质量 m 实验器材 气垫导轨、滑块、附加砝码、弹簧、光电门、数字毫秒计。 实验原理: 在水平的气垫导轨上,两个相同的弹簧中间系一滑块,滑块做往返振动,如图2.2.4所示。如果不考虑滑块运动的阻力,那么,滑块的振动可以看成是简谐运动。

设质量为1m 的滑块处于平衡位置,每个弹簧的伸长量为0x ,当1m 距平衡点x 时,1m 只受弹性力10()k x x -+与10()k x x --的作用,其中1k 是弹簧的倔强系数。根据牛顿第二定律,其运动方程为 1010()()k x x k x x mx -+--= 令 12k k = 则有 kx mx -= ① 方程①的解为 00sin()x A t ω?=+ 说明滑块做简谐振动。式中,A 为振幅,0?为初相位,0ω叫做振动系统的固有圆频率。有 0k m ω= 且

10m m m =+ 式中,m 为振动系统的有效质量,0m 为弹簧的有效质量,1m 为滑块和砝码的质量。 0ω由振动系统本身的性质所决定。振动周期T 与0ω有下列关系 222T πω= == ② 在实验中,我们改变1m ,测出相应的T ,考虑T 与m 的关系,从而求出k 和0m 。 实验内容: (1)按气垫导轨和计时器的使用方法和要求,将仪器调整到正常工作状态。 (2)将滑块从平衡位置拉至光电门左边某一位置,然后放手让滑块振动,记录A T 的值。要求记录5位有效数字,共测量10次。 (3)再按步骤(2)将滑块从平衡位置拉至光电门右边某一位置测量B T ,重复步骤(2)共测量10次。 取A T 和B T 的平均值作为振动周期T ,与T 相应的振动系统有效质量是10m m m =+,其中1m 就是滑块本身(未加砝码块)的质量,0m 为弹簧的有效质量。 (4)在滑块上对称地加两块砝码,再按步骤(2)和步骤(3)测量相应的周期。有效质量20m m m =+,其中2m 为滑块本身质量加上两块砝码的质量和。 (5)再用30m m m =+和40m m m =+测量相应的周期T 。式中, 3m =1m +“4块砝码的质量” 4m =1m +“6块砝码的质量” 注意记录每次所加砝码的号码,以便称出各自的质量。 (6)测量完毕,先取下滑块、弹簧等,再关闭气源,切断电源,整理好仪器。 (7)在天平上称出两弹簧的实际质量并与其有效质量进行比较。 数据处理:

有关弹簧问题中应用简谐运动特征的解题技巧

有关弹簧问题中应用简谐运动特征的解题技巧 黄 菊 娣 (浙江省上虞市上虞中学 312300) 弹簧振子的运动具有周期性和对称性,因而很容易想到在振动过程中一些物理量的大小相等,方向相同,是周期性出现的;而经过半个周期后一些物理量则是大小相等,方向相反.但是上面想法的逆命题是否成立的条件是:①此弹簧振子的回复力和位移符合kx F -=(x 指离开平衡位置的位移) ;②选择开始计时的位置是振子的平衡位置或左、右最大位移处,若开始计时不是选择在这些位置,则结果就显而易见是不成立的. 在这里就水平弹簧振子和竖直弹簧在作简谐运动过程中应用其特征谈一谈解题技巧,把复杂的问题变简单化,从而消除学生的一种碰到弹簧问题就无从入手的一种恐惧心理. 一、弹簧振子及解题方法 在判断弹簧振子的运动时间,运动速度及加速度等一些物理量时所取的起始位置很重要,在解题方法上除了应用其规律和周期性外,运用图象法解,会使问题更简单化. 例1 一弹簧振子做简谐运动,周期为T ,则正确的说法是………………………………………( ) A .若t 时刻和(t +Δt )时刻振子运动位移的大小相等,方向相同,则Δt 一定等于T 的整数倍 B .若t 时刻和(t +Δt )时刻振子运动速度大小相等,方向相反,则Δt 一定等于 2 T 的整数倍 C .若Δt =T ,则在t 时刻和(t +Δt )时刻振子运动的加速度一度相等 D .若Δt =2T ,则在t 时刻和(t +Δt )时刻弹 簧的长度一定相等 解法一:如图1为一个弹簧振子的示意图,O 为平衡位置,B 、C 为两侧最大位移处,D 是C 、O 间任意位置. 对于A 选项,当振子由D 运动到B 再回到D ,振子两次在D 处位移大小、方向都相 同,所经历的时间显然不为T ,A 选项错. 对于B 选项,当振子由D 运动到B 再回到D ,振子两次在D 处运动速度大小相等,方向相反,但经过的时间不是 2 T ,可见选项B 错. 由于振子的运动具有周期性,显然加速度也是如此,选项C 正确. 对于选项D ,振子由B 经过O 运动到C 时,经过的时间为 2 T ,但在B 、C 两处弹簧长度不等,选项D 错.正确答案选C . 解法二:本题也可利用弹簧振子做简谐运动的图象来解.如图2所示,图中A 点与B 、E 、F 、I 等点的振动位移大小相等,方向相同.由图可见,A 点与E 、I 等点对应的时刻差为T 或T 的整数倍;A 点与B 、F 等点对应的时刻差不为T 或T 的整数倍,因此选项A 不正确.用同样的方法很容易判断出选项B 、D 也不正确.故只有选项C 正确. 图1

弹簧振子的简谐振动

弹簧振子的简谐振动 弘毅学堂汪洲2016300030016 实验目的: (1)测量弹簧振子的振动周期T。 (2)求弹簧的倔强系数k和有效质量 m 实验器材 气垫导轨、滑块、附加砝码、弹簧、光电门、数字毫秒计。 实验原理: 在水平的气垫导轨上,两个相同的弹簧中间系一滑块,滑块做往返振动,如图2.2.4所示。如果不考虑滑块运动的阻力,那么,滑块的振动可以看成是简谐运动。

设质量为1m 的滑块处于平衡位置,每个弹簧的伸长量为0x ,当1m 距平衡点x 时,1m 只受弹性力10()k x x -+与10()k x x --的作用,其中1k 是弹簧的倔强系数。根据牛顿第二定律,其运动方程为 1010()()k x x k x x mx -+--= 令 12k k = 则有 kx mx -= ① 方程①的解为 00sin()x A t ω?=+ 说明滑块做简谐振动。式中,A 为振幅,0?为初相位,0ω叫做振动系统的固有圆频率。有 0k m ω= 且

10m m m =+ 式中,m 为振动系统的有效质量,0m 为弹簧的有效质量,1m 为滑块和砝码的质量。 0ω由振动系统本身的性质所决定。振动周期T 与0ω有下列关系 222T πω= == ② 在实验中,我们改变1m ,测出相应的T ,考虑T 与m 的关系,从而求出k 和0m 。 实验内容: (1)按气垫导轨和计时器的使用方法和要求,将仪器调整到正常工作状态。 (2)将滑块从平衡位置拉至光电门左边某一位置,然后放手让滑块振动,记录A T 的值。要求记录5位有效数字,共测量10次。 (3)再按步骤(2)将滑块从平衡位置拉至光电门右边某一位置测量B T ,重复步骤(2)共测量10次。 取A T 和B T 的平均值作为振动周期T ,与T 相应的振动系统有效质量是10m m m =+,其中1m 就是滑块本身(未加砝码块)的质量,0m 为弹簧的有效质量。 (4)在滑块上对称地加两块砝码,再按步骤(2)和步骤(3)测量相应的周期。有效质量20m m m =+,其中2m 为滑块本身质量加上两块砝码的质量和。 (5)再用30m m m =+和40m m m =+测量相应的周期T 。式中, 3m =1m +“4块砝码的质量” 4m =1m +“6块砝码的质量” 注意记录每次所加砝码的号码,以便称出各自的质量。 (6)测量完毕,先取下滑块、弹簧等,再关闭气源,切断电源,整理好仪器。 (7)在天平上称出两弹簧的实际质量并与其有效质量进行比较。 数据处理:

简谐振动模型

第二讲 简谐振动模型 【教学目标】 1.掌握简谐振动模型一弹簧振子 2.学习计算简谐振动模型→单摆的周期 【知识点一】弹簧振子 1、定义:物体和弹簧所组成的系统. 条件(理想化) : ①物体看成质点 ②忽略弹簧质量 ③忽略摩擦力 2、回复力:指向平衡位置的合外力提供 回复力。 左图:弹簧弹力提供回复力, 小球的平衡位置为O ,在AB 两点间做简谐振动, 振幅为OA=0B 右图:弹簧弹力和重力的合力提供回复力 3、周期:2m T K π= , 由振子质量和弹簧的劲度系数共同决定,与振幅无关。 ★运动规律包含振幅与周期 【例】如图所示,是一弹簧振子,设向右方向为正,O 为平衡位置,则下列说法不正确的是( ) A A→O 位移为负值,速度为正值 B O→B 时,位移为正值,加速度为负值 C B→O 时,位移为负值,速度为负值 D O→A 时,位移为负值,加速度为正值 【例】弹簧振子做简谐运动的振动图像如图2所示,在t1至t2这段时间内( ) A 振子的速度方向和加速度方向都不变 B 振子的速度方向和加速度方向都改变 C 振子的速度方向改变,加速度方向不变 D 振子的速度方向不变,加速度方向改变 【例】同一个弹簧振子从平衡位置被分别拉开5cm 和2cm,松手后均作简谐运动,则它们的振幅之比A1:A2=______,最大加速度之比a1:a2=_____,振动周期之比T1:T2=______. ★回复力 【例】如图所示,物体A 放在物体B 上,B 与弹簧相连,它们在光滑水平面上一起做简谐运动.当弹簧伸长到最长时开始记时(t = 0),取向右为正方向,A 所受静摩擦力f 随时间t 变化的图象正确的是( )

简谐振动、振幅

高中学生学科素质训练 高一物理测试题—简谐振动、振幅(9) 一、选择题(每题只少有一个正确答案,选对得5分,多选得0分,漏选得2分)10×5=50 分 1、关于简谐振动,下列说法正确的有() A.回复力越大,速度一定越大 B.回复力为正,速度一定为负 C.回复力为负,加速度一定为负 D.回复力可能是某些力的合力,也可以是某个的分力 2、弹簧振子沿直线作简谐振动,当振子连续两次经过相同位置时,() A.加速度相同动能相同 B.动能相同动量相同 C.回复力相同机械能和弹性势能相同 D.加速度和位移相同,速度相同 3、当弹簧振子从正向最大位移向负向最大位移运动时,经过与平衡位置对称的两个位置时 说法正确的是()A.加速度相同动能相同B.动能相同动量相同 C.回复力相同机械能相同D.加速度相同,速度相同 4、有关弹簧振子的正确说法是() A.周期与振幅无关 B.周期与振幅有关,振幅越小,周期越小 C.在平衡位置速度最大 D.在最大位移处,因为速度为零所以处于平衡位置 5、弹簧振子作简谐振动,先后以相同的动量依次通过A、B两点,历时1秒,质点通过B 点后再经过1秒又第二次通过B点,在这2秒内质点通过的总路程为12cm,则质点的振动周期和振幅分别为()A.3s 12cm B.4s 6cm C.4s 9cm D.2s 8cm 6、右图为质点的振动图象,则()

A.再经1秒,该质点达到位移最大处 B.再经3秒该质点也到达位移最大处 C.再经1秒该质点达到正向最大加速度 D.再经1秒该质点达到速度最大 7、一质点沿x轴做简谐运动,其振动图象如图所示,在1.5s~2s的 时间内,其速度v、加速度a的大小的变化情况是: A、v变大,a变大 B、v变小,a变小 C、v变大,a变小 D、v变小,a变大 8、弹簧振子的质量为M,弹簧劲度系数为k,在振子上面放一质量为 m的木块,使振子和木块一起在光滑水平面上做简谐振动。如图所示,木块的回复力F 是振子对木块的静摩擦力提供的,若F=—k`x的关系,x是弹簧的伸长(或压缩)量,那么k`/k应是: A、m/M B、m/(M+m) C、(M+m)/M D、M/m 9、一弹簧振子做简谐振动,周期为T,下列叙述正确的是: A、若t时刻和(t+△t)时刻的位移大小相等,方向相同,则△t一定等于T的整数倍 B、若t时刻和(t+△t)时刻的动能相等,则△t一定等于T/2的整数倍 C、若△t=T ,则t时刻和(t+△t)时刻的动能一定相等 D、若△t=T/2 ,则t时刻和(t+△t)时刻弹簧长度一定相等 10、甲、乙两弹簧振子,振动图象如图所示,则可知: A、两弹簧振子完全相同 B、两弹簧振子所受的回复力最大值之比为F甲:F乙=2:1 C、振子甲速度为零时,振子乙速度最大 D、振子的振动频率之比为f甲:f乙=1:2 二、填空题(每题4分,4×5=20) 11、一个作简谐振动的质点,它的振幅是4cm,频率为2.5HZ,则质点从平衡位置开始经过 2.5S时位移的大小和经过的路程分别为, 。 12、从右图可知, ⑴周期T= 频率f= 。振幅 A= 。 ⑵A、B、C、三时刻振动质点的速度方向 为,加速度方向。 ⑶t= .质点位移最大,t= 速度最大。

弹簧质量与弹簧振子振动周期关系的探讨(精)

第26卷第5期 V01.26No.5 周口师范学院学报 JournalofZhoukouNormalUniversity 2009年9月 Sep.2009 弹簧质量与弹簧振子振动周期关系的探讨 周俊敏,王玉梅 (周口师范学院物理系,河南周口466001) 摘要:从能量的观点出发,分别讨论了弹簧振子垂直地面放置和平行地面放置时所遵守的运动方程,并通过解微分方程,得出结论.这些结论对指导实验和生产实践有一定的参考价值. 关键词:弹簧振子;振动周期;机械能守恒;运动方程中图分类号:0326文献标识码:A 文章编号:1671—9476(2009)05—0058—03 弹簧振子在生产实践中有着十分广泛的应用,而振动的周期是描述振动系统运动的一个非常重要的基本物理量,因此探讨弹簧质量对弹簧振子振动周期的影响就显得十分必要.在实验教学中笔者发现,大部分实验教材直接给出弹簧振子的振动周 r‘‘—?———=7 的正方向,建立坐标系如图1(b)所示.设质点的位置坐标为X,引即为质点相对于坐标原点的位移. 取物体为研究对象,作用在物体上的力有两个:重力大小为mg,方向竖直向下;弹簧对物体的拉力F=一k(x+z。),方向竖直向上.由此可知物体的合力F台一一点(z+X。)+mg=一妇.由简谐 图1 期公式为T一2,r^/m+cM,学生通过实验测出f V K 值的范围为0.32~0.34,但未从理论上分析c值在这一范围的原因[1-3].另外,教材中分析弹簧振子振动周期时,大都从力的观点[4_51出发得出运动方程.笔者从能量的观点出发,分别讨论弹簧振子垂直地面放置和平行地面放置时所遵守的运动方程,并通过解运动方程得出弹簧振子的振动周期以及 1

弹簧振子的简谐振动

弹簧振子的简谐振动 实验目的: (1) 测量弹簧振子的振动周期T 。 (2) 求弹簧的倔强系数k 和有效质量0m 实验原理: 设质量为1m 的滑块处于平衡位置,每个弹簧的伸长量为0x ,当1m 距平衡点x 时,1m 只受弹性力10()k x x -+与10()k x x --的作用,其中1k 是弹簧的倔强系数。根据牛顿第二定律,其运动方程为 1010()()k x x k x x mx -+--= 令 12k k = 则有 kx mx -= ① 方程①的解为 00sin()x A t ω?=+ 说明滑块做简谐振动。式中,A 为振幅,0?为初相位,0ω叫做振动系统的固有圆频率。有 0ω= 且 10m m m =+ 式中,m 为振动系统的有效质量,0m 为弹簧的有效质量,1m 为滑块和砝码的质量。 0ω由振动系统本身的性质所决定。振动周期T 与0ω有下列关系 222T πω= == ②

在实验中,我们改变1m ,测出相应的T ,考虑T 与m 的关系,从而求出k 和 0m 。 实验内容: (1)按气垫导轨和计时器的使用方法和要求,将仪器调整到正常工作状态。 (2)将滑块从平衡位置拉至光电门左边某一位置,然后放手让滑块振动,记录A T 的值。要求记录5位有效数字,共测量10次。 (3)再按步骤(2)将滑块从平衡位置拉至光电门右边某一位置测量B T ,重复步骤(2)共测量10次。 取A T 和B T 的平均值作为振动周期T ,与T 相应的振动系统有效质量是 10m m m =+,其中1m 就是滑块本身(未加砝码块)的质量,0m 为弹簧的有效质量。 (4)在滑块上对称地加两块砝码,再按步骤(2)和步骤(3)测量相应的周期。有效质量20m m m =+,其中2m 为滑块本身质量加上两块砝码的质量和。 (5)再用30m m m =+和40m m m =+测量相应的周期T 。式中, 3m =1m +“4块砝码的质量” 4m =1m +“6块砝码的质量” 注意记录每次所加砝码的号码,以便称出各自的质量。 (6)测量完毕,先取下滑块、弹簧等,再关闭气源,切断电源,整理好仪器。 (7)在天平上称出两弹簧的实际质量并与其有效质量进行比较。 数据处理: 1、用逐差法处理数据 由下列公式 2 21 104()T m m k π=+ 2 22 204()T m m k π=+

简谐振动模型

第二讲简谐振动模型【教学目标】 1.掌握简谐振动模型一弹簧振子 2.学习计算简谐振动模型单摆的周期【知 识点一】弹簧振子 1 、定义:物体和弹簧所组成的系统. 条件 (理想化 ) :①物体看成质点 ②忽略弹簧质量 ③忽略摩擦力 2、回复力:指向平衡位置的合外力提供 回复力。 左图:弹簧弹力提供回复力, 小球的平衡位置为O,在 AB 两点间做简谐振动, 振幅为 OA=0B 右图:弹簧弹力和重力的合力提供回复力 3 、周期:T m , 由振子质量和弹簧的劲度系数共同决定,与振幅无关。2 K ★运动规律包含振幅与周期 【例】如图所示,是一弹簧振子,设向右方向为正,O 为平衡位置,则下列说法不正确的是() A A→O位移为负值,速度为正值 B O→B时,位移为正值,加速度为负值 C B→O时,位移为负值,速度为负值 D O→A时,位移为负值,加速度为正值 【例】弹簧振子做简谐运动的振动图像如图 2 所示,在 t1 至 t2这段时间内() A 振子的速度方向和加速度方向都不变 B 振子的速度方向和加速度方向都改变 C 振子的速度方向改变,加速度方向不变 D 振子的速度方向不变,加速度方向改变 【例】同一个弹簧振子从平衡位置被分别拉开5cm 和 2cm, 松手后均作简谐运动,则它们的振幅之比A1:A2=______,最大加速度之比a1:a2=_____, 振动周期之比 T1:T2=______. ★回复力 【例】如图所示 ,物体 A 放在物体 B 上 ,B 与弹簧相连 ,它们在光滑水平面上一起做简谐运动.当弹簧伸长到最长时开始记时 (t = 0), 取向右为正方向 ,A 所受静摩擦力 f 随时间 t 变化的图象正确的是 ()

气轨上的弹簧简谐振动实验报告

气轨上弹簧振子的简谐振动 目的要求: (1)用实验方法考察弹簧振子的振动周期与系统参量的关系并测定弹簧的劲度系数和有效质量。 (2)观测简谐振动的运动学特征。 (3)测量简谐振动的机械能。 仪器用具: 气轨(自带米尺,2m,1mm),弹簧两个,滑块,骑码,挡光刀片,光电计时器,电子天平(0.01g),游标卡尺(0.05mm),螺丝刀。 实验原理: (一)弹簧振子的简谐运动过程: 质量为m1的质点由两个弹簧与连接,弹簧的劲度系数分别 为k1和k2,如下图所示: 当m1偏离平衡位置x时,所受到的弹簧力合力为 令 k=,并用牛顿第二定律写出方程 解得 X=Asin() 即其作简谐运动,其中 在上式中,是振动系统的固有角频率,是由系统本身决定的。m=m 1+m0是振动系统的有效质量,m 0是弹簧的有效质量,A是振幅,是初相位,A和由起始条件决定。系统的振动周期为

通过改变测量相应的T,考察T 和的关系,最小二乘法线性拟合求出k 和 (二)简谐振动的运动学特征: 将()对t 求微分 ) 可见振子的运动速度v 的变化关系也是一个简谐运动,角频率为,振幅为,而且v 的相位比x 超前 .消去t,得 v2=ω02(A2?x2) x=A时,v=0,x=0 时,v 的数值最大,即 实验中测量x和v 随时间的变化规律及x和v 之间的相位关系。 从上述关系可得 (三)简谐振动的机械能: 振动动能为 系统的弹性势能为 则系统的机械能 式中:k 和A均不随时间变化。上式说明机械能守恒,本实验通过测定不同位 置x上m 1的运动速度v,从而求得和,观测它们之间的相互转换并验证机 械能守恒定律。 (四)实验装置: 1.气轨设备及速度测量 实验室所用气轨由一根约2m 长的三角形铝材做成,气轨的一端堵死,另 一端送入压缩空气,气轨的两个方向上侧面各钻有两排小孔,空气从小孔喷出。把用合金铝做成的滑块放在气轨的两个喷气侧面上,滑块的内表面经过精加工

弹簧振子的简谐振动实验报告--宋峰峰

Simple harmonic motion of soring oscillator The purpose : (1) 测量弹簧振子的振动周期T 。 (2) 求弹簧的倔强系数k 和有效质量0m The principles : 设质量为1m 的滑块处于平衡位置,每个弹簧的伸长量为0x ,当1m 距平衡点x 时,1m 只受弹性力10()k x x -+与10()k x x --的作用,其中1k 是弹簧的倔强系数。根据牛顿第二定律,其运动方程为 1010()()k x x k x x mx -+--=&& 令 12k k = 则有 kx mx -=&& ① 方程①的解为 00sin()x A t ω?=+ 说明滑块做简谐振动。式中,A 为振幅,0?为初相位,0ω叫做振动系统的固有圆频率。有 0ω= 且 10m m m =+ 式中,m 为振动系统的有效质量,0m 为弹簧的有效质量,1m 为滑块和砝码的质量。 0ω由振动系统本身的性质所决定。振动周期T 与0ω有下列关系

222T π ω= == ② 改变1m ,测出相应的T ,考虑T 与m 的关系,从而求出k 和0m 。 The procedure : (1)按气垫导轨和计时器的使用方法和要求,将仪器调整到正常工作状态。 (2)将滑块从平衡位置拉至光电门左边某一位置,然后放手让滑块振动,记录A T 的值。要求记录5位有效数字,共测量10次。 (3)再按步骤(2)将滑块从平衡位置拉至光电门右边某一位置测量B T ,重复步骤(2)共测量10次。 取A T 和B T 的平均值作为振动周期T ,与T 相应的振动系统有效质量是 10m m m =+,其中1m 就是滑块本身(未加砝码块)的质量,0m 为弹簧的有效质 量。 (4)在滑块上对称地加两块砝码,再按步骤(2)和步骤(3)测量相应的周期。有效质量20m m m =+,其中2m 为滑块本身质量加上两块砝码的质量和。 (5)再用30m m m =+和40m m m =+测量相应的周期T 。式中, 3m =1m +“4块砝码的质量” 4m =1m +“6块砝码的质量” 注意记录每次所加砝码的号码,以便称出各自的质量。 (6)测量完毕,先取下滑块、弹簧等,再关闭气源,切断电源,整理好仪器。 (7)在天平上称出两弹簧的实际质量并与其有效质量进行比较。

弹簧振子运动的研究

弹 簧 振 子 运 动 的 研 究 如图(1)所示,把一个有孔的小球安在弹簧的一端,弹簧的另一端固定,小球穿在光滑的水平杆上,可以在杆上滑动。小球在水平杆之间的摩擦忽略不计,弹簧的质量比小球的质量小得多,也可忽略不计。这样的系统称为弹簧振子,其中的小球常称作振子。 图(1) 由弹簧振子的定义可以看出,振子在运动的过程中,由于合外力时刻在改变,从而导致了加速度。速度跟着不断改变,因此它的运动就显得较为复杂。为了能够更好的掌握它的运动规律,同时锻炼我们对运动的研究能力,我们对它进行了初步的研究。 一、弹簧振子的周期和运动表达式 1.周期规律 可能影响因素:小球的质量(M ),弹簧的劲度系数(K )以及振子的振幅(A )。 (1)周期与振幅(A )的关系。 质量为m 的小球,前后两次振幅分别为1A ,2A ,弹簧的劲度系数为K ,前后两次振动的周期分别为T 1,T 2。 推论:在前后两个运动过程中分别取两小段位移1x ,2x ,使得q A A x x ==2 1 21,根据胡克定律及牛顿第二定律,得 m kx a 11- =,m kx a 22-= ∴q A A a a ==2121 由于位移x 是任意的,且q 为定值。 ∴ q A A a a == 2 1 2 1 而2 222 1112112 1)4 ()4(44T a T a T v T v A A ??=?? = ∴21T T = △结论:弹簧振子的周期与振幅无关。

(2)周期与振子质量和劲度系数的关系。 有两个弹簧振子,振子的质量分别为1m ,2m ,弹簧的劲度系数分别为1k ,2k ,并且振子的振幅相同(因为周期与振幅无关,所以不用考虑它的影响) 推论:在两个运动中都取一小段位移x (任意的),同样有 12212 2 112 1m k m k m x k m x k a a =-- = 由于是任取的, 1 22 121m k m k a a = 同样可得22 122 1212 2221121)4 ()4(T m k T m k T a T a A A =??= 所以2 2221211m T k m T k = 因此有k m T ∝ 由此可以看出:弹簧振子的周期与振子的质量的算术根成正比,与弹簧劲度系数的算术根成反比,即k m n T =(其中n 是一个与小球质量,弹簧劲度系数,振子振幅等无关的常数)。 2.振子位移,速度,加速度的变化规律 根据沙漏实验(图2)可知:弹簧振子的位移——时间图像是一条余弦曲线。因为右图沙漏实验得到的余弦曲线,实际上是由x 方向上的匀速直线运动和y 方向的振动的合成,因此y 方向上弹簧振子的振动图像也应为余弦曲线。 图(2) 如图(3),以经平衡位置向右运动开始计时,则其初相为 2 π

一弹簧振子

14-1 一弹簧振子,当把它水平放置时,它作谐振动。若把它竖直放置或放在光滑斜面上,试判断下面哪种情况是正确的?[ ] A.竖直放置作谐振动,放在光滑斜面上不作谐振动; B.竖直放置不作谐振动,放在光滑斜面上作谐振动; C.两种情况都作谐振动; D.两种情况都不作谐振动。 14-2 一远洋货轮,质量为m,浮在水面时其水平截面积为S,设在水面附近货轮的水平截面积近似相等,设水的密度为 ,且不计水的粘滞阻力,证明货轮在水中作振幅较小的竖直自由运动是简谐运动,并求振动周期。

14-3 如图所示,质量为1.00×10kg的子弹,以500m·s的速度射入并嵌在木块中,同时使弹簧压缩从而作简谐运动。设木 块的质量为 4.99kg,弹簧的劲度系 数为8.00×103N·m—1。若以弹簧原 长时物体所在处为坐标原点,向左 为x轴正向,求简谐运动方程。

14-4 一水平弹簧振子,振幅为4.0×10m ,频率为0.5Hz ,当t =0时,物体的状态是:⑴过平衡位置向正方向运动;⑵在正方向的端点;⑶过A /2处向负方向运动。试用旋转矢量法确定以上三种情况的初相,并写出谐振动方程。 14-5 一质点作谐振动,周期为T 。当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为[ ]。 A .T /4 B .T /12 C .T /6 D .T /8 14-6 一质点作简谐振动,其运动速度与时间的曲线如右图所示。若质点的振动规律用余弦函数描述,则其初位相应为[ ] A .π/6 B .5π/6 C .-5π/6 D .-π/6 E .-2π/3 14-7 已知某简谐振动的振动曲线如图所示,则此谐振动的振动方程为[ ]。 A .)32 32cos( 2ππ+=t x cm B .)32 32cos(2π-π=t x cm C .)32 34cos(2π+π=t x cm D .)32 34cos(2π-π=t x cm E .)4 34cos(2π -π=t x cm

弹簧振子演示教学

教案示例 ——简谐运动 一、教学目标 1.在物理知识方面要求: (1)了解什么是机械振动; (2)掌握简谐运动回复力的特征; (3)掌握在一次全振动过程中回复力、加速度、速度随偏离平衡位置的位移变化的规律(定性). 2.通过观察演示实验,概括出机械振动的特征,培养学生的观察、概括能力;通过相关物理量变化规律的学习,培养分析、推理能力. 3.渗透物理学方法的教育,运用理想化方法,突出主要因素,忽略次要因素,抽象出物理模型——弹簧振子,研究弹簧振子在理想条件下的振动. 二、重点、难点分析 1.重点是使学生掌握简谐运动的回复力特征及相关物理量的变化规律.回复力的特征是形成加速度、速度、位移等物理量周期性变化的原因. 2.偏离平衡位置的位移与运动学中的位移概念容易混淆,这是难点.在一次全振动中速度的变化(大小、方向)较复杂,比较困难. 三、教具 1.演示机械振动 钢板尺、铁架台、单摆、竖直弹簧振子、皮筋球. 气垫弹簧振子、微型气源. 2.分析相关物理量的变化 计算机、软盘、彩电(29吋,代彩显),投影幻灯、投影片、彩笔. 四、主要教学过程 (一)引入新课

我们学习机械运动的规律是从简单到复杂:匀速运动、匀变速直线运动、平抛运动、匀速圆周运动,今天学习一种更复杂的运动——简谐运动. (二)教学过程设计 1.机械振动 振动是自然界中普遍存在的一种运动形式,请同学举例说明什么样的运动是振动? 说明微风中树枝的颤动、心脏的跳动、钟摆的摆动、声带的振动……这些物体的运动都是振动. 演示几个振动的实验,要求同学边看边想:物体振动时有什么特征? (1)一端固定的钢板尺 (2)单摆 (3)弹簧振子 (4)穿在橡皮绳上的塑料球 提出问题:这些物体的运动各不相同:运动轨迹是直线的、曲线的;运动方向水平的、竖直的;物体各部分运动情况相同的、不同的……它们的运动有什么共同特征? 在同学回答的基础上归纳出:物体振动时有一中心位置,物体(或物体的一部分)在中心位置两侧做往复运动,振动是机械振动的简称.

11.1--简谐振动与弹簧劲度系数实验

简谐振动与弹簧劲度系数实验 一. 实验目的 1. 用伸长法测量弹簧劲度系数,验证胡克定律。 2. 测量弹簧作简谐振动的周期,求得弹簧的劲度系数。 3. 研究弹簧振子作谐振动时周期与振子的质量、弹簧劲度系数的关系。 4. 了解并掌握集成霍尔开关传感器在测量周期或转速中的应用,掌握其使用方法。 5. 测定液体表面张力系数(选做,需额外配置部分仪器)。 6. 测定本地区的重力加速度(选做)。 二. 实验原理 1. 弹簧在外力作用下会产生形变。由胡克定律可知:在弹性变形范围内内,外力F 和弹 簧的形变量y ?成正比,即 y K F ?= (1) 式中,K 为弹簧的劲度系数,它与弹簧的形状、材料有关。通过测量F 和相应的y ?,就可推算出弹簧的劲度系数K 。 2. 将弹簧的一端固定在支架上,把质量为M 的物体垂直悬挂于弹簧的自由端,构成一个弹簧振子。若物体在外力作用下离开平衡位置少许,然后释放,则物体就在平衡点附近做简谐振动,其周期为: K pM M T 0 2+=π (2) 式中p 是待定系数,它的值近似为1/3;0M 是弹簧自身的质量,0pM 称为弹簧的有效质量。通过测量弹簧振子的振动周期T ,就可由(2)式计算出弹簧的劲度系数K 。 3. 霍尔开关(磁敏开关) 图1 霍尔开关脚位分布图 图2 AH20参考应用电路

集成开关型霍耳传感器简称霍耳开关,是一种高灵敏度磁敏开关。其脚位分布如图1所示,实际应用参考电路如图2所示。在图2所示的电路中,当垂直于该传感器的磁感应强度大于某值时,该传感器处于“导通”状态,这时在OUT脚和GND脚之间输出电压极小,近似为零;当磁感强度小于某值时,输出电压等于VCC到GND之间所加的电源电压。利用集成霍耳开关这个特性,可以将传感器输出信号接入周期测定仪,测量物体转动的周期或物体移动所需时间。 三.实验仪器 1、如图3所示,实验仪器包括新型焦利秤、多功能计时器、弹簧、霍尔开关传感器、磁钢、砝码和砝码盘等。 图3 简谐振动与弹簧劲度系数实验仪 1、底座 2、水平调节螺钉 3、立柱 4、霍尔开关组件(上端面为霍尔开关,下端面为接口) 5、砝码(简谐振动实验用,开展实验时,在砝码的底面放置直径为12mm的小磁钢) 6、弹簧 7、挂钩8、横梁9、反射镜10、游标尺11、配重砝码组件12、指针13、砝码盘 14、传感器接口(霍尔开关)15、计时器16、砝码17、霍尔开关组件与计时器专用连接线2、DHTC-3B多功能计时器 详见《DHTC-3B多功能计时器》使用说明书。 四、主要技术参数

相关主题