搜档网
当前位置:搜档网 › 高速隧道照明系统

高速隧道照明系统

高速隧道照明系统
高速隧道照明系统

石太高速照明系统的

设计与节能

摘要:石太高速公路北线是石家庄到太原的第二条高速,也是国家高速公路网京昆高速的石太段。因为山西多山所以隧道必不可免。近些年,随着我国高速公路的迅速发展,大量以桥隧为主的高速公路里程也逐年增加,公路隧道照明系统作为保证车辆安全通行的同时也使得隧道照明运营开支居高不下。近年来,LED以其低能耗高效率的特点,在照明行业正得到广泛的应用,从显示器背光照明到景观照明再到日常照明,覆盖范围越来越大。作为光源,LED的优势体现在三个方面:节能、环保和长寿命。LED不依靠灯丝发热来发光,能量转换效率非常高,理论上可以达到白炽灯10%的能耗,相比荧光灯,LED也可以达到50%节能效果。研究如何在基于交通流量、行车速度、可视度、驾驶员视觉特性基础上,实现对LED灯具合理的智能照明无

级控制,这对提高隧道照明质量,降低能耗与隧道运营成本,营造安全舒适的隧道行车环境,具有重要的意义。

关键词:高速;隧道;LED;节能

隧道的设计

1 照明节能调光控制算法

算法原理:依据交通量及洞外亮度建立洞内亮度理论需求曲线,然后根据洞内亮度理论需求曲线进行灯具的动态调光控制。整个照明控制输出接近平滑曲线,可以快速响应跟踪照明需求曲线,得到最优的控制效果并能够达到节能的目的。

根据《公路隧道通风照明设计规范》(JTJ026.1 -1999),隧道照明设计分为以下几个区段:入口段、过渡段、中间段、出口段,如图一所示。因此自动控制算法中进行隧道照明理论需求曲线L 的计算采用分段方式进行,将计算结果输出到控制接口。入口段、中间段、出口段为亮度需求直线,相应灯具为整体256 级对数调光,对数调光曲线利用了人眼对低照度光比较敏感的特点,使整个调光区域看起来都像是线性调节。过渡段为亮度需求曲线,相应灯具为单256 级对数调光。自动控制算法通常采用时间触发条件,每5~10min 重新读取洞外亮度、交通量等参数,重新进行照明需求计算

2 照明节能仿真系统方案设计

传统的隧道照明为实现各段的合理照明,按晴天、云天、阴天、重阴天加强照明和全日基本照明、白日基本照明、全日基本应急照明七种模式控制[4],控制方式过于简单,无法根据室外环境照度、交通流量、隧道内车辆行驶速度等参数实现照明的自适应控制,照明效果不佳,电能浪费严重。隧道照明节能智能控制系统在传统照明的基础上加入智能控制环节,将模糊控制技术应用到隧道照明系统的设计中,使整个隧道通风照明能自动适应车速、车流量和洞外环境气象等影响因素的变化,减少不需要的照明浪费。在灯具上使用大功率LED 灯取代现阶段广泛使用的高压钠灯,真正实现了绿色照明。近年来,大功率LED 照明有不断取代高压钠灯等常规照明设备的趋势,它具有以下优点:

(1)高效。同等亮度条件下使用LED 照明耗能仅为白炽灯的10%,荧光灯的50%。

(2)寿命长。LED 理论使用寿命为100000 小时,是荧光灯的10 倍,白炽灯的100 倍。

(3) 易调光控制。LED 在调光性能上具有巨大的优势,可实现数字调光,尤其适合在隧道照明等需要调光的特殊场合。

在本仿真系统中,模型灯具采用白光LED,每个LED 功率为1W,LED 正向导通电压为3.5V,最亮时平均电流为350mA,LED 调光控制是通过上位机发送调光信息产生PWM 脉冲来实现的。

2.1 仿真隧道模型及灯具布置

仿真隧道分为入口段、过渡段、基本段和出口段,总长10m,隧道高1m,包含了一个完整隧道的基本部分。按照《公路隧道通风照明设计规范》的要求对各个照明段的长度进行计算,得到各段的长度为:入口段80cm,过渡段200cm,基本段670cm,出口段50cm。灯具对称布置,两边每隔20cm 等间距排列。

2.2 系统整体设计

隧道照明控制通过上位机和本地控制器共同控制实现。上位机的照明控制有手动和自动两种控制模式,手动控制的优先权大于自动控制的优先权。手动方式是由操作人员自行指定上位机的输出结果;自动方式是上位机根据接收到的传感器信息,包括隧道口亮度、隧道内亮度、隧道口车速、隧道口车流量,通过照明控制程序计算输出各个照明回路的逻辑控制数据, 并通过RS485 总线传到隧道各段本地控制器中。控制器根据上位机的控制数据开启或者关闭相应的子回路,从而控制照明回路的照明。系统整体结构如图二所示。

本地控制器主要完成以下功能:①收集本段区域内检测

设备检测的信息,包括光强传感器和车辆传感器等;②对收集的信息进行预处理并存储在本地的存储单元内;③将本地控制内处理好的信息数据上传给监控计算机;④接收监控计算机各种控制命令,并将控制命令和设备运行状态比较后,对功率控制模块发出相应的控制命令。

2.3 系统控制流程

系统主程序流程如图三所示。首先系统上电初始化各个模块,启动各处传感器模块,采集车辆及洞内外亮度信息,并将信息通过

RS485 总线传输到监控计算机,判断系统是否处于本地控制器手动控制状态,如果是在手动控制状态(系统出现故障或检修维护),则程序结束,由手动控制面板实现照明回路的控制;否则下一步检测隧道状态是否正常,不正常,则报警,并且调用特殊状态程序;正常则下一步检测总线通信是否正常,正常则调用远程监控计算机控制程序,否则调用本地控制器基本控制程序,然后输出回路控制命令。利用触摸屏显示隧道状态信息,同时将本地隧道状态信息发送给监控计算机。

隧道照明的节能

问题的提出

一、现有隧道照明控制模式设计,在实际运行中存在相当大的电能浪费。

目前,隧道照明设计者依据规范通常把隧道分为入口段、过渡段、中间段和出口段等四个段来设计照明,其中过渡段有两个,分别设计在中间段前后。各段的长度和照度(lx)是从全年行车安全要求出发,对洞内最大照度的设计是以全年洞外最大亮度和最高行车时速来确

定隧道内各段的灯具功率和灯具分布密度。能够实现照明自动控制的非常有限,通常因线路布线回路的限制,只能做到2、3级人工或自动控制,对于如天气、车速、车流量等参数只是在设计阶段给予以最大值考虑,最终各段照明的长度和照度也始终是处于最大值状态。对于天气、车速、车流量等时变参数无法从宏观上对整个隧道的照明进行自适应方式调制。因此,目前这种传统设计与使用的隧道照明系统存在着大量电能浪费问题。

二、现有隧道照明控制营运中节能与安全的矛盾突出。

营运者为了节省电费,往往都不采用自动控制,因为现有的自动控制没有涉及天气和车流量等实时变化因素。实际上营运者采用手动控制

方式工作,在规定的时间人工开关隧道灯,白天全开灯,晚上关掉所有的灯。部分营运者考虑白天电能浪费严重,有的只开全日灯。这种灯控方式表面上有一定的节能效果,但其实当洞外亮度小于

1500cd/m2时,只要确保隧道内路面亮度总均匀度U0、亮度纵向均匀度U1以及各段亮度达到相应要求,符合行车视觉要求,取其照度最小值即可,并非一定要达到开全日灯时的亮度。其次,存在一个洞口亮度不够的安全隐患问题。由于一天中洞外亮度变化很大,按照司机行车从进入到离开隧道全过程的视觉适应要求,当洞外亮度较大时,入洞口亮度应和洞外亮度及洞内亮度有较好的交替,要考虑入口端洞口排出的大量废气可能降低亮度对比度和照明效果,所以期间要保持洞口足够的亮度,否则在车子进入洞口的瞬间,司机眼前感觉一片黑暗,产生“黑洞效应”,如果前方有障碍车或行驶较慢的车辆,可能诱发连环撞车事故。同样,当隧道出口洞外亮度很高时,隧道内离隧道出口一段距离的亮度不能过低,以防止大型车辆后紧跟有小车,小车难以被发现、视认的情况发生。因此,隧道内照明的节能不是简单地开关某些灯具,而是要求建立在行车安全基础上的最大节能。

三、有隧道照明控制营运中节能与隧道监控的矛盾。

隧道监控是隧道管理的重要组成部分,目前隧道照明与监控之间产生的矛盾主要在夜间。营运者为了省电,夜幕降临时关闭隧道内所有的灯,由于目前国内隧道普遍采用非红外线摄像头,隧道内部一片漆黑,

使得无法发挥有效监控,夜间直接造成从摄像头到监视器之间大量设备电能的浪费。这种间断的监控也不符合重要隧道内所需的监控要求:夜间,在有人进入隧道或发生偷盗、破坏等现象,很难被及时发现;在车辆发生故障或发生交通事故时,不但监控不到,而且在处理时不能提供必要照明。在设计中应考虑在隧道发生紧急情况时,隧道内灯具能够根据需要自动控制照明亮度。比如隧道内发生火灾或拥挤堵塞时,为帮助隧道及时排除危险,系统自动将全部灯点亮,系统的手动控制应能够可以在多处实现,如监控中心,隧道管理房或隧道内的其他位置等。从安全、监控、节能及所能提供便利等方面综合考虑,夜间隧道内提供适当的照明是必要的。

节能方法

在隧道照明系统的设计中,通常入口段和出口段灯具的密度和照度最大,中间段最小。而中间段灯具的布设长度一般最长,其他各段灯具的布设长度根据隧道实际长度和实际要求的不同而有所不同。根据国家<<公路隧道通风照明设计规范>>的设计要求,隧道照明的设计应

考虑车流量和车速的因素,所以影响隧道内灯具照度的设计主要有车速、车流量和洞外亮度三个因素。

当平均车速较大时,应按要求适当增加入口段和过渡段照明的长度和照度,中间段、出口段的照度也应相应增加,反之相应减小。有关研

究机构曾做过现场实测,在车辆通过隧道洞口前后,会很自然地降速,通过隧道时,车速普遍下降30%左右,因此在考虑车速对隧道内各段照明的长度和亮度的影响时,应注意考虑这一点。当交通量大增时,入口段、过渡段、中间段、出口段的照度应相应增加,此时路面均匀度U0和纵向均匀度U1也应相应增加,反之相应减小。影响洞内亮度设计的另一主要因素是洞外亮度,洞外亮度除了和洞口所处的位置有关外,白天主要由天气状况决定。晴天、多云、阴天、重阴的天气对洞内入口段、过渡段、出口段亮度的调节均产生较大影响,洞外亮度增加,隧道内各段灯具的照度也相应增大,反之相应减小。雨天或是大风的天气,不但影响洞外亮度,还影响车速,而车速又直接影响隧道内各段照明的长度和照度。

在整个隧道照明的设计规划中,就应该考虑节能问题。比如入口段照明通常由基本照明和加强照明两部分组成,前者的灯具布置同中间段照明相类似,后者的加强照明采用功率较大的灯具。由于洞外日光的投射进入,可利用作为入口段加强照明的部分,参照设计规范,可将离洞口10m以内的加强照明灯具予以省略。在单向交通隧道中,出口段照明的设计,其长度可与入口段有所不同,据相关资料证实,出口段长度取60米是合适的,可省去几十米入口段高密度布置的灯具,由中间段布置较为稀疏的灯具取代。出口段亮度也可有别于入口段,其亮度取中间段亮度的5倍即可。在长隧道中,由于有充分的适应(过渡)时间,所以中间段亮度可适当降低。

为了提高司机行车安全系数,在设计较长隧道的照明时,过渡段应设计为TR1、TR2、TR3三个照明段,其亮度与长度的划分可采用CIE 适应曲线作为依据。

由于隧道长度超过100米就要设置照明,当隧道里安装照明灯具时,它的长度通常是几百米、几千米,如果隧道交通是单向,灯具安装总长度可能达到几公里甚至更长,如按照全年最大照度设计,单从洞外亮度这一指标分析,只要天气不是晴天,洞内亮度就是多余的,长时间势必造成电能的极大浪费。所以,要把隧道内各段照明的长度和照度设计成能够根据实际要求(如洞外亮度等)不断调整变化,动态地实现对隧道内各段灯具照明的自动控制。在长度小于1000米的隧道,设计时应实现对各段灯具照度的自动控制,在隧道长度超过1000米,设计时应实现对各段的照明长度和照度的全面动态控制,才能从根本上杜绝隧道照明能源的浪费,并提高行车安全系数。

举例分析

八达隧道(石太高速段),全长1070米,设计为单向双车道交通,隧道照明分为3级,分别为0、1、2级。0级照明在夜间使用,1级照明在早晨和傍晚使用,2级照明在白天使用。其中全日灯250w,24小时工作;白日灯、黄昏灯分别为400w,白日灯只在白天工作,

黄昏灯工作区间为从早上到黄昏。隧道内灯具设计分为入口段、过渡段、中间段、出口段四个分段区间。其中入口段102米,两个过渡段分别为42米,中间段786米,出口段102米。

八达隧道照明系统在设计中,中间段照明及夜间照明电能浪费严重:中间段设计亮度为8 cd/m2,根据车辆通过大坪山隧道时80km/h的平均车速及500辆/h左右的交通量,其亮度只要达到2 cd/m2即可;夜间,设计照度为83Lx,但根据大坪山隧道的交通量,其照度设计达到22lx即可。除了晴天时,入口段亮度设计(90cd/m2)符合要求外,洞内各段在其他时候均造成电能浪费,如在阴天时,入口段亮度只需23cd/m2即可。在运营管理中,大坪山隧道白天只开全日灯,其照度只相当于夜间的照度(83lx),而晴天时洞外亮度超过

3000cd/m2,所以白天入口段照明存在"黑洞效应"的严重安全隐患。大坪山隧道夜间全关灯,根据国家有关隧道内夜间调光的规定,在交通量较大时,夜间洞内亮度与白天中间段亮度(lin)相等,在交通量较小时,其亮度为0.5lin,但不小于1cd/m2。根据车辆通过大坪山隧道的平均车速,隧道的过渡段长度可适当延长二、三十米,以更好地适应司机行车视觉要求。综合节能考虑,其出口段长度取60米,亮度取中间段亮度的5倍(10 cd/m2)即可。

系统实施方案

目前的隧道照明系统可通过自适应模糊控制技术,实时优化各段照明,以达到进一步节电节能的目的。要实现如大坪山隧道照明系统的节能,主要是如何对每盏高压钠灯完成开关网络的改造,并通过洞口的亮度检测器获得的参数,进行自动化控制。

为了减少灯具的改造费用,可以在不更换灯具的情况下,只在每盏灯上增加能实现连网的遥控开关控制器即可。或者将旧的电感式镇流器更换成具有联网控制功能的高压钠灯电子镇流器,其性能更佳。

为此,方案可采用目前在自动化控制方面先进的新型CAN (Controller Area Network控制器局域网)网络来完成。CAN网络系统是德国BOSCH公司专为汽车自动控制开发的,并已取得国际标准化组织论证(ISO11898),总线结构参照了ISO/OSI参考模型。其成本较低、实时处理能力强,在恶劣的强电磁干扰环境下能可靠工作,通信介质可以是双绞线、同轴电缆或光导纤维。介于CAN网络的节点数量受物理线路特性的限制,CAN网络的节点数量分配通常是一根电缆挂接100多个以内的终端,其传输距离超过5公里,是普通的485总

线传输距离的5倍以上。结合隧道照明特点,我们设计的隧道照明节能控制系统实施方案如下图所示:

隧道智能照明控制系统示意图(单洞)

在上述方案图示中,我们采用了二级网络结构,第一级CAN总路线上挂接着本地和远程智能控制器、洞口和洞内的亮度检测器、以及m个二级CAN总线路由器等组成。每个二级CAN总线上挂接着n 个灯具开关或调光CAN控制器与数个照明紧急手动开关组成。其中m个CAN路由节点主要是完成一级总线与二级总线之间的双向数据传输;本地照明智能控制器完成隧道照明自动控制与远程监控功能;挂在第二级CAN节点上的照明紧急手动开关提供司机紧急照明局部开灯要求,及报警信号反馈等作用;CAN开关或调光控制器实现接收本地控制器的命令,进行译码控制每盏灯具的开启、关闭及调光。图中上位机指设在隧道管理房的控制计算机。

结束语

隧道照明在交通照明中占据了很大比重,在全球都为节能减排而

讨论对策的背景下,研究隧道照明节能系统有着非常重要的意义。本文在参考《公路隧道通风照明设计规范》的基础上改进传统的道路隧道照明,得出适合驾驶员视觉要求的隧道照明节能控制算法,充分应用LED 照明灯具的节能优势,利用计算机和智能控制器展开隧道照明的自适应节能控制研究,可操作性强。经实验室仿真验证,具有良好的节能效果。

参考文献:

[1] 赵忠杰.公路隧道机电工程[M].北京:人民交通出版

社,2007:52-92.

[2] 王文熙,郭奋勇.隧道照明节能分析与系统设计方案[J].中国交通信息产业,2003:23(10).

[3] 重庆交通科研设计院.JTG D70—2004 公路隧道设计规范[S].北京:人民交通出版社,2004.

[4] 崔风羲.基于模糊神经网络的隧道照明控制系统研究与设计

[D].长沙:湖南大学,2007.

11440042-唐兆丰-11级交控1班

相关主题