搜档网
当前位置:搜档网 › 全国高中数学联赛挑战极限平面几何试题

全国高中数学联赛挑战极限平面几何试题

全国高中数学联赛挑战极限平面几何试题
全国高中数学联赛挑战极限平面几何试题

1

2012全国高中数学联赛挑战极限--------[平面几何试题]

1. 过圆外一点P 作圆的两条切线和一条割线,切点为A ,B 所作割线交圆于C ,D 两点,

C 在P ,

D 之间,在弦CD 上取一点Q ,使∠DAQ =∠PBC .求证:∠DBQ =∠PAC .

2、如图,M ,N 分别为锐角三角形ABC ?(A B ∠<∠)的外接圆Γ上弧BC

⌒ 、AC ⌒的中点.过点C 作PC MN ∥交圆Γ于P 点,I 为ABC ?的内心,连接PI 并延长交圆Γ于T .

⑴ 求证:MP MT NP NT ?=?;

⑵ 在弧AB ⌒(不含点C )上任取一点Q (Q A ≠,T ,B ),记AQC ?,QCB

△的内心分别为1I ,2I ,求证:Q ,1I ,2I ,T 四点共圆.

B

P

A

B

C D

Q

2

3.一圆O 切于两条平行线12,l l ,第二个圆1O 切1l 于A ,外切O 于C ,第

三个圆

2O 切2l 于B ,外切O 于D ,外切1O 于E ,AD 交BC 于Q ,

求证Q 是CDE ?的外心。

(35届IMO 预选题)

4. 如图,给定凸四边形ABCD ,180B D ∠+∠<,P 是平面上的动点, 令()f P PA BC PD CA PC AB =?+?+?.

(Ⅰ)求证:当()f P 达到最小值时,P A B C ,,,四点共圆; (Ⅱ)设E 是ABC ?外接圆O 的AB 上一点,满足:

3AE AB =,31BC

EC

=-,

1

2

ECB ECA ∠=

∠,又,DA DC 是O 的切线,2AC =,求()f P 的最小值.

图1

3

5. 在直角三角形ABC 中,90ACB ∠=?,△ABC 的内切圆O 分别与边BC ,CA , AB 相切于点D ,E ,F ,连接AD ,与内切圆O 相交于点P ,连接BP ,CP ,若90BPC ∠=?,求证:AE AP PD +=.

6. 给定锐角三角形PBC ,PC PB ≠.设A ,D 分别是边PB ,PC 上的点,连接AC ,BD ,相交于点O. 过点O 分别作OE ⊥AB ,OF ⊥CD ,垂足分别为E ,F ,线段BC ,AD 的中点分别为M ,N .

(1)若A ,B ,C ,D 四点共圆,求证:EM FN EN FM ?=?; (2)若 EM FN EN FM ?=?,是否一定有A ,B ,C ,D 四点共圆?证明你的结论. .

C

B

4

7. 如图,已知△ABC 内切圆I 分别与边AB 、BC 相于点F 、D ,直线AD 、CF 分别交圆I 于另一点H 、K .

求证:错误!未找到引用源。

3FD HK

FH DK

?=?.

8.如图10,⊙O 是△ABC 的边BC 外的旁切圆,D 、E 、F 分别为⊙O 与BC 、CA 、AB 的切点.若OD 与EF 相交于K , 求证:AK 平分BC .

D

C

O

图10

5

参考答案

1.证明:连结AB ,在△ADQ 与△ABC 中,∠ADQ=∠ABC ,∠DAQ=∠PBC=∠CAB

故△ADQ ∽△ABC ,而有

AD

DQ

AB BC =

,即BC ·AD =AB ·DQ 10分

又由切割线关系知△PCA ∽△PAD 得 AD

AC

PA PC =

; 同理由△PCB ∽△PBD 得 BD

BC

PB PC =

20分 又因PA =PB ,故BD

BC

AD AC =

,得 AC ·BD =BC ·AD =AB ·DQ 30分

又由关于圆内接四边形ACBD 的托勒密定理知 AC ·BD +BC ·AD =AB ·CD

于是得:AB ·CD =2AB ·DQ ,故DQ =

2

1

CD ,即CQ =DQ 40分 在△CBQ 与△ABD 中,BC

CQ

BC DQ AB AD =

=,∠BCQ =∠BAD ,于是△CBQ ∽△ABD , 故∠CBQ =∠ABD ,即得∠DBQ =∠ABC ∠PAC .

2.[解析]: ⑴ 连NI ,MI .由于PC MN ∥,P ,C ,M ,N 共圆,故PCMN 是等腰梯形.

因此NP MC =,PM NC =.

A

B

C

M

N

P

T

I

AM ,CI ,则AM 与CI 交于I ,因为

MIC MAC ACI MCB BCI MCI ∠=∠+∠=∠+∠=∠,所以MC MI =.同理NC NI =.

于是NP MI =,PM NI =.

故四边形MPNI 为平行四边形.因此PMT PNT S S =△△(同底,等高).

又P ,N ,T ,M 四点共圆,故180TNP PMT ∠+∠=?,由三角形面积公式

1

sin 2PMT S PM MT PMT

=?∠△1

sin 2

PNT S PN NT PNT

==?∠△

6

1

sin 2

PN NT PMT =?∠ 于是PM MT PN NT ?=?.

⑵因为1111NCI NCA ACI NQC QCI CI N ∠=∠+∠=∠+∠=∠,

B

所以1NC NI =,同理2MC MI =.由MP MT NP NT ?=?得NT MT

MP NP

=

. 由⑴所证MP NC =,NP MC =,故

12

NT MT

NI MI =. 又因12I NT QNT QMT I MT ∠=∠=∠=∠,有12I NT I MT ??∽.

故12NTI MTI ∠=∠,从而1212I QI NQM NTM I TI ∠=∠=∠=∠. 因此Q ,1I ,2I ,T 四点共圆. 3.证明:由1AO ∥2BO ,知12 AO E BO E ∠=∠,从而有12AEO BEO ∠=∠,

,,A E B

三点共线。同理由

OF

2

BO ,可得

,,B D F

三点共线。又因为

2111

18018022

EDB EO B AO E EAF

∠=?-∠=?-∠=∠,所以

,,,A E D F 四点

共圆,BE

BA BD BF =,

即点B 在1O 与O 的根轴上。又因为C 在1O 与O 的根轴上,所以BC 是1O 与O 的根轴。同理AD 是2O 与O 的根轴,因此Q 为

根心,且有QC

QD QE ==,即Q 是CDE ?的外心。

4.[解法一] (Ⅰ)如图1,由托勒密不等式,对平面上的

任意点P ,有

PA BC PC AB PB AC ?+?≥?. 因此 ()f P PA BC PC AB PD CA =?+?+? PB CA PD CA ≥?+?()PB PD CA =+?. 因为上面不等式当且仅当,,,P A B C 顺次共圆时取等号,

7

因此当且仅当P 在ABC ?的外接圆且在AC 上时, ()()f P PB PD CA =+?. …10分

又因PB PD BD +≥,此不等式当且仅当,,B P D 共线且P 在BD 上时取等号.因

此当且仅 当

P 为ABC ?的外接圆与BD 的交点时,()f P 取最小值min ()f P AC BD =?.

故当()f P 达最小值时,,,,P A B C 四点共圆. …20分

(Ⅱ)记ECB α∠=,则2ECA α∠=,由正弦定理有

sin 23

sin 3AE AB αα==

,从而3sin 32sin 2αα=,即33(3sin 4sin )4sin cos αααα-=,所以

23343(1cos )4cos 0αα---=,

整理得2

43cos 4cos 30αα--=, …30分

解得3cos α=

或cos 23

α=-(舍去),故30α=,60ACE ∠=. 由

31

BC

EC

=-=()0sin 30sin EAC EAC

∠-∠,有

sin(30)(31)sin EAC EAC ∠-=-∠,

31

sin cos (31)sin 2EAC EAC EAC ∠-∠=-∠,整理得 231

sin cos 2

EAC EAC -∠=∠, 故tan 2323

EAC ∠==+-,可得75EAC ∠=,………40分

从而45E ∠=,45DAC DCA E ∠=∠=∠=,ADC ?为等腰直角三角形.因2AC =,则1CD =.

又ABC ?也是等腰直角三角形,故2BC =,2

12212cos1355BD =+-??=,5BD =.

min ()5210f P BD AC =?=?=. …50分 [解法二] (Ⅰ)如答一图2,连接BD 交ABC ?的外接圆O 于0P 点(因为D 在圆O 外,故0P 在BD 上).

过,,A C D 分别作000,,P A P C P D 的垂线,两两相交得111A B C ?,易知0P 在ACD ?内,从而在111A B C ?内,记ABC ?之三内角分别为x y z ,,,则0180AP C y z x ∠=?-=+,又因110B C P A ⊥,110B A P C ⊥,得1B y ∠=,同理有1A x ∠=,1C z ∠=,

所以111A B C ?∽ABC ?. …10分

设11B C BC λ=,11C A CA λ=,11A B AB λ=, 则对平面上任意点M ,有

答一图2

8

0000()()f P P A BC P D CA P C AB λλ=?+?+? 011011011P A B C P D C A P C A B =?+?+? 111

2A B C S ?=

111111MA B C MD C A MC A B ≤?+?+? ()MA BC MD CA MC AB λ=?+?+? ()f M λ=, 从而 0()()f P f M ≤. 由M 点的任意性,知0P 点是使

()f P 达最小值的点.

由点0P 在O 上,故0,,,P A B C 四点共圆. …20分 (Ⅱ)由(Ⅰ),()f P 的最小值

1110

2

()A B C f P S λ

?=2ABC S λ?=, 记

ECB α∠=,则2ECA α∠=,由正弦定理

sin 2sin 3AE AB αα==

,从

而32sin 2αα=

34sin )4sin cos αααα-=,所以

2cos )4cos 0αα--=,

整理得2

4cos 0αα-, …30分

解得cos α=

cos α=(舍去),

故30α=,60ACE ∠=.

1BC

EC

==

()0sin 30sin EAC EAC

∠-∠,

有sin(30)(1)sin EAC EAC

∠-=

∠,

1

cos 1)sin 2

EAC EAC EAC ∠-∠=

∠, 整理得1cos 2EAC EAC

∠=∠

,故tan 2EAC ∠==,可

得75EAC ∠=,…40分

所以45E ∠=?,ABC ?为等

腰直角三角形,AC =,1ABC S ?=,因为

145AB C ∠=?,1B 点在⊙O 上,190AB B ∠=?,所以11B BDC 为矩形,

11B C BD ===

λ=,所以

min ()21f P == …50分 5.证明 :设AE = AF = x ,BD =BF =y ,CD =CE =z ,AP =m ,PD =n .

9

因为90ACP PCB PBC PCB ∠+∠=?=∠+∠,所以ACP PBC ∠=∠.

E C

延长AD 至Q ,使得AQC

ACP PBC ∠=∠=∠,连接

BQ ,CQ ,则P ,B ,Q ,C

四点共圆,令DQ =l ,则由相交弦定理和切割线定理可得

yz nl =, ① 2()x m m n =+. ②

因为ACP ?∽AQC ?,所以

AC AP

AQ AC

=,故

2()()x z m m n l +=++. ③

在Rt △ACD 和Rt △ACB 中,由勾股定理得

222()()x z z m n ++=+, ④ 222()()()y z z x x y +++=+. ⑤

③-②,得 2

2z zx ml +=, ⑥

①÷⑥,得

2

2yz n

z zx m

=+, 所以 212yz m n

z zx m

++=+, ⑦

10

②×⑦,结合④,得 22

2222

()()2x yz

x m n x z z z zx

+=+=+++, 整理得

22()2x y

z x z z x

=++. ⑧ 又⑤式可写为 2xy x z y z

+

=

+, ⑨

由⑧,⑨得

42x z

z x y z

=

++. ⑩

又⑤式还可写为 2xz y z x z

+=

-, ○11

把上式代入⑩,消去

y z +,得

223220x xz z --=,

解得

13

x z =

, 代入○11得,

5)y z =,

将上面的x ,y 代入④,得

1)

3

m n z +=

结合②,得

21

6

x m z m n =

=+, 从而

n z =

, 所以,x m n +=,即

AE AP PD +=.

6.解(1)设Q ,R 分别是OB ,OC 的中点,连接EQ ,

C

B

11

MQ ,FR ,MR ,则

11

,22

EQ OB RM MQ OC RF ====,

又OQMR 是平行四边形,所以

OQM ORM ∠=∠,

由题设A ,B ,C ,D 四点共圆,所以

ABD ACD ∠=∠,

于是 图1 22EQO ABD ACD FRO ∠=∠=∠=∠, 所以 EQM

EQO OQM FRO ORM FRM ∠=∠+∠=∠+∠=∠,

故 EQM

MRF ???,

所以 EM =FM , 同理可得 EN =FN , 所以 EM FN

EN FM ?=?.

(2)答案是否定的.

当AD ∥BC 时,由于B C ∠≠∠,所以A ,B ,C ,D 四点不共圆,但此时仍然有

EM FN EN FM ?=?,证明如下:

如图2所示,设S ,Q 分别是OA ,OB 的中点,连接ES ,EQ ,MQ ,NS ,则

11

,22

NS OD EQ OB ==,

所以

NS OD EQ OB

=. ① 又11

,22

ES

OA MQ OC ==,所以

12

ES OA

MQ OC

=. ②

而AD ∥BC ,所以

OA OD

OC OB

=

, ③ 由①,②,③得

NS ES

EQ MQ

=. 因为 2NSE NSA ASE AOD AOE ∠=∠+∠=∠+∠,

()(1802)EQM MQO OQE AOE EOB EOB ∠=∠+∠=∠+∠+?-∠

(180)2AOE EOB AOD AOE =∠+?-∠=∠+∠,

即 NSE

EQM

∠=∠,

所以 NSE ?~EQM ?,

故 EN SE OA

EM QM OC

==(由②). 同理可得, FN OA

FM OC =

, 所以 EN FN

EM FM

=

, 从而 EM FN

EN FM ?=?.

7.设AF =x ,BF =y ,CD =z ,则可以将 各线段长用x ,y ,z 表示如下: 由Stewart 定理得:

C

B

高中数学平面解析几何知识点总结

平面解析几何 一、直线与圆 1.斜率公式 2121 y y k x x -=-(111(,)P x y 、222(,)P x y ). 2.直线的五种方程 (1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121 y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). < (4)截距式 1x y a b +=(a b 、分别为直线的横、纵截距,0a b ≠、). (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 3.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ?=≠; ②12121l l k k ⊥?=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222 ||A B C l l A B C ? =≠; < ②1212120l l A A B B ⊥?+=; 4.点到直线的距离 d =(点00(,)P x y ,直线l :0Ax By C ++=). 5.圆的四种方程 (1)圆的标准方程 222()()x a y b r -+-=. (2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).圆心??? ??--2,2E D ,半径r=2 422F E D -+. 6.点与圆的位置关系 点00(,)P x y 与圆2 22)()(r b y a x =-+-的位置关系有三种: . 若d =d r >?点P 在圆外;d r =?点P 在圆上;d r 相离r d ; 0=???=相切r d ; 0>???<相交r d . 其中22B A C Bb Aa d +++=. 8.两圆位置关系的判定方法 # 设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21 条公切线外离421??+>r r d ; 条公切线外切321??+=r r d ;

(整理)届高三数学总复习平面解析几何练习题目汇总

第8章 第1节 一、选择题 1.(2010·崇文区)“m =-2”是“直线(m +1)x +y -2=0与直线mx +(2m +2)y +1=0相互垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 [答案] A [解析] m =-2时,两直线-x +y -2=0、-2x -2y +1=0相互垂直;两直线相互垂直时,m(m +1)+2m +2=0,∴m =-1或-2,故选A. 2.(文)(2010·安徽文)过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0 D .x +2y -1=0 [答案] A [解析] 解法1:所求直线斜率为12,过点(1,0),由点斜式得,y =12(x -1),即x -2y -1=0. 解法2:设所求直线方程为x -2y +b =0, ∵过点(1,0),∴b =-1,故选A. (理)设曲线y =ax2在点(1,a)处的切线与直线2x -y -6=0平行,则a =( ) A .1 B.12 C .-12 D .-1 [答案] A [解析] y′=2ax ,在(1,a)处切线的斜率为k =2a , 因为与直线2x -y -6=0平行,所以2a =2,解得a =1. 3.点(-1,1)关于直线x -y -1=0的对称点是( ) A .(-1,1) B .(1,-1) C .(-2,2) D .(2,-2) [答案] D [解析] 一般解法:设对称点为(x ,y),则

????? x -12-y +12-1=0 y -1x +1=-1,解之得????? x =2y =-2, 特殊解法:当直线l :Ax +By +C =0的系数满足|A|=|B|=1时,点A(x0,y0)关于l 的对称 点B(x ,y)的坐标,x =-By0-C A ,y =-Ax0-C B . 4.(2010·惠州市模考)在平面直角坐标系中,矩形OABC ,O(0,0),A(2,0),C(0,1),将矩形折叠,使O 点落在线段BC 上,设折痕所在直线的斜率为k ,则k 的取值范围为( ) A .[0,1] B .[0,2] C .[-1,0] D .[-2,0] [答案] D [解析] 如图,要想使折叠后点O 落在线段BC 上,可取BC 上任一点D 作线段OD 的垂直平分线l ,以l 为折痕可使O 与D 重合,故问题转化为在线段CB 上任取一点D ,求直线OD 的斜率的取值范围问题, ∵kOD≥kOB =12,∴k =-1kOD ≥-2,且k<0, 又当折叠后O 与C 重合时,k =0,∴-2≤k≤0. 5.(文)已知点(3,1)和点(1,3)在直线3x -ay +1=0的两侧,则实数a 的取值范围是( ) A .(-∞,10) B .(10,+∞) C.??? ?-∞,43∪(10,+∞) D.??? ?43,10 [答案] D [解析] 将点的坐标分别代入直线方程左边,所得两值异号,∴(9-a +1)(3-3a +1)<0,∴43

高一数学立体几何练习题及部分标准答案汇编

立体几何试题 一.选择题(每题4分,共40分) 1.已知AB//PQ,BC//QR,则∠PQP等于() A 030 B 030 C 0 150 D 以上结论都不对 2.在空间,下列命题正确的个数为() (1)有两组对边相等的四边形是平行四边形,(2)四边相等的四边形是菱形 (3)平行于同一条直线的两条直线平行;(4)有两边及其夹角对应相等的两个三角形全等 A 1 B 2 C 3 D 4 3.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系是() A 平行 B 相交 C 在平面内 D 平行或在平面内 4.已知直线m//平面α,直线n在α内,则m与n的关系为() A 平行 B 相交 C 平行或异面 D 相交或异面 5.经过平面α外一点,作与α平行的平面,则这样的平面可作() A 1个或2个 B 0个或1个 C 1个 D 0个 6.如图,如果MC⊥菱形ABCD所在平面,那么MA与BD的位置关系是( ) A 平行 B 垂直相交 C 异面 D 相交但不垂直 7.经过平面α外一点和平面α内一点与平面α垂直的平面有()

8.下列条件中,能判断两个平面平行的是( ) A 一个平面内的一条直线平行于另一个平面; B 一个平面内的两条直线平行于另一个平面 C 一个平面内有无数条直线平行于另一个平面 D 一个平面内任何一条直线都平行于另一个平面 9.对于直线m ,n 和平面,αβ,使αβ⊥成立的一个条件是( ) A //,,m n n m βα⊥? B //,,m n n m βα⊥⊥ C ,,m n m n αβα⊥=?I D ,//,//m n m n αβ⊥ 10 .已知四棱锥,则中,直角三角形最多可以有( ) A 1个 B 2个 C 3个 D 4个 二.填空题(每题4分,共16分) 11.已知?ABC 的两边AC,BC 分别交平面α于点M,N ,设直线AB 与平面α交于点O ,则点O 与直线MN 的位置关系为_________ 12.过直线外一点与该直线平行的平面有___________个,过平面外一点与该平面平行的直线有 _____________条 13.一块西瓜切3刀最多能切_________块 14.将边长是a 的正方形ABCD 沿对角线AC 折起,使得折起后BD 得长为a,则三棱锥D-ABC 的体积为___________ 三、解答题 15(10分)如图,已知E,F 分别是正方形ABCD A B C D -的棱AA 和棱CC 上的点,且

高中数学立体几何测试题及答案一)

高中数学必修2立体几何测试题及答案(一)一,选择(共80分,每小题4分) 1,三个平面可将空间分成n个部分,n的取值为() A,4;B,4,6;C,4,6,7 ;D,4,6,7,8。 2,两条不相交的空间直线a、b,必存在平面α,使得() A,a?α、b?α;B,a?α、b∥α;C,a⊥α、b⊥α;D,a?α、b⊥α。 3,若p是两条异面直线a、b外的任意一点,则() A,过点p有且只有一条直线与a、b都平行;B,过点p有且只有一条直线与a、b都垂直;C,过点p有且只有一条直线与a、b都相交;D,过点p有且只有一条直线与a、b都异面。 4,与空间不共面四点距离相等的平面有()个 A,3 ;B,5 ;C,7;D,4。 5,有空间四点共面但不共线,那么这四点中() A,必有三点共线;B,至少有三点共线;C,必有三点不共线;D,不可能有三点共线。 6,过直线外两点,作与该直线平行的平面,这样的平面可有()个 A,0;B,1;C,无数;D,涵盖上三种情况。 7,用一个平面去截一个立方体得到的截面为n边形,则() A,3≤n≤6 ;B,2≤n≤5 ;C,n=4;D,上三种情况都不对。 8,a、b为异面直线,那么() A,必然存在唯一的一个平面同时平行于a、b;B,过直线b 存在唯一的一个平面与a平行;C,必然存在唯一的一个平面同时垂直于a、b;D,过直线b 存在唯一的一个平面与a垂直。 9,a、b为异面直线,p为空间不在a、b上的一点,下列命题正确的个数是() ①过点p总可以作一条直线与a、b都垂直;②过点p总可以作一条直线与a、b都相交;③

过点p 总可以作一条直线与a 、b 都平行;④过点p 总可以作一条直线与一条平行与另一条垂直;⑤过点p 总可以作一个平面与一条平行与另一条垂直。 A ,1; B ,2; C ,3; D ,4。 10,异面直线a 、b 所成的角为80°,p 为空间中的一定点,过点p 作与a 、b 所成角为40° 的直线有( )条 A ,2; B ,3; C ,4; D ,6。 11,P 是△ABC 外的一点,PA 、PB 、PC 两两互相垂直,PA=1、PB=2、PC=3,则△ABC 的 面积为( )平方单位 A ,25; B ,611; C ,27; D ,2 9。 12,空间四个排名两两相交,以其交线的个数为元素构成的集合是( ) A ,{2,3,4}; B ,{1,2,3,}; C ,{1,3,5}; D ,{1,4,6}。 13,空间四边形ABCD 的各边与对角线的长都是1,点P 在AB 上移动 ,点Q 在CD 上移 动,点P 到点Q 的最短距离是( ) A ,21; B ,22; C ,23; D ,4 3。 14,在△ABC 中,AB=AC=5,BC=6,PA ⊥平面ABC ,PA=8,则P 到BC 的距离是( ) A ,45; B ,43; C ,25; D ,23。 15,已知m ,n 是两条直线,α,β是两个平面,下列命题正确的是( ) ①若m 垂直于α内的无数条直线,则m ⊥α;②若m 垂直于梯形的两腰,则m 垂直于梯形所 在的平面;③若n ∥α,m ?α,则n ∥m ;④若α∥β,m ?α,n ⊥β,则n ⊥m 。 A ,①②③; B ,②③④; C ,②④; D ,①③。 16,有一棱长为1的立方体,按任意方向正投影,其投影最大面积为( )

高一数学立体几何练习题及部分答案大全

立 体几何试题 一.选择题(每题4分,共40分) 1.已知AB 0300300150空间,下列命题正确的个数为( ) (1)有两组对边相等的四边形是平行四边形,(2)四边相等的四边形是菱形 (3)平行于同一条直线的两条直线平行 ;(4)有两边及其夹角对应相等的两个三角形全等 A 1 B 2 C 3 D 4 3.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系是( ) A 平行 B 相交 C 在平面内 D 平行或在平面内 4.已知直线m αα过平面α外一点,作与α平行的平面,则这样的平面可作( ) A 1个 或2个 B 0个或1个 C 1个 D 0个 6.如图,如果MC ⊥菱形ABCD 所在平面,那么MA 与BD 的位置关系是( ) A 平行 B 垂直相交 C 异面 D 相交但不垂直 7.经过平面α外一点和平面α内一点与平面α垂直的平面有( ) A 0个 B 1个 C 无数个 D 1个或无数个 8.下列条件中,能判断两个平面平行的是( ) A 一个平面内的一条直线平行于另一个平面; B 一个平面内的两条直线平行于另一个平面 C 一个平面内有无数条直线平行于另一个平面 D 一个平面内任何一条直线都平行于另一个平面 9.对于直线m ,n 和平面,αβ,使αβ⊥成立的一个条件是( ) A //,,m n n m βα⊥? B //,,m n n m βα⊥⊥ C ,,m n m n αβα⊥=?I D ,//,//m n m n αβ⊥ 10 .已知四棱锥,则中,直角三角形最多可以有( ) A 1个 B 2个 C 3个 D 4个 二.填空题(每题4分,共16分) 11.已知?ABC 的两边AC,BC 分别交平面α于点M,N ,设直线AB 与平面α交于点O ,则点O 与直线MN 的位置关系为_________ 12.过直线外一点与该直线平行的平面有___________个,过平面外一点与该平面平行的直线有 _____________条 13.一块西瓜切3刀最多能切_________块

高中数学平面解析几何的知识点梳理

平面解析几何 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针 方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率:αtan ),(211 212=≠--=k x x x x y y k .(111(,)P x y 、222(,)P x y ). 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:1 21121x x x x y y y y --=-- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式:1=+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式:B C x B A y -- =,即,直线的斜率:B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. 3.直线在坐标轴上的截矩可正,可负,也可为0. (1)直线在两坐标轴上的截距相等....?直线的斜率为1-或直线过原点. (2)直线两截距互为相反数.......?直线的斜率为1或直线过原点. (3)直线两截距绝对值相等.......?直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+ ① 212121,//b b k k l l ≠=?; ② 12121l l k k ⊥?=-. (2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有 ① 1221122121//C A C A B A B A l l ≠=?且.② 0212121=+?⊥B B A A l l . 5.平面两点距离公式: (111(,)P x y 、222(,)P x y ),22122121)()(y y x x P P -+-=.x 轴上两点间距离:A B x x AB -=. 线段21P P 的中点是),(00y x M ,则??? ????+=+=2221 0210y y y x x x .

高中数学必修2立体几何专题线面角典型例题求法总结

线面角的求法 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。(2)SC 与平面ABC 所成的角。 B M H S C A 解:(1) ∵SC ⊥SB,SC ⊥SA, 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 A 1 C 1 D 1 H 4 C B 1 23 B A D 解:设点 B 到AB 1C 1D 的距离为h ,∵V B ﹣AB 1C 1 =V A ﹣BB 1C 1 ∴1/3 S △AB 1C 1 ·h= 1/3 S △BB 1C 1 ·AB,易得h=12/5 ,

高中数学必修二立体几何入门试题精选

高中数学必修二立体几何入门试题精选 内容:空间几何体与异面直线 时间:90分钟 分值:100分 一、选择题(本大题共8小题,每小题5分,共40分?在每小题给出的四个选项中,只 有一项是符合题目要求的) 1. 下列说法不正确的是 ( ) A. 圆柱的侧面展开图是一个矩形 B. 圆锥过轴的截面是一个等腰三角形 C. 平行于圆台底面的平面截圆台截面是圆面 D .直角三角形绕它的一边旋转一周形成的曲面围成的几何体是圆锥 2. 下列四个几何体中,每个几何体的三视图 有且仅有两个视图相同的是( ) 3. 如右图,一个空间几何体的主视图和左视图都是边长为 1的正三角形,俯视图是一个圆,那么几何体的侧面积为 ( B. ①正方体 A .①② B .①③ C .①④ D .②④ C. _2 D. 4 A i B i C i D i 中,既与 AB 共面也与CC i 共面的棱的条数为( 4.平面六面体ABCD

5. 一个几何体的三视图如右图所示,其中正视图中厶 ABC 是 边长为2的正三角形,俯视图为正六边形,那么该几何体的 9. 在平面上,若两个正三角形的边长的比为 1 : 2,则它们的面积比为 1 : 4,类似地,在空 间内,若两个正四面体的棱长的比为 1 : 2,则它们的体积比为 _」 10. 过圆锥高的三等分点作平行于底面的截面, 它们把圆锥侧面分成的三部分的面积之比为 11.直三棱柱ABC A1B 1C 1的各顶点都在同一球面上, 若AB AC AAA 2 , BAC 120,则此球的表面积等于 _______________________ 侧视图的面积为( )? A. 12 B . 2 3 C . 3 2 D . 6 6 ?—个骰子由1~6六个数字组成 ,请你根据图中三种状态所显 示的数字,推出 “? ”处的数字是( : ) A. 6 B 3 C 1 D 7. 如右图所示的直观 图, 其平面图形的面积为( ) 3”2 A. 3 B . 2 C . 6 D . . 3 2 则该几何体的表面积为() ?(不考虑接触 点) A. 6+ .3 B. 18+ .3 4 C. 32 D. 18+ 2.3 亠「3 丿 、填空题(本大题共5小题,每小题 4分,满分20分?把答案填在题中横线上 正迄要 8.如右图为一个几何体的三视图,尺寸如图所示, 俯视 侧视

高三数学《平面解析几何》

高三数学《平面解析几何》 单元练习七 (考试时间120分 分值160分) 一、填空题(本大题共14小题,每小题5分,共70分.请把正确答案填在题中横线上) 1.抛物线y 2=ax (a ≠0)的焦点到其准线的距离是______. 2.过点A (4,a )与B (5,b )的直线与直线y =x +m 平行,则AB =________. 3.已知双曲线x 24-y 2 12=1的离心率为e ,抛物线x =2py 2的焦点为(e,0),则 p 的值为________. 4.若直线ax +2by -2=0(a >0,b >0)始终平分圆x 2+y 2-4x -2y -8=0的周长,则1a +2 b 的最小值为______. 5.若双曲线x 2a 2-y 2 =1的一个焦点为(2,0),则它的离心率为________. 6.已知曲线上的每一点到点A (0,2)的距离减去它到x 轴的距离的差都是2,则曲线的方程为________. 7.(2010·淮安质检)抛物线y =-4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是________. 8.已知点A 、B 是双曲线 x 2- y 2 2 =1上的两点,O 为坐OA 标原点,且满足OA · OB =0,则点O 到直线AB 的距离等于________.

9.(2009·全国Ⅱ改编)双曲线x 26-y 2 3=1的渐近线与圆(x -3)2+y 2=r 2(r >0) 相切,则r =________. 10.(2009·四川高考改编)已知双曲线x 22-y 2 b 2=1(b >0)的左、右焦点分别为 F 1、F 2,其一条渐近线方程为y =x ,点P (3,y 0)在该双曲线上,则12PF PF ?=________. 11.(2009·天津高考改编)设抛物线y 2=2x 的焦点为F ,过点M (3,0)的直线与抛物线相交于A 、B 两点,与抛物线的准线相交于点C ,BF =2,则△BCF 与△ACF 的面积之比S △BCF S △ACF =________. 12.(2010·南京模拟)已知点(x 0,y 0)在直线ax +by =0(a ,b 为常数)上,则 (x 0-a )2+(y 0-b )2的最小值为________. 13.直线l 的方程为y =x +3,在l 上任取一点P ,若过点P 且以双曲线12x 2 -4y 2 =3的焦点为椭圆的焦点作椭圆,那么具有最短长轴的椭圆方程为 ___________________________________________________________. 14.过抛物线y 2=2px (p >0)的焦点F 的直线l 与抛物线在第一象限的交点为A ,与抛物线准线的交点为B ,点A 在抛物线准线上的射影为C ,若 AF FB =,,AF FB BA BC =?=48,则抛物线的方程为______________.

高中数学立体几何大题练习题答案

立体几何大题专练 1、如图,已知PA⊥矩形ABCD 所在平面,M、N 分别为AB、PC 的中点; (1)求证:MN// 平面PAD (2)若∠ PDA=45 °,求证:MN ⊥平面PCD 2(本小题满分12 分) 如图,在三棱锥P ABC中,E,F 分别为AC,BC 的中点. 1)求证:EF // 平面PAB ; 2)若平面PAC 平面ABC,且PA PC ,求 证:平面PEF 平面PBC . ABC 90 , A P C F B

(1)证明:连结EF , Q E、F 分别为AC 、BC的中点, EF // AB. ???????? 2 分又EF 平面PAB ,AB 平面PAB ,EF∥平面PAB. ????????5 分 (2)Q PA PC,E为AC的中点, PE AC ???????? 6 分 又Q 平面PAC 平面ABC PE 面ABC ????????8 分 PE BC ????????9 分 又因为F 为BC 的中点, EF // AB Q ABC 900, BC EF ????????10 分 Q EF I PE E BC 面PEF ????????11 分 又Q BC 面PBC 面PBC 面PEF ????????12 分 3. 如图,在直三棱柱ABC—A1B1C1中,AC=BC,点D是AB的中点。 1)求证:BC1// 平面CA1D; 2)求证:平面CA1D⊥平面AA1B1B。 4.已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F 分 别是AB、PC的中点. (1) 求证:EF∥平面PAD; (2) 求证:EF⊥ CD; (3) 若∠ PDA=45°,求EF与平面ABCD 所成的角的大小.

高中平面解析几何知识点总结

高中平面解析几何知识点总结 一.直线部分 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率: αtan ),(21121 2=≠--= k x x x x y y k .两点坐标为111(,)P x y 、222(,)P x y . 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:121121x x x x y y y y --= -- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式:1 =+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式: B C x B A y - - =,即,直线的斜率: B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直 线一般不重合.

高中数学立体几何知识点及练习题

点、直线、平面之间的关系 ㈠平面的基本性质 公理一:如果一条直线上有两点在一个平面内,那么直线在平面内。 公理二:不共线的三点确定一个平面。 推论一:直线与直线外一点确定一个平面。 推论二:两条相交直线确定一个平面。 推论三:两条平行直线确定一个平面。 公理三:如果两个平面有一个公共点,那么它们还有公共点,这些公共点的集合是一条直线(两个平面的交线)。 ㈡空间图形的位置关系 1 直线与直线的位置关系(相交、平行、异面) 1.1 平行线的传递公理:平行于同一直线的两条直线相互平行。 即:a∥b,b∥c a∥c 1.2 异面直线 定义:不在任何一个平面内的两条直线称为异面直线。 1.3 异面直线所成的角 ⑴异面直线成角的范围:(0°,90°]. ⑵作异面直线成角的方法:平移法。 注意:找异面直线所成角时,经常把一条异面直线平移到另一条异面直线的特殊点(如中点、端点等),形成异面直线所成的角。 2 直线与平面的位置关系(直线在平面内、相交、平行) 3 平面与平面的位置关系(平行、斜交、垂直) ㈢平行关系(包括线面平行和面面平行) 1 线面平行 1.1 线面平行的定义:平面外的直线与平面无公共点,则称为直线和平面平行。 1.2 判定定理: 1.3 性质定理:

2 线面角: 2.1 直线与平面所成的角(简称线面角):若直线与平面斜 交,则平面的斜线与该斜线在平面内射影的夹角θ。 2.2 线面角的范围:θ∈[0°,90°] 3 面面平行 3.1 面面平行的定义:空间两个平面没有公共点,则称为两平面平行。 3.2 面面平行的判定定理: ⑴ 判定定理1:如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面相互平行。 即: 推论:一个平面内的两条相交直线分别平行于另一个 平面的两条线段,那么这两个平面平行。即: ⑵ 判定定理2:垂直于同一条直线的两平面互相平 行。即: 3.3 面面平行的性质定理 ⑴ (面面平行 线面平行) ⑵ ⑶ 夹在两个平行平面间的平行线段相等。 ㈣ 垂直关系(包括线面垂直和面面垂直) 1 线面垂直 1.1 线面垂直的定义:若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面。 1.2 线面垂直的判定定理: 图2-3 线面角 图2-5 判定1推论 图2-6 判定2

全国高中数学联赛平面几何题

全国高中数学联赛平面几何题 1.(2000) 如图,在锐角三角形ABC 的BC 边上有两点E 、F ,满足∠BAE =∠CAF ,作FM ⊥AB ,FN ⊥AC (M 、N 是垂足),延长AE 交三角形ABC 的外接圆于D .证明:四边形AMDN 与三角形ABC 的面积相等. 2. (2001) 如图,△ABC 中,O 为外心,三条高AD 、BE 、CF 交于点H ,直线ED 和AB 交于点M ,FD 和AC 交于点N . 求证:(1) OB ⊥DF ,OC ⊥DE ; (2) OH ⊥MN . 3.(2002) 4.(2003) 过圆外一点P 作圆的两条切线和一条割线,切点为A ,B 所作割线交圆于C ,D 两点,C 在P ,D 之间,在弦CD 上取一点Q ,使∠DAQ =∠PBC .求证:∠DBQ =∠PAC . A B C D E F M N

5.(2004)在锐角三角形ABC 中,AB 上的高CE 与AC 上的高BD 相交于点H ,以DE 为直径的圆分别交AB 、AC 于F 、G 两点,FG 与AH 相交于点K 。已知BC=25,BD=20,BE=7,求AK 的长。 6.(2005) 7.(2006)以B 0和B 1为焦点的椭圆与△AB 0B 1的边AB i 交于点 C i (i =0,1). 在AB 0的延长线上任取点P 0,以B 0为圆心,B 0P 0 为半径作圆弧P 0Q 0⌒ 交C 1B 0的延长线于Q 0;以C 1为圆心,C 1Q 0 为半径作圆弧Q 0P 1⌒ 交B 1A 的延长线于点P 1;以B 1为圆心,B 1P 1 为半径作圆弧P 1Q 1⌒ 交B 1C 0的延长线于Q 1;以C 0为圆心,C 0Q 1 为半径作圆弧Q 1P 0'⌒ ,交AB 0的延长线于P 0'. 试证: ⑴ 点P 0'与点P 0重合,且圆弧P 0Q 0⌒与P 0Q 1⌒ 相切于点P 0; ⑵ 四点P 0,Q 0,Q 1,P 1共圆. P B 1 B 0 C 1P 1 P 0 Q 1Q 0 A C 0

高二数学立体几何试题及答案(完整资料).doc

【最新整理,下载后即可编辑】 【模拟试题】 一. 选择题(每小题5分,共60分) 1. 给出四个命题: ①各侧面都是正方形的棱柱一定是正棱柱; ②各对角面是全等矩形的平行六面体一定是长方体; ③有两个侧面垂直于底面的棱柱一定是直棱柱; ④长方体一定是正四棱柱。 其中正确命题的个数是() A. 0 B. 1 C. 2 D. 3 2. 下列四个命题: ①各侧面是全等的等腰三角形的四棱锥是正四棱锥; ②底面是正多边形的棱锥是正棱锥; ③棱锥的所有面可能都是直角三角形; ④四棱锥中侧面最多有四个直角三角形。 正确的命题有________个 A. 1 B. 2 C. 3 D. 4 3. 长方体的一个顶点处的三条棱长之比为1:2:3,它的表面积为88,则它的对角线长为() A. 12 B. 24 C. 214 D. 414 4. 湖面上漂着一个球,湖结冰后将球取出,冰面上留下一个面直径为24cm,深为8cm的空穴,则该球的半径是() A. 8cm B. 12cm C. 13cm D. 82cm 5. 一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积为侧面积的比是() A. 12 2 +π π B. 14 4 +π π C. 12 +π π D. 14 2 +π π 6. 已知直线l m ⊥? 平面,直线平面 αβ,有下面四个命题: ①αβ//?⊥l m;②αβ⊥?l m //;③l m //?⊥ αβ;④l m⊥?αβ//。 其中正确的两个命题是() A. ①② B. ③④ C. ②④ D. ①③

7. 若干毫升水倒入底面半径为2cm 的圆柱形器皿中,量得水面的高度为6cm ,若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是( ) A. 63cm B. 6cm C. 2182 D. 3123 8. 设正方体的全面积为242cm ,一个球内切于该正方体,那么这个球的体积是( ) A. 63πcm B. 32 3 3 πcm C. 8 3 3 πcm D. 4 3 3 πcm 9. 对于直线m 、n 和平面αβ、能得出αβ⊥的一个条件是( ) A. m n m n ⊥,,////αβ B. m n m n ⊥=?,,αβα C. m n n m //,,⊥?βα D. m n m n //,,⊥⊥αβ 10. 如果直线l 、m 与平面αβγ、、满足: l l m m =?⊥βγααγ ,,,//,那么必有( ) A. αγ⊥⊥和l m B. αγβ////,和m C. m l m //β,且⊥ D. αγαβ⊥⊥且 11. 已知正方体的八个顶点中,有四个点恰好为正四面体的顶点,则该正四面体的体积与正方体的体积之比为( ) A. 13: B. 12: C. 2:3 D. 1:3 12. 向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系的图象如图所示,那么水瓶的形状是( ) 二. 填空题(每小题4分,共16分) 13. 正方体的全面积是a 2,它的顶点都在球面上,这个球的表面积是__________。 14. 正四棱台的斜高与上、下底面边长之比为5:2:8,体积为143cm ,则棱台的高为____________。 15. 正三棱柱的底面边长为a ,过它的一条侧棱上相距为b 的

高中数学立体几何习题

1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若 BD=AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。 A E D 1 C B 1 D A A H G F E D C B A E D B C

4、已知ABC ?中90ACB ∠=o ,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 6、正方体''''ABCD A B C D -中, 求证:(1)''AC B D DB ⊥平面; (2)''BD ACB ⊥平面. S D C B A D 1 O D B A C 1 B 1 A 1 C

N M P C B A 7、正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD . 8、四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且2 2 EF AC = , 90BDC ∠=o ,求证:BD ⊥平面ACD 9、如图P 是ABC ?所在平面外一点,,PA PB CB =⊥平面PAB ,M 是PC 的中点,N 是AB 上的点, 3AN NB = (1)求证:MN AB ⊥; (2)当90APB ∠=o ,24AB BC ==时,求MN 的长。 A A B 1 C 1 C D G E F

高三数学 平面解析几何

平面解析几何(附高考预测) 一、本章知识结构: 二、重点知识回顾 1.直线 (1).直线的倾斜角和斜率 直线的的斜率为k ,倾斜角为α,它们的关系为:k =tan α; 若A(x 1,y 1),B(x 2,y 2),则1 212x x y y K AB --= 。 (2) .直线的方程

a.点斜式:)(11x x k y y -=-; b.斜截式:b kx y +=; c.两点式:121121x x x x y y y y --=--; d.截距式:1=+b y a x ; e.一般式:0=++C By Ax ,其中A 、B 不同时为0. (3).两直线的位置关系 两条直线1l ,2l 有三种位置关系:平行(没有公共点);相交(有 且只有一个公共点);重合(有无数个公共点).在这三种位置关系中,我们重点研究平行与相交。 若直线1l 、2l 的斜率分别为1k 、2k ,则 1l ∥2l ?1k =2k ,1l ⊥2l ?1k ·2k =-1。 (4)点、直线之间的距离 点A (x 0,y 0)到直线0=++C By Ax 的距离为:d= 2200||B A C By Ax +++。 两点之间的距离:|AB|=212212)()y y x x -+-( 2. 圆 (1)圆方程的三种形式 标准式:222)()(r b y a x =-+-,其中点(a ,b )为圆心,r>0,r 为半径,圆的标准方程中有三个待定系数,使用该方程的最大优点是可以方便地看出圆的圆心坐标与半径的大小. 一般式:022=++++F Ey Dx y x ,其中?? ? ??--22E D ,为圆心F E D 42 122-+为半径,,圆的一般方程中也有三个待定系数,即D 、E 、F .若已知条件中没有直接给出圆心的坐标(如题目为:已知一 个圆经过三个点,求圆的方程),则往往使用圆的一般方程求圆方程. 参数式:以原点为圆心、 r 为半径的圆的参数方程是???==θθsin ,cos r y r x (其中θ为参数).

高一数学立体几何解答题汇总

如图,直三棱柱111ABC A B C -中,112 A C B C A A ==, D 是棱1A A 的中点,1D C BD ⊥。 (Ⅰ)证明:1D C BC ⊥ (Ⅱ)证明:A C ⊥BC. 12全国文19)如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=1 2AA 1, D 是棱AA 1的中点 (I)证明:平面BDC 1⊥平面BDC (Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比。 A 1 B 1 C B A D C 1 A 1

如图1,在R t ABC △中,90C ∠=?,3B C =,6A C =.D , E 分别是A C ,AB 上的点,且D E BC ∥,2DE =,将A D E △沿D E 折起到1A DE △的位置,使1A C CD ⊥,如图2. (1)求证:1A C ⊥平面B C D E ; 12北京文 如图1,在R t A B C ?中,0=90C ∠,D,E 分别为AC ,AB 的中点,点F 为线段CD 上的一点,将AD E ?沿DE 折起到1A D E ?的位置,使1A F C D ⊥,如图2. (Ⅰ)求证:DE ∥平面1A C B (Ⅱ)求证:1A F BE ⊥ A C D E A 1 M C B E D 图1 图2

上海理19.(6+6=12分)如图,在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 底面 ABCD ,E 是PC 的中点,已知2=AB ,22=AD ,2=PA ,求: (1)三角形PCD 的面积; (2)异面直线BC 与AE 所成的角的大小。 天津理(17)(本小题满分13分) 如图,在四棱锥P-ABCD 中,PA ⊥平面ABCD ,AC ⊥AD , AB ⊥BC ,∠BAC=45°,PA=AD=2,AC=1. (Ⅰ)证明PC ⊥AD ; (Ⅱ)求二面角A-PC-D 的正弦值;

高中数学必修2立体几何专题二面角典型例题解法总结

二面角的求法 一、 定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。 本定义为解题提供了添辅助线的一种规律。如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。 例1 如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD = 2DC SD ==,点M 在侧棱SC 上,ABM ∠=60° (I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。 ? 证(I )略 解(II ):利用二面角的定义。在等边三角形ABM 中过点B 作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G , 连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, · ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点, ∴GF 是△AMS 的中位线,点G 是AS 的中点。 则GFB ∠即为所求二面角. ∵2= SM ,则2 2 = GF , 又∵6= =AC SA ,∴2=AM ,∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴ 3=BF 。在△GAB 中,26= AG ,2=AB ,0 90=∠GAB ,∴2 11423=+=BG 366 23 2 22211 32 12cos 2 2 2 -=-=??- +=?-+=∠FB GF BG FB GF BFG F G F G

相关主题