搜档网
当前位置:搜档网 › 细菌耐药的生化机理研究进展

细菌耐药的生化机理研究进展

细菌耐药的生化机理研究进展
细菌耐药的生化机理研究进展

?综述?

细菌耐药的生化机理研究进展

谭文彬3

(济宁医学院人体寄生虫学教研室,山东日照276826)

【摘要】 抗生素的广泛、不规范使用使得细菌耐药问题日趋严重,在对细菌抗生素耐药机制的研究中,了解其生化机理尤为重要。本文对耐药菌灭活酶,靶位结构的改变、主动外排、摄取减少,形成生物被膜,建立新代谢途径等作一综述。【关键词】 抗生素;细菌耐药;生化机理;综述

【中图分类号】 R37 【文献标识码】 A 【文章编号】 167325234(2009)0920698202

[J ournal of Pathogen B iology .2009Sep ;4(9):698-699,702.]

Progress of research on biochemical mechanisms of bacterial antibiotic resistance

TAN Wen 2bin (H uman Parasitolog y I nstitute ,J ining Medical College ,Riz hao 276826,S handong ,China )

【Abstract 】 The widespread and non 2standard use of antibiotics has resulted in the increasingly serious problem of bacte 2

rial resistance.Reseach on biochemical mechanisms is a crucial part of the study of the mechanisms of antibiotic resistance of bacteria.This paper has reviewed inactivated enzymes ,changes in the target structure ,active efflux ,reduced uptake ,formation of biofilms ,and the establishment of new metabolic pathways in research on the biochemical mechanisms of an 2tibiotic resistance in bacteria.

【K ey w ords 】 Antibiotics ;bacterial antibiotic resistance ;biochemical mechanism ;review

 20世纪40年代,人类发现第一种抗生素青霉素,大大地提高了细菌感染者的生存率。然而随着抗菌药物的不断发展与应用,病原菌对常用抗菌药物的耐药性也不断增加[1],严重威胁着人类健康,因此成为全球关注的热点[2]。本文对细菌耐药生化机理作一综述,以期为进一步研究和控制细菌耐药性提供依据。

1 灭活酶或钝化酶对抗生素结构的修饰和破坏

产生灭活酶是引起细菌耐药性的最重要机制,产酶菌往往表现明显的耐药性。细菌产生的灭活酶有多种,主要有β2内酰胺酶、氨基糖甙灭活酶、乙酰转移酶CA T 、核苷酸转移酶、酯酶等[3]。

细菌通过β2内酰胺酶水解破坏抗生素的β2内酰胺环从而使其失活,这是大多数致病菌对β2内酰胺类抗生素产生耐药性的主要机理。该类酶可以为染色体介导,也可为质粒介导。根据底物及酶抑制剂的作用类型将β2内酰胺酶分为4组[4]:A 组:β2内酰胺酶(主要水解青霉素类,包括BC6和$DE );B 组:金属酶(其活性部分是结合锌离子的硫醇);C 组:β2内酰胺酶

(主要水解头孢菌素类);D 组:β2内酰胺酶(苯唑西林水解酶,包

括OX 和PSE2)。

Bush 等[5]1995年进一步完善了分类。现已发现的β2内酰

胺酶有200种以上,所有的β2内酰胺酶都可打开常见的青霉素类、头孢菌素类、碳青霉素类(亚胺培南和美罗培南)和单环类

(氨曲南)中的β2内酰胺的四元环

[6]

。由革兰阳性菌产生的β2

内酰胺酶以金黄色葡萄球菌属产生的青霉素酶最重要,而在革兰阴性菌中,β2内酰胺酶按产生部位可分为染色体介导和质粒介导的β2内酰胺酶两类。前者为AmpC 2β2内酰胺酶,属Bush 2J 2

M1群,该酶虽然可水解青霉素类和头孢菌素类抗生素,但并非

所有菌种均可产生,并且浓度较低。只有在某些诱导剂的作用下,其产量才能显著增高,因而对氨基青霉素类和第一代头孢菌素产生耐药。后者以TEM 21、TEM 22、SHV 21最为常见,属

Bush 2J 2M2群,其特点为可水解青霉素类和头孢菌素类抗生素,

许多菌种可产生且浓度很高[7]。超广谱β2内酰胺酶(extended 2spectrum 2β2lactamase ,ESBL )是指由质粒介导的能赋予细菌对多类β2内酰胺类抗生素耐药的一类酶,发现于TEM 21、TEM 22和SHV 21的突变株,现已达50种以上[8]。细菌对其他抗生素如氨基糖苷类、喹诺酮类耐药也与ESBL 有关,现在在临床上愈来愈受到重视。

对氨基糖苷类抗生素发生耐药的主要机理是酶的修饰钝化作用。氨基糖苷类药物修饰酶主要有氨基苷类钝化酶,如乙酰化酶(AAC )、磷酸化酶、腺苷化酶(AAD )等,通常由质粒和染色体所编码,同时也与可动遗传因子(整合子、转座子)有关,能将氨基糖苷类抗生素的游离氨基乙酰化、游离羟基磷酸化或核苷化,使药物不易进入细菌体内,也不易与细菌内靶位(核糖体

30S 亚基)结合,从而失去抑制蛋白质合成的能力。2 细菌体内靶位结构的改变

细菌体内靶位结构的改变是指由于抗生素作用的靶位(如核糖体和核蛋白)发生突变[9]或被细菌产生的某种酶修饰而使抗菌药物失去作用,以及抗生素的作用靶位(如青霉素结合蛋白和DNA 回旋酶)结构发生改变而使之与抗生素的亲和力下降,这种耐药机理在细菌耐药中普遍存在。β2内酰胺类抗菌药物的作用靶位为青霉素结合蛋白(PBP )[10],氨基糖苷类和四环素抗菌药物的作用靶位为50S 核糖体,大环内酯类和氯霉素以及克林霉素的作用靶位为30S 核糖体,利福霉素类的作用靶位为依赖于DNA 的RNA 聚合酶,喹诺酮类的作用靶位为DNA 促旋酶,磺胺类作用靶位为二氢碟酸合成酶和二氢叶酸还原酶,万古霉素的作用靶位为细胞壁五肽末端的D 2丙氨酰2D 2丙

?

896?中国病原生物学杂志

J ournal of Pathogen B iolog y

 2009年9月 第4卷第9期

September 2009, Vol.4,No.9

3 【通讯作者(简介)】 谭文彬(1975-),男(汉族),2007年毕业于

南京医科大学,博士,讲师。主要从事病原生物学防治机理的研究。

E 2mail :1392144@https://www.sodocs.net/doc/d616637746.html,

氨酸末端的游离羧基[11]。

在细菌体内靶位结构的改变中,PBP的改变最为重要。肺炎链球菌对青霉素与其他β2内酰胺类抗生素的耐药机理主要是PBP的改变。PBP是一组位于细胞内膜具有催化作用的酶(转肽酶、羧肽酶和内肽酶),参与细菌细胞壁的合成、形态维持和糖肽结构调整等功能,是细菌细胞壁合成过程中维持其生理功能不可缺少的酶蛋白系。一种细菌通常含有4~8种PBP,分子质量单位为35~129ku[12]。β2内酰胺类抗生素通过与细菌主要PBP结合,使细菌胞壁合成过程中的交叉连接不能形成,由此影响粘肽的合成,致使细菌不能合成细胞壁而发生溶解死亡。反之,则成为耐药菌。

PBP基因的变异,使β2内酰胺类抗生素无法与之结合或结合能力降低,是形成耐药的根本原因。PBP的改变包括:1)数量改变或缺失;2)与药物的亲和力降低;3)细菌产生缓慢结合的PBP;4)诱导性PBP的出现。这种不依赖β2内酰胺酶而存在的对β2内酰胺类抗生素的耐药性称为内在或固有耐药性,广泛存在于人类病原菌中,而且大多数病原菌是从经过β2内酰胺类抗生素治疗过的病人中分离出来的。链霉素耐药株的细菌核蛋白体30S亚基上链霉素作用靶位P10蛋白质发生了改变[13];利福平的耐药性是由于细菌RNA多聚酶的β亚基发生改变,使其与药物的结合力降低而耐药[14]。由质粒介导的对林可霉素和红霉素的耐药性系细菌核蛋白体23S亚基的腺嘌呤甲基化,使药物不能与细菌结合所致。

由于革兰阴性菌的产酶机理和通透性等因素作用明显, PBP在耐药机理中的作用并不十分显著。而革兰阳性菌没有细胞外膜,β2内酰胺酶和通透性屏障等在其耐药机理中发挥的作用有限,因而与PBP相关的耐药问题在本类细菌中显得尤为重要。耐药性一旦出现,同源的PBP染色体基因可部分转移到相关的菌株,在细菌中快速扩散(克隆扩散)而造成严重威胁。3 主动外排

近年来研究表明,在一些细菌中存在主动外排系统[15],是细菌菌细胞膜上的一类蛋白质在能量支持下,将药物选择性或非选择性地排除细胞,使抗生素在细菌体内的积累减少,从而获得耐药性。在多种细菌中,已发现各种各样的主动外排系统,其中对革兰阴性菌研究的最为详尽。细菌的主动外排系统主要分为4大类:1)主要易化超家族(major facilitator super2 family,MFS),与哺乳动物的葡萄糖易化转运器具有同源性;2)耐药结节分化家族(resistance2nodulation division family, RND),包括能够泵出镉、钴和镍离子的转运蛋白;3)葡萄球菌多重耐药家族(staphylococal multi drugresistance family, SMR),由较小的含有4个跨膜螺旋的转运器组成;4)A TP组合盒(A TP2bindingcassette,ABC)转运器,包括2个跨膜区和2个A TP结合亚单位。已发现越来越多的主动外排系统,与细菌的外膜屏障或灭活酶或靶位改变共同发挥耐药功能。细菌对四环素类、糖肽类和喹诺酮类等抗生素耐药都存在这种机理。

4 渗透屏障

由于细菌细胞壁的障碍或细胞膜通透性的改变[16],形成一道有效屏障,抗生素无法进入细胞内达到作用靶位而发挥抗菌效能,这也是细菌在进化与繁殖过程中形成的一种防卫机理。这类耐药机理是非特异性的,主要见于革兰阴性菌。因为革兰阴性菌细胞壁粘肽层外面存在着类脂双层组成的外膜,外层为脂多糖,由紧密排列的碳氮分子组成,阻碍了疏水性抗菌药进入菌体内。外膜上存在着多种孔蛋白,分子较大者为OpmF,分子较小者为OpmC,它们可形成特异性通道(OprD)和非特异性的通道(Opr F),作为营养物质和亲水性抗菌药物的通道。抗菌药物分子越大,所带负电荷越多,疏水性越强,不易通过细菌外膜。细菌发生突变失去某种特异孔蛋白后即可导致细菌耐药性,例如结核杆菌蛋白酶体的突变会影响它的耐药性。另外由于外膜蛋白Opr F的缺失,使药物不易通过而产生耐药性,如绿脓杆菌对多种抗生素的耐药性。革兰阳性菌的细胞膜被一层厚厚的具有一定机械温度的肽聚糖细胞壁所包裹,但由于其结构比较粗糙,几乎不影响诸如抗菌药物这样的小分子物质扩散至细胞内。

5 药物摄取减少

细菌对药物摄取减少主要是由于膜的通透性降低所引起,而基因突变可导致膜的通透性降低,可使能量代谢如电子转运受到影响而减少氨基糖苷类药物的吸收;也可使药物的转运系统缺损而减少药物的摄取量;细菌对四环素耐药主要由于所带的耐药质粒可诱导产生3种新的蛋白,阻塞了细胞壁水孔,使药物无法进入。有研究表明,细菌对药物的摄取量还与药物的亲水性或疏水性有关。

6 细菌生物被膜的形成

细菌生物被膜是指细菌粘附于固体或有机腔道表面,形成微菌落,并分泌细胞外多糖蛋白复合物将细菌包裹其中而形成的膜状物,继而对抗菌药物产生耐药性[17]。其机理是:1)细菌生物被膜可减少抗菌药物渗透;2)吸附抗菌药物钝化酶,促进抗菌药物水解;3)生物被膜使细菌代谢低下,对抗菌药物不敏感;4)生物被膜的存在阻止了机体对细菌的免疫力,产生免疫逃逸现象,减弱机体免疫与抗菌药物的协同杀菌作用。

7 胞膜主动转运减少,建立新代谢途径,增加拮抗药物等细菌对磺胺药物的耐药是由于PABA产生增多[18](对药物有拮抗作用),如金黄色葡萄球菌对磺胺药耐药菌株的PA2 BA产量可为敏感菌的20倍。葡萄球菌、革兰阴性杆菌通过合成新的二氢叶酸还原酶从而对甲氧苄啶产生耐药。

综上所述,目前细菌耐药状况已经非常严重,耐药菌株及耐药种类日益增多,耐药率明显升高,正确、合理地使用抗菌药物,防止和减少细菌耐药性的发生及变异,加强细菌耐药性的监测工作,能够延缓细菌耐药性的发展,增加抗菌治疗的成功率。

【参考文献】

[1] Y oneyama H,Kat sumata R.Antibiotic resistance in bacteria and

it s future for novel antibiotic development[J].Biosci Biotechnol Biochem,2006,70(5):1060-1075.

[2] Wright GD.The antibiotic resistome:t he nexus of chemical and

genetic diversity[J].Nat Rev Microbiol,2007,5(3):175-186.

[3] Zorov SD,Iuzenkov Iu V,Severinov KV.Low2molecular weight

inhibitors of bacterial DNA2dependent RNA polymerase[J].Mol Biol(Mosk),2006,40(6):971-981.

[4] Woods CR.Antimicrobial resistance:mechanisms and strategies

[J].Paediatr Respir Rev,2006,7Suppl1:128-129.

(下转702页)

?

9

9

6

?

中国病原生物学杂志J ournal of Pathogen B iolog y 2009

年9月 第4卷第9期September2009, Vol.4,No.9

[5] 冯兴军,王建华,单安山.抗菌肽基因工程研究及表达策略[J ].中

国生物工程杂志,2006,26(3):63-67.

[6] Yedery RD ,Reddy KV.Antimicrobial peptides as microbicidal

contraceptives :prophecies for prophecies for prophylactics 2Amini review[J ].Eur J Contracept Reprod Healt h care ,2005,10(1):32-42.

[7] Lange CF ,Hancock RE ,Samuel J ,et al.I n vit ro aerosol delivery

and regional airway surface liquid concentration of a liposomal cat 2ionic peptide [J ].J Pham Sci ,2001,90(10):1647-1657.[8] Valore EV ,Park CH ,Quayle AJ ,et al.Human β2Defensin 21:an

antimicrobial peptide of urogenital tissues [J ].J Clin Invest ,1998,101:1163-1642.

[9] Wegner GH.Emerging applications of t he met hylotrophic yeast s

[J ].FEMS Microbiol Rev ,1990,87:279-284.

[10] Macauley 2Patrick S ,Fazenda ML ,McNeil B ,et al.Heterologous

protein production using t he Pichi a pastoris expression system [J ].Yeast ,2005,22:249-270.

[11] Cereghino JL ,Cregg J M.Heterologous protein expression in t he

met hylotrophic yeast Pichia pastoris [J ].FEMS Microbiol Rev ,2000,24(1):45-66.

[12] Pang SZ ,Oberhaus SM ,Rasmussen JL ,et al.Expression of a

gene encoding a Scorpion insectotoxin peptide in yeast ,bacteria

and plant s [J ].Gene ,1992,116(2):165-172.

[13] Reichhart J M ,Petit I ,Legrain M ,et al .Expression and secretion

in yeast of active insect defesin ,an inducible antibacterial peptide from t he fleshfly Pormi a terranova [J ].Invert Peprod Dev ,1992,21:15-24.

[14] Hong IP ,Lee S J ,K im YS.Recombinant expression of human

cat helicidin (hCAP18/LL 237)in Pichia pastoris [J ].Biotechnol Lett ,2007,29(1):73-78.

[15] 尹娜,李鸿钧,彭梅,等.抗菌肽Cecropin D 在毕赤酵母中的表

达、纯化及活性鉴定[J ].中国生物制品学杂志,2008,21(3):185-189.

[16] 陆建荣,王慧民,吴萍,等.5′2非转录区序列改建提高毕赤酵母表

达抗菌肽LL 237[J ].第二军医大学学报,2007,28(12):1329-1334.

[17] 王婷婷,金小宝,朱家勇,等.顺式串联家蝇抗菌肽Attacin 基因

真核表达载体的构建[J ].中国热带医学,2006,6(3):390-391.

[18] Jin FL ,Xu XX ,Wang L X.Expression of recombinant hybrid

peptide cecropinA (128)2magainin2(1212)in Pichia pastoris [J ].Protein Expr Purif ,2006,50(2):147-156.

[19] 牛明福,李翔,曹瑞兵,等.复合抗菌肽PL 在毕赤酵母中的分泌

表达及其活性研究[J ].生物工程学报,2007,23(3):418-422.

【收稿日期】 2009203225 【修回日期】 2009206221

(上接699页)

[5] Bush K ,J acoby GA ,Medeiros AA.A functional classification

scheme for beta 2lactamases and it s correlation wit h molecular structure[J ].Antimicrob Agent s Chemot her ,1995,39(6):1211-1233.

[6] Perilli M ,Segatore B ,Tavio M ,et al.I n vit ro selection and char 2

acterization of mutant s in TEM 212producing Escherichia coli by Ceftazidime and Ceftibuten[J ].J Chemot her ,2007,19(2):123-126.

[7] Chouchani C ,Ben 2Achour N ,M ’Charek A ,et al.Cloning and se 2

quencing of t he class A beta 2lactamase gene (bla (TEM 215))loca 2ted on a chromosomal Tn801transposon[J ].Diagn Microbiol In 2fect Dis ,2007,58:459-463.

[8] Xiu WM ,Dong SL.Molecular characterization of two pheromone

binding proteins and quantitative analysis of t heir expression in t he Beet Armyworm ,Spodoptera exigua hubner [J ].J Chem Ecol ,2007,33:947-961.

[9] Buijs J ,Dofferhoff AS ,Mouton J W ,et al.Continuous adminis 2

tration of PBP 222and PBP 232specific {beta}2lactams causes higher cytokine responses in murine Pseu domonas aeru ginosa and Esche 2

richia coli sepsis[J ].J Antimicrob Chemot her ,2007,59(5):926

-933.

[10] Wirmer J ,West hof E.Molecular contact s between antibiotics

and t he 30S ribosomal particle [J ].Met hods Enzymol ,2006,415:180-202.

[11] Rand KH ,Houck HJ ,Silverman J A.Daptomycin 2reversible rif 2

ampicin resistance in vancomycin 2resistant Enterococcus f aeci um [J ].J Antimicrob Chemot her ,2007,59(5):1017-1020.[12] Poole K.Efflux pumps as antimicrobial resistance mechanisms

[J ].Ann Med ,2007,39(3):162-176.

[13] Mahamoud A ,Chevalier J ,Alibert 2Franco S ,et al.Antibiotic

efflux pumps in Gram 2negative bacteria :t he inhibitor response strategy[J ].J Antimicrob Chemot her ,2007,58:1223-1229.[14] Rogers BL.Bacterial target s to antimicrobial leads and develop 2

ment candidates[J ].Curr Opin Drug Discov Devel ,2004,7(2):211-222.

[15] Mirsaeidi MS ,Tabarsi P ,Farnia P ,et al.Trends of drug resist 2

ant M ycobacteri um t uberculosis in a tertiary tuberculosis center in Iran[J ].Saudi Med J 2007;28(4):544-550.

[16] Sunakawa K.Appropriate use of anti 2MRSA drugs [J ].Jpn J

Antibiot ,2007,60(1):1-16.

[17] Hanage WP ,Huang SS ,Lipsitch M ,et al.Diversity and antibi 2

otic resistance among nonvaccine serotypes of S t reptococcus pneu 2

moniae carriage isolates in t he post 2heptavalent conjugate vaccine

era[J ].J Infect Dis ,2007,195(3):347-352.

[18] Bedenic B ,Vranes J ,Mihaljevic L ,et al.Sensitivity and specific 2

ity of various Beta 2Lactam antibiotics and phenotypical met hods for detection of TEM ,SHV and CTX 2M extended 2spectrum beta 2lactamases[J ].J Chemot her ,2007,19(2):127-139.

【收稿日期】 2009203209 【修回日期】 2009206221

?

207?中国病原生物学杂志

J ournal of Pathogen B iolog y

 2009年9月 第4卷第9期

September 2009, Vol.4,No.9

多种细菌耐药的分析

2014年第三季度多重耐药菌监测情况分析与对策 院感科检验科药学部 2014年7-9月份共监测多重耐药感染或定植患者80例次,涉及22个科室。检出多重耐药菌96 株(含重复送检),占全院送检有临床意义的细菌总数阳性比例的16.45%,同比上升2.22个百分点;其中院内感染多重耐药菌17株,占多耐菌株的17.71%。 一、多重耐药菌分离通报 2014年7月至9月共计分离多重耐药菌71株。主要分布在ICU、泌尿外科、呼吸内科及神经外科等。 二、前五位的多重耐药菌株标本分布 表一:2014年第三季度前五位多耐菌株标本统计 细菌名称 标本名称 痰液尿液分泌物血液引流液脓液其他 金黄色葡萄球菌 3 1 15 2 1

三、多重耐药菌中发生院内感染科室分布 表二:2014年第三季度多耐院内感染菌种及感染部位科室统计 图二、2014年第二季度与第三季度常见多耐菌院内感染检出变化 四、多重耐药菌病例用药合理性情况 本季度共审核使用抗菌药物的多耐病例70份,其中用药合理病例66份,用药合理率为94.29%。病程中对多重耐药菌及抗菌药物使用情况有分析记录的病例57份,记录合格率81.43%。用药方面存在的问题有:(1)前期用药与药敏结果不一致,未做具体分析,也未更改用药,(2)将主要供全身应用的品

种(万古霉素)作局部用药。记录方面存在的问题有:未记录培养结果和用药情况、更改用药未记录分析、对多重耐药菌的性质未做具体分析(考虑为致病菌、定植菌或污染菌)。 表三:第三季度抗菌药物使用不合理原因和或记录存在问题 五、多重耐药菌患者临床科室管理存在问题: 1、第三季度多耐患者临床管理经督查仍存在许多问题,涉及科室有脑外、心胸、肝胆、骨二、泌外、肾内、东呼吸、西呼吸、东心血管、消化、内分泌、血液肿瘤、东神内、重症医学科、耳鼻喉、皮肤、微生物等18个科室。主要存在问题: (1)不能及时开立隔离医嘱;不能及时上报多耐报告卡; (2)抗菌药物使用、多耐培养结果无分析记录; (3)多重耐药患者解除隔离未进行讨论; (4)多耐患者隔离措施落实不到位(无隔离标识等); (5)MDRO定植或感染患者,转科、转院、出院时,未在转科交接单或出院小

细菌对抗生素耐药性的研究进展

细菌对抗生素耐药性的研 究进展 班级:09药剂4班 组长:11-何燕珊:分配工作、选题、摘要、关键词和整理全篇文章 找资料:09-何炳俊:细菌耐药性产生的机理 10-何根铭:耐药性产生的因素及预防措施 12-洪春庆:抗生素的抑菌机理

细菌对抗生素耐药性的研究进展 摘要:抗生素作为治疗细菌感染性疾病的主要药物,在全世界上是应用最广、发展最快、品种最多的一类药物。但随着抗生素的广泛使用,其耐药性亦不断增长,并已迅速发展至十分严重的程度。耐药性的大量出现与广泛传播会给人们的健康造成很大的危害,给临床治疗带来很大困难,甚至造成治疗失败,目前已是全球关注的公共卫生问题。本文通过对抗生素的抑菌机理、细菌的耐药机制、耐药性产生因素以及预防等方面内容作简要综述,以示预防抗生素耐药性产生的重要性。 关键词:抗生素、细菌、耐药性 抗生素是能抑制细菌生长或杀死细菌的一类化学物质,绝大多数由微生物合成,临床上对控制、预防和治疗各种感染性疾病具有重要作用。近年来,由于人类对抗生素的滥用,导致感染性细菌对抗生素不敏感,产生了耐药性,并开始对人类展开致命的反击,严重地威胁着人类的健康。中国工程院院士许文思也感叹:“可以毫不夸张的说,细菌耐药性是21世纪全球关注的热点,它对人类生命健康所构成的威胁绝不亚于艾滋病、癌症和心血管疾病。”可见,预防抗生素耐药性的产生是十分重要的。 一、抗生素的抑菌机理 依据抑菌作用方式的不同,可将抗生素分为三类:一类抗生素通过阻止糖肽交联来阻止细菌细胞壁合成,使细菌失去保护,并因渗透压或自溶酶作用最终导致死亡(如青霉素) ;第二类主要是通过与细菌细胞膜内磷脂结合(如粘菌素) ,或者合成异常蛋白质而导致病菌细胞膜透性增加(如氨基糖苷) ;第三类则是通过阻止细菌DNA (如喹诺酮类)、RNA (如利福平类)、蛋白质(如林可霉素类)的合成而抑菌或杀菌。[1]因此,根据主要作用靶位的不同,抗生素的抑菌机理可分为以下几种。 1)抑制细菌细胞壁合成,细胞壁缺损细菌在低渗条件下常因细胞吸水过多破裂而死亡,而对人和动物无毒害作用,因人和动物不具有细胞壁,如青霉素、头孢菌素、杆菌肽等。 2)破坏细胞模的通透性。主要通过下面 3 种途径:①多肽类抗生素,如多粘菌素E,能降低细菌细胞膜表面张力,因而改变了细胞膜的通透性,甚至破坏膜的结构,结果使氨基酸、单糖、核苷酸、无机盐离子等外漏,影响细胞正常代谢,致使细菌死亡。②多烯类抗生素,如制霉菌素与固醇具有亲和力,因此能与微生物的膜(含固醇物质)结合后形成膜- 多烯化合物,引起细胞膜的通透性能改变,导致胞内代谢物的泄漏。这类抗生素对真菌细胞膜起作用,而对细菌不起作用,因细菌细胞膜不含固醇类物质。③离子载体类抗生素,这类抗生素是脂溶性的,能结合并运载特定阳离子通过双脂层膜。如缬氨霉素、短杆菌肽A 等能增加线粒体膜对H+、K+或 Na+的通透性,为维持线粒体内正常的K+浓度就必须使泵入K+的速度与流出速度平衡,这样使得线粒体消耗能量用于泵入K+,而不是用来形成ATP,因此抑制了氧化磷酸化作用,从而起杀菌作用。 3)抑制蛋白质的合成。能抑制蛋白质合成的抗生素很多,其作用机理也较复杂,主要有下面 4 个方面:①抑制氨酰-tRNA 的形成。如吲哚霉素的抑菌作用是在氨基酸活化反应中和色氨酸竞争与色氨酸激活酶结合,从而抑制氨酰-tRNA的形成。②抑制蛋白质合成的起始。如链霉素、庆大霉素等能抑制 70S 合成起始复合体的形成以及引起 N-甲酰-甲硫氨酰-tRNA从70S合成起始复合体上的解离,因此阻碍蛋白质合成的起始。③抑制肽链的延长。如四环素族抗生素

细菌耐药性的产生机制

福建金谷科技专栏 由福建金谷科技开发有限公司供搞细菌耐药性的产生机制 梅景良福建农林大学动物科学学院%"$$$# 随着磺胺药和抗生素等抗菌药物在临床上的广泛应用和长期使用,细菌等病原微生物的耐药株已逐年增多,导致抗菌药物的疗效越来越差。如对青霉素的耐药菌株,开始使用时仅有+,,近年来已达--,,有的报道认为在.$,以上。因此,细菌的耐药性问题已经成为细菌性疾病化学治疗中非常严重的一个问题,对细菌耐药性产生机制的研究在临床兽医学上具有极其重要的意义。本文简要地介绍了细菌耐药性的产生机制。 大家知道,自然界中存在的致病菌种类繁多,人们所使用的抗菌药物种类也很多,即使是同一种致病菌,对不同抗菌药其产生耐药性的机制也有可能存在很大的差别,因此,细菌耐药性的产生机制级为复杂。但是,通过大量的研究结果,人们发现细菌耐药性的生成只不过是细菌在生存中发挥其对药物的适应性或细菌偶然发生遗传基因突变所产生的后果。具体地说,细菌有可能是自发的,也有可能是在外界药物等因素的作用下发生了遗传基因的改变,产生了耐药基因,然后在耐药基因的介导下,进行/0*1的转录和蛋白质及酶的转译,从而导致细菌的形态结构和生理生化机能等发生了变化,使细菌获得了耐受抗菌药的能力。由此可见,遗传基因发生改变并产生耐药基因是细菌产生耐药性的第一步骤,在耐药基因介导下转录/0*1是细菌产生耐药性的第二步骤,以/0*1为模板转译合成蛋白质或酶,并最终导致细菌的形态结构和生理生化机能发生改变是细菌产生耐药性的第三步骤。当然,这三个步骤的划分是为了阐述的方便而人为界定的,其实这三个步骤是不可分的,因为细菌耐药性的产生是一个统一而完整的过程。 2细菌遗传基因发生变化细菌的遗传物质包括3*1和0*1两种,其中3*1主要存在于染色体上,也有少量3*1存在于质粒当中。不管是染色体中的3*1,还是质粒3*1,都能单独地进行准确地复制,将其遗传信息稳定地传给下一代。但是,细菌在生长繁殖过程中,也有可能受到一些外界因素影响或自发突变,使遗传物质发生改变,并有可能出现耐药基因,导致细菌的某些性状发生了改变,使细菌产生了耐药性。 根据引起细菌3*1遗传基因发生变化的原因不同,可将之分为三种情况:!天然存在耐药基因;"突变产生耐药基因;#质粒传递产生耐药基因。 2)2天然存在耐药基因这是在细菌与任何抗菌药接触之前就已经存在于染色体3*1或质粒3*1之种的遗传基因,它是细菌的遗传特征,由细菌的遗传信息所决定,一般是不会改变的。天然耐药基因的出现和存在与外界因素的影响无关,因此,天然存在的耐药基因所介导产生的细菌耐药性我们称之为先天耐药性。如对许多抗生素具有屏障作用的细菌细胞壁,就是先天耐药性的表现形式之一。 2)#突变产生耐药基因各种理化因素,如各种超短波辐射、高温诱变效应、低浓度诱变物质及细菌自身的代谢产物,尤其是过氧化氢的长时期综合作用,都可诱发细菌发生基因突变。除此之外,突变也可为细菌3*1在没有任何人为因素干扰条件下自发变化所产生。突变以后,新形成的突变基因中就有可能出现耐药基因。有人认为,自发突变是产生突变耐药基因的主要方式。2)%质粒传递耐药基因质粒是存在于染色体外的3*1。质粒常带有多种耐药基因而成为耐药质粒,它广泛存在于革兰氏阳性和革兰氏阴性细菌中,并可通过转化、转导、接合、转座等方式将耐药基因从耐药菌转移到敏感菌体内,由此而使敏感菌产生了耐药基因。 一般来说,先天存在的耐药基因所介导产生的先天耐药性是造成抗菌药具有不同抗菌谱最主要的原因,对细菌而言也是一种最重要的耐药性。由耐药质粒传递的耐药基因介导产生的耐药性由于具有横向传播性,可在短期内造成耐药菌的大量出现,因此,这种耐药性是人们在进行临床化学治疗中最为重要的一种耐药性。由突变耐药基因介导的耐药菌的生长和细胞分裂变慢,对其它细菌包括未发生突变的细菌的竞争力也变弱,因而突变产生的耐药性仅居次要地位。 #细菌/0*1发生变化细菌3*1遗传基因因变化而产生了耐药基因后,就可以耐药基因为模板进行转录,并形成相应的/0*1,这是细菌体内原先所没有的新的/0*1。新的/0*1是细菌产生耐药性所必需的,它是连接耐药基因和最终耐药性之间的桥梁。 这里需要说明的一点是,不同的耐药基因其转录/0*1的状态是不相同。有些细菌虽然具有耐药基因,但因其尚未进入转录状态,不能合成相应的/0*1,因此,细菌就不具备抵抗抗菌药的能力,即不具有耐药性。有些细菌从一开始,其耐药基因就处于不断转录之中,从而导致细菌产生了天然耐药性。另外,有些细菌则必需要有抗菌药的存在,其耐药基因才进入转录状态而产生耐药性,一旦抗菌药不再存在,其耐药基因的转录就停止,从而导致耐药性消失而恢复敏感性。因此,根据研究结果,现在一般认为,当细菌处于生长状态下,在任何特定时刻仅有大约",的基因组是处在高活性和转录之中,其它基因组或者沉默,或者以十分低

细菌耐药机制的国内外最新研究进展_丁元廷

·实验技术及其应用·细菌耐药机制的国内外最新研究进展 丁元廷 (贵阳中医学院第一附属医院检验科,贵州贵阳550001) 摘要:全球性的细菌抗生素耐药是近年来感染性疾病治疗所面临的一大难题,细菌可对某类抗菌药物产生耐药性,也可 同时对多种化学结构各异的抗菌药物耐药。随着各种新型抗生素在临床的应用,细菌的耐药也越来越广。本文对细菌耐 药机制近年来国内外的研究进展进行简要综述,并探索有效的防治措施。 关键词:细菌耐药性;耐药机制;进展 中图分类号:R446.5文献标志码:A文章编号:1003-8507(2013)06-1109-03 The research progress on mechanism of bacterial resistance at home and aboad DING Yuan-ting. Department of Clinical Laboratory,The First Affiliated Hospital,Traditional Chinese Medical College of Guiyang, Guiyang550001,China Abstract:A big problem we meet during the treatment of infectious diseases is the global antibiotic resistance of baceria.Bacte- ria can develop resistance to not only a certain kind of antimicrobial agent,but also a variety of different chemical structure of the antimicrobial drugs.With a variety of new antibiotics applied in clinical practice,more and more extensive drug-resistant bacteria appear.The aim of this paper was to give a brief overview of the progress of bacterial resistance at home and abroad in recent years,and also to explore effective control measures. Key words:Bacterial resistance;Mechanisms of resistance;Progress 随着抗菌药物的大量使用,尤其抗生素的滥用导致细菌在抗生素及环境压力下,细菌群体中的敏感株被灭杀,耐药株被选择或诱导出来并繁殖生长而成为优势菌群,通过多种形式获得了对抗生素耐药性。细菌耐药性不仅可通过基因水平在相同或不同种属细菌中传播,而且结构完整的耐药菌株还可以在医院之间乃至全球播散,所致感染治疗棘手,病死率高,严重威胁人类健康,已成为全球关注的热点[1]。而临床在应用抗生素过程中,不适当治疗和滥用更加速和扩大了细菌对抗生素产生耐药性。据报道,一种新抗生素从研制到临床应用一般需要5~10年,而产生细菌耐药仅需要2年[2]。因此,在临床上减缓耐药性产生与追求抗菌疗效同等重要。了解细菌耐药发生机制的研究状况对于指导合理应用抗生素、预防菌株耐药和有效抗感染治疗具有重要的意义,本文就有关细菌耐药机制主要从基因水平、蛋白质水平及细菌多重耐药性角度对近年来研究进展进行综述。 1细菌耐药性概况 细菌在接触过抗菌药物后,就会千方百计地制造出能灭活抗菌药物的物质,例如各种灭活酶,或通过改变自身代谢规律来使抗菌药物失效,这样就形成了细菌的耐药性。早期细菌的耐药性主要表现在某种细菌对某类药物的耐药,20世纪30年代末磺胺药上市,40年代临床广泛使用磺胺药后,1950年日 作者简介:丁元廷(1975-),男,硕士,副主任检验技师,研究方向:分子生物学本报道80%~90%的志贺痢疾杆菌对磺胺药耐药了;1940年青霉素问世,1951年发现金黄色葡萄球菌能产生β-内酰胺酶灭活青霉素;60~70年代,细菌耐药性主要表现为金黄色葡萄球菌和一般肠道阴性杆菌由于能产生β-内酰胺酶使青霉素类和一代头孢菌素抗菌作用下降;80~90年代,阴性杆菌产生的超广谱β-内酰胺酶和染色体介导的I类酶,三代头孢菌素在内的多种抗生素耐药的多重耐药革兰阴性杆菌,阳性球菌中出现了非常难治的多重耐药菌感染。近年来由于出现了万古霉素中介金葡菌,关注对耐万古霉素MRSA的监测。近年来还开始注意红霉素耐药β-溶血性化脓性链球菌的发展,特别是耐大环内酯类-林可霉素类-链阳霉素B的β-溶血性化脓性链球菌的耐药性发展。 2细菌耐药机制 2.1基因水平(耐药性产生的遗传方式)遗传学机制 细菌可通过自身基因的突变产生耐药性,也可以通过染色体垂直传播和通过质粒或转座子水平传播而获得外源耐药性基因,还可通过整合子捕获外源基因并使之转变为功能性基因来传播耐药性基因。包括细菌先天固有耐药和染色体突变或获得新的脱氧核糖核酸分子。 2.1.1固有耐药天然或基因突变产生的是细菌染色体基因决定的代代相传的天然耐药性,亦称突变耐药。通过染色体遗传基因DNA发生突变,细菌经突变后的变异株对抗生素耐药。一般突变率很低,由突变产生的耐药菌生长和分裂缓慢,故由突变造成的耐药菌在自然界中不占主要地位,但染色体介导的

常见致病菌耐药机制与应对措施

2014年第二季度细菌耐药监测结果预警与应对策略由于抗菌药物的广泛不合理应用。细菌耐药现象日益严峻,临床出现大量多耐药和泛耐药菌株,给医院感染预防控制带来挑战。细菌耐药有一定的区域性和时间性,及时了解和掌握本院常见多耐药菌的流行现状及耐药特征,有利于临床医师合理选择抗菌药物,提高治疗效果,以达到减少为耐药菌的产生。现对2014年第二季度病原菌分布情况和耐药率进行公布,并向临床科室提供细菌耐药应对措施。

物,提示“慎用抗菌药物”;耐药率超过50%的抗菌药物,提示“参照药敏试验结果用药”;耐药率超过75%的抗菌药物,提示“暂停该类抗菌药物的临床应用”。 2细菌产生耐药性机制 2.1铜绿假单胞菌耐药机制

铜绿假单胞菌对生存环境和营养条件要求很低,在自然界分布广泛,甚至在医院内环境经常可见,其具有多药耐药性及耐药机制:(1)该菌能够产生破坏抗菌药物活性的多种灭活酶、钝化酶和修饰酶。(2)基因突变,作用靶位变异。(3)细胞膜通透性降低。(4)主动泵出机制将进入的药物排到体外。(5)产生生物膜,阻隔白细胞、多种抗体及抗菌药物进入细菌细胞内吞噬细菌。由于铜绿假单胞菌复杂的耐药机制导致其感染具有难治性和迁延性。 2.2大肠埃希氏菌耐药机制 大肠埃希菌是G-杆菌中分离率较高的机会致病菌,可引起人体所有部位的感染并且呈多重耐药性。 (1)β-内酰胺酶的产生 ①大肠埃希菌对β-内酰胺类抗菌药物耐药主要是由超广谱β-内酰胺酶(ESBLs)引起的,对头霉素类及碳青霉烯类药物敏感。ESBLs可分为五大类:TEM型、SHV型、CTX-M 型、OXA型和其他型,大肠埃希菌ESBLs酶以TEM型最常见。TEM型ESBLs呈酸性,可水解头孢他啶、头孢噻肟。SHV型ESBLs呈碱性,有水解头孢噻吩的巯基。CTX-M 型ESBLs呈碱性,对头孢噻肟水解能力强于头孢他啶。OXA型ESBLs呈弱酸性或弱碱性,主要水解底物是苯唑西林,OXA型酶主要见于铜绿假单胞菌中,在大肠埃希菌中的分离率较低。 ②AmpCβ-内酰胺酶AmpC酶主要作用于头孢菌素类抗菌药物,且不能被克拉维酸抑制。它是水解酶,与β-内酰胺环羧基部分共价结合,在水分子作用下导致β-内酰胺环开环,破坏β-内酰胺类抗菌药物抗菌活性。 ③对酶抑制剂药的耐药的β-内酰胺酶对酶抑制剂药的耐药的β-内酰胺酶(IRT)主要有TEM系列衍变而来,又称为耐酶抑制剂TEM系列酶。 (2)药物作用靶位的改变 (3)主动外排 (4)外膜通透性的下降 2.3肺炎克雷伯杆菌耐药机制 肺炎克雷伯杆菌属于阴性杆菌,通常存在于人类肠道、呼吸道,是除大肠埃希氏菌外导致医源性感染的最重要的条件致病菌。由于抗菌药物的大量使用,在选择性压力下多药耐药肺炎克雷伯杆菌(KPN)菌株不断出现,耐药率日益上升,KPN耐药机制包括:(1)产抗菌药物灭活酶 ①β-内酰胺酶包括产超广谱β-内酰胺酶(ESBLs)、AmpC酶、耐酶抑制剂β-内酰胺酶、碳青霉烯酶(KPC酶)及金属β-内酰胺酶(MBLs)等。

细菌耐药性机理分析

细菌耐药性机理分析 卢嘉程 1142042005

抗生素的杀菌机理简介 ?抑制细胞壁的合成 ?某些含有β-内酰胺环的抗生素,如青霉素类和头孢菌素类,能与细菌细胞壁上一种叫PBPS的特定蛋白结合,抑制分裂中的细菌细胞壁的形成,使细菌因失去细胞壁的保护作用而在渗透作用下裂解死亡。 ?改变细胞膜通透性 ?某些抗生素(多粘菌素和短杆菌素)能与细菌细胞膜相互作用,改变膜的通透性,让细菌因体内的有用物质大量流失到胞外或者电解质失调而死亡

?干扰蛋白质的合成(氨基糖苷类四环素类氯霉素类等) ?抗生素进入细菌体内后与细菌的核糖体或者是tRNA,mRNA等反应底物相互作用,抑制细菌蛋白质的合成,某些重要的蛋白如结构蛋白或酶等无法合成,则细菌必死 ?阻碍核酸的复制和转录(人工合成喹诺酮类抗生素) ?通过阻碍细菌DNA的复制,可以阻止其分裂繁殖。而阻碍DNA的转录则可以导致后续的翻译无法进行,使细菌因缺乏生存所必需的蛋白质而死亡

道高一尺,魔高一丈

细菌抗药性的五种机制 ?使抗生素分解或失去活性 ?有的细菌能产生相应的水解酶或钝化酶来水解掉或修饰抗生素,使之失去生物活性。如细菌产生的β-内酰胺酶就能使含β-内酰胺环的青霉素类抗生素被水解掉,而钝化酶(磷酸转移酶、核酸转移酶、乙酰转移酶)则可以使氨基糖苷类抗生素失去抗菌活性 ?改变抗生素的作用靶点 ?耐甲氧西林的金黄色葡萄球菌通过对细胞壁上的青霉素结合蛋白PBPS进行修饰,使抗生素无法和结构改变了的蛋白结合发挥作用。

?改变细胞膜特性 ?细菌发生突变后改变了质膜的通透性,某些原来需进入细菌细胞内发挥作用的抗菌药物被隔离在细胞外 ?改变代谢途径 ?通过大量增加某些代谢底物的产量,稀释抗生素的作用,让细菌对该种抗生素不再敏感。如磺胺药与对氨基苯甲苯酸(PABA),竞争二氢喋酸合成酶而产生抑菌作用。金黄色葡萄球菌多次接触磺胺药后,其自身的PABA 产量增加,可达原敏感菌产量的20~100 倍,后者与磺胺药竞争二氢喋酸合成酶,使磺胺药的作用下降甚至消失。

细菌耐药机制研究进展

细菌耐药机制研究进展 发表时间:2013-01-08T13:58:09.640Z 来源:《中外健康文摘》2012年第42期供稿作者:黄碧娇 [导读] 药物作用靶位的改变,菌体类有许多抗生素结合的靶位,细菌可以通过靶位的改变使抗生素不易结合是耐药发生的重要机制 黄碧娇 (井冈山大学附属医院江西吉安 343000) 【中图分类号】R915 【文献标识码】A【文章编号】1672-5085(2012)42-0085-02 【摘要】了解细菌对β—内酰胺类,喹诺酮类及大环内酯类等临床常用抗菌药物耐药机制的研究进展,有助于抗菌药物的正确使用,尽量减少抗菌药物的耐药出现,为新的抗菌药物的开发及利用打下坚实的基础。 【关键词】细菌耐药性抗菌药物 细菌耐药,为人类战胜病原菌提出了一个严峻的挑战,细菌耐药机制非常复杂,通常认为涉及到以下几个方面: 1 细菌对抗菌药物产生耐药性的可能性机制 主要有四种:①产生灭活酶和钝化酶,细菌能产生破坏抗生素或使之失去抗菌作用的酶,使药物在作用于菌体前即被破坏或失效;②抗菌药物渗透障碍,细菌外层的细胞膜和细胞壁结构对阻碍抗生素进入菌体有着重要的作用,膜上有亲水性的药物通过蛋白,称外膜蛋白,主要有两种分子较大的为ompf和分子较小ompc,最近又发现了第三种蛋白phoe,外膜蛋白的缺失可导致细菌耐药性的发生,在某些药物的外膜上含有特殊药物泵出系统,使菌体药物的浓度不足以发挥抗菌作用而导致耐药;③药物作用靶位的改变,菌体类有许多抗生素结合的靶位,细菌可以通过靶位的改变使抗生素不易结合是耐药发生的重要机制;④代谢途径的改变绝大多数细菌不能利用已有叶酸及其衍生物必须自行合成四氢叶酸,肠球菌属等某些营养缺陷细菌能用外源性胸苷或胸腺嘧啶,表现对磺胺和甲氧嘧啶等药物的耐药。 从分子生物学角度认识细菌的耐药机制过去主要集中在基因突变的研究中,认为基因突变的积累使细菌产生耐药性的重要机制,但近来研究发现,没有接触过抗生素的病原菌,对抗生素也有抗药性,耐药性具有转移的特点,螯分子被认为是抗性基因在水平传播的重要因子,由两部分组成,5’与3’端保守区域(简称cs)以及中间的基因簇,选择性的整合到螯分子上面获得耐药性,通过螯合子的螯合作用,抗性基因之间能够互相转换,再借助于转化,转导与结合作用,使得耐药性在畜禽与畜禽,畜禽与人类,人类与人类之间的病原菌广泛传播,给人类健康造成严重威胁。 2 细菌对β—内酰胺类抗药性的耐药机制。 2.1产生β—内酰胺酶 β—内酰胺环为β—内酰胺类抗菌药物的活性部位,一旦被β—内酰胺酶水解就将失去其抗菌活性,细菌对β—内酰胺类抗菌药物的耐药性约80%通过产生β—内酰胺酶实现,β—内酰胺酶种类繁多,已经报道通过的就有200余种。具有不同特性的β—内酰胺酶的细胞对不同的β—内酰胺酶抗菌药物的耐受性不同。G+菌、G-菌、分枝杆菌和诺卡菌种都发现有各种不同特性的β—内酰胺酶。 针对这一耐药机制,临床上目前应用的药物有2类:①具有对β—内酰胺酶稳定的化学结构的药物,包括苯唑西林、双氯西林、甲氧西林、异口恶唑青霉素等半合成青霉素以及亚胺培南、美罗培南等碳青霉烯类药物等。②β—内酰胺酶抑制剂,包括克拉维酸,舒巴坦、他唑巴坦等,它们与β—内酰胺类药物联用,对产酶菌有很强的增效作用。其复合制剂有:由阿莫西林与克拉维酸组成的奥格门汀,由羧苄西林与克拉维酸组成的替门汀,由氨苄西林与舒巴坦组成的优立新及由哌拉西林与他唑巴坦组成的他唑辛等。 2.2药物作用的靶蛋白改变 β—内酰胺类抗菌药物的作用靶位为青霉结合蛋白(PBP),对β—内酰胺类抗菌药物耐药的细菌除了由于产生大量β—内酰胺酶破坏进入胞内的抗菌药物外,还由于PBP发生了改变使之与这类抗菌药物(如青霉素类、头孢菌素类、单环β—内酰胺类和碳青霉烯类等)的亲和力降低,或是出现了新的PBP所致,这种耐药机制在金萄球菌、表皮葡萄球菌、皮炎链球菌、大肠杆菌、绿脓杆菌和流感嗜血杆菌等耐药菌种均已证实。 2.3细胞外膜渗透性降低细菌的细胞膜使细菌与环境离开。细胞外膜上的某些特殊蛋白即孔蛋白是一种非特异性的、跨越细胞膜的水溶物质扩散通道。一些半合成的β—内酰胺类抗菌药物很容易透过肠细菌的孔蛋白通道;但一些具有高渗透性外膜的对抗菌药物敏感的细菌可以通过降低外膜的渗透性产生耐药性,如原来允许某种抗菌药物通过的孔蛋白通道由于细菌发生突变而使该孔蛋白通道关闭或消失,则细菌就会对该抗菌药物产生很高的耐药性。亚胺培南是一种非典型的β—内酰胺类抗菌药物,其对铜绿假单胞菌的活性,主要是通过一个特殊的孔蛋白通道OprD的扩散而实现的,这就意味着一旦这一简单的孔蛋白通道消失,则铜绿假单胞菌对亚胺培南就会产生耐药性。事实上,最近已经分离到许多具有这种耐药机制的耐亚胺培南的铜绿假单胞菌。 3 细菌喹诺酮类抗菌药物的耐药机制 3.1喹诺酮类药物的作用机制是通过抑制DNA拓扑异构酶而抑制DNA的合成,从而发挥抑菌和杀菌作用,细菌DNA拓扑异构酶有Ⅰ、Ⅱ、Ⅲ、Ⅳ分2大类:第一类有拓扑异构酶Ⅰ、Ⅲ主要参与DNA的松解;第二类包括拓扑异构酶Ⅱ、Ⅳ,其中拓扑异构酶Ⅱ又称DNA促旋酶,参与DNA超螺旋的形成,拓扑异构酶Ⅳ则参与细菌子代染色质分配到子代细菌中,但拓扑异构酶Ⅰ和Ⅲ对喹诺酮类药物不敏感,喹诺酮类药物的主要作用靶位是DNA促旋酶和拓扑异构酶Ⅳ。革兰阴性菌中DNA促旋酶是喹诺酮类的第一靶位,而革兰阳性菌中拓扑异构酶Ⅳ是第一靶位。 DNA促旋酶是通过暂时切断DNA双链,促进DNA复制转导过程中形成的超螺旋松解,或使松弛DNA链形成超螺旋空间构型,喹诺酮类药物通过嵌入断裂DNA链中间,形成DNA—拓扑异构酶—喹诺酮类3者复合物,阻止DNA拓扑异异构变化,妨碍细菌的DNA复制转录,已达到杀菌的目的。 3.2作用靶位的改变,编码组成DNA促旋酶的A亚单位和B亚单位及组成拓扑异构酶Ⅳ和ParC和ParE亚单位中任一亚基的基因发生突变均可引起喹诺酮类药物的耐药性,在所有的突变型中,以gxyA的突变为主,主要为Thr—83→Ile,Ala和ASp—87→Asn,Gly、Thr两者均占75%以上,而其他的突变型罕见,GyrA双点突变仅发生在喹诺酮类高度耐药的菌株中,这是因为gyxA上的83和87位的氨基酸在提供喹诺酮类结合位点时具有重要的作用,而gyrB的突变株则较gyrA上突变少见,主要为Glu—470→Asp,Ala—477→val和ser—468→phe,Parc 的突变主要为Ser—87→Leu,Trp位值得注意的是所有存在parc改变的发生是在gyxA突变之后才发生的,在同时具有gyxA和parc突变的菌株中,以gxyA上的Thx—83→Ile和parc上的ser—87→leu类型为最多见,ParE的突变型为ASp—419→Asn、Ala—425→val但现在parE出现突变极为罕见3/150 3.3 膜通透性改变,喹诺酮类药物与其他抗菌药物一样,依靠革兰阴性菌的外膜蛋白(oMp)和脂多糖的扩散作用而进入细菌体内,

2016年第三季度细菌耐药监测预警分析

2016年第三季度细菌耐药监测预警分析 为加强细菌耐药监测预警工作和临床合理应用抗菌药物,根据《卫生部办公厅关于抗菌药物临床应用管理有关问题的通知》(卫办医政发[2009]38号)、《抗菌药物临床应用指导原则》的要求,结合检验科《2016年第三季度常见细菌耐药性统计、分析》报告,对我院的抗菌药物使用提出以下预警: 一、细菌培养情况 2016年07-09月临床共送检细菌培养标本1178份,共检出病原菌389株,阳性检出率为%。排在前五位的细菌是:肺炎克雷伯杆菌118株、大肠埃希菌75株、铜绿假单胞菌30株、金黄色葡萄球菌29株、鲍曼不动杆菌13株,其他细菌162株。 二、全院细菌耐药监测结果分析及用药建议 根据卫生部办公厅关于抗菌药物临床应用管理有关问题的[2009]38号文件和《抗菌药物临床应用管理办法》要求:1.主要目标细菌耐药率超过30%的抗菌药物,应当及时将预警信息通报本机构医务人员;2.主要目标细菌耐药率超过40%的抗菌药物,应当慎重经验用药;3.主要目标细菌耐药率超过50%的抗菌药物,应当参照药敏试验结果选用;4.主要目标细菌耐药率超过75%的抗菌药物,应当暂停针对此目标细菌的临床应用,根据追踪细菌耐药监测结果,再决定是否恢复临床应用。现根据我院第三季度细菌耐药监测情况,对检出率居前五位的细菌根据该要求及抗菌药物的特点进行推荐用药。 1、肺炎克雷伯氏菌

肺炎克雷伯菌是产质粒介导的超广谱β-内酰胺酶(ESBL)的代表菌种。本季度共检出118株,对抗菌药物耐药情况如下: ①对复方新诺明、妥布霉素、哌拉西林/他唑巴坦、头孢他啶、头孢吡肟、庆大霉素、左氧氟沙星、头孢西丁、氨曲南、呋喃妥因、环丙沙星的耐药率均低于30%,可以作为肺炎克雷伯氏菌的首选治疗用药。 ②对头孢曲松、头孢唑林、氨苄西林/舒巴坦的耐药率超过30%,将预警信息通报本机构医务人员。 ③对氨苄青霉素的耐药率达到99%,应暂停其对肺炎克雷伯氏菌感染的临床应用。 2、大肠埃希氏菌 本季度检出大肠埃希氏菌75株,其中,耐碳青霉烯类大肠埃希菌5例,其对抗菌药物耐药情况如下: ①对哌拉西林/他唑巴坦、头孢替坦、亚胺培南、阿米卡星、呋喃妥因、厄他培南的耐药率均低于30%,可作为初始经验治疗和首选用药。 ②对复方新诺明、妥布霉素的耐药率超过30%,将预警信息通报本机构医务人员。 ③对头孢曲松、头孢他啶、头孢吡肟、头孢西丁、氨曲南的耐药率超过40%,建议临床慎重经验用药。 ④对头孢唑林、庆大霉素、氨苄西林/舒巴坦的耐药率均高于50%,需参照药敏试验结果选用,在大肠埃希菌感染的病例中,不宜作为经验和治疗用药。

细菌主要耐药机制

细菌主要耐药机制 1.产生灭活抗生素的各种酶 1.1 β—内酰胺酶(β-lactamase) β—内酰胺类抗生素都共同具有一个核心β—内酰胺环,其基本作用机制是与细菌的青霉素结合蛋白结合,从而抑制细菌细胞壁的合成。产生β—内酰胺酶是细菌对β-内酰胺类抗菌药物产生耐药的主要原因。细菌产生的β-内酰胺酶,可借助其分子中的丝氨酸活性位点,与β—内酰胺环结合并打开β—内酰胺环,导致药物失活。迄今为止报道的β—内酰胺酶已超过300种,1995年Bush等将其分为四型:第1型为不被克拉维酸抑制的头孢菌素酶;第2型为能被克拉维酸抑制的β-内酰胺酶;第3型为不被所有β—内酰胺酶抑制剂抑制的金属β-内酰胺酶(需Zn2+活化)。可被乙二胺四乙酸和P-chloromercuribenzate所抑制;第4型为不被克拉维酸抑制的青霉素酶。临床常见的β—内酰胺酶有超广谱β—内酰胺酶、头孢菌素酶(AmpC酶)和金属酶。 1.1.1超广谱β-内酰胺酶(Extended-Spectrumβ-lactamases,ESBLs) ESBLs是一类能够水解青霉素类、头孢菌素类及单环类抗生素的β—内酰胺酶,属Bush分型中的2型β—内酰胺酶,其活性能被某些β—内酰胺酶抑制剂(棒酸、舒巴坦、他唑巴坦)所抑制。ESBLs主要由普通β-内酰胺酶基因(TEM—1,TEM—2和SHV—1等)突变而来,其耐药性多由质粒介导。自1983年在德国首次发现ESBLs以来,目前已报道的TEM类ESBIs已有90多种,SHV类ESBLs多于25种。TEM型和SHV型ESBLs主要发现于肺炎克雷伯菌和大肠埃希菌,亦发现于变形杆菌属、普罗威登斯菌属和其他肠杆菌科细菌。 国内近年来随着三代头孢菌素的广泛使用,产ESBLs菌的检出率逐年增加。NCCLs规定,凡临床分离的大肠埃希氏菌和克雷伯氏菌均应监测是否为产ESBLs菌株;若产生,无论体外对第三代头抱菌素、氨曲南的药敏结果如何,均应报告对三代头孢菌素及氨曲南耐药。另外,ESBLs菌株不仅对β-内酰胺类抗生素有很高的耐药率,而且对氨基糖苷类、喹喏酮类耐药率也在60%左右,因此,临床遇到由ESBLs引起的感染时,建议首选含β—内酰胺酶抑制剂的复方抗生素制剂或亚胺培南;对于头孢吡肟等四代头孢,尚有争议。 1.1.2头孢菌素酶(AmpC酶)届Bush分类中的1型(Ⅰ型) β—内酰胺酶。 通常将其分为由染色体介导产生的AmpC β—内酰胺酶和由质粒介导产生的AmpC β—内酰胺酶,前者的产生菌有阴沟肠杆菌、铜绿假单胞菌等,后者主要由肺炎克雷伯氏菌和大肠埃希氏菌产生。AmpC酶可作用于大多数青霉素,第一、二、三代头孢菌素和单环类抗生素。而第四代头孢菌素、碳青霉烯类不受该酶作用。该酶不能被β—内酰胺酶抑制剂所抑制。AmpCβ—内酰胺酶的产生有2种可能:①在诱导剂存在时暂时高水平产生,当诱导剂不存在时,酶产量随之下降,三代头孢菌素、棒酸和碳青霉烯类抗生素是诱导型AmpC酶的强诱导剂;②染色体上控制酶表达的基因发生突变,导致AmpC酶持续稳定高水平表达。由高产AmpC酶耐药菌引起的感染死亡率很高。 实际上,所有的革兰氏阴性菌都能产生染色体介导的AmpC头孢菌素酶,在多数情况下为低水平表达;在肠杆菌、柠檬酸杆菌、沙雷氏菌、铜绿假单胞菌中可高频诱导产生,且常为高产突

常见细菌的耐药趋势和控制修订稿

常见细菌的耐药趋势和 控制 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

常见细菌的耐药趋势和控制 北京大学第三医院宁永忠 细菌的耐药主要内容包括三个方面:一个是相关的基本知识;第二个是国内常见细菌耐药的现状和趋势;第三是耐药的控制。 一、相关的基本知识 首先我们来看一下基本的知识。第一我们来看一下微生物,微生物它就是肉眼看不见的一些微小的生物,它在微观的世界里有一个真实的存在。它会导致人类的感染,所以我们会称之为病原。目前临床上主要有四类微生物:病毒、细菌、真菌、寄生虫。这四大类微生物都出现了我们今天的主题--耐药,只不过它们的严重程度不一致而已。下面一个概念我们来看一下感染性疾病,它指的是微生物导致的有临床证据的这样一个疾病,这个临床证据包括症状、体征、免疫学反应和微生物学证据。在临床医学领域各个病种当中,感染性疾病的发病率最高。应该说我们所有的人都得过感染性疾病,感染性疾病很多时候还会表现为中、重度一个临床表现。这个时候是必须治疗的,因为不治疗预后不良,甚至会出现死亡。感染性疾病还有一个特点,就是有传播性,病原可以传播,感染性疾病的传播性甚至会影响到社会历史进程、影响到人类的行为和心理。这个是感染性疾病不同于其他临床医学病种的很重要的一个特征。刚才提到感染性疾病需要治疗,我们治疗用的特异性的药物就是抗微生物药物,它指的就是特异性的抑制、杀灭微生物的这样一些药物,在细菌领域里主要就是抗生素。目前抗微生物药物效力下降的主要的一个原因就是耐药,有些时候这个效力会完全消失。因此临床上治疗无效的时候,耐药是很主要的一个原因。 另外耐药涉及到的概念也比较多,比如说生物学耐药和临床耐药,环境介导的耐药和微生物介导的耐药,天然耐药和获得性耐药,这里面天然耐药和获得性耐药这一对概念比较重要,给大家展开说一下。天然耐药指的是这个菌种在鉴定到种的时候就可以明确的耐药,也就是说一个菌种内所有的菌株都具有的耐药的特点。这一类耐药特点,一般是人类在应用抗生素之前就已经存在的,是纯自然的情况下形成的一个耐药的特点。而获得性耐药,指的是这个基因在菌种的层面是不能够确定是否存在的,只有到具体的菌株的层面,同一个菌种内不同的菌株它的耐药性可能不同,有的菌株有这个耐药性,有的菌株没有这个耐药性。这一类耐药性基本上都是人类应用抗生素之后,在人类的抗生素使用的选择压力下产生的耐药。此外还有原发性耐药和继发性耐药,表型耐药和基因型耐药,交叉耐药和多重耐药,低水平耐药和高水平耐药,异质耐药性等等这些概念。

大肠埃希菌耐药机制研究进展

大肠埃希菌耐药机制研究进展 【摘要】大肠埃希菌是典型的革兰氏阴性杆菌,致病性大肠埃希菌更是临床上最常见的病原菌之一。近年来,大肠埃希菌的耐药株不断增多,特别是多重耐药株的出现增多,使临床大肠埃希菌病的预防和治疗十分困难。本文对大肠埃希菌耐药现状以及耐药性机制的研究进行了综述,为防治大肠埃希菌耐药性的产生及合理用药提供帮助。 【关键词】大肠埃希菌;耐药机制;细菌生物膜 【文章编号】1004-7484(2014)05-2897-02 大肠埃希菌是存在于人和动物肠道内的一类正常菌群,但当大肠埃希菌侵入到人体其他部位或器官时,则会导致感染。近些年,致病性大肠埃希菌特别是泛耐药大肠埃希菌临床监测率逐年升高,本文针对大肠埃希菌耐药性机制以及耐药现状的研究进行综述。 1 大肠埃希菌的生物学特性 1.1大肠埃希菌概述 大肠埃希菌(E. coli)是肠杆菌科埃希氏菌属的代表菌,于1885年被Escherichia首次发现并命名为大肠埃希菌,简称大肠埃希菌。为兼性厌氧菌,生长温度范围为15~45℃。营养要求不高。大多数大肠埃希菌能发酵多种糖类并产气。一般大小为0.4-1μm,长1.7-3μm。无芽孢,多数菌株周身有鞭毛,能运动。有菌毛。

大肠埃希菌有O、K、H、F四种抗原,抗原构造比较复杂,O抗原为脂多糖,组成细胞壁的耐热成分;K抗原位于O抗原外层,与细菌的侵袭力有关,为酸性多糖;H抗原是位于鞭毛上的蛋白质,氨基酸的含量及排列顺序决定其特异性; F 抗原与大肠埃希菌的粘附作用有关。 1.2 大肠埃希菌分类和致病机理 大肠埃希菌是肠道内重要的正常菌群,在宿主免疫力下降或细菌侵入肠道外组织器官后就可以成为条件致病菌,引起肠道外感染。根据引起疾病的不同可将病原性大肠埃希菌分为三个致病型:肠道感染/腹泻型、尿道感染型和化脓性/脑膜炎型。致病性大肠埃希菌除具有一般的毒力因子,如内毒素、荚膜、Ⅲ型分泌系统等还具有自身一些特殊的毒力因子如粘附素与外毒素,二者主要能引起泌尿道感染和肠道感染。 肠道感染/腹泻型大肠埃希菌根据携带毒力因子的不同可以分为5类:肠产毒性大肠埃希菌(ETEC)、肠致病性大肠埃希菌(EPEC)、肠出血性大肠埃希菌(EHEC)、肠粘附性大肠埃希菌(EAEC)、肠侵袭性大肠埃希菌(EIEC)。引起泌尿道感染的大肠埃希菌大多来源于结肠,污染尿道,上行至膀胱,甚至肾脏与前列腺,为上行性感染。化脓性/脑膜炎型大肠埃希菌感染则可能得大肠埃希菌败血症。常由大肠埃希菌尿道和胃肠道感染引起。据陈立涛的研究的血流感染中产ESBLs大肠埃希菌检出阳性率约60%,且多药耐药严重[1]。此外新生儿脑膜炎的主要致病因子即为大肠埃希菌与B组链球菌约75%的大肠

2017年1季度细菌耐药情况分析与对策报告

太和县人民医院2013年三季度细菌耐药情况分析与对策报告 一.标本送检及细菌检出情况 本季度细菌培养送检率为35.24%。微生物室共收到标本2068份,分离出病原菌496株,阳性率23.98%。其中革兰氏阴性菌412株、占83.06%,革兰氏阳性菌54株,占10.89%,白假丝酵母菌5株,占1.01%。科室分布前六位的是:重症医学科422例,儿科422例,肝胆外科112例,神经外科103例,呼吸内科80例,普外科62例,内分泌科59例。送检标本类型较多的依次是:痰581份、大便114份、尿液111份、渗出液111份、脓液75份、血液57份,阳性率最高的为血液,其它依次为:脓液、渗出液、痰液、尿液、大便。 标本中检出的常见菌如下:以肺炎克雷伯菌最多,其次是大肠埃希菌、产气肠杆菌、阴沟肠杆菌、铜绿假单胞菌、奇异变形杆菌。 共筛选出多重耐药菌20株,占总菌数的4.03%,其构成为:大肠埃希菌11株,占多重耐药菌菌株总数的55% 鲍曼不动杆菌3株,占多重耐药菌菌株总数的15%肺炎克雷伯菌2株,占多重耐药菌菌株总数的10%铜绿假单胞菌1 株,占多重耐药菌菌株总数的5%阴沟肠杆菌1株,占多重耐药菌菌株总数的5% 产气肠杆菌1株,占多重耐药菌菌株总数的5% 嗜麦芽寡食单胞菌1株,占多重耐药菌菌株总数的5% 第三季度主要标本类型分布情况 临床常见前几位病原菌 第三季度多重耐药菌菌株类型构成情况(%

二.常见临床分离细菌耐药情况与分析 1.革兰氏阳性菌 本次分离的革兰氏阳性菌较少,不具代表性,无法具体分析。 2.革兰氏阴性菌 本次分离出的大肠埃希菌对哌拉西林、头抱呋辛、头抱他啶耐药率高,应 暂停该类抗菌药物的临床应用;对庆大霉素、哌拉西林/他唑巴坦、头抱吡肟、 复合磺胺、环丙沙星的耐药率在50-75%之间,参照药敏实验结果选择用药;对氨苄西林/舒巴坦为中敏,提示医务人员慎重经验用药;对头抱西丁、阿米卡星耐药率在30-40%应及时将抗菌药物预警信息通报医务人员,对亚胺培南敏感性高。 本次分离的肺炎克雷伯菌对哌拉西林、头抱呋辛的耐药率高,根据细菌耐药预警机制,应暂停使用;对头抱唑林、头抱曲松、氨苄西林、氨苄西林/舒巴坦、头抱他啶、头抱吡肟、哌拉西林/他唑巴坦、复合磺胺耐药率在50-75%之间,提示医务人员参照药敏实验结果用药;对氨曲南、庆大霉素耐药率在40-50% 之间,提示医务人员慎重经验用药;对环丙沙星耐药率在30-40%应及时将抗菌 药物预警信息通报医务人员;对头抱西丁、左氧沙星、阿米卡星、亚胺培南均敏感,是肺炎克雷伯菌的治疗用药。 本次分离的产气肠杆菌对哌拉西林、头抱西丁、头抱呋辛、庆大霉素、复合磺胺耐药率在50-75%之间,提示医务人员参照药敏实验结果用药;对氨苄西林、哌拉西林/他唑巴坦耐药率在40-50%之间,提示医务人员慎重经验用药;对氨苄西林/舒巴坦耐药率在30-40%应及时将抗菌药物预警信息通报医务人员;对阿米卡星、头抱他啶、环丙沙星、头抱吡肟、头抱曲松、亚胺培南、氨曲南均敏感,是产气肠杆菌的治疗用药。 本次分离的阴沟肠杆菌对哌拉西林的耐药率高,根据细菌耐药预警机制,应暂停使用,避免耐药范围的扩大;对头抱西丁、氨苄西林、哌拉西林/他唑巴 坦耐药率大于50%提示医务人员参照药敏实验结果用药;对氨苄西林/舒巴坦、头抱他啶、庆大霉素耐药率在40-50%之间,提示医务人员慎重经验用药;对头抱吡肟、复合磺胺耐药率在30-40%之间,应及时将抗菌药物预警信息通报医务人员。对环丙沙星、阿米卡星、亚胺培南、头抱呋辛、左氧沙星、氨曲南均敏感,是阴沟肠杆菌的治疗用药。 本次分离出的铜绿假单胞菌对头抱西丁、复合磺胺、哌拉西林/他唑巴坦 的耐药率大于75%按照细菌耐药预警机制,应暂停该类抗菌药物的在铜绿假单胞菌感染中的临床应用,根据追踪细菌耐药监测结果,再决定是否恢复其的临床应用;对哌拉西林、

相关主题