搜档网
当前位置:搜档网 › 数学建模之灰色预测模型

数学建模之灰色预测模型

数学建模之灰色预测模型
数学建模之灰色预测模型

一、灰色预测模型

简介(P372)

特点:模型使用的不是原始数据列,而是生成的数据列.

优点:不需要很多数据,一般只用4个数据就能解决历史数据少,序列的完整性和可靠性低的问题.

缺点:只适用于中短期的预测和指数增长的预测。

1、GM (1,1)预测模型

G M(1,1)表示模型为一阶微分方程,且只含有一个变量的灰色模型。 1。1模型的应用 ①销售额预测

②交通事故次数的预测

③某地区火灾发生次数的预测 ④灾变与异常值预测,如对旱灾,洪灾,地震等自然灾害的时间与程度进行预报.(百度文库)

⑤基于G M(1,1)模型的广州市人口预测与分析(下载的文档) ⑥网络舆情危机预警(下载的文档) 1。2步骤

①级比检验与判断

由原始数据列(0)(0)(0)(0)((1),(2),,())x x x x n =计算得序列的级比为

(0)(0)(1)(),2,3,

,.()

x k k k n x k λ-==

若序列的级比()k λ∈ 221

2

(,)n n e e

-++Θ=,则可用(0)x 作令人满意的G M(1,1)

建模。

光滑比为 ?(0)1

(0)

1

()

()()

k i x k p k x

i -==

若序列满足

?[](1)

1,2,3,,1;()

()0,,3,4,

,;0.5.

p k k n p k p k k n ??+<=-∈=<

则序列为准光滑序列。

否则,选取常数c 对序列(0)x 做如下平移变换

(0)(0)()(),1,2,

,,y k x k c k n =+=

序列(0)y 的级比

0(0)(1)

(),2,3,

,.()

y y k k k n y k λ-=∈Θ=

②对原始数据(0)x 作一次累加得 ?(1)(1)(1)(1)(0)(0)(0)(0)(0)((1),(2),,())(11+(2),,(1)()).x x x x n x x x x x n ==++(),()

建立模型:

?

(1)

(1),dx ax b dt += (1)

③构造数据矩阵B 及数据向量Y

(1)(1)(1)(2)1(3)1,()z z B z n ??- ??- ?

?=?? ????- 1??(0)(0)(0)(2)3()x x Y x n ??????=?? ??

????

() 其中:(1)(1)(1()0.5()0.5(1),2,3,,.z k x k x k k n =+-=)

④由

?1??()?T T a

u

B B B Y b -??==????

求得估计值?a

= ?b = ⑤由微分方程(1)得生成序列预测值为

?

(1)

(0)???(1)(1)k 0,1,,1,,??ak b b x

k x e n a a -??+=-+=- ? ???

则模型还原值为

(0)(1)(1)???(1)(1),1,2,,1,.x k x k x k n +=+-=-

⑥精度检验和预测

残差

(0)(0)?()()(),1,2,,,k x k x

k k n ε=-= 相对误差

(0)

|()|

()

k x k ε?=

相对误差精度等级表

级比偏差

10.5()1(),10.5a k k a ρλ-??

=-

?+??

若()k ρ<0.2则可认为达到一般要求;若()k ρ<0.1,则可认为达到较高要求。 利用matla b求出模型的各种检验指标值的结果如表

经过验证,给出相应预测预报。

2、新陈代谢模型

灰色新陈代谢模型是一个不断考虑新信息的预测模型,它考虑了随着时间推移

相继进入系统的扰动因素带来的影响,在不断补充新信息的同时,及时去掉旧信息,使整个系统一直处于更新和发展的过程中,更符合现实世界的变化。 与GM (1,1)模型相比,既能充分发挥传统GM (1,1)模型仅利用少量数据, 就能获得较高预测精度的优点,又能反映出数据的变化趋势, 从而使预测结果的精度获得更进一步的提高。局限性在于该模型适合预测具有较强指数规律的序列, 只能描述单调变化的过程. 2。1模型的应用

①深圳货运量预测;(下载文档)

②天津市城市人均住宅建筑面积及非农业户籍人口总数预测(下载文档); ③网络舆情危机预警(下载文档)。 2。2步骤

①建立新陈代谢数据序列

原始数据列(0)(0)(0)(0)((1),(2),,())x x x x n =,用最新信息(0)(1)x n +替换最初数

据(0)(1)x ,即得到新陈代谢数据序列(0)(0)(0)(0)((2),,(),(1))y x x n x n =+。

②后续步骤同GM(1,1)模型。

③用②计算出的最新结果再次替换最初信息(0)(2)x 得到新序列重复步骤②,以此类推,将计算结果制表并分析。

3、波形预测

波形预测, 是对一段时间内行为特征数据波形的预测.当原始数据频频摆动且摆动幅度较大时,可以考虑根据原始数据的波形预测未来的行为数据发展变化, 以便进行决策。从本质上来看,波形预测是对一个变化不规则的行为数据列的整体发展进的预测。 3.1 模型的应用

①区域降水量预测(下载文档)

②运量需求不平衡航线下客流量预测(下载文档) ③网络舆情危机预警(下载文档) 3.2步骤

①求出序列折线

由原始数据列((1),(2),

,())x x x x n =得出序列X的k 段折线图形为

?[]()()(1)()k x x k x k x k x k '=+-+- 序列X 的折线为 ?

[]{}()()(1)()|1,2,

,1k

x

x k x k x k x k k n '=+-+-=-

②选取等高线

令{}{}max min 11(),()max min k n

k n

x k x k σσ≤≤≤≤==则有

?

0min 1max min min 1max min min min max min max 1,(),,(),

,

1(),(0,1,2,

,)

s s i

s s

s i s s

γσγσσσγσσσγσσσγσ==-+=-+-=++==

如果k x 的i 段折线上有γ等高点,则坐标为()

(,)(1)()

x i i x i x i γγ-++-。

③等高点的计算

解方程k x =γ得到折线k x 与γ的交点(0)()x i =(,())(1,2,)i i x x x i ''=,即γ等高点.

④(0)()x i 构成等高时刻序列,求出各等高时刻序列的G M(1,1)预测。 ⑤得出波形预测

画出波形图,并分析.

4、V erhu lst 模型

Ve rhul st 模型主要用来描述具有饱和状态的过程,即S 型过程。常用于人口预测、生物生长、繁殖预测和产品经济寿命预测等。(例如B 题艾滋病疗法的评价及治疗预测) 4.1步骤

①模型的建立

对原始数据(0)(0)(0)(0)((1),(2),,())x x x x n =作一次累加得

(1)(1)(1)(1)(0)(0)(0)(0)(0)((1),(2),

,())(11+(2),

,(1)()).x x x x n x x x x x n ==+

+(),()

令(1)(1)(1)()0.5()0.5(1),2,3,,,z k x k x k k n =+-=得(1)x 的均值生成序列为

?(1)(1)(1)(1)((2),(3),

,()).z z z z n =

则得到灰色V erhu ls t模型为

(0)(1)(1)2()x az b z +=

灰色Verhulst 模型的白化方程为

(1)

(1)(1)2()dx ax b x dt

+= (2) ②参数求解

构造数据矩阵B 及数据向量Y

?

(1)(1)2(1)(1)2(1)(1)2(2)(2)(3)(3)),()())z z z z B z n z n ??- ( )??- (??=?? ????- (??(0)(0)(0)(2)3()x x Y x n ??????=?? ??????() 由

?1??()?T T a u B B B Y b -??==????

求得估计值?a

= ?b = ③解微分方程(2)得灰色Verh ul st模型的时间序列响应为

(0)(1)

?

(0)

(0)?(1)(1),???(1)(1)ak ax

x k bx a

bx e +=??+-??

通过累减还原得

(0)(1)(1)???(1)(1)().x

k x k x k +=+- ④精度检验和预测

同GM (1,1)模型。 例题:

某地区年平均降雨量数据如表1。规定ξ= 320,并认为(0)()x i ξ≤为旱灾.预测下一次发生的时间.

表1 某地区年平均降雨量数据

解:

模型的建立:

①列出原始数据列(0)(0)(0)(0)((1),(2),

,())x x x x n =,确定在(0)320x s ≤的条件下

的下限灾变数列0

x ξ与其相对应的时刻数列(0)t 。

计算光滑比

(0)1

(0)

1

()

()()

k i t k p k t

i -==

判断序列(0)t 是否满足满足

?[](1)

1,2,3,,5;

()

()0,,3,4,5;0.5.

p k k p k p k k ??+<=∈=<

②对数列(0)t 做1次累加,得(1)t . ③建立GM(1,1)模型。

?

(1)

(1),dt at b dt += (1) ④构造数据矩阵B 及数据向量Y

(1)(1)(1)(2)1(3)1,()z z B z n ??- ??- ?

?=?? ????- 1??(0)(0)(0)(2)3()x x Y x n ??????=?? ??

????

() 其中:(1)(1)(1()0.5()0.5(1),2,3,,5.z k t k t k k =+-=)

⑤由

?1??()?T T a

u

B B B Y b -??==????

求得估计值?a

,?b 。 ⑥由微分方程(1)得生成序列预测值为

?

(1)

(0)???(1)(1)k 0,1,,1,,??ak b b x

k x e n a a -??+=-+=- ? ???

则模型还原值为

(0)(1)(1)???(1)(1),1,2,,1,.x

k x k x k n +=+-=-

预测到第6个和第7个数据。

模型的求解

(1)根据题得:原始数据列(0)x =(390.6,412,320,559.2,380。8,542.4,553,310,

561,300,632,540,406.2,313.8,576,587。6,318.5) 因为当(0)320x s ≤时的(0)()x i 为异常值,可得下限灾变数列为

?0x ξ=(320,310,300,313.8,318。5)

与其相对应的时刻数列为: (0)t = (3,8,10,14,17) 利用mat lab 计算得出序列光滑.

(2)对数列(0)t 做1次累加,得(1)t =(3,11,21,35,52)

(3)由步骤③,④,⑤并利用m at lab 解得?a = —0。2536 ?b =6.2585 (4)由步骤⑥,预测得到第6个和第7个数据为

(0)(0)(6)22.034,(7)28.3946t t ==

由于22。034与17相差5.034这表明下一次旱灾将发生在五年以后.

数学建模之灰色预测模型

、灰色预测模型 简介(P372) 特点:模型使用的不是原始数据列,而是生成的数据列。 优点:不需要很多数据,一般只用4个数据就能解决历史数据少,序列的完整 性和可靠性低的问题。 缺点:只适用于中短期的预测和指数增长的预测。 1、GM(1,1)预测模型 GM(1,1)表示模型为一阶微分方程,且只含有一个变量的灰色模型。 1.1模型的应用 ① 销售额预测 ② 交通事故次数的预测 ③ 某地区火灾发生次数的预测 ④ 灾变与异常值预测,如对旱灾,洪灾,地震等自然灾害的时间与程度进行预 报。(百度文库) ⑤ 基于GM(1,1)模型的广州市人口预测与分析(下载的文档) ⑥ 网络舆情危机预警(下载的文档) 1.2步骤 ① 级比检验与判断 由原始数据列|x (。)=(x (0 )(1),x (0 )(2),川,x (0 )(n))|计算得序列的级比为 光滑比为 若序列满足 (k)二若序列的级比欽k) € ,则可用Ml 作令人满意的GM(1,1)建模。

则序列为准光滑序列 否则,选取常数c 对序列£[做如下平移变换 序列y (0) 的级比 ② 对原始数据竺作一次累加得 建立模型: ③ 构造数据矩阵B 及数据向量丫 其中:|z ⑴(k) =0.5x ⑴(k) +0.5x ⑴(k —1),k =2,3,川 ,n. ④ 由 一? T j T u?= =(B T B )B T Y 求得估计值固=也= ⑤ 由微分方程(1)得生成序列预测值为 则模型还原值为 ⑥ 精度检验和预测 残差

相对误差 相对误差精度等级表 级比偏差 若P(k) <0.2则可认为达到一般要求;若 P(k) <0.1,则可认为达到较高要求。 经过验证,给出相应预测预报。 2、新陈代谢模型 灰色新陈代谢模型是一个不断考虑新信息的预测模型,它考虑了随着时间推移 相继进入系统的扰动因素带来的影响,在不断补充新信息的同时,及时去掉旧信 息,使整个系统一直处于更新和发展的过程中,更符合现实世界的变化。 与GM(1,1)模型相比,既能充分发挥传统 GM(1,1)模型仅利用少量数据,就能 获得较高预测精度的优点,又能反映出数据的变化趋势,从而使预测结果的精度 获得更进一步的提高。局限性在于该模型适合预测具有较强指数规律的序列 ,只 能描述单调变化的过程。 2.1模型的应用 ① 深圳货运量预测;(下载文档) ② 天津市城市人均住宅建筑面积及非农业户籍人口总数预测(下载文档); ③ 网络舆情危机预警(下载文档)。 2.2步骤 ① 建立新陈代谢数据序列 原始数据列|x (°)=(x (0 )(1),x (0 )(2),川,x (°)(n))|,用最新信息|x (0) (n +1)|替换最初数 据 x (°)(1),即得到新陈代谢数据序列 y (。)=(x (°)(2),川,x (0 )(n),x (0 )(n + 1)) ② 后续步骤同GM(1,1)模型 ③ 用②计算出的最新结果再次替换最初信息 此 U+0.5a 丿 (k), x (0) (2)得到新序列重复步骤②,以

数学建模常用模型方法总结精品

【关键字】设计、方法、条件、动力、增长、计划、问题、系统、网络、理想、要素、工程、项目、重点、检验、分析、规划、管理、优化、中心 数学建模常用模型方法总结 无约束优化 线性规划连续优化 非线性规划 整数规划离散优化 组合优化 数学规划模型多目标规划 目标规划 动态规划从其他角度分类 网络规划 多层规划等… 运筹学模型 (优化模型) 图论模型存 储论模型排 队论模型博 弈论模型 可靠性理论模型等… 运筹学应用重点:①市场销售②生产计划③库存管理④运输问题⑤财政和会计⑥人事管理⑦设备维修、更新和可靠度、项目选择和评价⑧工程的最佳化设计⑨计算器和讯息系统⑩城市管理 优化模型四要素:①目标函数②决策变量③约束条件 ④求解方法(MATLAB--通用软件LINGO--专业软件) 聚类分析、 主成分分析 因子分析 多元分析模型判别分析 典型相关性分析 对应分析 多维标度法 概率论与数理统计模型 假设检验模型 相关分析 回归分析 方差分析 贝叶斯统计模型 时间序列分析模型 决策树 逻辑回归

传染病模型马尔萨斯人口预测模型微分方程模型人口预 测控制模型 经济增长模型Logistic 人口预测模型 战争模型等等。。 灰色预测模型 回归分析预测模型 预测分析模型差分方程模型 马尔可夫预测模型 时间序列模型 插值拟合模型 神经网络模型 系统动力学模型(SD) 模糊综合评判法模型 数据包络分析 综合评价与决策方法灰色关联度 主成分分析 秩和比综合评价法 理想解读法等 旅行商(TSP)问题模型 背包问题模型车辆路 径问题模型 物流中心选址问题模型 经典NP问题模型路径规划问题模型 着色图问题模型多目 标优化问题模型 车间生产调度问题模型 最优树问题模型二次分 配问题模型 模拟退火算法(SA) 遗传算法(GA) 智能算法 蚁群算法(ACA) (启发式) 常用算法模型神经网络算法 蒙特卡罗算法元 胞自动机算法穷 举搜索算法小波 分析算法 确定性数学模型 三类数学模型随机性数学模型 模糊性数学模型

数学建模神经网络预测模型及程序

年份 (年) 1(1988) 2(1989) 3(1990) 4(1991) 5(1992) 6(1993) 7(1994) 8(1995) 实际值 (ERI) 年份 (年) 9(1996) 10(1997) 11(1998) 12(1999) 13(2000) 14(2001) 15(2002) 16(2003) 实际值 (ERI) BP 神经网络的训练过程为: 先用1988 年到2002 年的指标历史数据作为网络的输入,用1989 年到2003 年的指标历史数据作为网络的输出,组成训练集对网络进行训练,使之误差达到满意的程度,用这样训练好的网络进行预测. 采用滚动预测方法进行预测:滚动预测方法是通过一组历史数据预测未来某一时刻的值,然后把这一预测数据再视为历史数据继续预测下去,依次循环进行,逐步预测未来一段时期的值. 用1989 年到2003 年数据作为网络的输入,2004 年的预测值作为网络的输出. 接着用1990 年到2004 年的数据作为网络的输入,2005 年的预测值作为网络的输出.依次类推,这样就得到2010 年的预测值。 目前在BP 网络的应用中,多采用三层结构. 根据人工神经网络定理可知,只要用三层的BP 网络就可实现任意函数的逼近. 所以训练结果采用三层BP模型进行模拟预测. 模型训练误差为,隐层单元数选取8个,学习速率为,动态参数,Sigmoid参数,最大迭代次数3000.运行3000次后,样本拟合误差等于。 P=[。。。];输入T=[。。。];输出 % 创建一个新的前向神经网络 net_1=newff(minmax(P),[10,1],{'tansig','purelin'},'traingdm') % 当前输入层权值和阈值 inputWeights={1,1} inputbias={1} % 当前网络层权值和阈值 layerWeights={2,1} layerbias={2} % 设置训练参数 = 50; = ; = ; = 10000; = 1e-3;

什么是数学模型与数学建模

1. 什么是数学模型与数学建模 简单地说:数学模型就是对实际问题的一种数学表述。 具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。 更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。 数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。 2.美国大学生数学建模竞赛的由来: 1985年在美国出现了一种叫做MCM的一年一度大大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其所写均为MCM)。这并不是偶然的。在1985年以前美国只有一种大学生数学竞赛(The william Lowell Putnam mathematial Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。该竞赛每年2月或3月进行。 我国自1989年首次参加这一竞赛,历届均取得优异成绩。经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。

数学建模中常见的十大模型

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的

数学建模分数预测论文完整版

高考录取分数预测模型 姓名: 班级: 姓名: 班级: 姓名: 班级:

关于高考录取分数预测模型的探究 摘要 本文通过差分指数平滑法和自适应过滤法分别建立模型,根据历年学校录取线预测下一年的录取分数线。最后,根据预测出来的最佳数据,给2014年报考本校的考生做出合理的建议。 对于问题一和问题二,首先根据题意和所给出的学校历年的录取分数线,不难分析出高校的录取分数线是由当年的题目难度、考生报考数量、“大年”和“小年”等因素决定的。每年的分数线还是有一定差距的,例如,本校2012在北京市电气专业的录取线是428分,而2013年是488分,相差60分。因此,预测的时候,需要通过一些方法使数据趋于平滑,使之便于预测。通过这些分析,建立了两种可靠的预测模型。 模型一通过差分的方法,利用Matlab软件将后一年Y t与前一年Y t-1的数据相减得到一个差分值,构成一个新序列。将新序列的值与实际值依次迭加,作为下一期的预测值。以此类推,预测出2014年的录取分数线。模型二是根据一组给定的权数w对历年的数据进行加权平均计算一个预测值y,然后根据预测误差调整权数以减少误差,这样反复进行直至找到一组最佳权数,使误差减小到最低限度,再利用最佳权数进行加权平均预测。这两种方法很好的解决了历年录取分数相差较大难以预测的问题。预测值相对准确。预测结果数据量较大,在此以河北省为例,给出预测结果模型一:2014年本校电气专业录取线为495,模型二:2014年本校电气专业录取线为536。 最后,通过预测出的数据,比对模型一和模型二,取最佳预测值,给报考科技学院的考生做出较为合理的建议。 关键词:序列权数差分值加权平均高考录取线

数学建模中常见的十大模型

数学建模中常见的十大 模型 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MATLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。

数学建模统计模型

数学建模

论文题目: 一个医药公司的新药研究部门为了掌握一种新止痛剂的疗效,设计了一个药物试验,给患有同种疾病的病人使用这种新止痛剂的以下4个剂量中的某一个:2 g,5 g,7 g和10 g,并记录每个病人病痛明显减轻的时间(以分钟计). 为了解新药的疗效与病人性别和血压有什么关系,试验过程中研究人员把病人按性别及血压的低、中、高三档平均分配来进行测试. 通过比较每个病人血压的历史数据,从低到高分成3组,分别记作,和. 实验结束后,公司的记录结果见下表(性别以0表示女,1表示男). 请你为该公司建立一个数学模型,根据病人用药的剂量、性别和血压组别,预测出服药后病痛明显减轻的时间.

一、摘要 在农某医药公司为了掌握一种新止痛药的疗效,设计了一个药物实验,通过观测病人性别、血压和用药剂量与病痛时间的关系,预测服药后病痛明显减轻的时间。我们运用数学统计工具m i n i t a b软件,对用药剂量,性别和血压组别与病痛减轻

时间之间的数据进行深层次地处理并加以讨论概率值P (是否<)和拟合度R-S q的值是否更大(越大,说明模型越好)。 首先,假设用药剂量、性别和血压组别与病痛减轻时间之间具有线性关系,我们建立了模型Ⅰ。对模型Ⅰ用m i n i t a b 软件进行回归分析,结果偏差较大,说明不是单纯的线性关系,然后对不同性别分开讨论,增加血压和用药剂量的交叉项,我们在模型Ⅰ的基础上建立了模型Ⅱ,用m i n i t a b软件进行回归分析后,用药剂量对病痛减轻时间不显着,于是我们有引进了用药剂量的平方项,改进模型Ⅱ建立了模型Ⅲ,用m i n i t a b 软件进行回归分析后,结果合理。最终确定了女性病人服药后病痛减轻时间与用药剂量、性别和血压组别的关系模型: Y=1x 3x 1x 3x 2 1 x 对模型Ⅱ和模型Ⅲ关于男性病人用m i n i t a b软件进行回归分析,结果偏差依然较大,于是改进模型Ⅲ建立了模型Ⅳ,用m i n i t a b软件进行回归分析后,结果合理。最终确定了男性病人服药后病痛减轻时间与用药剂量、性别和血压组别的关系模 型:Y=1x1x 3x 2 1 x关键词止痛剂药剂量性别病痛减轻时 间

对中国大学生数学建模竞赛历年成绩的分析与预测

2012年北京师范大学珠海分校数学建模竞赛 题目:对中国大学生数学建模竞赛历年成绩的分析与预测 摘要 本文研究的是对自数学建模竞赛开展以来各高校建模水平的评价比较和预测问题。我们将针对题目要求,建立适当的评价模型和预测模型,主要解决对中国大学生数学建模竞赛历年成绩的评价、排序和预测问题。 首先我们用层次分析法来评价广东赛区各校2008年至2011年及全国各大高校1994至2011年数学建模成绩,从而给出广东赛区各校及全国各大高校建模成绩的科学、合理的评价及排序;其次运用灰色预测模型解决广东赛区各院校2012年建模成绩的预测。 针对问题一,首先我们对比了2008到2011年参加建模比赛的学校,通过分析我们选择了四年都参加了比赛的学校进行合理的排序(具体分析过程见表13),同时对本科甲组和专科乙组我们分别进行排序比较。在具体解决问题的过程中,我们先分析得出影响评价结果的主要因素:获奖情况和获奖比例,其中获奖情况主要考虑国家一等奖、国家二等奖、省一等奖、省二等奖、省三等奖,我们采用层次分析法,并依据判断尺度构造出各个层次的判断矩阵,对它们逐个做出一致性检验,在一致性符合要求的情况下,通过公式与matlab求得各大学的权重,总结得分并进行排序(结果见表11);在对广东赛区各高校2012建模成绩预测问题中,我们采用灰色预测模型,我们以华南农业大学为例,得到该校2012年建模比赛获奖情况为:省一等奖、省二等奖、省三等奖及成功参赛奖分别为5、9、8、8(其它各高校预测结果见表10)。 针对问题二,我们对全国各院校的自建模竞赛活动开展以来建模成绩排序采用与问题一相同的数学模型,在获奖情况考虑的是全国一等奖、全国二等奖。运用matlab求解,结果见表12。 针对问题三,我们通过对一、二问排序的解答及数据的分析,得出在对院校进评价和预测时还应考虑到各院的师资力量、学校受重视程度、学生情况、参赛经验等因素,考虑到这些因素,为以后评价高校建模水平提供更可靠的依据。 关键词:层次分析法权向量灰色预测模型模型检验 matlab

数学建模模型

五邑大学 数学建模 课程考核论文 2010-2011 学年度第 2 学期 010 20 30 40 50 60 70 8090 第一季度第三季度 东部西部北部 论文题目 抑制物价快速上涨问题 得分 学号 姓名(打印) 姓名(手写) ap0808221 林加海 ap0808204 陈荣昌 指导老师—邹祥福

——2011.6.20 抑制物价快速上涨问题 摘要 本文通过一个多元线性回归模型较好地解决了影响物价因素的问题。使我国经济快速发展的同时,使百姓得到真的实惠,又保证了经济的长远的发展。 物价问题比较复杂。在本次实验中我们参阅大量资料把影响物价的的因素主要概括括需求性因素(消费,投资,进出口,政府支出等)、货币性因素(货币供给量)、结构性因素(房地产价格,农产品价格等)以及其他因素(如预期因素等)。 总结出原先物价计算方法的不足之处,需要建立一种新的计算和预测的方法。首先,为了确定物价和影响因素之间的关系我们用了多元线性回归,从国家统计局找到相关数据经过挑选,建立了函数关系,为了使函数更具有说服力我们进一步用了残差分析,检验所得到的结果的合理性 。本文利用matlab 软件实现了拟合出多元线性回归函数y=86.4798967193207+0.00441024146152813*x1+4.32730555279258e-007*x2+0.00377788223112076*x3+2.70211635024846e-006*x4+7.58738000216411e-005*x5,置信度95%,且20.932609896853743,_R F ==检验值8.30338450288840>,但是显著性概率.α=005相关的0.055839341752489056>0.p =。再利用逐步回归的方法,拟合出Y=94.4958+0.00771506*x1+5.8917e-007*x2+0.00250019*x3+1.90595e-006*x4+ 6.62396e-005*x5.93269896853743R =200,修正的R 2值.R α =20897797,F_检验值=26.3535,与显著性概率相关的p 值=..<000106754005,残差均方RMSE =0.204517,以上指标值都很好,说明回归效果比较理想。通过对物价形成及演化问题的讨论,提出以量化分析为基础的调节物价的方法,深入分析找出影响物价的主要因素,并就此分析现在物价的上涨情况,根据《关于稳定消费价格总水平保障群众基本生活的通知》,根据模型分析给出抑制物价的政策建议,并对未来的形势走向根据模型给出预测。 关键字:物价,逐步回归分析,上涨因素,预测,多元回归分析

数学建模之灰色预测模型

数学建模之灰色预测模型

一、灰色预测模型 简介(P372) 特点:模型使用的不是原始数据列,而是生成的数据列。 优点:不需要很多数据,一般只用4个数据就能解决历史数据少,序列的完整性和可靠性低的问题。 缺点:只适用于中短期的预测和指数增长的预测。 1、GM(1,1)预测模型 GM(1,1)表示模型为一阶微分方程,且只含有一个变量的灰色模型。 1.1模型的应用 ①销售额预测 ②交通事故次数的预测 ③某地区火灾发生次数的预测 ④灾变与异常值预测,如对旱灾,洪灾,地震等自然灾害的时间与程度进行预报。(百度文库) ⑤基于GM(1,1)模型的广州市人口预测与分析(下载的文档) ⑥网络舆情危机预警(下载的文档) 1.2步骤 ①级比检验与判断 由原始数据列(0)(0)(0)(0)((1),(2),,())x x x x n =计算得序列的级比为 (0)(0)(1)(),2,3, ,.() x k k k n x k λ-== 若序列的级比()k λ∈ 221 2 (,)n n e e -++Θ=,则可用(0)x 作令人满意的GM(1,1)建模。 光滑比为 (0)1 (0) 1 () ()() k i x k p k x i -== ∑ 若序列满足 [](1) 1,2,3,,1;() ()0,,3,4, ,;0.5. p k k n p k p k k n ??+<=-∈=<

则序列为准光滑序列。 否则,选取常数c 对序列(0)x 做如下平移变换 (0)(0)()(),1,2, ,,y k x k c k n =+= 序列(0)y 的级比 0(0)(1) (),2,3, ,.() y y k k k n y k λ-=∈Θ= ②对原始数据(0)x 作一次累加得 (1)(1)(1)(1)(0)(0)(0)(0)(0)((1),(2),,())(11+(2),,(1)()).x x x x n x x x x x n ==++(),() 建立模型: (1) (1),dx ax b dt += (1) ③构造数据矩阵B 及数据向量Y (1)(1)(1)(2)1(3)1,()z z B z n ??- ??- ? ?=?? ????- 1??(0)(0)(0)(2)3()x x Y x n ??????=?? ?????? () 其中:(1)(1)(1()0.5()0.5(1),2,3,,.z k x k x k k n =+-=) ④由 1??()?T T a u B B B Y b -??==???? 求得估计值?a = ?b = ⑤由微分方程(1)得生成序列预测值为 ? (1) (0)???(1)(1)k 0,1,,1,,??ak b b x k x e n a a -??+=-+=- ? ??? , 则模型还原值为 (0)(1)(1)???(1)(1),1,2,,1,.x k x k x k n +=+-=- ⑥精度检验和预测 残差 (0)(0)?()()(),1,2,,,k x k x k k n ε=-=

数学建模-新产品销量预测问题

销量预测问题 一、 摘要 本文通过建立微分方程模型,探讨了新产品进入市场后销售量变化的情况。模型由简单到复杂、由理想到现实,逐步利用广告对市场的限制探讨了产品销售量变化的情况,分析了广告费用对销售量产生的影响,建立比较符合现实的模型。 问题一中,新产品的投入,没有市场竞争,有良好的市场环境,也有良好的口碑,故属于较为简单的微分方程模型,可直接建立模型。 问题二中,产品销售存在一定的市场容量N , 统计表明dt dx 与该产品的潜在容量)(t x N -成正比,故建立阻滞增长模型求解。 问题三中,则考虑了广告费用对产品销量的影响,分析了广告费用与销售速率之间的关系,建立数学微分方程模型,并运用了Matlab 软件编程求解。 二、 问题提出 一种新产品问世,经营者自然要关心产品的卖出情况。如何采取有效措施,使得产品销量大,获取更大的利润,这是每个经营者最为关注的问题。 1、设t 时刻产品销量的增长率dx dt 与)(t x 成正比, 预测t 时的产品销量()t x ; 2、设考虑到产品销售存在一定的市场容量N, 统计表明dt dx 与该产品的潜在容量)(t x N -成正比, 预测t 时的产品销量()t x ; 3、试考虑影响产品销量的广告因素,并建立模型,预测t 时的产品销量()t x . 三、 模型假设与符号系统 模型假设: 模型基本假设:; 假设1:在考虑影响商品销售的因素时,不考虑偶然因素,如经济、战争因素、政治干预等; 假设2:产品的销售量符合产品的生命周期; 假设3:产品为日常用品,不是耐用品,每个人都需要。

符号系统: x(t) 为t 时刻新产品的销售量 a 为每件新产品的宣传效率 N 为市场的销售容量 b 为产品销售量的增长率与潜在容量的比例系数 s(t) 为商品t 时刻的销售量(即新产品在此时刻一段时间的销售量,如七月份,八月份的销售量,而不是总销售量) M(t) 为t 时刻的广告费用 θ 为销售量本身的衰减系数 ? 为广告宣传对销售速率的影响 T 为商品销售速率最大的时刻 四、 模型的建立与求解 问题一模型的建立与求解: 模型的建立: t 时刻时,新产品的销售量为x (t ),把x (t )当做连续、可微函数处理。 每件新产品都是宣传品,且单位时间内每件新产品能够使a 件新产品被销售。 由假设可知: x(t+?t)-x(t)=ax(t) 即: dx ax dt = 开始时有0x 件新产品被销售 x(0)= 0x 整理得: (0)0dx ax dt x x ?=???=? 求解得: ()0at x t x e =

MATLAB_+_灰色预测程序,数学建模

MATLAB实现灰色预测程序 灰色预测 很好的东西呐,······~~··`~··~~~~~~~~~~~~~~~~~~~~~````````````` fon [feval,au,ec,C,P]=GM1_1(x, r) if nrgin<2 myar=0; end [mx,nx]=size(x); if mx==1 x=x'; end n=length(x); for i=2:n z(i-1)=0.5*x1(i)+0.5*x1(i-1); end Y=x(2:end); B(:,1)=-z; 2)/au(1)); yc(1)=x(1); for k=1:n+myear-1

y1(k+1)=pm*exp(-au*k)+a(2)/au(1); yc(k+1)=y1(k+1)-y1(k); end feval=yc'; ex=ec./x; r=0; rou=0.5; for k=1:n r=r+rou* s(ec(k))+rou*max(a (ec))); end r=r/n; %%==== %原始序列的标准差 s1=std(x); %计算残差的标准差 s2=std(ec);

%计算C C=s2/s1; %计算后验概率 deta=ec-mean(ec); index=fineta)<0.6745*s1); P=length(index)/n; %% if C<0.35&P>0.95 disp('预测精度为一级') elsP>0.8 disp('预测精度为二级') elseif >0.7 disp('预测精度为三级') else disp('预测精度过低,需要对模型进行修正') end if r>0.6 disp('关联度符合检验要求') end

数学建模——传染病模型

传染病模型 摘要 当今社会,人们开始意识到通过定量地研究传染病的传播规律,建立传染病的传播模型,可以为预测和控制传染病提供可靠、足够的信息。本文利用微分方程稳定性理论对传统传染病动力学建模方式进行综述,且针对甲流,SARS等新生传染病模型进行建模和分析。 不同类型的传染病的传播过程有其各自不同的特点,我们不是从医学的角度一一分析各种传染病的传播,而是从一般的传播机理分析建立各种模型,如简单模型,SI模型,SIS模型,SIR模型等。本文中,我们应用传染病动力学模型来描述疾病发展变化的过程和传播规律,运用联立微分方程组体现疫情发展过程中各类人的内在因果联系,并在此基础上建立方程求解算法。然后,通过借助Matlab程序拟合出与实际较为符合的曲线并进行了疫情预测,评估各种控制措施的效果,从而不断完善文中的模型。 本文由简到难、全面地评价了该模型的合理性与实用性,而后对模型和数据也做了较为扼要的分析,进一步改进了模型的不妥之处。同时,在对问题进行较为全面评价的基础上又引入更为全面合理的假设,运用双线性函数模型对卫生部的措施进行了评价并给出建议,做好模型的完善与优化工作。 关键词:传染病模型,简单模型,SI,SIS,SIR,微分方程,Matlab。

一、问题重述 有一种传染病(如SARS、甲型H1N1)正在流行,现在希望建立适当的数学模型,利用已经掌握的一些数据资料对该传染病进行有效地研究,以期对其传播蔓延进行必要的控制,减少人民生命财产的损失。考虑如下的几个问题,建立适当的数学模型,并进行一定的比较分析和评价展望。 1、不考虑环境的限制,设单位时间内感染人数的增长率是常数,建立模型求t 时刻的感染人数。 2、假设单位时间内感染人数的增长率是感染人数的线性函数,最大感染时的增长率为零。建立模型求t时刻的感染人数。 3、假设总人口可分为传染病患者和易感染者,易感染者因与患病者接触而得病,而患病者会因治愈而减少且对该传染病具有很强的免疫功能,建立模型分析t 时刻患病者与易感染者的关系,并对传染情况(如流行趋势,是否最终消灭)进行预测。 二、问题分析 1、这是一个涉及传染病传播情况的实际问题,其中涉及传染病感染人数随时间的变化情况及一些初始资料,可通过建立相应的微分方程模型加以解决。 2、问题表述中已给出了各子问题的一些相应的假设。 3、在实际中,感染人数是离散变量,不具有连续可微性,不利于建立微分方程模型。但由于短时间内改变的是少数人口,这种变化与整体人口相比是微小的。 因此,为了利用数学工具建立微分方程模型,我们还需要一个基本假设:感染人数是时间的连续可微函数。

数学建模之灰色预测模型

一、灰色预测模型 简介(P372) 特点:模型使用的不是原始数据列,而是生成的数据列。 优点:不需要很多数据,一般只用4个数据就能解决历史数据少,序列的完整性和可靠性低的问题。 缺点:只适用于中短期的预测和指数增长的预测。 1、GM(1,1)预测模型 GM(1,1)表示模型为一阶微分方程,且只含有一个变量的灰色模型。 模型的应用 ①销售额预测 ②交通事故次数的预测 ③某地区火灾发生次数的预测 ④灾变与异常值预测,如对旱灾,洪灾,地震等自然灾害的时间与程度进行预报。(百度文库) ⑤基于GM(1,1)模型的广州市人口预测与分析(下载的文档) ⑥网络舆情危机预警(下载的文档) 步骤 ①级比检验与判断 由原始数据列(0)(0)(0)(0)((1),(2),,())x x x x n =计算得序列的级比为 (0)(0)(1)(),2,3, ,.() x k k k n x k λ-== 若序列的级比()k λ∈ 221 2 (,)n n e e -++Θ=,则可用(0)x 作令人满意的GM(1,1)建 模。 光滑比为 (0)1 (0) 1 () ()() k i x k p k x i -== ∑ 若序列满足

[](1) 1,2,3,,1;() ()0,,3,4, ,;0.5. p k k n p k p k k n ??+<=-∈=< 则序列为准光滑序列。 否则,选取常数c 对序列(0)x 做如下平移变换 (0)(0)()(),1,2, ,,y k x k c k n =+= 序列(0)y 的级比 0(0)(1) (),2,3, ,.() y y k k k n y k λ-=∈Θ= ②对原始数据(0)x 作一次累加得 (1)(1)(1)(1)(0)(0)(0)(0)(0)((1),(2),,())(11+(2),,(1)()).x x x x n x x x x x n ==++(),() 建立模型: (1) (1),dx ax b dt += (1) ③构造数据矩阵B 及数据向量Y (1)(1)(1)(2)1(3)1,()z z B z n ??- ??- ? ?=?? ????- 1??(0)(0)(0)(2)3()x x Y x n ??????=?? ?? ???? () 其中:(1)(1)(1()0.5()0.5(1),2,3,,.z k x k x k k n =+-=) ④由 1??()?T T a u B B B Y b -??==???? 求得估计值?a = ?b = ⑤由微分方程(1)得生成序列预测值为 ? (1) (0)???(1)(1)k 0,1,,1,,??ak b b x k x e n a a -??+=-+=- ? ??? , 则模型还原值为

数学建模常见评价模型简介

常见评价模型简介 评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。 层次分析模型 层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去, 直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。 运用层次分析法进行决策,可以分为以下四个步骤: 步骤1 建立层次分析结构模型 深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。 步骤2构造成对比较阵 对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵; 步骤3计算权向量并作一致性检验 由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。 步骤4计算组合权向量(作组合一致性检验) 组合权向量可作为决策的定量依据 通过一个具体的例子介绍层次分析模型的应用。 例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。 步骤1 建立系统的递阶层次结构 将决策问题分为3个层次:目标层O,准则层C,方案层P;每层有若干

数学建模 人口模型 人口预测

关于计划生育政策调整对人口数量、结构及其影响的研究 【摘要】 本文着重于讨论两个问题:1、从目前中国人口现状出发,对于中国未来人口数量进行预测。2、针对深圳市讨论单独二胎政策对未来人口数量、结构及其对教育、劳动力供给与就业、养老等方面的影响。 对于问题1从中国的实际情况和人口增长的特点出发,针对中国未来人口的老龄化、出生人口性别比以及乡村人口城镇化等,提出了 Logistic 、灰色预测、等方法进行建模预测。 首先,本文建立了 Logistic 阻滞增长模型,在最简单的假设下,依照中国人口的历 史数据,运用线形最小二乘法对其进行拟合, 对 2014 至 2040 年的人口数目进行了预测, 得出在 2040 年时,中国人口有 14.32 亿。在此模型中,由于并没有考虑人口的年龄、 出生人数男女比例等因素,只是粗略的进行了预测,所以只对中短期人口做了预测,理 论上很好,实用性不强,有一定的局限性。 然后, 为了减少人口的出生和死亡这些随机事件对预测的影响, 本文建立了 GM(1,1) 灰色预测模型,对 2014 至 2040 年的人口数目进行了预测,同时还用 2002 至 2013 年的 人口数据对模型进行了误差检验,结果表明,此模型的精度较高,适合中长期的预测, 得出 2040 年时,中国人口有 14.22 亿。与阻滞增长模型相同,本模型也没有考虑年龄 一类的因素,只是做出了人口总数的预测,没有进一步深入。 对于问题2针对深圳市人口结构中非户籍人口比重大,流动人口多这一特点,我们采用了灰色GM(1,1)模型,通过matlab 对深圳市自2001至2010年的数据进行拟合,发现其人口变化近似呈线性增长,线性相关系数高达0.99,我们就此认定其为线性相关并给出线性方程。同理,针对其非户籍人口,我们进行matlab 拟合发现,其为非线性相关,并得出相关函数。并做出了拟合函数 0.0419775(1)17255.816531.2t X t e ?+=?-。 对于新政策的实施,我们做出了两个假设。在假设只有出生率改变的情况,人口呈现一次函数线性增加。并拟合出一次函数0.032735617965.017372.5t Y e ?=?-;在假设人口增长率增长20%时,做出了预测如果单独二胎政策实施,到2021年,深圳市常住人口数将会到达1137.98千万人。 关键词:GM(1,1)灰色模型 Logistic 阻滞增长模型 线性拟合 非线性拟合

数学建模100个模型

《数学建模》题库 为了培养想象力、洞察力和判断力,考察对象时除了从正面分析,还常常需要从侧面或反面思考,尽可能迅速的回答1-5题。 1. 某人早上8:00从山下旅馆出发,沿一条路径上山,下午5:00到达山顶并留 宿。次日早8:00沿同一路径下山,下午5:00回到旅馆。则此人必在两天中同一时刻经过路径中的同一地点,为什么? 2. 37支球队进行冠军争夺赛,每轮比赛中出场的每两支球队的胜者以及轮空者 进入下一轮,直到比赛结束,问共需进行多少场比赛,共需进行多少轮比赛? 3. 甲乙两站之间有电车相通,每隔十分钟甲乙两站相互发一趟车,但发车时刻 不一定相同。甲乙之间有一中间站丙,某人每天在随机时刻到达兵站,并搭乘最先经过丙站的那趟车,结果发现100天中约有90天到达甲站。问开往甲乙两站的电车经过丙站的时刻表是如何安排的? 4. 某人家住T市在他乡工作,每天下班后乘火车于6:00抵达T市车站,他的妻 子驾车准时到车站接他回家。一日他提前下班,搭乘早一班火车于5:30抵达T市车站,随即步行回家,他的妻子像往常一样驾车前来,在半路上遇到他,即接他回家,此时发现比往常提前了十分钟。问他步行了多长时间? 5. 一男孩和一女孩分别在离家2千米和1千米且方向相反的两所学校上学,每天 同时放学后分别以4千米/小时和2千米/小时的速度步行回家。一小狗以6千米/小时的速度由男孩处奔向女孩,又从女孩处奔向男孩,如此往返只至回到家中,问小狗奔波了多少路程? 6. 任意拿出黑白两种颜色的棋子共8个,排成如图一所示的一个圆圈,然后在两 颗颜色相同棋子中间放一颗黑棋子,在两颗颜色不同的棋子中间放一颗白棋子,放完后撤掉原来所放的棋子,再重复以上的过程,这样放下一圈后就拿走前次的一圈棋子,问这样重复下去棋子的颜色会发生怎样的变化? 图一

相关主题