搜档网
当前位置:搜档网 › 闸复安切换成功率低问题分析updated

闸复安切换成功率低问题分析updated

闸复安切换成功率低问题分析updated
闸复安切换成功率低问题分析updated

A l l r i g h t s r e s e r v e d . P a s s i n g o n a n d c o p y i n g o f t h i s d o c u m e n t , u s e a n d c o m m u n i c a t i o n o f i t s c o n t e n t s n o t p e r m i t t e d w i t h o u t w r i t t e n a u t h o r i z a t i o n f r o m A l c a t e l.

闸复安切换成功率低问题分析

1、 指标统计

闸复安ALH _3小区从11月18日开始出现大量的切换失败,切换成功率为0%,全部都是S1的切换失败。11月20日11:00该小区的统计结果如下:

2、 切换失败原因分析 测试结果:

测试过程中UE 占用闸复安_3(PCI=191),在小区边缘RSRP -96dBm 左右,邻区新成_1(PCI 288) RSRP -89dBm ,UE 上发了多条测量报告,但是始终未收到切换命令,之后UE 电平恶化掉线:

ENB 侧信令结果:

从ENB 侧的信令来看,发送了切换请求后,很快收到MME 发送的切换命

A l l

r i g h t s r e s e r v e d . P a s s i n g o n a n d c o p y i n g o f t h i s d o c u m e n t , u s e a n d c o m m u n i c a t i o n o f i t s c o n t e n t s n o t p e r m i t t e d w i t h o u t w r i t t e n a u t h o r i z a t i o n f r o m A l c a t e l.

令,但是源ENB 紧接着发出handover cancel(cause ’unspecified ’)取消切换:

从eNB 内部trace 来看,主要原因是目标enb 发送的s1AP HO command 消息中erabSubjectToDataForwardingList 中没有包含DL Transport Layer Address 和DL GTP-TEID 字段:

核查系统参数,闸复安ALH 的dataForwardingForS1HoEnabled 设置为TRUE ,但是目标基站新成ALH 的参数值设置为FALSE ,导致信令消息不匹配引起切换失败。统一参数后,UE 侧显示成功切换,OMC 侧的统计报告计为timer 超时的失败,未再出现handover cancel ,测试时段统计结果如下(11月26日15:00-16:00):

起的,详细的原因分析可以参见之前的报告。测试数据显示成功切换,eNB 侧

A l

l r i g h t s r e s e r v e d . P a s s i n g o n a n d c o p y i n g o f t h i s d o c u m e n t , u s e a n d c o m m u n i c a t i o n o f i t s c o n t e n t s n o t p e r m i t t e d w i t h o u t w r i t t e n a u t h o r i z a t i o n f r o m A l c a t e l.

信令显示,切换命令下发后5秒仍然没有收到核心网下发的拆链消息,eNB 发

送UE context release request 消息请求拆链,计为一次切换失败:

10秒后MME 下发了successful handover 的拆链消息:

参数设置引起的消息差异说明:

dataForwardingForS1HoEnabled 和dataForwardingForX2HoEnabled 参数设置为不同的数值,会导致小区发送的切换请求不同,设置为TRUE 时,切换请求消息中会携带directforwardingpathavailability 字段:

A l l r i g h t s r e s e r v e d . P a s s i n g o n a n d c o p y i n g o f t h i s d o c u m e n t , u s e a n d c o m m u n i c a t i o n o f i t s c o n t e n t s n o t p e r m i t t e d w i t h o u t w r i t t e n a u t h o r i z a t i o n f r o m A l c a t e l.

目标小区回送的消息中会携带DL Transport Layer Address 和DL GTP-TEID 信息:

切换能成功完成。设置为FALSE ,则不带该字段,切换也能正常完成。源小区设置为TRUE ,目标小区设置为FALSE ,则会由于消息不匹配导致切换中断,因此,建议全网统一设置。11月25日17:00将1800个小区的值设置统一后,全网的切换中断次数大幅下降:

A l l r i g h t s r e s e r v e d . P a s s i n g o n a n d c o p y i n g o f t h i s d o c u m e n t , u s e a n d c o m m u n i c a t i o n o f i t s c o n t e n t s n o t p e r m i t t e d w i t h o u t w r i t t e n a u t h o r i z a t i o n f r o m A l c a t e l.

3、 结论

dataForwardingForS1HoEnabled 和dataForwardingForX2HoEnabled 参数需要全

网统一设置,避免因该参数设置不同引起的切换失败。

装机成功率低原因分析

装机成功率低原因分析 截止8月26日,***公司共计接收装机派单(EMOS)543份,其中,成功装机301个,未处理工单14份,装机不成功229个,装机成功率55.4%。 对229份装机不成功清单,分析整理如下: 主要分为四类原因,其中营销侧原因113份,用户侧原因69份,网络侧原因40份,其他类原因7份。 营销侧原因:地址录入错误40份,微信派单问题(无派单,无经办人等)33份,设备未验收录入21份,营销问题(客户取消安装、用户未办理等)16份,账号问题3份。 用户侧原因:无法走线16份,不在家或无法联系38份,无电脑路由器或电脑坏12份,未居住或装修3份。 网络侧原因:数据原因8份,系统升级17份,端口满9份,无资源6份。 其他原因:道路不通(喜河)6份,停电1份。 具体原因及改进措施: 1、铁通装机问题:

(1)人员不足:***通目前13人,具体人员配置如下 其中,铁通自有员工8人,1名站长,1名内勤装机4人(含1名新招人员),维护2人。8月,因市公司要求小区资源普查,铁通抽调2人进行资源普查,县城区域实际装机人员2人(不含新招人员)+2名协装。 每人每天按4户装机计算,每天装机16户,而宽带发展量会出现突发量,8月单日录入量多时可达到40户以上,铁通装机能力无法保证。 建议:铁通增加装维人员,建议装维人员配置达到装机5人+维护3人,协装人员做为单日派单量突增的解决手段,保证装机能力达到市场发展需求。 平利人员配置:装机5人+维护3人+协装2人(2)不能做到在宽带营销平台反馈具体录入地址:

因为人员不足,无法做到每个工单及时上门,不能反馈正确录入地址,铁通在APP中反馈可安装,不能对营销人员反馈具体录入地址,导致地址录入错误撤单较多。 建议:严格要求铁通反馈具体录入地址,如未反馈则进行扣罚,扣罚标准按一次0.5分扣罚(铁通打分)。 2、营销存在问题 (1)、不在家或无法联系38份 (2)、无电脑路由器或电脑坏12份 (3)、未居住或装修3份 (4)、微信派单问题(无派单,无经办人等)33份, (5)、设备未验收录入21份 (6)、营销问题(客户取消安装、用户未办理等)16份 建议:严格执行新的录入流程,对违反录入流程的自有员工及代理商进行现金处罚。 3、网络存在问题 (1)数据原因8份(2)系统升级17份(3)无资源6份 (4)端口满9份 建议:端口满情况—上报扩容解决 无资源---整理纳入后期规划 4、其他 道路不通6份:主要存在喜河,喜河录单安装时间为周六, 已与铁通协调

LTE切换成功率分析-中兴20140818

切换分析 1.全网切换指标统计 近期切换成功率呈持续下降趋势,对切换失败原因进行统计,发现切换成功率降低与目标侧准备失败上升呈相同趋势,原因为近期核心网组POOL,个别站点漏配路由导致周围小区向该基站切换入全部失败和邻区参数存在5000多条不一致导致切换出侧准备失败。这两个问题在8月14日下午部分进行处理,8月15日切换成功率回归到98.07%,但仍跟8月6日98.5%存在差距。 提取8月17日切换成功率相关指标,发现子网-1、子网-2、子网-3、子网-4切换成功率差的主要原因为准备失败-目标侧准备失败;子网-6切换成功率差的主要原因为准备失败-其他原因。 子网1:

子网2: 子网3: 子网4:

子网5: 子网6:

子网10: 集团切换成功率公式: (C373250980+C373261280+C373271580+C373281880+C373292180+C373302480)/(C3732509 00+C373250901+C373250902+C373250903+C373261200+C373261201+C373261202+C37326 1203+C373271500+C373271501+C373271502+C373271503+C373281800+C373281801+C373 281802+C373281803+C373292100+C373292101+C373292102+C373292103+C373302400+C3 73302401+C373302402+C373302403+C373250988+C373261289+C373271588+C373281888+ C373292189+C373302488) 相关计数器说明如下表:

如何提高切换成功率讲解

如何降低切换失败率 切换成功率是无线网络中一项重要的统计指标。高切换成功率显示了网络的某一方面的正常运转。因此,降低切换失败率,从而提高切换成功率是网络优化中关键的工作项目之一。 一.切换流程: 移动台不断将6个最强邻小区上报,基站子系统判决移动台是否需要切换,向哪个小区切换。网络向移动台发出切换命令(handover command),启动切换进程,切换命令包括目标小区TCH,接入目标小区的初始功率等信息。移动台多次向目标小区发送Handover Burst,如成功接入目标小区,由目标小区向BSC 发送切换成功的消息。目标小区等待移动台接入切换信道,如不成功,移动台返回源小区,并由源小区向BSC发送切换不成功的消息。如果移动台向目标小区的切换失败,而且源小区在定时器超时之前没有收到移动台返回的消息,则BSC 向MSC发送清除请求,移动台发生掉话。

二.切换失败: 切换失败可以划分为两方面的问题:即信道容量、无线链路失败。 Handover Selection Failure 是从BSC到BTS的HO_COMMAND数与BTS 收到的HO_INDICATION数之差。它可以帮我们找出由于目标小区信道资源不足引起的切换失败,或系统的问题(难以建立BSC与BTS之间的L2连接)。 HandoverExecutionFailure 是数与BSC发向BTS的HO_COMMAND数与BSC 收到的HO_COMPLETE之差。主要反映了空中无线接口的质量。 三.造成切换失败的可能原因及分析: ?硬件问题: 当切换失败率非常高时,硬件故障可能性最大 ?相邻小区关系问题 ?邻小区负荷 ?恶劣的无线环境 A.相邻小区关系问题: 如果两个小区有相同的(BSIC,BCCH),在正常的情况下这样的两个小区的相距距离应该足够大,他们之间不应该有什么关系。但由于孤岛现象的存在,一旦孤岛覆盖周围的小区的邻小区表上定义了与孤岛小区同BSIC、BCCH的邻小区,位于此地的通话手机将会收到孤岛小区的BCCH信号并上报BSC,这个虚假的邻小区测试报告将会误导切换控制程序发出切换指令,这样就使得这些小区内的通话频频尝试向实际信号并不好的小区发出切换请求。其结果往往造成乒乓切换,并导致孤岛覆盖周边小区的切出切换失败率大幅提高。而与孤岛小区具有相同BSIC、BCCH的小区的切入切换失败率也将大幅提高。

电气倒闸操作常见问题分析

无论是机组启停,还是机组正常运行,以及事故情况下,电气倒闸 操作做为日常工作较为重要的一个环节,它的正确性、安全性将关 系到人身、设备的安全,机组及电网的安全、稳定运行。 将电气设备由一种状态转变为另一种状态,就叫倒闸,所进行的操作,称之为倒闸操作。 1、在拉合闸时,必须用开关接通和断开负荷电流及短路电流,绝对禁 止用刀闸切断负荷电流; 2、在合闸时,应先从电源侧进行,检查开关确定在断开位置后,先合上母线侧刀闸,后合上负荷侧刀闸,再合上开关。因为在线路合闸送电时,有可能开关在合闸位置未查出;若先合线路侧刀闸,后合母线侧刀闸,则带负荷合刀闸时,在刀闸触头间产生强烈电弧,会损坏设备,甚 至引起母线短路,从而影响其它设备安全运行。若先合母线侧刀闸,后合线路测刀闸,虽是同样带负荷合刀闸,但由于母线开关继电保 护动作,使它自动跳闸,隔离故障点,不致影响其它设备的安全运行;同时线路侧刀闸检修较简单,且只需停一条线路,而检修母线侧刀闸时,必须停用母线,影响面大。 3、在拉闸时,应先从负荷侧进行,拉开开关,检查开关确在断开位置后,然后再拉开负荷侧刀闸,最后拉开电源测刀闸。对于两侧具 有开关的变压器而言,在停电时,应先从负荷侧进行,先断开负荷 侧开关切断负荷电流,后断开电源侧开关,只切断变压器的空载电流。因为,若开关在合闸位置未检查出来,则造成带负荷拉刀闸, 则使故障发生在线路上,因线路继电保护动作使开关自动跳闸,隔 离故障点,不至于影响其它设备的安全运行。若先拉开电源侧刀闸,后拉负荷侧刀闸,虽同样是带负荷拉刀闸,则故障发生在母线上, 扩大了故障范围,影响了其它设备安全运行,甚至影响机组的稳定性。 4、在倒母线时,刀闸的拉合步骤是先逐一合上需要转换至一组母线的刀闸,然后逐一拉开在另一母线上运行的刀闸,这样能够避免因

开关及刀闸控制及信号回路教案

220千伏开关分合闸回路 一、合闸过程:由611(远方)617就地正电开始,分别经过-S8(远方就地把手——汇控箱内)、K76就地近控把手—汇控箱内),经过二极管(防止反向充电),再到-SILA(开关辅助常闭接点41、42,61、62),再到YILA合闸线圈,经过K15弹簧未储能接点,经过K75LA (防跳接点),经过K10(SF6压力接点),经过K61(汇控箱内的确认复归按钮:作用是当非全相运行后,需重新合闸必须按下此按钮,这个按钮是一线圈的确认按钮),经过K63(二线圈的确认按钮),经过S8远方就地把手后就直接到达负电626、625,完成合闸过程。 二、防跳回路:从79开始经63、64开关的辅助接点(开关在开位时,此接点打开,开关在合位时此接点闭合),再到K75LA使防跳继电器励磁,经过S9合闸按钮回到负电。其中K76就是就地合部继电器(接死后就是始终在用就地防跳)。 三、分闸回路:由637正电开始,分别经过S8远方就地把手,K77就地分闸、K61非全相自动分闸接点后再到193-194、203-204、213-214几对开关的辅助接点后启动Y3LB分闸线圈,后再到K10SF6压力,经过K11分闸同步后就回到期负电完成分闸过程。

500千伏开关(LW13-550/Y)分合闸回路 一、合闸过程:A7K正电开始经过43LR远方合闸,(或由11-52就地合闸开始由就地合闸5到11-52到43LR到负电),到52YA两个防跳继电器接点到52开关辅助接点到52C合闸线圈,到63HL2X低没压闭锁,到63GLXSF6气压闭锁到负电完成合闸过程。 二、防跳回路:TB3/26到52AX开磁辅助接点经过52YA延时打开接点到52YA使防跳继电器励磁(52YA励磁合闸回路中52YA两个接点断开,防跳回路中52YA闭合经电阻形成自保持一直到合闸命令结束。 三、分闸过程:A91正电过来到52A开关辅助接点经过52T1分闸线圈,经过63HL1X低油压闭锁接点,到63GLX(SF6气压闭锁)接点,再经过ZJ金短保护(作用是防止开关合闸过程中分闸)回到负电完成分闸过程。

切换成功率低处理案例

LTE吉州区人民广场基站S1口少配导致切换成功率低处理案例 一、现象描述 在LTE网络KPI指标监控过程中发现吉州区人民广场区域的几个站点切换成功率极低,严重影响全网切换类指标,其中吉州区人民广场切换入失败次数每天达到4600多次,吉州区富华宾馆、吉州区红雨宾馆、吉州区附属医院,切换出失败次数和为4500多次。 二、原因分析 1.处理流程图

2.分析切换成功率低可能原因: 对KPI指标及周边环境分,可发现如下问题: 1)吉州区人民广场基站的邻区是否存在漏配、错配,外部邻区参数设置是否正确,PCI规划是否合理,切换参数设置是否有问题。 2)吉州区人民广场基站的切换入失败次数的和约等于周边基站切出失败的和,可定位为吉州区人民广场基站的问题导致其切入成功率低及周边基站切出功率低; 三、问题排查 1、吉州区人民广场及周边站点邻区核查 吉州区人民广场及 周边站点同频邻区核查

根据基站拓扑结构核查吉州区人民广场及周边站点的邻区,确定现网邻区无漏配的问题,确定吉州区人民广场及周边站点的PCI规划合理。 2、吉州区人民广场及周边站点外部邻区定义核查 吉州区人民广场及 周边站点外部邻区核查 核查吉州区人民广场及周边站点外部邻区的定义,主要核对外部邻区PCI及TAC设置,将外部邻区定义的PCI及TAC与现网比对,确定没问题。 3、同频切换参数检查及现场测试 吉安LTE网络刚开局,现网所有切换参数均为默认值,核查无问题。

现场测试,吉州区人民广场与吉州区附属医院切换正常,验证了该站的参数设置没问题,可能有其他不常见的问题导致。 4、后台跟踪 查询周边站点切换出失败原因全部为目标小区回复切换准备失败消息导致切换出准备失败

浅析倒闸操作过程中存在的问题及预防措施

浅析倒闸操作过程中存在的问题及预防措施 【摘要】倒闸操作是变电运行工作的重中之重,是维护电力系统正常、安全运行的保证,如在检修,操作过程中稍有不慎就可能造成全站断电,电网大面积停电事故。本文从倒闸操作过程中可能存在的问题进行分析,并对怎样进行防误操作提出诚恳建议。 【关键词】倒闸操作;存在问题;预防措施 1 问题的提出 变电站倒闸操作是变电运行工作的重点、难点,是电力系统正常、安全运行的保证。变电站倒闸操作来不得半点马虎,但由于现场操作人员的个人经历不同、技术水平不等、关注的重点也各有侧重,造成其结果不尽相同,甚至出现不尽人意的结果,出现了误操作等责任性人为事故,为单位和个人造成了很多不必要的损失。 1.1 人员方面 倒闸操作是一件非常严肃、严谨并要严格执行相关规章制度和流程的重要工作,我们每位操作人员都要认真执行,绝不可懈怠。但是,我们在日常操作中有些操作人员对倒闸操作的严肃性、严谨性认识不清,对倒闸操作的相关规章制度和流程执行不严格。“预防误操作“工作的首要问题是人员问题,要提高操作人员的安全思想意识和责任意识,要严肃倒闸操作纪律、严格相关规章制度和流程、认真执行倒闸操作七要八步骤等相关规定、杜绝习惯性违章行为。倒闸操作纪律执行不严肃、执行规章制度和流程不严格、执行倒闸操作六项把关规定不认真、习惯性违章行为时常发生。存在着无票操作问题(一般是在配合检修、试验和继电保护工作时发生)、倒闸操作准备不充分、倒闸操作票填写不规范、监护人监护不到位、执行唱票和复诵环节不规范、没按规定正确使用安全工器具、没按规定要求擅自解除闭锁、检查项目不到位等问题。这些问题的存在对倒闸操作会产生严重的不良后果。 1.2 设备方面 现场一、二次设备的名称、编号、位置指示器、设备的拉合(转动)方向、设备相色等标志不全或不清晰、不明显。一次设备锈蚀,操作卡涩,可能会损坏设备而酿成事故。新型设备大都为半封闭或全封闭设备,断路器、隔离开关的看不到明显的断开点,只能靠位置指示器、电流、电压指示等辅助手段判断设备的状态。 防止误操作的技术措施主要是微机五防闭锁和设备本身的五防联锁功能的配合来实现的。但是,有些设备由于一些原因,微机五防闭锁安装不够全面,微机五防闭锁装置本身也有一定得局限性,存在着盲区,交流系统、直流系统和保

倒闸操作常见问题分析

倒闸操作常见问题分析 无论是机组启停,还是机组正常运行,以及事故情况下,电气倒闸操作做为日常工作较为重要的一个环节,它的正确性、安全性将关系到人身、设备的安全,机组及电网的安全、稳定运行。由于国产200M W机组全能值班员的实行,加之人员的优化组合,原从事电气专业值班员减少,有经验的人员不多。在电气专业面,人员的技术水平、技术素质跟不上当前形势的需要,电气专业面人力更显匮乏。虽实行全能值班员,但跨专业学习的局限性,倒闸操作在执行中还存在很大差距。特别是非电气专业人员在进行电气倒闸操作时操作极不规范,大多数人根本没有掌握电气倒闸操作知识。因此很有必要对电气倒闸操作加以论述。 1电气倒闸操作释义及其原则 电气设备有三种状态,即运行、备用(冷备用、热备用、联动备用)、检修状态;将电气设备由一种状态转变为另一种状态,就叫倒闸,所进行的操作,称之为倒闸操作。 倒闸操作的原则: 中心原则:不能带负荷拉合刀闸 1.1在拉合闸时,必须用开关接通和断开负荷电流及短路电流,绝对禁止用刀闸切断负荷电流; 1.2在合闸时,应先从电源侧进行,检查开关确在断开位置后,先合上母线侧刀闸,后合上负荷侧刀闸,再合上开关。因为在线路合闸送电时,有可能开关在合闸位置未查出;若先合线路侧刀闸,后合母线侧刀闸,则带负荷合刀闸时,在刀闸触头间产生强烈电弧,会损坏设备,甚至引起母线短路,从而影响其它设备安全运行。若先合母线侧刀闸,后合线路测刀闸,虽是同样带负荷合刀闸,但由于母线开关继电保护动作,使它自动跳闸,隔离故障点,不致影响其它设备的安全运行;同时线路侧刀闸检修较简单,且只需停一条线路,而检修母线侧刀闸时,必须停用母线,影响面大。 1.3在拉闸时,应先从负荷侧进行,拉开开关,检查开关确在断开位置后,然后再拉开负荷侧刀闸,最后拉开电源测刀闸。对于两侧具有开关的变压器而言,在停电时,应先从负荷侧进行,先断开负荷侧开关切断负荷电流,后断开电源侧开关,只切断变压器的空载电流。因为,若开关在合闸位置未检查出来,则造成带负荷拉刀闸,则使故障发生在线路上,因线路继电保护动作使开关自动跳闸,隔离故障点,不至于影响其它设备的安全运行。若先拉开电源侧刀闸,后拉负荷侧刀闸,虽同样是带负荷拉刀闸,则故障发生在母线上,扩大了故障范围,影响了其它设备安全运行,甚至影响机组的稳定性。 1.4在倒母线时,刀闸的拉合步骤是先逐一合上需要转换至一组母线的刀闸,然后逐一拉开在另一母线上运行的刀闸,这样能够避免因合一把刀闸,拉一把刀闸而造成的误操作事故;但有时也根据具体情况而定。 1.5允许用刀闸拉合的设备如下: 1.5.1拉合母线上无故障的避雷器和电压互感器; 1.5.2在母联开关已合闸时,倒换系统运行方式; 1.5.3在正常情况下倒换主变中性点运行方式; 1.5.4用带消弧罩的刀闸,当刀闸与操作把手之间有隔板时,允许拉切30安培以下的负荷电流(380V系统); 1.5.5母线上负荷刀闸均断开的情况下,给没有故障的母线充电和切电。

切换成功率日常处理流程

切换成功率日常处理流程 一、切换的定义 切换过程是由MS、BTS、BSC以及MSC共同完成,MS负责测量无线子系统的下行链路性能和从周围小区中接收信号强度这些。BTS将负责监视每个被服务的移动台的上行接收电平和质量,此外它还要在其空闲的话务信道上监测干扰电平。BTS将把它和移动台测量的结果送往BSC,最初的判决以及切换门限和步骤是由BSC完成。对从其它BSS和MSC发来的信息,测量结果的判决是由MSC来完成。 系统对切换的判决取决于移动台定期对网络发送的测量报告(该测量报告是移动台在处于专用模式下时通过上行的SACCH信道来向系统报告),以及基站对上行链路的测量报告,这两份测量报告将同时送到BSC中进行判决。在SACCH信道的下行方向上,它负责向处于专用模式下的移动台来发送系统消息,其中有本小区和邻小区的参数设置情况。移动台就根据系统提供的这些信息,在通信过程中要向网络汇报本小区的接收电平和信号质量及TA值、功率控制和是否使用DTX的情况,此外还要对系统所定义的供该小区切换的邻小区来进行预同步并测量它们BCCH频点的接收电平。除空闲帧外,移动台要对所有的帧进行测量。空闲帧用于对最佳小区进行搜索,用于同步邻小区的FCH并解码SCH。上行方向上移动台将把在本测量周期内,它所测得的本小区的情况以及接收电平最强的六个邻小区通过上行的SACCH信道上报给系统,系统将根据这些情况来进行切换判决。二、切换的各类计算方法

HSR=(TCH切入成功+切出成功+DR成功)/ (TCH切入请求+切出请求 +DR请求) *100 _ TCH切入成功次数=(MC652-C92)+(MC642-C82)+(MC662-C102) _ TCH切出成功次数= (MC656-C96)+(MC646-C86) _ BSC内部DR切入成功次数=MC151 _ DR切出成功次数= MC142e+MC142f _ TCH切入请求次数= (MC821-C31)+(MC831-C331)+(MC871-C361) _ TCH切出请求次数= (MC650-C90)+(MC660-C100) _ BSC内部DR切入请求=MC153 _ DR切出请求= MC144e+MC144f > 作用:整体的切换成功情况> 坏门限: <95 %(根据各地实际情况而定) 三、切换成功率判断方法 1、在Cell lndicator(小区)级报表下,对全网切换成功率进行排序,用升序排序法筛选出切换成功率较低的小区。 2、用小区历史数据查询功能,检查指标异常出现在哪些时段。某一时段突发还是一直存在切换成功率较低的情况。 3、用小区详细质量分析功能,分析小区详细切换信息。(如下图)

试论倒闸操作中的常见问题和对策

试论倒闸操作中的常见问题和对策 摘要:防止倒闸误操作是变电运行工作长期的艰巨任务,由于操作错误往往会 造成用户停电、设备损坏、人身伤亡和电网瓦解等重大事故。目前,人们为预防 变电运行倒闸操作事故做出很多的努力,但是还是存在需要结合运行工作实际来 进一步地分析事故发生原因,调整运行工作程序的必要。了解变电运行倒闸操作 事故的具体原因,开展变电运行倒闸操作事故发生因素的分析和控制工作,进一 步采取诸多措施,来预防变电运行倒闸操作事故,建立科学系统的倒闸操作步骤 流程,降低变电运行倒闸操作事故发生的频率,确保变电运行工作的安全可靠性。 关键词:倒闸操作;误操作原因;预防措施 对于变电运行人员来说,倒闸操作是日常工作中最常见和最普遍的一项基本 工作。随着电力工业的快速发展,我国的电网规模和容量日益扩大,倒闸操作已 成为一项比较复杂的工作,既有一次设备的操作,也有二次回路的操作,操作项 目繁多,稍有疏忽,就会造成事故,因此倒闸操作的规范性和正确性已成为确保 电网安全和稳定的重要基础,也关系着在电气设备上工作的每—个工作人员及操 作人员的生命安全。误操作不但会影响电力系统的正常生产工作,也可能造成全 站停电,甚至系统瓦解等重大电网事故。因此,必须仔细分析变电站倒闸操作中 的危险点并采取合理的预控措施,保证电力系统的安全运行。 1误操作原因分析 1.1监督和管理制度不完善 变电运行倒闸操作工作的工作体系不完善,监督和管理制度缺失会导致变电 运行倒闸事故的发生。变电运行倒闸操作的程序步骤较复杂,而管理操作的人员 数量不够,没有充足的劳动力分配在监督体系之中,缺乏对操作人员的严格管理,导致变电运行倒闸操作工作的监督力度不够。在倒闸操作技术运用的过程中,因 监督和管理制度的不完善导致监督人员没有按照规范的操作流程进行监督,工作 人员不认真执行任务和运用设备和操作技术,电力系统检修维护工作不能定期进行,没有进行详细的预防措施。并且,缺乏对变电运行倒闸操作过程的调整和完善,导致专业操作技术逐渐弱化,操作的合理之处得不到改善。长时间以来,造 成了一定的安全隐患,导致变电运行倒闸操作事故发生。 1.2人员工作态度和专业能力引发 社会迅速地发展既给人们改善了生活水平,也冲击着往常的生活秩序,某些 时候在某种程度上也影响了人的工作态度。从人的角度看,工作态度决定工作质量,主要体现在违反操作规程,习惯性违章等,变电运行倒闸操作事故发生与操 作人员的技术水平和工作态度存在密切关联。如果负责倒闸操作的工作人员缺乏 专业规范的学习培训以及指导,变电运行倒闸操作工作发生错误的概率会极大地 增高,那么变电运行倒闸操作事故发生的概率相应就会大幅度增加。变电运行倒 闸操作需要遵循的流程和步骤比较复杂,因为缺乏正规严格的培训学习和上岗考试,工作人员的操作不够熟练灵活,缺乏基础的变电运行理论知识,往往会忽略 很多设备和技术问题,很容易在操作过程中出现失误,而且在发生变电运行倒闸 操作事故时无法快速应对。另一原因可能是工作人员的综合素质较差,工作态度 不够端正,缺乏爱岗敬业、认真负责等优秀的职业道德修养,缺乏一定的规则意识,不按照规定的操作流程进行变电运行操作,不按照规定的标准来使用操作票,缺少操作作业之前的安全检查环节,部分环节发生失误或遗漏,甚至在变电运行 中进行违章违规的操作。

隔离开关控制回路原理 图文 民熔

隔离开关 隔离开关又称刀闸,是变电站中重要的一次设备数量众多,且操作频繁结构相对简单、没有专门灭弧装置、无灭弧能力闭锁回路可以避免恶性误操作事故发生信号回路将信号传送至监控后台,及时发现缺陷_ 隔离开关的主要作用: 1、隔离电源 2、改变运行方式 3、分、合小电容电流和电感电流_ 隔离开关的牌子 推荐民熔电气 隔离开关主要组成部分:1、支持底座2、导电部分3、绝缘子4、传动机构5、操控机构隔离开关控制回路

开关的机械联锁及电气闭锁变电设备运行的“五防”中,与隔离开关相关的误操作就有三个:带负荷拉(合)刀闸、带电合地刀和带地刀合刀闸隔离开关的通用闭锁逻辑如下: 1.对于双母线类接线,只有母联断路器及其两侧隔离开关合上时才允许倒母线; 2.除倒母线外,断路器间隔内的隔离开关应在断路器分闸后才能分合闸; 3.合隔离开关时,隔离开关两侧接地开关应分开、接地线应拆除,包括经断路器、主变、接地变、站用变、电缆等连接的接地开关及接电线; 4.旁路断路器间隔的旁路隔离开关,必须旁路断路器分开,旁路母线接地开关分开的状态下才能合闸;

5.非旁路断路器间隔的旁路隔离开关,必须在旁路断路器分开,旁路母线上所有接地开关分开、所在间隔线路侧接地开关(主变各侧接地开关)在分开的状态下才能合闸。 目前使用的技术措施及装置包括: 1.变电站自动化系统五防子系统; 2.微机防误闭锁装置; 3.电气闭锁; 4.电磁闭锁; 5.机械联锁; 6.机械程序锁。 隔离开关的操作目前使用的技术措施及装置包括:1.变电站自动化系统五防子系统; 2.微机防误闭锁装置;

3.电气闭锁; 4.电磁闭锁; 5.机械联锁; 6.机械程序锁。

X2接口切换成功率低问题分析处理

X2接口切换成功率低问题分析处理 一、发现问题 在日常指标监控中,发现龙泉市系统内切换成功率连续偏低且明显低于其他县市。 通过进一步的指标分析,发现龙泉全网的X2接口切换成功率异常。 二、问题分析 查看网管告警日志,并没有发现龙泉现网告警,硬件故障、底噪等异常情况。通过进一步分析npo指标发现: 1、龙泉全市的eNB小区间切换成功率保持在较高成功率水平; 2、X2接口切换次数较多,占到所有切换次数的75%(=66026/89982),成功率偏低; 而S1切换由于次数极少,只占到总切换次数的0.05%,对指标没有实质性的影响(在阿朗设计原则是优先选择X2 HO,如果X2 HO不能做,才选择S1 HO)。

通过提取小区级别指标来分析指标,我们发现部分基站X2接口切换次数多,切换成功率低。从地理位置上分析,这部分基站位于龙泉市区东侧,相互之间切换的次数较多。如下图所示。 进一步分析NPO计数器,从Indicator子项分析X2切换失败次数最多是12709_0 HOPreparationFailureOther (词条解释:X2AP HANDOVER PREPARATION FAILURE received from the target eNodeB目标小区x2AP切换准备失败)。

三、问题解决 第一步,实地测试 现场对问题区域内路段进行DT测试,让UE来回切换记录log,基站侧同时开启基站calltrace信令跟踪。 09:00:58:889UE发了一个MR消息,通过A3事件从PC150到148进行切换,之后UE连续发送了2个MR消息,但UE未收到eNB的RRC Connection Reconfiguration响应消息;RRC产生了掉线,最终重选回到LF_B_龙泉城东_1(PCI=150)。说明切换没有完成,尚在准备

切换问题分析优化流程

1 切换问题分析优化流程 切换问题分析优化流程和其他问题的优化流程的基本思路是一致的,详见下图。 1.1 切换问题搜集及优化目标 切换问题的搜集途径一般有网管后台性能统计报表、DT路测、用户投诉信息分析 等。 在赶赴工程现场后,需要和项目负责人(多数为办事处工程师)、运营商维护经理 等相关人员开会确定需要解决的问题以及优化KPI指标(暂时参考小区移动性能 报表中的统计项目)。 需要搜集的网络信息包括: 1)了解整个网络的组网方式、结构,确定系统由哪些RNC、CN组成,然后可以 根据这些组网信息,结合基站的分布和载频的配置情况,分析出哪些地方应该存 在异频硬切换,哪些地方应该是同频硬切换。 2)运营信息。包括用户数和用户分布信息,每天和每周的话务忙闲情况,以便数 据修改尽量避开话务忙时,以免给在网用户造成大的冲击。

3)告警信息和运行记录等,保证MSC、SGSN、GGSN、HLR、VLR的设备稳定 可靠,传输通畅,以便相应测试的进行。 4)工程参数总表。此表包括基站位置、配置和频点信息,天线高度、方位角、下 倾角等信息,更重要的是它还包含邻区列表,可以根据这些信息,结合组网信息 和覆盖连续需求,确定各载频间的同频相邻关系、异频相邻关系和系统间相邻关 系。 5)参数配置。收集现网的信道功率配置、切换参数和算法开关等等数据配置信息。 切换优化的指标包括硬切换成功率、系统间切换成功率等等,这些指标项和目标 要求需要和局方讨论确定。 1.1.1 小区移动性能报表 话统数据是网络优化中最重要的信息来源之一,也是评价网络性能的主要依据。 与切换相关的话统指标主要有以下几项:同频接力切换成功率(小区切换出)、同 频接力切换成功率(小区切换入)、异频接力切换成功率(小区切换出)、异频接力切 换成功率(小区切换入)、同频硬切换成功率(小区切换出)、同频硬切换成功率(小 区切换入)、同频硬切换成功率(RNC间切换出)、异频硬切换成功率(小区切换出)、 异频硬切换成功率(小区切换入)。 通过对以上和切换相关的指标的统计,既可以判断一个小区在切换上是否存在异 常之处。 注意:统计事件最好在一周以上。统计时间段可以按照忙时每小时进行统计,也 可按天统计。 1.1.2 DT路测分析 通行DT路过评估性的DT路测也是切换问题搜集的一种手段,特别是对于业务 量不高或者尚未投入商用的TD-SCDMA无线网络而言。 注意:进测时,需要进行往返性切换测试。 1.1.3 用户投诉信息分析 运维客服中心搜集到的用户投诉信息中,对于掉话较多的一些区域,切换掉话是 主要的原因之一,需要对覆盖相应区域的小区重点进行切换分析。特别是对于切 换不及时或者乒乓切换等进行重点分析。

220kV变电站倒闸操作常见问题与改进措施分析 蒋怡

220kV变电站倒闸操作常见问题与改进措施分析蒋怡 发表时间:2019-01-18T12:03:52.137Z 来源:《防护工程》2018年第31期作者:蒋怡 [导读] 变电站的倒闸操作是电力系统运行与维护的重要支点,所有与电网运行与维护有关的操作都与变电站的倒闸操作息息相关。 呼和浩特供电局内蒙古自治区呼和浩特市 010010 摘要:变电站的倒闸操作是电力设备的运行状态转换的关键操作,因此,也彰显了在整个电力系统中变电站倒闸操作的显著作用。本篇文章主要分析了220kV变电站倒闸操作中会出现的问题,并针对有可能产生的问题提出了相应的应对措施,以此保证良好的变电站倒闸操作,从而实现电力系统的平稳运行。 关键词:220kV变电站;倒闸操作;问题;对策 0.引言 变电站的倒闸操作是电力系统运行与维护的重要支点,所有与电网运行与维护有关的操作都与变电站的倒闸操作息息相关,因此,变电站倒闸操作的重要性可见一斑。变电站的倒闸操作主要作用于电力系统与设备,具体主要控制电力系统与设备的运行状态转换以及运行模式一定程度上的转换。变电站倒闸的实际操作过程中,需要注意的是要根据不同的变电站运行方式不同,电力系统的配置的不尽相同以及继电保护的方式存在的差异去选择合适的操作方式进行具体转换。由此看来,变电站倒闸操作十分关键,操作时一旦出现失误影响的将是整个电力系统,所以亟待优化变电站倒闸操作,以期减少发生危险与事故的可能性。 1.220kV变电站倒闸操作实际问题分析 1.1取下合闸熔断器的时间问题 在变电站倒闸对断路器的实际操作中,取下合闸熔断器的时间节点也十分重要,应该掌握在断路器断开之后且未操作隔离开关之时。而更为具体的合理时间安排应如何选择才能保证恢复或检修断路器时避免出现安全事故,在哪个操作环节进行熔断器(这里指控制熔断器与合闸熔断器)的投与取的操作等问题,都困扰着许多操作技术人员,尤其是对操作过程并不熟悉,对运行和检修状态理解的不全面都使操作人员无从下手。最佳的操作时机是当合闸熔断器处于检修状态下,此时将合闸熔断器取下可以降低出现事故的风险,之所以选择此时,是因为此时操作人员一般处于远离断路器的状态,不容易存在安全事故隐患。如若不规范取下合闸熔断器的操作时间,一旦出现操作人员还在操作的情况,后果不堪设想。 1.2操作退出重合闸的问题 “具体问题,具体分析”,这句话在操作退出重合闸的问题上体现的淋漓尽致,不同的变电站对待退出重合闸问题的操作手法各有不同,大致分为两大类:一是依次断开母线上的所有出线,再选择对电压互感器进行操作,即此时拉开电压互感器;二是一起推出重合闸启动、把手、出口压板等,此操作的进行过程一定要在对母线已经进行操作之时。据此看来,退出重合闸没有固定与具体的工作流程,容易出现误判等问题,从而留下安全隐患。对于重合闸的退出问题,很多操作人员并没有养成对自动合闸开关进行检查的习惯,安全事故频繁发生在退出重合闸保护之后,不仅是操作失误,也存在着操作人员缺乏责任心的原因。 1.3母线中的电压互感器投退时间问题 在对变电站的电力系统进行断开断路器操作之后,应该及时取下合闸熔断器,此过程的实际原理就是将断路器两侧的开关拉开,以便于此时取下合闸熔断器。220kV的变电站倒闸操作中,对于电压互感器的投入顺序分为两种,一种是先将母线切换为运行转台,而后对投入电压互感器,即合上电压互感器的刀闸,完成电压互感器的充电工作;一种是先将母线转换为热备用状态,此时合上电压互感器,母线的送电工作通过母联开关完成。多次检修断路器的过程中不难发现,220kV变电站的母线中的电压互感器存在一个共同的特点,即多数都采取电容式电动遥控,此种遥控方式为电压互感器的投退操作提供了较高的风险保障。在变电站进行撤运断路器的过程中,可以只将控制电源切断,其他电源可以正常工作,完全不影响操作技术人员对断路器进行检修。 2.改进220kV变电站倒闸操作可行性策略 改进220kV变电站倒闸操作需从根源上进行改进,对于异常问题需要及时做出反应,具体的操作流程不再制式化,而是从实际出发,建立健全更加优化的改进方案,以保证电力系统的安全。 2.1重视对专业技术人员综合能力的培养 在对专业技术人员进行综合能力培养时,首先应提升专业技术人员的责任心,只有负责的专业技术人员才能胜任此等专业水平较高的操作,提升他们的工作热情是对这项工作安全性的极大保障;其次,专业技能培训也是必不可少的,制定严谨的培训计划,并严格按照计划实行,阶段性的组织培训是提升个人能力的必要途径,但此种培训不应流于形式,应进行实际操作来实际提高专业应对能力;最后,在变电站倒闸是一项高度精细化的操作,必须保证专业技术人员的工作精神状态,因此,不应疲劳工作,适当并合理的安排休息时间,也体现了对专业技术人员的人文关怀。可以制定公开透明并符合实际的排班安排表,疲劳操作的情况尽量减少,以保证将发生风险的几率降到最低。 2.2实行小组操作讨论模式 “众人拾柴火焰高”,小组合作是一种极好的工作方式,就220kV变电站倒闸操作来说,充分发挥个人的智慧,汇集到一处将会产生巨大的效应,因此,实行小组操作讨论模式是极其必要的。变电站倒闸操作的实际操作性高于理论性,在众人的讨论与参与过程中,容易产生最佳解决方案,综合性的看待产生的问题更容易全面而深刻地看到问题产生的实质。在实行小组操作讨论模式时,需要首先确定组长,在组长的带领下进行问题讨论,有序并合理地提出相应的解决方案,不然所有的讨论无法形成统一的解决方案与解决体系,小组操作讨论的模式名存实亡。 2.3建立健全的现场管理机制 电力系统的倒闸操作更多情况发生于无法预料之时,因此,现场处理问题是进行变电站倒闸操作的常态,制定现场应急处理机制及管理机制是十分必要的。实际的倒闸操作复杂程度不尽相同,需要严格进行操作质量的把关,严禁违规性操作出现,一旦出现应进行相关责

关于刀闸控制节点的接法

关于刀闸的控制节点的接法 目前在设计刀闸的控制回路时,一般设计了三副节点,一副是控制节点,一副是合闸节点,一副是分闸节点,那么这三副节点在实际应用中怎样组合呢?下面以刀闸的控制回路图为例,说明三种不同的应用。 一、目前设计时遇到的三种情况: 从上图中可以看出控制节点有三种接线位置: 1、放在“控制一”位置: 此位置即目前工程应用中常见的将控制节点与遥合、遥分节点串联的情况。这种接法可以起到可靠性作用,同时如果在PLC中编写了五防条件,则在遥控时可以起五防闭锁作用。 PLC逻辑条件:遥控令 五防条件 SA在远方 三者同时满足后,控制节点和合(分)接点同时动作。 2、放在“控制二”位置 当刀闸在就地手合或手分操作时,有些地方的用户会因其变电站内刀闸的就地手分手合回路没有电气联闭锁节点,要求从我们的测控装置上提供一副控制节点,由测控装置进行五防逻辑判断后,控制节点闭合,使刀闸的就地手分、手合回路的控制电源接通。 PLC逻辑条件:五防条件 SA在就地

两者同时满足时,控制节点闭合。 对于遥控来说,控制电源始终接通,遥分、遥合均为单副节点 3、放在“控制三”位置 若控制节点放在控制三的位置,则即可以兼容控制一的可靠性作用、遥控时的五防闭锁作用,又可以兼容在就地手分、手合时,起电气联闭锁节点的作用,控制就地操作时的控制电源是否接通。 具体在PLC逻辑中这样实现: 1)遥控部分的PLC逻辑:遥控令 五防条件 SA在远方 三个条件同时满足后,控制节点和合(分)接点同时动作。 2)就地部分的PLC逻辑:五防条件 SA在就地 两个条件同时满足后,控制节点接通。 在正常运行时,SA在远方,五防条件满足。但是,因为没有遥控操作,PLC逻辑条件不满足,所以控制节点是不动作的。刀闸的控制回路处于不带电状态,有效地防止了刀闸控制回路的异常情况。在遥控时,因需要两副节点同时动作,又能很好的起到可靠性作用。 在特殊情况下,需要就地手分、手合时,SA在就地,满足五防条件后,将控制节点闭合,控制电源接通,完成手分、手合。操作完后,SA恢复远方状态,控制节点处于断开状态。控制节点闭合的时间和SA打在就地的时间有关,当SA打在就地时,控制节点闭合。SA打在远方,没有遥控的情况下,控制节点不闭合。这样,若SA只有在就地操作时打在就地,其余时间均在远方,我们就可以考虑用DO节点了。当然,DOB 节点会更好。 二、三种方案的选择 因第三种方式即可以兼容方式一,又可以兼容方式二。所以在需要我们提供就地操作的控制节点时,建议使用方式三,即将控制节点串在电源的控制回路里,当然即可以串在正电回路里,也可以串在负电回路里。在不需要我们提供控制节点时,在出厂时直接将三个出口进行串联,即使用方式一。方式二不推荐。 三、目前压板的设计 因目前的设计将压板串在了控制节点的回路中,当使用方式一时,压板起断开遥分、遥合回路的作用。当使用方式三时,起断开整个控制回路电源的作用。而使用方式二时,压板只能断开就地操作的控制回路,对遥控回路起不到断开作用。 四、注意事项: 在使用第三种方案时,设计时应考虑到在就地操作时,若测控装置本身有故障,不能提供控制节点时,应能解锁控制节点,即需要在就地处设计解锁把手,在解锁位置时,解除控制节点的作用。并且因为在编写PLC时需要用到SA的远方和就地位置状态,所以其对应的开入需引到装置上来。 五、工程应用中使用方式三编写PLC时,另一种方法: 1)遥控部分的PLC逻辑: 将遥控部分的PLC逻辑分为两部分: 第一部分当 遥控令 五防条件 SA在远方

呼叫建立成功率的分析及解决

呼叫建立成功率的分析及解决 摘要:本文分析了呼叫建立成功率的定义,并对可能出现的问题,提出一些解决呼叫建立成功率低的思路和方法。 关键词:呼叫建立成功率;呼叫建立过程;解决 1 前言 呼叫建立成功率作为反映网络接入性能的一项重要指标,它反映了网络运行状况。对无线接通率、最坏小区比等主要网络指标都有着非常重要的影响。所以一直是网络优化工作关注的重点之一。 在移动通信中,呼叫建立过程通常是指由SDCCH信道指配到TCH信道时的信令接续过程。同时,从用户感知的角度分析,有一些呼叫的信令在还没有接续到SDCCH信道之前就被截止了。对于这类情况,从呼叫建立成功率上无法体现出来。但对于用户而言,则表现为不能正常接入网络。 2 呼叫建立成功率的计算公式 2.1有关呼叫建立成功率的两种定义 2.1.1 BSS呼叫建立成功率 含义:从CSSR中扣除MSC不响应、CM REQ REJ、CREF、号码错、被叫不可达或指配期间网络侧拆除等原因MSC直接下发清除消息等各种非BSS原因导致的呼叫失败,只关注BSS对CSSR的影响。 公式:[立即指配成功率 * TCH呼叫占用成功次数 / TCH呼叫占用请求次数] * [ 1 - SDCCH掉话率 ] * 100% 2.1.2呼叫建立成功率 含义:业务类型为主叫、被叫、紧急呼叫、呼叫重建的SDCCH占用成功到ASS CMP的执行成功率,不包括短消息(MTC的EST IND消息无法区分短信和被叫,按MOC中的SMS计算,这样如果群发短信较多的场合计算不准确,所以对于BSS子系统而言,CSSRBSS更有意义)。

公式:(TCH呼叫占用成功次数 /(SDCCH占用成功次数(主叫) + SDCCH占用成功次数(寻呼响应) +紧急呼叫SDCCH占用成功次数 +SDCCH占用成功次数(呼叫重建) -SDCCH下行短消息数目 )) * 100% 2.2 BSS呼叫建立成功率与呼叫建立成功率的对比分析 BSS呼叫建立成功率监控的是从MS发起呼叫(channel request)后到TCH占用成功(失败)的过程,包括立即指配过程、和TCH指配过程以及SD占用时的掉话。BSS呼叫建立成功率的统计中包括了短消息,位置更新等非通话目的的占用过程。 呼叫建立成功率监控的是从SD占用成功后到TCH占用成功(失败)的过程,在SD成功占用的统计中剔除了下行短消息、位置更新等流程; 呼叫建立成功率与BSS呼叫建立成功率的差别主要在于呼叫建立成功率包括的呼叫建立的整个流程,在SDCCH建立成功后,可能会因为发送的号码错误、用户主动挂机等原因,MSC不指配TCH信道,这些都会导致没有TCH指配完成,导致呼叫建立成功率低。甚至达到4~5个百分点。而BSS呼叫建立成功率不会受到这些因素的影响。 总的来说,两个指标在统计流程中各有优势,但指标量化受到网络业务模型和其他因素的影响,所以对于具体网络哪个指标占优需要根据实际情况判断。 3 可能导致呼叫建立成功率低的原因及其解决方法 导致呼叫建立成功率降低的因素有很多,首先如果没有可用的有线或无线资源,系统就无法正常给用户分配信道;其次,即使有充足资源,由于无线传播环境的复杂性,不同的覆盖条件和干扰等级,都会影响呼叫建立成功率;另外,由于系统自身配置不当,以及突发的硬件故障,也会造成呼叫建立成功率下降。 针对这些可能导致呼叫建立成功率降低的因素,下面我们从四个方面进行具体的分析。 3.1没有可用的资源导致呼叫建立成功率低 3.1.1无线信道容量不足导致呼叫建立成功率降低 (1)SDCCH信道拥塞。小区SDCCH信道由于话务容量、基站软件或硬件故障导致小区SDCCH信道分配异常、LAC区的划分不合理、基站信道配置等多种原因造成拥塞。从而导致该小区的手机在呼叫时,SDCCH信道指配失败。造成在该小区的用户无法正常呼叫。针对这

相关主题