搜档网
当前位置:搜档网 › 主成分分析与因子分析的优缺点

主成分分析与因子分析的优缺点

主成分分析与因子分析的优缺点
主成分分析与因子分析的优缺点

主成分分析就是将多项指标转化为少数几项综合指标,用综合指标来解释多变量的方差- 协方差结构.综合指标即为主成分.所得出的少数几个主成分,要尽可能多地保留原始变量的信息,且彼此不相关. 因子分析是研究如何以最少的信息丢失,将众多原始变量浓缩成少数几个因子变量,以及如何使因子变量具有较强的可解释性的一种多元统计分析方法.

聚类分析是依据实验数据本身所具有的定性或定量的特征来对大量的数据进行分组归类以了解数据集的内在结构,并且对每一个数据集进行描述的过程.其主要依据是聚到同一个数据集中的样本应该彼此相似,而属于不同组的样本应该足够不相似.

三种分析方法既有区别也有联系,本文力图将三者的异同进行比较,并举例说明三者在实际应用中的联系,以期为更好地利用这些高级统计方法为研究所用有所裨益.

二、基本思想的异同

(一) 共同点

主成分分析法和因子分析法都是用少数的几个变量(因子) 来综合反映原始变量(因子) 的主要信息,变量虽然较原始变量少,但所包含的信息量却占原始信息的85 %以上,所以即使用少数的几个新变量,可信度也很高,也可以有效地解释问题.并且新的变量彼此间互不相关,消除了多重共线性.这两种分析法得出的新变量,并不是原始变量筛选后剩余的变量.在主成分分析中,最终确定的新变量是原始变量的线性组合,如原始变量为x1 ,x2 ,. . . ,x3 ,经过坐标变换,将原有的p个相关变量xi 作线性变换,每个主成分都是由原有p 个变量线性组合得到.在诸多主成分Zi 中,Z1 在方差中占的比重最大,说明它综合原有变量的能力最强,越往后主成分在方差中的比重也小,综合原信息的能力越弱.因子分析是要利用少数几个公共因子去解释较多个要观测变量中存在的复杂关系,它不是对原始变量的重新组合,而是对原始变量进行分解,分解为公共因子与特殊因子两部分.公共因子是由所有变量共同具有的少数几个因子;特殊因子是每个原始变量独自具有的因子.对新产生的主成分变量及因子变量计算其得分,就可以将主成分得分或因子得分代替原始变量进行进一步的分析,因为主成分变量及因子变量比原始变量少了许多,所以起到了降维的作用,为我们处理数据降低了难度.

聚类分析的基本思想是: 采用多变量的统计值,定量地确定相互之间的亲疏关系,考虑对象多因素的联系和主导作用,按它们亲疏差异程度,归入不同的分类中一元,使分类更具客观实际并能反映事物的

内在必然联系.也就是说,聚类分析是把研究对象视作多维空间中的许多点,并合理地分成若干类,因此它是一种根据变量域之间的相似性而逐步归群成类的方法,它能客观地反映这些变量或区域之间的内在组合关系[3 ].聚类分析是通过一个大的对称矩阵来探索相关关系的一种数学分析方法,是多元统计分析方法,分析的结果为群集.对向量聚类后,我们对数据的处理难度也自然降低,所以从某种意义上说,聚类分析也起到了降维的作用.

(二) 不同之处

主成分分析是研究如何通过少数几个主成分来解释多变量的方差一协方差结构的分析方法,也就是求出少数几个主成分(变量) ,使它们尽可能多地保留原始变量的信息,且彼此不相关.它是一种数学变换方法,即把给定的一组变量通过线性变换,转换为一组不相关的变量(两两相关系数为0 ,或样本向量彼此相互垂直的随机变量) ,在这种变换中,保持变量的总方差(方差之和) 不变,同时具有最大方差,称为第一主成分;具有次大方差,称为第二主成分.依次类推.若共有p 个变量,实际应用中一般不是找p 个主成分,而是找出m (m < p) 个主成分就够了,只要这m 个主成分能反映原来所有变量的绝大部分的方差.主成分分析可以作为因子分析的一种方法出现.

因子分析是寻找潜在的起支配作用的因子模型的方法.因子分析是根据相关性大小把变量分组,使得同组内的变量之间相关性较高,但不同的组的变量相关性较低,每组变量代表一个基本结构,这个基本结构称为公共因子.对于所研究的问题就可试图用最少个数的不可测的所谓公共因子的线性函数与特殊因子之和来描述原来观测的每一分量.通过因子分析得来的新变量是对每个原始变量进行内部剖析.因子分析不是对原始变量的重新组合,而是对原始变量进行分解,分解为公共因子和特殊因子两部分.具体地说,就是要找出某个问题中可直接测量的具有一定相关性的诸指标,如何受少数几个在专业中有意义、又不可直接测量到、且相对独立的因子支配的规律,从而可用各指标的测定来间接确定各因子的状态.因子分析只能解释部分变异,主成分分析能解释所有变异.

聚类分析算法是给定m 维空间R 中的n 个向量,把每个向量归属到k 个聚类中的某一个,使得每一个向量与其聚类中心的距离最小.聚类可以理解为: 类内的相关性尽量大,类间相关性尽量小.聚类问题作为一种无指导的学习问题,目的在于通过把原来的对象集合分成相似的组或簇,来获得某种内

在的数据规律.

从三类分析的基本思想可以看出,聚类分析中并没于产生新变量,但是主成分分析和因子分析都产生了新变量.

三、数据标准化的比较

主成分分析中为了消除量纲和数量级,通常需要将原始数据进行标准化,将其转化为均值为0方差为1 的无量纲数据.而因子分析在这方面要求不是太高,因为在因子分析中可以通过主因子法、加权最小二乘法、不加权最小二乘法、重心法等很多解法来求因子变量,并且因子变量是每一个变量的内部影响变量,它的求解与原始变量是否同量纲关系并不太大,当然在采用主成分法求因子变量时,仍需标准化.不过在实际应用的过程中,为了尽量避免量纲或数量级的影响,建议在使用因子分析前还是要进行数据标准化.在构造因子变量时采用的是主成分分析方法,主要将指标值先进行标准化处理得到协方差矩阵,即相关矩阵和对应的特征值与特征向量,然后构造综合评价函数进行评价.

聚类分析中如果参与聚类的变量的量纲不同会导致错误的聚类结果.因此在聚类过程进行之前必须对变量值进行标准化,即消除量纲的影响.不同方法进行标准化,会导致不同的聚类结果要注意变量的分布.如果是正态分布应该采用z 分数法.

四、应用中的优缺点比较

(一) 主成分分析

1、优点

首先它利用降维技术用少数几个综合变量来代替原始多个变量,这些综合变量集中了原始变量的大部分信息.其次它通过计算综合主成分函数得分,对客观经济现象进行科学评价.再次它在应用上侧重于信息贡献影响力综合评价.

2、缺点

当主成分的因子负荷的符号有正有负时,综合评价函数意义就不明确.命名清晰性低.

(二) 因子分析

1、优点

第一它不是对原有变量的取舍,而是根据原始变量的信息进行重新组合,找出影响变量的共同因子,化

简数据;第二,它通过旋转使得因子变量更具有可解释性,命名清晰性高.

2、缺点

在计算因子得分时,采用的是最小二乘法,此法有时可能会失效.

(三) 聚类分析

1、优点

聚类分析模型的优点就是直观,结论形式简明.

2、缺点

在样本量较大时,要获得聚类结论有一定困难.由于相似系数是根据被试的反映来建立反映被试间内在联系的指标,而实践中有时尽管从被试反映所得出的数据中发现他们之间有紧密的关系,但事物之间却无任何内在联系,此时,如果根据距离或相似系数得出聚类分析的结果,显然是不适当的,但是,聚类分析模型本身却无法识别这类错误.

浅谈主成分分析与因子分析基本思想主要性质应用举例计算步骤主要区别

浅谈主成分分析与因子分析 1、主成分分析 主成分分析就是设法将原来指标重新组合成一组新的互相无关的几个综合指标来代替原来指标,同时根据实际需要从中可取几个较少的综合指标尽可能多地反映原来指标的信息。这种将多个指标化为少数互相无关的综合指标的统计方法叫做主成分分析,也是数学上处理降维的一种方法。主成分分析的一般目的是:(1)变量的降维;(2)主成分的解释。 1.1基本思想 主成分分析是设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标。通常数学上的处理就是将原来P个指标作线性组合,作为新的综合指标。最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var(F1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现在F2中,用数学语言表达就是要求Cov(F1,F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四,……,第P个主成分。这些主成分不仅不相关,而且他们的方差依次递减。 1.2计算步骤 设有n个样品,每个样品观测P个指标,将原始数据写成矩阵。 (1)将原始数据标准化,即将每个指标的原始数据减去这个指标的均值后,再除以这个指标的标准差。 (2)建立变量的相关系数阵:。 (3)求R的特征根及相应的单位特征向量。 在解决实际问题时,一般不是取p个主成分,而是根据累计贡献率的大小取前k个,称第一主成分的贡献率为,这个值越大,表明第一主成分综合

主成分分析法总结

主成分分析法总结 在实际问题研究中,多变量问题是经常会遇到的。变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。 因此,人们会很自然地想到,能否在相关分析的基础上,用较少的新变量代替原来较多的旧变量,而且使这些较少的新变量尽可能多地保留原来变量所反映的信息? 一、概述 在处理信息时,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠,例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。而变量之间信息的高度重叠和高度相关会给统计方法的应用带来许多障碍。 为了解决这些问题,最简单和最直接的解决方案是削减变量的个数,但这必然又会导致信息丢失和信息不完整等问题的产生。为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。主成分分析正式这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。 主成分分析以最少的信息丢失为前提,将众多的原有变量综合成较少几个综合指标,通常综合指标(主成分)有以下几个特点: ↓主成分个数远远少于原有变量的个数 原有变量综合成少数几个因子之后,因子将可以替代原有变量参与数据建模,这将大大减少分析过程中的计算工作量。 ↓主成分能够反映原有变量的绝大部分信息 因子并不是原有变量的简单取舍,而是原有变量重组后的结果,因此不会造成原有变量信息的大量丢失,并能够代表原有变量的绝大部分信息。 ↓主成分之间应该互不相关 通过主成分分析得出的新的综合指标(主成分)之间互不相关,因子参与数据建模能够有效地解决变量信息重叠、多重共线性等给分析应用带来的诸多问题。 ↓主成分具有命名解释性 总之,主成分分析法是研究如何以最少的信息丢失将众多原有变量浓缩成少数几个因子,如何使因子具有一定的命名解释性的多元统计分析方法。 主成分分析的具体步骤如下: (1)计算协方差矩阵 计算样品数据的协方差矩阵:Σ=(s ij )p ?p ,其中 1 1()() 1n ij ki i kj j k s x x x x n ==---∑i ,j=1,2,…,p (2)求出Σ的特征值 i λ及相应的正交化单位特征向量i a Σ的前m 个较大的特征值λ1≥λ2≥…λm>0,就是前m 个主成分对应的方差,i λ对应的单 位特征向量 i a 就是主成分Fi 的关于原变量的系数,则原变量的第i 个主成分Fi 为:

主成分分析法PCA的原理

主成分分析法原理简介 1.什么是主成分分析法 主成分分析也称主分量分析,是揭示大样本、多变量数据或样本之间内在关系的一种方法,旨在利用降维的思想,把多指标转化为少数几个综合指标,降低观测空间的维数,以获取最主要的信息。 在统计学中,主成分分析(principal components analysis, PCA)是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。 2.主成分分析的基本思想 在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正是适应这一要求产生的,是解决这类题的理想工具。 对同一个体进行多项观察时必定涉及多个随机变量X1,X2,…,X p,它们之间都存在着相关性,一时难以综合。这时就需要借助主成分分析来概括诸多信息的主要方面。我们希望有一个或几个较好的综合指标来概括信息,而且希望综合指标互相独立地各代表某一方面的性质。

主成分分析与因子分析的联系与区别

https://www.sodocs.net/doc/d95390077.html,/ysuncn/archive/2007/12/08/1924502.aspx 一、问题的提出 在科学研究或日常生活中,常常需要判断某一事物在同类事物中的好坏、优劣程度及其发展规律等问题。而影响事物的特征及其发展规律的因素(指标)是多方面的,因此,在对该事物进行研究时,为了能更全面、准确地反映出它的特征及其发展规律,就不应仅从单个指标或单方面去评价它,而应考虑到与其有关的多方面的因素,即研究中需要引入更多的与该事物有关系的变量,来对其进行综合分析和评价。多变量大样本资料无疑能给研究人员或决策者提供很多有价值的信息,但在分析处理多变量问题时,由于众变量之间往往存在一定的相关性,使得观测数据所反映的信息存在重叠现象。因此为了尽量避免信息重叠和减轻工作量,人们就往往希望能找出少数几个互不相关的综合变量来尽可能地反映原来数据所含有的绝大部分信息。而主成分分析和因子分析正是为解决此类问题而产生的多元统计分析方法。 近年来,这两种方法在社会经济问题研究中的应用越来越多,其应用范围也愈加广泛。因子分析是主成分分析的推广和发展,二者之间就势必有着许多共同之处,而SPSS软件不能直接进行主成分分析,致使一些应用者在使用SPSS进行这两种方法的分析时,常常会出现一些混淆性的错误,这难免会使人们对分析结果产生质疑。因此,有必要在运用SPSS分析时,将这两种方法加以严格区分,并针对实际问题选择正确的方法。 二、主成分分析与因子分析的联系与区别 两种方法的出发点都是变量的相关系数矩阵,在损失较少信息的前提下,把多个变量(这些变量之间要求存在较强的相关性,以保证能从原始变量中提取主成分)综合成少数几个综合变量来研究总体各方面信息的多元统计方法,且这少数几个综合变量所代表的信息不能重叠,即变量间不相关。 主要区别: 1. 主成分分析是通过变量变换把注意力集中在具有较大变差的那些主成分上,而舍弃那些变差小的主成分;因子分析是因子模型把注意力集中在少数不可观测的潜在变量(即公共因子)上,而舍弃特殊因子。 2. 主成分分析是将主成分表示为原观测变量的线性组合, (1) 主成分的个数i=原变量的个数p,其中j=1,2,…,p,是相关矩阵的特征值所对应的特征向量矩阵中的元素,是原始变量的标准化数据,均值为0,方差为1。其实质是p维空间的坐标变换,不改变原始数据的结构。 而因子分析则是对原观测变量分解成公共因子和特殊因子两部分。因子模型如式(2),

主成分分析法介绍(高等教育)

主成分分析方法 我们进行系统分析评估或医学上因子分析等时,多变量问题是经常会遇到的。变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。因此,我们就会很自然地想到,能否在各个变量之间相关关系研究的基础上,用较少的新变量代替原来较多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的信息?事实上,这种想法是可以实现的,本节拟介绍的主成分分析方法就是综合处理这种问题的一种强有力的方法。 第一节 主成分分析方法的原理 主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。假定有n 样本,每个样本共有p 个变量描述,这样就构成了一个n×p 阶的数据矩阵: 111212122212.....................p p n n np x x x x x x X x x x ?? ? ?= ? ? ??? (1)

如何从这么多变量的数据中抓住事物的内在规律性呢?要解决这一问题,自然要在p 维空间中加以考察,这是比较麻烦的。为了克服这一困难,就需要进行降维处理,即用较少的几个综合指标来代替原来较多的变量指标,而且使这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息,同时它们之间又是彼此独立的。那么,这些综合指标(即新变量)应如何选取呢?显然,其最简单的形式就是取原来变量指标的线性组合,适当调整组合系数,使新的变量指标之间相互独立且代表性最好。 如果记原来的变量指标为p x x x ,,21 ,它们的综合指标——新变量指标为 21,z z ,m z (m≤p)。则 )2.........(..........22112222121212121111??? ??? ?+++=+++=+++=p mp m m m p p p p x l x l x l z x l x l x l z x l x l x l z 在(2)式中,系数l ij 由下列原则来决定: (1)z i 与 z j (i≠j;i ,j=1,2,…,m)相互无关; (2)z 1是x 1,x 2,…,x p 的一切线性组合中方差最大者;z 2是与z 1不相关的x 1,x 2,…,x p 的所有线性组合中方差最大者;……;z m 是与z 1,z 2,……z m-1都不相关的x 1,x 2,…,x p 的所有线性组合中方差最大者。

主成分分析和因子分析-回归分析和相关分析的区别

主成分分析和因子分析的区别 通过主成分分析所得来的新变量是原始变量的线性组合,每个主成分都是由原有P个变量线组合得到,在诸多主成分z中,Z1在总方差中占的比重最大,说明它综合原有变量的能力最强,其余主成分在总方差中占的比重依次递减,说明越往后的主成分综合原信息的能力越弱。以后的分析可以用前面几个方差最大的主成分来进行,一般情况下,要求前几个z 所包含的信息不少于原始信息的85%,这样既减少了变量的数目,又能够用较少的主成分反映原有变量的绝大部分信息。如利用主成分来消除多元回归方程的多重共线性,利用主成分来筛选多元线性回归方程中的变量等。 通过因子分析得来的新变量是对每一个原始变量进行内部剖析。打比喻来说,原始变量就如成千上万的糕点,每一种糕点的原料都有面粉、油、糖及相应的不同原料,这其中,面粉、油、糖是所有糕点的共同材料,这正好象是因子分析中的新变量即因子变量。正确选择因子变量后,如果想考虑成千上万糕点的物价变动,只需重点考虑面粉、油、糖等公共因子的物价变动即可。所以因子分析不是对原始变量的重新组合,而是对原始变量进行分解,分解为公共因子与特殊因子两部分。即因子分析就是要利用少数几个公共因子去解释较多个要观测变量中存在的复杂关系,它把原始变量分解为两部分因素,一部分是由所有变量共同具有的少数几个公共因子构成的,另一部分是每个原始变量独自具有的因素,即特殊因子。 1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成各个变量的线性组合。在主成分分析中,最终确定的新变量是原始变量的线性组合,如原始变量为x1,x2,. . . ,x3 ,经过坐标变换,将原有的p个相关变量xi 作线性变换,每个主成分都是由原有p 个变量线性组合得到。在诸多主成分Zi 中,Z1 在方差中占的比重最大,说明它综合原有变量的能力最强,越往后主成分在方差中的比重也小,综合原信息的能力越弱。 2、主成分分析的重点在于解释各变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。 3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。 4、主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不到的因子。 5、在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析),而指定的因子数量不同而结果不同。在主成分分析中,成分的数量是一定的,一般有几个变量就有几个主成分。 和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势。大致说来,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于使用因子分析,并且借助旋转技术帮助更好解释。而如果想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析。当然,这中情况也可以使用因子得分做到。所以这种区分不是绝对的。

主成分分析法介绍教学文稿

主成分分析法介绍

主成分分析方法 我们进行系统分析评估或医学上因子分析等时,多变量问题是经常会遇到的。变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。因此,我们就会很自然地想到,能否在各个变量之间相关关系研究的基础上,用较少的新变量代替原来较多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的信息?事实上,这种想法是可以实现的,本节拟介绍的主成分分析方法就是综合处理这种问题的一种强有力的方法。 第一节 主成分分析方法的原理 主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。假定有n 样本,每个样本共有p 个变量描述,这样就构成了一个n×p 阶的数据矩阵: 11121212221 2 .....................p p n n np x x x x x x X x x x ?? ? ? = ? ? ??? (1)

如何从这么多变量的数据中抓住事物的内在规律性呢?要解决这一问题,自然要在p 维空间中加以考察,这是比较麻烦的。为了克服这一困难,就需要进行降维处理,即用较少的几个综合指标来代替原来较多的变量指标,而且使这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息,同时它们之间又是彼此独立的。那么,这些综合指标(即新变量)应如何选取呢?显然,其最简单的形式就是取原来变量指标的线性组合,适当调整组合系数,使新的变量指标之间相互独立且代表性最好。 如果记原来的变量指标为p x x x ,,21 ,它们的综合指标——新变量指标为 21,z z ,m z (m≤p)。则 )2.........(..........22112222121212121111??? ?? ? ?+++=+++=+++=p mp m m m p p p p x l x l x l z x l x l x l z x l x l x l z 在(2)式中,系数l ij 由下列原则来决定: (1)z i 与 z j (i≠j;i ,j=1,2,…,m)相互无关; (2)z 1是x 1,x 2,…,x p 的一切线性组合中方差最大者;z 2是与z 1不相关的x 1,x 2,…,x p 的所有线性组合中方差最大者;……;z m 是与z 1,z 2,……z m-1都

(完整版)主成分分析与因子分析的优缺点

主成分分析就是将多项指标转化为少数几项综合指标,用综合指标来解释多变量的方差-协方差结构.综合指标即为主成分.所得出的少数几个主成分,要尽可能多地保留原始变量的信息,且彼此不相关.因子分析是研究如何以最少的信息丢失,将众多原始变量浓缩成少数几个因子变量,以及如何使因子变量具有较强的可解释性的一种多元统计分析方法. 聚类分析是依据实验数据本身所具有的定性或定量的特征来对大量的数据进行分组归类以了解数据集的内在结构,并且对每一个数据集进行描述的过程.其主要依据是聚到同一个数据集中的样本应该彼此相似,而属于不同组的样本应该足够不相似. 三种分析方法既有区别也有联系,本文力图将三者的异同进行比较,并举例说明三者在实际应用中的联系,以期为更好地利用这些高级统计方法为研究所用有所裨益. 二、基本思想的异同 (一) 共同点 主成分分析法和因子分析法都是用少数的几个变量(因子) 来综合反映原始变量(因子) 的主要信息,变量虽然较原始变量少,但所包含的信息量却占原始信息的85 %以上,所以即使用少数的几个新变量,可信度也很高,也可以有效地解释问题.并且新的变量彼此间互不相关,消除了多重共线性.这两种分析法得出的新变量,并不是原始变量筛选后剩余的变量.在主成分分析中,最终确定的新变量是原始变量的线性组合,如原始变量为x1 ,x2 ,. . . ,x3 ,经过坐标变换,将原有的p个相关变量xi 作线性变换,每个主成分都是由原有p 个变量线性组合得到.在诸多主成分Zi 中,Z1 在方差中占的比重最大,说明它综合原有变量的能力最强,越往后主成分在方差中的比重也小,综合原信息的能力越弱.因子分析是要利用少数几个公共因子去解释较多个要观测变量中存在的复杂关系,它不是对原始变量的重新组合,而是对原始变量进行分解,分解为公共因子与特殊因子两部分.公共因子是由所有变量共同具有的少数几个因子;特殊因子是每个原始变量独自具有的因子.对新产生的主成分变量及因子变量计算其得分,就可以将主成分得分或因子得分代替原始变量进行进一步的分析,因为主成分变量及因子变量比原始变量少了许多,所以起到了降维的作用,为我们处理数据降低了难度. 聚类分析的基本思想是: 采用多变量的统计值,定量地确定相互之间的亲疏关系,考虑对象多因素的联系和主导作用,按它们亲疏差异程度,归入不同的分类中一元,使分类更具客观实际并能反映事物的

主成分分析在STATA中的实现以及理论介绍

主成分分析在S T A T A 中的实现以及理论介绍 文件编码(TTU-UITID-GGBKT-POIU-WUUI-0089)

第十二章 主成分分析 主成分分分析也称作主分量分析,是霍特林(Hotelling)在1933年首先提出。主成分分析是利用降维的思想,在损失较少信息的前提下把多个指标转化为较少的综合指标。转化生成的综合指标即称为主成分,其中每个主成分都是原始变量的线性组合,且各个主成分互不相关。Stata 对主成分分析的主要内容包括:主成分估计、主成分分析的恰当性(包括负偏协方差矩阵和负偏相关系数矩阵、KMO(Kaiser-Meyer-Olkin)抽样充分性、复相关系数、共同度等指标测度)、主成分的旋转、预测、各种检验、碎石图、得分图、载荷图等。 p j n i b a y ij j i ij ,,2,1,,2,1,' ==+=ε 主成分的模型表达式为: p p j i i i i diag v v v v i p V V C λλλλλλλ≥≥≥=∧='' ==∧=∑ 2121),,,,(0 1 其中,a 称为得分,b 称为载荷。主成分分析主要的分析方法是对相关系数矩阵(或协方差矩阵)进行特征值分析。

Stata中可以通过负偏相关系数矩阵、负相关系数平方和KMO值对主成分分析的恰当性进行分析。负偏相关系数矩阵即变量之间两两偏相关系数的负数。非对角线元素则为负的偏相关系数。如果变量之间存在较强的共性,则偏相关系数比较低。因此,如果矩阵中偏相关系数较高的个数比较多,说明某一些变量与另外一些变量的相关性比较低,主成分模型可能不适用。这时,主成分分析不能得到很好的数据约化效果。 Kaiser-Meyer-Olkin抽样充分性测度也是用于测量变量之间相关关系的强弱的重要指标,是通过比较两个变量的相关系数与偏相关系数得到的。KMO介于0于1之间。KMO越高,表明变量的共性越强。如果偏相关系数相对于相关系数比较高,则KMO比较低,主成分分析不能起到很好的数据约化效果。根据Kaiser(1974),一般的判断标准如下:不能接受(unacceptable);非常差(miserable);,勉强接受(mediocre);可以接受(middling);,比较好(meritorious);非常好(marvelous)。 SMC即一个变量与其他所有变量的复相关系数的平方,也就是复回归方程的可决系数。SMC比较高表明变量的线性关系越强,共性越强,主成分分析就越合适。

主成分分析分析法

第四节 主成分分析方法 地理环境是多要素的复杂系统,在我们进行地理系统分析时,多变量问题 是经常会遇到的。 变量太多, 无疑会增加分析问题的难度与复杂性, 而且在许多 实际问题中, 多个变量之间是具有一定的相关关系的。 因此,我们就会很自然地 想到,能否在各个变量之间相关关系研究的基础上, 用较少的新变量代替原来较 多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的信 息?事实上, 这种想法是可以实现的, 本节拟介绍的主成分分析方法就是综合处 理这种问题的一种强有力的方法。 第一节 主成分分析方法的原理 主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法, 从数学角度来看, 这是一种降维处理技术。 假定有 n 个地理样本, 每个样本共有 p 个变量描述,这样就构成了一个 n ×p 阶的地理数据矩阵: 如何从这么多变量的数据中抓住地理事物的内在规律性呢?要解决这一问 题,自然要在 p 维空间中加以考察,这是比较麻烦的。为了克服这一困难,就需 要进行降维处理, 即用较少的几个综合指标来代替原来较多的变量指标, 而且使 这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息, 同时它们之 间又是彼此独立的。那么,这些综合指标(即新变量 ) 应如何选取呢?显然,其 最简单的形式就是取原来变量指标的线性组合, 适当调整组合系数, 使新的变量 指标之间相互独立且代表性最好。 如果记原来的变量指标为 x 1, 为 x 1,x 2,?, zm (m ≤p ) 。则 x 2 ,?, x p ,它们的综合指标——新变量指标

在(2)式中,系数l ij 由下列原则来决定: (1)z1 2与z j(i ≠j ;i ,j=1 ,2,?,m)相互无关; (2)z 1是x1,x2,?,x p的一切线性组合中方差最大者;z2是与z1不相关的x1,x2,?,x p的所有线性组合中方差最大者;??;z m是与z1,z2,??z m-1 都不相关的x1,x2,?,x p的所有线性组合中方差最大者。 这样决定的新变量指标z1,z2,?,zm分别称为原变量指标x1,x2,?,x p 的第一,第二,?,第m主成分。其中,z1在总方差中占的比例最大,z2,z3,?,z m的方差依次递减。在实际问题的分析中,常挑选前几个最大的主成分,这样既减少了变量的数目,又抓住了主要矛盾,简化了变量之间的关系。 从以上分析可以看出,找主成分就是确定原来变量x j(j=1 ,2,?,p)在诸主成分z i (i=1 ,2,?,m)上的载荷l ij (i=1 ,2,?,m;j=1 ,2,?,p),从数学上容易知道,它们分别是x1,x2,?,x p的相关矩阵的m个较大的特征值所对应的特征向量。 第二节主成分分析的解法 主成分分析的计算步骤 通过上述主成分分析的基本原理的介绍,我们可以把主成分分析计算步骤归纳如下:在公式(3)中,r ij (i ,j=1 ,2,?,p)为原来变量x i与x j的相关系数,其计 算公式为 因为R是实对称矩阵(即r ij =r ji ),所以只需计算其上三角元素或下三角元素即可。 1 计算相关系数矩阵 2 计算特征值与特征向量

主成分分析和因子分析的区别

更多精彩统计学相关文章,请访问“统计之都”Capital of Statistics——https://www.sodocs.net/doc/d95390077.html,
主成分分析和因子分析的区别
一、二者在 SPSS 中的实现
(一) 、因子分析在 进行因子分析主要步骤如下: 1. 2. 3. 4. 5. 指标数据标准化(SPSS 软件自动执行) ; 指标之间的相关性判定; 确定因子个数; 综合得分表达式; 各因子 Fi 命名; 例子:对沿海 10 个省市经济综合指标进行因子分析 (一)指标选取原则 本文所选取的数据来自 《中国统计年鉴 2003》 2002 年的统计数据,在沿海 10 省市经济状况主要指标 中 体系中选取了 10 个指标: X1——GDP X3——农业增加值 X5——第三产业增加值 X7——基本建设投资 X9——海关出口总额 X2——人均 GDP X4——工业增加值 X6——固定资产投资 X8——国内生产总值占全国比重(%) X10——地方财政收入
SPSS 中的实现
图表 1 沿海 10 个省市经济数据 社会消 农业增加 工业增加 第三产业 固定资产 基本建设 费品零 值 值 增加值 投资 投资 售总额 14883.3 1390 950.2 83.9 1122.6 86.2 680 663 1023.9 591.4 1376.2 3502.5 1406.7 822.8 3536.3 2196.2 2356.5 1047.1 4224.6 367 2258.4 3851 2092.6 960 3967.2 2755.8 3065 1859 4793.6 995.7 1315.9 2288.7 1161.6 703.7 2320 1970.2 2296.6 964.5 3022.9 542.2 529 1070.7 597.1 361.9 1141.3 779.3 1180.6 397.9 1275.5 352.7 2258.4 3181.9 1968.3 941.4 3215.8 2035.2 2877.5 1663.3 5013.6 1025.5
地区
GDP
人均 GDP 13000 11643 9047 22068 14397 40627 16570 13510 15030 5062
海关出 地方财 口总额 政收入 123.7 211.1 45.9 115.7 384.7 320.5 294.2 173.7 1843.7 15.1 399.7 610.2 302.3 171.8 643.7 709 566.9 272.9 1202 186.7
辽宁 5458.2 山东 10550 河北 6076.6 天津 2022.6 江苏 浙江 福建 广东 10636 7670 4682 11770 上海 5408.8
广西 2437.2
(二)因子分析在 SPSS 中的具体操作步骤
1

主成分、因子分析步骤

主成分分析、因子分析步骤 不同点主成分分析因子分析 概念具有相关关系的p个变量,经过线性组合后成为k个不相关的新 变量将原数据中多个可能相关的变量综合成少数几个不相关的可反映原始变量的绝大多数信息的综合变量 主要目标减少变量个数,以较少的主成分 来解释原有变量间的大部分变 异,适合于数据简化 找寻变量间的部相关性及潜在的共同因素,适 合做数据结构检测 强调重点强调的是解释数据变异的能力, 以方差为导向,使方差达到最大 强调的是变量之间的相关性,以协方差为导向, 关心每个变量与其他变量共同享有部分的大小 最终结 果应用 形成一个或数个总指标变量反映变量间潜在或观察不到的因素 变异解释程度它将所有的变量的变异都考虑 在,因而没有误差项 只考虑每一题与其他题目共同享有的变异,因 而有误差项,叫独特因素 是否需要旋转主成分分析作综合指标用, 不需要旋转 因子分析需要经过旋转才能对因子作命名与解 释 是否有假设只是对数据作变换,故不需要假 设 因子分析对资料要求需符合许多假设,如果假 设条件不符,则因子分析的结果将受到质疑 因子分析 1 【分析】→【降维】→【因子分析】 (1)描述性统计量(Descriptives)对话框设置 KMO和Bartlett的球形度检验(检验多变量正态性和原始变量是否适合作因子分析)。

(2)因子抽取(Extraction)对话框设置 方法:默认主成分法。主成分分析一定要选主成分法 分析:主成分分析:相关性矩阵。 输出:为旋转的因子图 抽取:默认选1. 最大收敛性迭代次数:默认25. (3)因子旋转(Rotation)对话框设置 因子旋转的方法,常选择“最大方差法”。“输出”框中的“旋转解”。

主成分分析法概念及例题

主成分分析法 主成分分析(principal components analysis,PCA)又称:主分量分析,主成分回归分析法 [编辑] 什么是主成分分析法 主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。 在统计学中,主成分分析(principal components analysis,PCA)是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。 [编辑] 主成分分析的基本思想

在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正是适应这一要求产生的,是解决这类题的理想工具。 同样,在科普效果评估的过程中也存在着这样的问题。科普效果是很难具体量化的。在实际评估工作中,我们常常会选用几个有代表性的综合指标,采用打分的方法来进行评估,故综合指标的选取是个重点和难点。如上所述,主成分分析法正是解决这一问题的理想工具。因为评估所涉及的众多变量之间既然有一定的相关性,就必然存在着起支配作用的因素。根据这一点,通过对原始变量相关矩阵内部结构的关系研究,找出影响科普效果某一要素的几个综合指标,使综合指标为原来变量的线性拟合。这样,综合指标不仅保留了原始变量的主要信息,且彼此间不相关,又比原始变量具有某些更优越的性质,就使我们在研究复杂的科普效果评估问题时,容易抓住主要矛盾。上述想法可进一步概述为:设某科普效果评估要素涉及个指标,这指标构成的维随机向量为。对作正交变换,令,其中为正交阵,的各分量是不相关的,使得的各分量在某个评估要素中的作用容易解释,这就使得我们有可能从主分量中选择主要成分,削除对这一要素影响微弱的部分,通过对主分量的重点分析,达到对原始变量进行分析的目的。的各分量是原始变量线性组合,不同的分量表示原始变量之间不同的影响关系。由于这些基本关系很可能与特定的作用过程相联系,主成分分析使我们能从错综复杂的科普评估要素的众多指标中,找出一些主要成分,以便有效地利用大量统计数据,进行科普效果评估分析,使我们在研究科普效果评估问题中,可能得到深层次的一些启发,把科普效果评估研究引向深入。 例如,在对科普产品开发和利用这一要素的评估中,涉及科普创作人数百万人、科普作品发行量百万人、科普产业化(科普示范基地数百万人)等多项指标。经过主成分分析计算,最后确定个或个主成分作为综合评价科普产品利用和开发的综合指标,变量数减少,并达到一定的可信度,就容易进行科普效果的评估。 [编辑] 主成分分析法的基本原理 主成分分析法是一种降维的统计方法,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,使之指向样本点散布最开的p 个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。 [编辑] 主成分分析的主要作用

主成分分析和因子分析十大不同点

主成分分析和因子分析十大不同点 主成分分析和因子分析无论从算法上还是应用上都有着比较相似之处,本文结合以往资料以及自己的理解总结了以下十大不同之处,适合初学者学习之用。 1.原理不同 主成分分析基本原理:利用降维(线性变换)的思想,在损失很少信息的前提下把多个指标转化为几个不相关的综合指标(主成分),即每个主成分都是原始变量的线性组合,而且各个主成分之间互不相关,使得主成分比原始变量具有某些更优越的性能(主成分必须保留原始变量90%以上的信息),从而达到简化系统结构,抓住问题实质的目的。 因子分析基本原理:利用降维(线性变换)的思想,由研究原始变量相关矩阵内部的依赖关系出发,把一些具有错综复杂关系的变量表示成少数的公共因子和仅对某一个变量有作用的特殊因子线性组合而成。就是要从数据中提取对变量起解释作用的少数公共因子(因子分析是主成分的推广,相对于主成分分析,更倾向于描述原始变量之间的相关关系)。 2.线性表示方向不同 因子分析是把变量表示成各公因子的线性组合;而主成分分析中则是把主成分表示成各变量的线性组合。 3.假设条件不同 主成分分析:不需要有假设(assumptions)。 因子分析:需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。4.求解方法不同 求解主成分的方法:从协方差阵出发(协方差阵已知),从相关阵出发(相关阵R已知),采用的方法只有主成分法。(实际研究中,总体协方差阵与相关阵是未知的,必须通过样本数据来估计)。 注意事项:由协方差阵出发与由相关阵出发求解主成分所得结果不一致时,要恰当的选取某一种方法;一般当变量单位相同或者变量在同一数量等级的情况下,可以直接采用协方差阵进行计算;对于度量单位不同的指标或是取值范围彼此差异非常大的指标,应考虑将数据标准化,再由协方差阵求主成分;实际应用中应该尽可能的避免标准化,因为在标准化的过程中会抹杀一部分原本刻画变量之间离散程度差异的信息。此外,最理想的情况是主成分分析前的变量之间相关性高,且变量之间不存在多重共线性问题(会出现最小特征根接近0的情况)。 求解因子载荷的方法:主成分法,主轴因子法,极大似然法,最小二乘法,a因子提取法。

主成分分析法与因子分析法的区别

主成分分析和因子分析有十大区别: 1.原理不同 主成分分析基本原理:利用降维(线性变换)的思想,在损失很少信息的前提下把多个指标转化为几个不相关的综合指标(主成分),即每个主成分都是原始变量的线性组合,且各个主成分之间互不相关,使得主成分比原始变量具有某些更优越的性能(主成分必须保留原始变量90%以上的信息),从而达到简化系统结构,抓住问题实质的目的。 因子分析基本原理:利用降维的思想,由研究原始变量相关矩阵内部的依赖关系出发,把一些具有错综复杂关系的变量表示成少数的公共因子和仅对某一个变量有作用的特殊因子线性组合而成。就是要从数据中提取对变量起解释作用的少数公共因子(因子分析是主成分的推广,相对于主成分分析,更倾向于描述原始变量之间的相关关系) 2.线性表示方向不同 因子分析是把变量表示成各公因子的线性组合;而主成分分析中则是把主成分表示成各变量的线性组合。 3.假设条件不同 主成分分析:不需要有假设(assumptions), 因子分析:需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specificfactor)之间也不相关,共同因子和特殊因子之间也不相关。 4.求解方法不同 求解主成分的方法:从协方差阵出发(协方差阵已知),从相关阵出发(相关阵R已知),采用的方法只有主成分法。 (实际研究中,总体协方差阵与相关阵是未知的,必须通过样本数据来估计) 注意事项:由协方差阵出发与由相关阵出发求解主成分所得结果不一致时,要恰当的选取某一种方法;一般当变量单位相同或者变量在同一数量等级的情况下,可以直接采用协方差阵进行计算;对于度量单位不同的指标或是取值范围彼此差异非常大的指标,应考虑将数据标准化,再由协方差阵求主成分;实际应用中应该尽可能的避免标准化,因为在标准化的过程中会抹杀一部分原本刻画变量之间离散程度差异的信息。此外,最理想的情况是主成分分析前的变量之间相关性高,且变量之间不存在多重共线性问题(会出现最小特征根接近0的情况); 求解因子载荷的方法:主成分法,主轴因子法,极大似然法,最小二乘法,a因子提取法。 5.主成分和因子的变化不同 主成分分析:当给定的协方差矩阵或者相关矩阵的特征值唯一时,主成分一般是固定的独特的; 因子分析:因子不是固定的,可以旋转得到不同的因子。 6.因子数量与主成分的数量 主成分分析:主成分的数量是一定的,一般有几个变量就有几个主成分(只是主成分所解释的信息量不等),实际应用时会根据碎石图提取前几个主要的主成分。 因子分析:因子个数需要分析者指定(SPSS和sas根据一定的条件自动设定,只要是特征值大于1的因子主可进入分析),指定的因子数量不同而结果也不同; 7.解释重点不同: 主成分分析:重点在于解释个变量的总方差, 因子分析:则把重点放在解释各变量之间的协方差。 8.算法上的不同: 主成分分析:协方差矩阵的对角元素是变量的方差; 因子分析:所采用的协方差矩阵的对角元素不在是变量的方差,而是和变量对应的共同度(变

主成分分析法介绍

主成分分析方法 我们进行系统分析评估或医学上因子分析等时,多变量问题是经常会遇到的。变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。因此,我们就会很自然地想到,能否在各个变量之间相关关系研究的基础上,用较少的新变量代替原来较多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的信息事实上,这种想法是可以实现的,本节拟介绍的主成分分析方法就是综合处理这种问题的一种强有力的方法。 第一节 主成分分析方法的原理 主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。假定有n 样本,每个样本共有p 个变量描述,这样就构成了一个n×p 阶的数据矩阵: 11121212221 2 .....................p p n n np x x x x x x X x x x ?? ? ? = ? ? ??? (1)

如何从这么多变量的数据中抓住事物的内在规律性呢要解决这一问题,自然要在p 维空间中加以考察,这是比较麻烦的。为了克服这一困难,就需要进行降维处理,即用较少的几个综合指标来代替原来较多的变量指标,而且使这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息,同时它们之间又是彼此独立的。那么,这些综合指标(即新变量)应如何选取呢显然,其最简单的形式就是取原来变量指标的线性组合,适当调整组合系数,使新的变量指标之间相互独立且代表性最好。 如果记原来的变量指标为p x x x ,,21Λ,它们的综合指标——新变量指标为Λ21,z z ,m z (m≤p)。则 )2.........(..........22112222121212121111??? ?? ? ?+++=+++=+++=p mp m m m p p p p x l x l x l z x l x l x l z x l x l x l z ΛΛ ΛΛΛΛΛΛΛΛΛΛΛΛΛ 在(2)式中,系数l ij 由下列原则来决定: (1)z i 与z j (i≠j ;i ,j=1,2,…,m)相互无关; (2)z 1是x 1,x 2,…,x p 的一切线性组合中方差最大者;z 2是与z 1不相关的x 1,x 2,…,x p 的所有线性组合中方差最大者;……;z m 是与z 1,z 2,……z m-1都不相关的x 1,x 2,…,x p 的所有线性组合中方差最大者。

主成分分析与因子分析的主要方法和思想

1.(10分)数据中心化和标准化在回归分析中的意义是什么? 在多元线性回归分析中,因为涉及多个自变量,自变量的单位往往不同,会给分析带来一定的困难,又由于涉及的数据量很大,就可能会以舍入误差而使得计算结果不理想. 1.中心化处理后可以减少一个未知参数,减少了计算的工作量,对手工计算尤为重要. 2.标准化处理后有利于消除量纲不同和数量级的差异所带来的影响,避免不必要的误差. 2.(10分)在实际问题中运用多元线性回归应注意哪些问题? 在实际问题中,人们用复相关系数R来表示回归方程对原有数据拟合程度的好坏,但是拟合优度并不是检验模型优劣的唯一标准,有时为了使模型从结构上有较合理的经济解释,R2等于0.7左右也给回归模型以肯定的态度. 在多元线性回归分析中,我们并不看重简单相关系数,而认为偏相关系数才是真正反映因变量y与自变量x i以及自变量x i与x j的相关性的数量. 用相关系数R2大小来衡量模型的拟合优度,不能仅由R2值很大来推断模型优劣. 在实际应用回归方程进行控制和预测时,给定的x0值不能偏离样本均值太大,如果太大,用回归方程无论是作因素分析还是经济预测,效果都不会理想. 得到实际问题的经验回归方程后,还不能马上用它去作分析和预测,还需运用统计方法对回归方程进行检验. 3.(15分)主成分分析与因子分析的主要方法和思想是什么?两者有何联系与区别? 求解主成分的方法:从协方差阵出发(协方差阵已知),从相关阵出发(相关阵R已知),采用的方法只有主成分法。 一、主成分分析的基本思想 在对某一事物进行实证研究中,为了更全面、准确地反映出事物的特征及其发展规律,人们往往要考虑与其有关系的多个指标,这些指标在多元统计中也称为变量。这样就产

R语言主成分和因子分析

R语言主成分和因子分析 主成分分析(PCA)是一种数据降维技巧,它能将大量相关变量转化为一组很少的不相关变量,这些无关变量称为主成分。 探索性因子分析(EFA)是一系列用来发现一组变量的潜在结构的方法,通过寻找一组更小的、潜在的或隐藏的结构来解释已观测到的、变量间的关系。 1.R中的主成分和因子分析 R的基础安装包中提供了PCA和EFA的函数,分别为princomp ()和factanal() psych包中有用的因子分析函数 (1)数据预处理;PCA和EFA都是根据观测变量间的相关性来推导结果。用户可以输入原始数据矩阵或相关系数矩阵列到principal()和fa()函数中,若输出初始结果,相关系数矩阵将会被自动计算,在计算前请确保数据中没有缺失值; (2)选择因子分析模型。判断是PCA(数据降维)还是EFA(发现潜在结构)更符合你的分析目标。若选择EFA方法时,还需要选择一种估计因子模型的方法(如最大似然估计)。 (3)判断要选择的主成分/因子数目; (4)选择主成分/因子; (5)旋转主成分/因子;

(6)解释结果; (7)计算主成分或因子得分。 2.主成分分析 PCA的目标是用一组较少的不相关变量代替大量相关变量,同时尽可能保留初始变量的信息,这些推导所得的变量称为主成分,它们是观测变量的线性组合。如第一主成分为: PC1=a1X1=a2X2+……+akXk 它是k个观测变量的加权组合,对初始变量集的方差解释性最大。 第二主成分是初始变量的线性组合,对方差的解释性排第二,同时与第一主成分正交(不相关)。后面每一个主成分都最大化它对方差的解释程度,同时与之前所有的主成分都正交,但从实用的角度来看,都希望能用较少的主成分来近似全变量集。 (1)判断主成分的个数 PCA中需要多少个主成分的准则: 根据先验经验和理论知识判断主成分数; 根据要解释变量方差的积累值的阈值来判断需要的主成分数; 通过检查变量间k*k的相关系数矩阵来判断保留的主成分数。 最常见的是基于特征值的方法,每个主成分都与相关系数矩阵的特征值关联,第一主成分与最大的特征值相关联,第二主成分与第二大的特征值相关联,依此类推。 Kaiser-Harris准则建议保留特征值大于1的主成分,特征值小于1的成分所解释的方差比包含在单个变量中的方差更少。 Cattell碎石检验则绘制了特征值与主成分数的图形,这类图形可以展示图形弯曲状况,在图形变化最大处之上的主成分都保留。 最后,还可以进行模拟,依据与初始矩阵相同大小的随机数矩阵来判断要提取的特征值。若基于真实数据的某个特征值大于一组随机数据矩阵相应的平均特征值,那么该主成分可以保留。该方法称作平行分析。

相关主题