搜档网
当前位置:搜档网 › 第2讲牛顿第二定律及应用讲义

第2讲牛顿第二定律及应用讲义

第2讲牛顿第二定律及应用讲义
第2讲牛顿第二定律及应用讲义

第2讲牛顿第二定律及应用

见学生用书P040

微知识1 牛顿第二定律

1.内容:物体加速度的大小跟它受到的作用力成正比、跟它的质量成反比,加速度的方向跟作用力的方向相同。

2.表达式:F=ma。

3.“五个”性质

微知识2 两类动力学问题

1.两类动力学问题

(1)已知受力情况求物体的运动情况。

(2)已知运动情况求物体的受力情况。

2.解决两类基本问题的方法

以加速度为“桥梁”,由运动学公式和牛顿第二定律列方程求解,具体逻辑关系如图:

微知识3 力学单位制

1.单位制

由基本单位和导出单位组成。

2.基本单位

基本量的单位。力学中的基本量有三个,它们分别是质量、时间、长度,它们的国际单位分别是千克、秒、米。

3.导出单位

由基本量根据物理关系推导出的其他物理量的单位。

4.国际单位制中的七个基本物理量和基本单位

一、思维辨析(判断正误,正确的画“√”,错误的画“×”。)

1.物体在受力的前提下才会产生加速度,因此加速度的产生要滞后于力的作用。(×)

2.加速度的方向与合外力的方向相同,与速度的方向无关。(√)

3.物体所受合外力减小,物体的速度必减小。(×)

4.物理公式不仅仅确定了物理量之间的数量关系,同时也确定了物理量间的单位关系。(√)

5.千克、米、秒、库仑、安培都是国际单位制的基本单位。(×)

二、对点微练

1.(单位制)关于单位制,下列说法正确的是()

A.kg、m/s、N是导出单位

B.kg、m、C是基本单位

C.在国际单位制中,A是导出单位

D .在国际单位制中,力的单位是根据牛顿第二定律定义的

解析 在国际单位制中,kg 、m 、s 属于基本单位, m/s 、N 、C 属于导出单位,A 、B 项均错误;A 项为国际单位制的基本单位,C 项错误;力的单位(N)是根据牛顿第二定律F =ma 导出的,D 项正确。 答案 D

2.(牛顿第二定律的理解)(多选)质量均为m 的A 、B 两个小球之间连接一个质量不计的弹簧,放在光滑的台面上。A 紧靠墙壁,如图所示,今用恒力F 将B 球向左挤压弹簧,达到平衡时,突然将力撤去,此瞬间( )

A .A 球的加速度为F 2m

B .A 球的加速度为零

C .B 球的加速度为F

2m

D .B 球的加速度为F

m

解析 撤去恒力F 前,A 和B 都平衡,它们的合力都为零,且弹簧弹力为F 。突然将力F 撤去,对A 来说水平方向依然受弹簧弹力和墙壁的弹力,二力平衡,所以A 球的合力为零,加速度为零,A 项错,B 项对;而B 球在水平方向只受水平向右的弹簧的弹力作用,加速度a =F

m ,故C 项错,D 项对。 答案 BD

3.(动力学的两类基本问题)(多选)如图所示,质量为m =1 kg 的物体与水平地面之间的动摩擦因数为0.3,当物体运动的速度为10 m/s 时,给物体施加一个与速度方向相反的大小为F =2 N 的恒力,在此恒力作用下(g 取10 m/s 2)( )

A .物体经10 s 速度减为零

B .物体经2 s 速度减为零

C.物体速度减为零后将保持静止

D.物体速度减为零后将向右运动

解析物体受到向右的滑动摩擦力f=μN=μG=3 N,根据牛顿第二定律得a=

F+f m=2+3

1m/s

2=5 m/s2,方向向右,物体减速到零所需的时间t=

v0

a=

10

5s=2 s,

B项正确,A项错误;减速到零后,恒力F

答案BC

见学生用书P040

微考点1牛顿第二定律的瞬时性

核|心|微|讲

牛顿第二定律瞬时性的“两种”模型

牛顿第二定律的表达式为F=ma,其核心是加速度与合外力的瞬时对应关系,二者总是同时产生、同时消失、同时变化,具体可简化为以下两种模型:

1.刚性绳(或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间。

2.弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变。

典|例|微|探

【例1】(多选)在动摩擦因数μ=0.2的水平面上有一个质量为m=2 kg的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图所示,此时小球处于静止平衡状态,且水平面对小球的弹力恰好为零。当剪断轻绳的瞬间,g取10 m/s2,下列说法正确的是()

A.此时轻弹簧的弹力大小为20 N

B.小球的加速度大小为8 m/s2,方向向左

C .若剪断弹簧,则剪断的瞬间小球的加速度大小为10 m/s 2,方向向右

D .若剪断弹簧,则剪断的瞬间小球的加速度为零 【解题导思】

(1)剪断轻绳前后,弹簧的弹力变化吗?

答:剪断轻绳前后,弹簧长度来不及发生变化,所以弹簧弹力不变。 (2)剪断轻绳前后水平面对小球的支持力变化吗?

答:剪断轻绳前,水平面对小球没有支持力作用,剪断轻绳后,水平面对小球的支持力等于小球的重力大小。

解析 未剪断轻绳时,水平面对小球的弹力为零,小球受到重力mg 、轻绳的拉力T 和弹簧的弹力F 作用而处于平衡状态。依据平衡条件得竖直方向上有T cos θ=mg ,水平方向上有T sin θ=F ,解得弹簧弹力F =mg tan θ=20 N ,A 项正确;剪断轻绳后小球在竖直方向仍平衡,即水平面支持力N =mg ,水平方向上弹簧的弹力保持不变,由牛顿第二定律得小球的加速度a =F -μN m =20-0.2×20

2 m/s 2=8 m/s 2,

方向向左,B 项正确;当剪断弹簧的瞬间,小球立即只受地面支持力和重力作用,且二力平衡,加速度为零,C 项错误,D 项正确。 答案 ABD

(1)求解瞬时加速度的一般思路

分析瞬时变化前后物体的受力情况→列牛顿第二定律方程→求瞬时加速度

(2)加速度可以随着力突变而突变,但速度的变化需要一个积累的过程,不会发生突变。

题|组|微|练

1.(多选)如图,物块a 、b 和c 的质量相同,a 和b ,b 和c 之间用完全相同的轻弹簧S 1和S 2相连,通过系在a 上的细线悬挂于固定点O ,整个系统处于静止状态,现将细线剪断。将物块a 的加速度的大小记为a 1,S 1和S 2相对于原长的伸长量分别记为Δl 1和Δl 2,重力加速度大小为g 。在剪断细线的瞬间( )

A .a 1=3g

B .a 1=0

C .Δl 1=2Δl 2

D .Δl 1=Δl 2

解析 设物体的质量为m ,剪断细线的瞬间,细线的拉力消失,弹簧还没有来得及改变,所以剪断细线的瞬间a 受到重力和弹簧S 1的拉力T 1,剪断前对b 、c 和弹簧组成的整体分析可知T 1=2mg ,故a 受到的合力F =mg +T 1=mg +2mg =3mg ,故加速度a 1=F

m =3g ,A 项正确,B 项错误;设弹簧S 2的拉力为T 2,则T 2=mg ,根据胡克定律F =kΔx 可得Δl 1=2Δl 2,C 项正确,D 项错误。 答案 AC

2.如图所示,质量分别为m 、2m 的小球A 、B ,由轻质弹簧相连后再用细线悬挂在电梯内,已知电梯正在竖直向上做匀加速直线运动,细线中的拉力为T ,此时突然剪断细线。在线断的瞬间,弹簧的弹力的大小和小球A 的加速度的大小分别为( )

A.2T 3,2T

3m +g B.T 3,2T 3m +g C.2T 3,T

3m

+g D.T 3,T

3m

+g 解析 在剪断前,对A 、B 及弹簧整体由牛顿第二定律有T -3mg =3ma ,对B 由牛顿第二定律得F 弹-2mg =2ma ,由此可得F 弹=

2T

3

,细线被剪断后的瞬间,弹簧

弹力不变,此时对A球来说,受到向下的重力和弹力,则有F弹+mg=ma A,解得

a A=2T

3m+g,故A项正确。

答案A

微考点2动力学的两类基本问题

核|心|微|讲

1.物体运动性质的判断方法

(1)明确物体的初始运动状态(v0)。

(2)明确物体的受力情况(F合)。

(3)根据物体做各种性质运动的条件即可判定物体的运动情况、加速度变化情况及速度变化情况。

2.两类动力学问题的解题步骤

典|例|微|探

【例2】如图所示,质量为10 kg的环(图中未画出)在F=200 N的拉力作用下,沿固定在地面上的粗糙长直杆由静止开始运动,杆与水平地面的夹角θ=37°,拉力F与杆的夹角也为θ。力F作用0.5 s后撤去,环在杆上继续上滑了0.4 s后速度减为零。(已知sin37°=0.6,cos37°=0.8,g取10 m/s2)求:

(1)环与杆之间的动摩擦因数μ。

(2)环沿杆向上运动的总距离x。

【解题导思】

(1)环的运动过程分为几段?各是什么性质的运动?

答:环的运动分为两个阶段,先是匀加速直线运动,后是匀减速直线运动。

(2)匀加速直线运动的末速度与匀减速直线运动的初速度有何关系?

答:相等。

解析(1)在力F作用0.5 s内根据牛顿第二定律有

F cosθ-mg sinθ-f=ma1,

F sinθ=N+mg cosθ,

f=μN,

设0.5 s末速度为v,

根据运动学公式有v=a1t1,

撤去F后0.4 s内

mg sinθ+μmg cosθ=ma2,

v=a2t2,

联立以上各式得μ=0.5,

a1=8 m/s2,

a2=10 m/s2,

v=a2t2=4 m/s。

(2)x=1

2a1t

2

1

+v t2-

1

2a2t

2

2

=1.8 m。

答案(1)0.5(2)1.8 m

【反思总结】

多过程问题的分析方法

1.将“多过程”分解为许多“子过程”,各“子过程”间由“衔接点”连接。2.对各“衔接点”进行受力分析和运动分析,必要时画出受力图和过程示意图。3.根据“子过程”和“衔接点”的模型特点选择合理的物理规律列方程。

4.分析“衔接点”速度、加速度等的关联,确定各段间的时间关联,并列出相关的辅助方程。

5.联立方程组,分析求解,对结果进行必要的验证或讨论。

题|组|微|练

3.如图所示,足够长的倾角θ=37°的光滑斜面体固定在水平地面上,一根轻绳跨过定滑轮,一端与质量为m1=1 kg的物块A连接,另一端与质量为m2=3 kg的物块B连接,绳与斜面保持平行。开始时,用手按住A,使B悬于距地面高H=0.6 m 处,而A静止于斜面底端。现释放B,试求A在斜面上向上滑行的最大距离?(设B落地后不再弹起,且所有接触面间的摩擦均忽略不计,sin37°=0.6,cos37°=0.8,g取10 m/s2)

解析设B未落地前系统加速度大小为a1,B落地时的速度为v,B落地后A的加速度为a2,则依据题意有

m2g-T=m2a1,

T-m1g sin37°=m1a1,

解得a1=6 m/s2。

v2-0=2a1x1,x1=H,

m1g sin37°=m1a2,

解得a2=6 m/s2。

0-v2=-2a2x2,

x2=0.6 m,

故A在斜面上向上滑行的最大距离

L=x1+x2=1.2 m。

答案 1.2 m

4.如图所示,质量m=2 kg的物体静止于水平地面的A处,A、B间距L=20 m,用大小为30 N、沿水平方向的外力拉此物体,经t0=2 s拉至B处。(已知cos37°=0.8,sin37°=0.6,g取10 m/s2)

(1)求物体与地面间的动摩擦因数。

(2)用大小为30 N、与水平方向成37°的力斜向上拉此物体,使物体从A处由静止开始运动并能到达B处,求该力作用的最短时间t。

解析(1)沿水平方向施加外力后,物体做匀加速直线运动。根据运动学公式有L

=1

2at

2

代入数据解得a=10 m/s2,

由牛顿第二定律知F-f=ma,得f=10 N,

所以μ=

f

mg=

10

2×10

=0.5。

(2)设外力F作用的最短时间为t,物体先以大小为a1的加速度匀加速运动,所用时间为t,受力分析如图所示。撤去外力后,以大小为a2的加速度匀减速运动,所用时间为t′,到达B处速度恰为零。由牛顿第二定律知F cos37°-f=ma1,

其中f=μN=μ(mg-F sin37°),

联立解得a1=11.5 m/s2,

a2=μmg

m=μg=5 m/s

2。

由于匀加速阶段末速度即为匀减速阶段的初速度,撤去外力时的速度v=a1t=a2t′,

又因为L=1

2a1t

2+

1

2a2t′

2,

联立解得t≈1.03 s。

答案(1)0.5(2)1.03 s

见学生用书P042

数形结合思想在动力学中的应用

素能培养

1.常见的动力学图象

v-t图象、a-t图象、F-t图象、F-a图象等。

2.图象问题的类型

(1)已知物体受到的力随时间变化的图线,要求分析物体的运动情况。

(2)已知物体的速度、加速度随时间变化的图线,要求分析物体的受力情况。

(3)由已知条件确定某物理量的变化图象。

3.解题策略

(1)问题实质是力与运动的关系,解题的关键在于弄清图象斜率、截距、交点、拐点、面积的物理意义。

(2)应用物理规律列出与图象对应的函数方程式,进而明确“图象与公式”“图象与物体”间的关系,以便对有关物理问题作出准确判断。

经典考题(多选)如图甲所示,倾角为θ的足够长的传送带以恒定的速率v

0沿逆时针方向运行。t=0时,将质量m=1 kg的物体(可视为质点)轻放在传送带上,物体相对地面的v-t图象如图乙所示。设沿传送带向下为正方向,重力加速度g 取10 m/s2。则()

A.传送带的速率v0=10 m/s

B.传送带的倾角θ=30°

C.物体与传送带之间的动摩擦因数μ=0.5

D.0~2 s内摩擦力对物体做功W=-24 J

解析由题图可知,当物体速度达到v0=10 m/s时,加速度的大小发生了变化,这是因为此时物体与传送带达到共速,物体受到的滑动摩擦力变向所致,故A项正确;0~1 s内物体的加速度为a1=10 m/s2,1~2 s内为a2=2 m/s2,则有mg sinθ+μmg cosθ=ma1,mg sinθ-μmg cosθ=ma2,联立解得θ=37°,μ=0.5,故B项错

误,C项正确;设物体的两段位移为x1、x2,则有x1=v20

2a1=

102

2×10

m=5 m,x2=

v2-v20

2a2

=122-102

2×2

m=11 m,摩擦力对物体做的功为W=W1+W2=μmgx1cosθ-

μmgx2cosθ=-24 J,故D项正确。

答案ACD

对法对题

1.(多选)如图甲,一物块在t=0时刻滑上一固定斜面,其运动的v-t图线如图乙所示。若重力加速度及图中的v0、v1、t1均为已知量,则可求出()

A.斜面的倾角

B.物块的质量

C.物块与斜面间的动摩擦因数D.物块沿斜面向上滑行的最大高度

解析由v-t图象可求知物块沿斜面向上滑行时的加速度大小为a=v0

t1,根据牛顿

第二定律得mg sinθ+μmg cosθ=ma,即g sinθ+μg cosθ=v0

t1。同理向下滑行时g sinθ

-μg cosθ=v1

t1,两式联立得sinθ=

v0+v1

2gt1,μ=

v0-v1

2gt1cosθ。可见能计算出斜面的倾斜

角度θ以及动摩擦因数,选项A、C正确;物块滑上斜面时的初速度v0已知,向

上滑行过程为匀减速直线运动,末速度为0,那么平均速度为v0

2,所以沿斜面向上

滑行的最远距离为x=v0

2t1,根据斜面的倾斜角度可计算出向上滑行的最大高度为

x sinθ=v0

2t1×

v0+v1

2gt1=

v0(v0+v1)

4g,选项D正确;仅根据v-t图象无法求出物块的

质量,选项B项错误。

答案ACD

2.如图甲所示,在水平地面上有一长木板B,其上叠放木块A。假定木板与地面之间、木块和木板之间的最大静摩擦力都和滑动摩擦力相等。用一水平力F作用于B,A、B的加速度与F的关系如图乙所示,重力加速度g取10 m/s2,则下列说法正确的是()

A.A的质量为0.25 kg

B.B的质量为1.25 kg

C.B与地面间的动摩擦因数为0.2

D.A、B间的动摩擦因数为0.2

解析由题图乙知,B与地面的最大静摩擦力f=3 N,当F1=9 N时,A、B达到最大的共同加速度a1=4 m/s2,对A、B整体由牛顿第二定律得F1-f=(m A+m B)a1。

水平力再增大时,A 、B 发生相对滑动,A 的加速度仍为4 m/s 2,B 的加速度随水平力的增大而增大,当F 2=13 N 时,a B =8 m/s 2,对B 有F 2-f -m A a 1=m B a B ,解得m B =1 kg ,m A =0.5 kg ,进一步求得B 与地面间的动摩擦因数μ1=f

()m A +m B g =

0.2,A 、B 间的动摩擦因数μ2=m A a 1

m A g =0.4,C 项正确,A 、B 、D 项错误。

答案 C

见学生用书P043

1.如图所示,轻弹簧两端拴接两个质量均为m 的小球a 、b ,拴接小球的细线固定在天花板上,两球静止,两细线与水平方向的夹角均为α=30°,弹簧水平,以下说法正确的是( )

A .细线拉力大小为mg

B .剪断左侧细线瞬间,b 球加速度大小为12g

C .弹簧的弹力大小为3mg

D .剪断左侧细线瞬间,a 球加速度大小为3g 解析 对a 受力分析可知,细线拉力大小为F 1=

mg

sin α

=2mg ,弹簧的弹力大小为F 2=mg tan60°=3mg 选项A 错误,C 项正确;剪断左侧细线瞬间,弹簧的弹力不变,故b 球加速度大小为0;此时a 球所受的合力为2mg ,则a 球的加速度为2g ,选项B 、D 错误;故选C 项。 答案 C

2.(多选)如图甲所示,粗糙斜面与水平面的夹角为30°,质量为0.3 kg 的小物块静止在A 点,现有一沿斜面向上的恒定推力F 作用在小物块上,作用一段时间后撤去推力F ,小物块能达到的最高位置为C 点,小物块从A 到C 的v -t 图象如图乙所示,g 取10 m/s 2,则下列说法正确的是( )

A .小物块到C 点后将沿斜面下滑

B .小物块加速时的加速度是减速时加速度的1

3

C .小物块与斜面间的动摩擦因数为33

D .推力F 的大小为4 N

解析 当撤去外力F 后,物块在滑动摩擦力作用下做匀减速直线运动,由v -t 图象可求得物块在斜面上加速和减速两个过程中的加速度分别为a 1=10

3 m/s 2,a 2=

10 m/s 2,物块加速时加速度是减速时加速度的1

3,故B 项正确;在匀减速直线运动

过程中,由牛顿第二定律知:mg sin30°+μmg cos30°=ma 2,μ=

3

3

,故C 项正确;因此小物块到达C 点后将静止在斜面上,故选项A 错误;在匀加速运动阶段F -mg sin30°-μmg cos30°=ma 1,F =4 N ,故D 项正确。 答案 BCD

3.(多选)如图所示为一滑草场。某条滑道由上、下两段高均为h ,与水平面倾角分别为45°和37°的滑道组成,滑草车与草地之间的动摩擦因数为μ。质量为m 的载人滑草车从坡顶由静止开始自由下滑,经过上、下两段滑道后,最后恰好静止于滑道的底端(不计滑草车在两段滑道交接处的能量损失,sin37°=0.6,cos37°=0.8)。则( )

A .动摩擦因数μ=6

7

B .载人滑草车最大速度为

2gh

7

C .载人滑草车克服摩擦力做功为mgh

D .载人滑草车在下段滑道上的加速度大小为3

5

g

解析 由题意根据动能定理有,2mgh -W f =0,即2mgh -μmg cos45°·h

sin45°-

μmg cos37°·h

sin37°=0,得动摩擦因数μ=67,则A 项正确;载人滑草车克服摩擦力

做的功为W f =2mgh ,则C 项错误;载人滑草车在上下两段的加速度分别为a 1=g (sin45°-μcos45°)=

214g ,a 2=g (sin37°-μcos37°)=-3

35

g ,则载人滑草车在上下两段滑道上分别做加速运动和减速运动,则在上段底端时达到最大速度v ,由运动学公式有2a 1h

sin45°=v 2得,v =

2a 1h

sin45°

= 2

7

gh ,故B 项正确,D 项错误。 答案 AB

4.如图所示,一足够长的木板,上表面与木块之间的动摩擦因数为μ=3

3,重力加

速度为g ,木板与水平面成θ角,让小木块从木板的底端以大小恒定的初速率v 0沿木板向上运动。随着θ的改变,小木块沿木板向上滑行的距离x 将发生变化,当θ角为何值时,小木块沿木板向上滑行的距离最小,并求出此最小值。

解析 当θ变化时,设沿斜面向上为正方向,木块的加速度为a ,则木块沿木板斜面方向列牛顿第二定律方程为-mg sin θ-μmg cos θ=ma ,①

木块的位移x 为0-v 2

0=2ax ,②

根据数学关系知木块加速度最大时位移最小,根据①式有a =-g (sin θ+μcos θ), 根据数学关系有sin θ+μcos θ=1+μ2sin ()θ+α其中tan α=μ=

3

3

,则α=30°。

要使加速度a最大,则有θ+α=90°时取最大值g1+μ2,

所以有θ=90°-α=60°时加速度取最大值为a=-2g

3

代入②可得x min=3v20 4g。

答案60°,x min=3v20 4g

牛顿第二定律的系统表达式及应用一中

牛顿第二定律的系统表达式 一、整体法和隔离法处理加速度相同的连接体问题 1.加速度相同的连接体的动力学方程: F 合 = (m 1 +m 2 +……)a 分量表达式:F x = (m 1 +m 2 +……)a x F y = (m 1 +m 2 +……)a y 2. 应用情境:已知加速度求整体所受外力或者已知整体受力求整体加速度。 例1、如图,在水平面上有一个质量为M的楔形木块A,其斜面倾角为α,一质量为m的木块B放在A的斜面上。现对A施以水平推力F, 恰使B与A不发生相对滑动,忽略一切摩擦,则B对 A的压力大小为( BD ) A 、 mgcosα B、mg/cosα C、FM/(M+m)cosα D、Fm/(M+m)sinα ★题型特点:隔离法与整体法的灵活应用。 ★解法特点:本题最佳方法是先对整体列牛顿第二定律求出整体加速度,再隔离B受力分析得出A、B之间的压力。省去了对木楔受力分析(受力较烦),达到了简化问题的目的。 例2.质量分别为m1、m2、m3、m4的四个物体彼此用轻绳连接,放在光滑的桌面上,拉力F1、F2分别水平地加在m1、m4上,如图所示。求物体系的加速度a和连接m2、m3轻绳的张力F。(F1>F2) 例3、两个物体A和B,质量分别为m1和m2,互相接触放在光滑水平面上,如图所示,对物体A施以水平的推力F,则物体A对B的作用力等于 ( ) A.F F F F 3、B 解析:首先确定研究对象,先选整体,求出A、B共同的加速度,再单独研究B,B 在A施加的弹力作用下加速运动,根据牛顿第二定律列方程求解. 将m1、m2看做一个整体,其合外力为F,由牛顿第二定律知,F=(m1+m2)a,再以m2为研究对象,受力分析如右图所示,由牛顿第二定律可得:F12=m2a,以上两式联立可得:F12= ,B正确. 例4、在粗糙水平面上有一个三角形木块a,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b和c,如图1所示,已知m1>m2,三木块均处于静止, 则粗糙地面对于三角形木块( D ) A.有摩擦力作用,摩擦力的方向水平向右。B.有摩擦力作用,摩擦力的方向水平向左。C.有摩擦力作用,组摩擦力的方向不能确定。D.没有摩擦力的作用。 二、对加速度不同的连接体应用牛顿第二定律1.加速度不同的连接体的动力学方程:b c a

牛顿第二定律应用的典型问题

牛顿第二定律应用的典型问题

牛顿第二定律应用的典型问题 ——陈法伟 1. 力和运动的关系 力是改变物体运动状态的原因,而不是维持运动的原因。由知,加速度与力有直接关系,分析清楚了力,就知道了加速度,而速度与力没有直接关系。速度如何变化需分析加速度方向与速度方向之间的关系,加速度与速度同向时,速度增加;反之减小。在加速度为零时,速度有极值。 例1. 如图1所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。在小球下落的这一全过程中,下列说法中正确的是() 图1 A. 小球刚接触弹簧瞬间速度最大 B. 从小球接触弹簧起加速度变为竖直向上 C. 从小球接触弹簧到到达最低点,小球的速度先增大后减小 D. 从小球接触弹簧到到达最低点,小球的加速度先减小后增大 解析:小球的加速度大小决定于小球受到的合外力。从接触弹簧到到达最低点,弹力从零开始逐渐增大,所以合力先减小后增大,因此加速度先减小后增大。当合力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。故选CD。 例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是() A. 探测器加速运动时,沿直线向后喷气 B. 探测器加速运动时,竖直向下喷气 C. 探测器匀速运动时,竖直向下喷气 D. 探测器匀速运动时,不需要喷气 解析:受力分析如图2所示,探测器沿直线加速运动时,所受合力方向与 运动方向相同,而重力方向竖直向下,由平行四边形定则知推力方向必须斜向上方,由牛顿第三定律可知,喷气方向斜向下方;匀速运动时,所受合力为零,因此推力方向必须竖直向上,喷气方向竖直向下。故正确答案选C。

牛顿第二定律经典例题

牛顿第二定律应用的问题 1. 力和运动的关系 力是改变物体运动状态的原因,而不是维持运动的原因。由知,加速度与力有直接关系,分析清楚了力,就知道了加速度,而速度与力没有直接关系。速度如何变化需分析加速度方向与速度方向之间的关系,加速度与速度同向时,速度增加;反之减小。在加速度为零时,速度有极值。 例1. 如图1所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。在小球下落的这一全过程中,下列说法中正确的是() 图1 A. 小球刚接触弹簧瞬间速度最大 B. 从小球接触弹簧起加速度变为竖直向上 C. 从小球接触弹簧到到达最低点,小球的速度先增大后减小 D. 从小球接触弹簧到到达最低点,小球的加速度先减小后增大 例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是() A. 探测器加速运动时,沿直线向后喷气 B. 探测器加速运动时,竖直向下喷气 C. 探测器匀速运动时,竖直向下喷气 D. 探测器匀速运动时,不需要喷气

解析:小球的加速度大小决定于小球受到的合外力。从接触弹簧到到达最低点,弹力从零开始逐渐增大,所以合力先减小后增大,因此加速度先减小后增大。当合力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。故选CD。 解析:受力分析如图2所示,探测器沿直线加速运动时,所受合力方向 与运动方向相同,而重力方向竖直向下,由平行四边形定则知推力方向必须斜向上方,由牛顿第三定律可知,喷气方向斜向下方;匀速运动时,所受合力为零,因此推力方向必须竖直向上,喷气方向竖直向下。故正确答案选C。 图2

牛顿第二定律的应用

牛顿第二定律的应用 Prepared on 22 November 2020

寒假作业4 (考查:牛顿第二定律的应用) 一、选择题(1-12单选,13-22多选) 1.如图,水平面上一个物体向右运动,将弹簧压缩,随后又被弹回直到离开弹簧,则该物体从接触弹簧到离开弹簧的这个过程中,下列说法中正确的是( ) A. 若接触面光滑,则物体加速度的大小是先减小后增大 B. 若接触面光滑,则物体加速度的大小是先增大后减小再增大 C. 若接触面粗糙,则物体加速度的大小是先减小后增大 D. 若接触面粗糙,则物体加速度的大小是先增大后减小再增大 2.静止在光滑的水平面上的物体,在水平推力F的作用下开始运动,推力F 随时间t变化的规律如图所示,则物体在 1 0~t时间内( ) A. 速度一直增大 B. 加速度一直增大 C. 速度先增大后减小 D. 位移先增大后减小 3.质量为M的木块位于粗糙水平桌面上,若用大小为F的水平恒力拉木块时,其加速度为a,当拉力方向不变,大小变为2F时,木块的加速度大小为a′,则 () A. 2a>a′ B. 2a

2019-2020人教新教材物理必修第一册讲义:牛顿第二定律

第3节牛顿第二定律 学习目标核心素养形成脉络 1.知道牛顿第二定律的内容、表达式的确切含 义.(重点) 2.知道国际单位制中力的单位“牛顿”是怎样定义 的. 3.能应用牛顿第二定律解决简单的动力学问 题.(难点) | 一、牛顿第二定律 1.内容:物体加速度的大小跟它受到的作用力成正比,跟它的质量成反比,加速度的方向跟作用力的方向相同. 2.表达式 (1)表达式:F=kma,式中k是比例系数,F指的是物体所受的合力. (2)国际单位制中:F=ma. 二、力的单位 1.比例系数k的意义 ] (1)在F=kma中,k的选取有一定的任意性. (2)在国际单位制中k=1,牛顿第二定律的数学表达式为F=ma,式中F、m、a的单位分别为N、kg、m/s2. 2.国际单位:力的单位是牛顿,简称牛,符号N. 3.1 N的定义:将使质量为1 kg的物体产生1 m/s2的加速度的力规定为1 N,即1 N=1__kg·m/s2. 思维辨析 (1)由牛顿第二定律可知,加速度大的物体所受的合外力一定大.() (2)牛顿第二定律说明了质量大的物体其加速度一定小.() · (3)任何情况下,物体的加速度的方向始终与它所受的合外力方向一致.() (4)关于牛顿第二定律表达式F=kma中的比例系数k, ①力F的单位用N时等于1.() ②在国际单位制中才等于1.()

③加速度单位用m/s2时等于1.() 提示:(1)×(2)×(3)√(4)①×②√③× 基础理解 (1)(2019·殷都校级月考)根据牛顿第二定律,下列叙述正确的是() ; A.物体加速度的方向可能跟它所受合力的方向相反 B.物体所受合力必须达到一定值时,才能使物体产生加速度 C.物体加速度的大小跟它所受的任一个力的大小都成正比 D.当物体的质量改变时,若所受合力的水平分力不变则物体水平加速度大小与其质量成反比 提示:选D.根据牛顿第二定律,物体加速度的方向跟它所受合力的方向相同,故A错误;物体所受合力不为零就一定产生加速度,故B错误;物体实际加速度的大小与它所受的所有力的合力成正比,故C错误;采用正交分解法可知,当物体的质量改变时,若所受合力的水平分力不变则物体水平加速度大小与其质量成反比,故D正确. (2)力F作用于甲物体(质量为m1)时产生的加速度为a1,此力作用于乙物体(质量为m2)时产生的加速度为a2,若将甲、乙两个物体合在一起,仍受此力的作用,则产生的加速度是() * 提示:选C.力F作用于甲物体时,F=m1a1① 力F作用于乙物体时,F=m2a2② 力F作用于甲、乙组成的整体时,F=(m1+m2)a3③ 解①②③式得a3=a1a2 a1+a2,故选项C正确. 对牛顿第二定律的理解 问题导引 如图所示,小明用力拉地面上的箱子,但箱子没动,请思考: ; (1)根据牛顿第二定律,有力就能产生加速度,但为什么箱子一直没 动呢 (2)如果箱底光滑,当拉力作用在箱子上的瞬间,箱子是否立刻获得加速度是否立刻获得速度 要点提示(1)牛顿第二定律F=ma中的力F指的是物体受的合力,尽管小明对箱子有

步步高2015一轮讲义:实验04验证牛顿第二定律

实验四探究加速度与力、质量的关系 考纲解读 1.学会用控制变量法研究物理规律.2.学会灵活运用图象法处理物理问题的方法.3.探究加速度与力、质量的关系,并验证牛顿第二定律.

考点一 对实验原理与注意事项的考查 例1 (2013·天津·9(2))某实验小组利用图1所示的装置探究加速度与力、质量的关系. 图1 ①下列做法正确的是________(填字母代号) A .调节滑轮的高度,使牵引木块的细绳与长木板保持平行 B .在调节木板倾斜度平衡木块受到的滑动摩擦力时,将装有砝码的砝码桶通过定滑轮拴在木块上 C .实验时,先放开木块再接通打点计时器的电源 D .通过增减木块上的砝码改变质量时,不需要重新调节木板倾斜度 ②为使砝码桶及桶内砝码的总重力在数值上近似等于木块运动时受到的拉力,应满足的条件是砝码桶及桶内砝码的总质量________木块和木块上砝码的总质量.(选填“远大于”、“远小于”或“近似等于”) ③甲、乙两同学在同一实验室,各取一套图2所示的装置放在水平桌面上,木块上均不

放砝码,在没有平衡摩擦力的情况下,研究加速度a 与拉力F 的关系,分别得到图9中甲、乙两条直线.设甲、乙用的木块质量分别为m 甲、m 乙,甲、乙用的木块与木板间的动摩擦因数分别为μ甲、μ乙,由图可知,m 甲________m 乙,μ甲________μ乙.(选填“大于”、“小于”或“等于”) 图2 解析 ①在探究加速度与力、质量的关系的实验中,平衡摩擦力时木块不通过定滑轮挂砝码桶,而要挂纸带,并且改变质量时不需要重新平衡摩擦力;在实验时应先接通电源再放开木块,故选项A 、D 均正确,B 、C 均错误. ②选木块和木块上砝码(设总质量为M )、砝码桶及桶内的砝码(设总质量为m )为研究对象, 则mg =(M +m )a 选砝码桶及桶内的砝码为研究对象 则mg -F T =ma 联立解得:F T =mg -m 2g M +m 要使F T =mg ,需要m 2g M +m →0,即M ?m ③对质量为m 的木块由牛顿第二定律得:F -μmg =ma 即a =1 m F -μg . 上式与题图结合可知:1m 甲>1 m 乙,μ甲g >μ乙g . 即:m 甲<m 乙,μ甲>μ乙 答案 ①AD ②远小于 ③小于 大于 考点二 对实验步骤和数据处理的考查 例2 为了探究加速度与力的关系,使用如图3所示的气垫导轨装置进行实验.其中G 1、 G 2为两个光电门,它们与数字计时器相连,当滑行器通过G 1、G 2光电门时,光束被遮挡的时间Δt 1、Δt 2都可以被测量并记录,滑行器同上面固定的一条形挡光片的总质量为M ,挡光片宽度为D ,两光电门间距离为x ,牵引砝码的质量为m .回答下列问题:

下载高一物理牛顿第二定律应用

课题:牛顿第二定律应用(一) 目的:1、掌握应用牛顿定律分析力和运动关系问题的基本方法。 2、培养学生分析解决问题的能力。 重点:受力分析、运动和力关系的分析。 难点:受力分析、运动和力关系的分析。 方法:启发思考总结归纳、讲练结合。 过程:一、知识点析: 1.牛顿第二定律是在实验基础上总结出的定量揭示了物体的加速度与力和质量的关系。数学表达式:ΣF=ma或ΣFx=Ma x ΣF y =ma y 理解该定律在注意: (1)。瞬时对应关系;(2)矢量关系;(3)。 2.力、加速度、速度的关系: (1)加速度与力的关系遵循牛顿第二定律。 (2)加速度一与速度的关系:速度是描述物体运动的一个状态量,它与物体运动的加速度没有直接联系,但速度变化量的大小加速度有关,速度变化量与加速度(力)方向一致。 (3)力与加速度是瞬时对应关系,而力与物体的速度,及速度的变化均无直接关系。Δv=at,v=v +at,速度的变化需要时间的积累,速度的大小还需考虑初始情况。 二、例题分析: 例1。一位工人沿水平方向推一质量为45mg的运料车,所用的推力为90N,此时运料车的加速度是1.8m/s2,当这位工人不再推车时,车的加速度。 【例2】物体从某一高度自由落下,落在直立于地面的轻弹簧上,如图3-2所示,在A点物体开始与弹簧接触,到B点时,物体速度为零,然后被弹回,则以下说法正确的是: A、物体从A下降和到B的过程中,速率不断变小 B、物体从B上升到A的过程中,速率不断变大 C、物体从A下降B,以及从B上升到A的过程中,速率都是先增大,后减小 D、物体在B点时,所受合力为零 【解析】本题主要研究a与F 合 的对应关系,弹簧这种特殊模型的变化特点,以及由物体的受力情况判断物体的运动性质。对物体运动过程及状态分析清楚,同时对物体 正确的受力分析,是解决本题的关键,找出AB之间的C位置,此时F 合 =0,由A→C 的过程中,由mg>kx1,得a=g-kx1/m,物体做a减小的变加速直线运动。在C位置

2020高考物理一轮复习专题3-2 牛顿第二定律及其应用(精讲)含答案

专题3.2 牛顿第二定律及其应用(精讲) 1.理解牛顿第二定律的内容、表达式及性质。 2.应用牛顿第二定律解决瞬时问题和两类动力学问题。 知识点一牛顿第二定律、单位制 1.牛顿第二定律 (1)内容 物体加速度的大小跟它受到的作用力成正比,跟它的质量成反比。加速度的方向与作用力的方向相同。 (2)表达式a=F m或F=ma。 (3)适用范围 ①只适用于惯性参考系(相对地面静止或做匀速直线运动的参考系)。 ②只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况。 2.单位制 (1)单位制由基本单位和导出单位组成。 (2)基本单位 基本量的单位。力学中的基本量有三个,它们分别是质量、时间、长度,它们的国际单位分别是千克、秒、米。 (3)导出单位 由基本量根据物理关系推导出的其他物理量的单位。 知识点二动力学中的两类问题 1.两类动力学问题 (1)已知受力情况求物体的运动情况。 (2)已知运动情况求物体的受力情况。 2.解决两类基本问题的方法 以加速度为“桥梁”,由运动学公式和牛顿第二定律列方程求解,具体逻辑关系如下:

【方法技巧】两类动力学问题的解题步骤 知识点三超重和失重 1.实重和视重 (1)实重:物体实际所受的重力,与物体的运动状态无关,在地球上的同一位置是不变的。 (2)视重 ①当物体挂在弹簧测力计下或放在水平台秤上时,弹簧测力计或台秤的示数称为视重。 ②视重大小等于弹簧测力计所受物体的拉力或台秤所受物体的压力。 2.超重、失重和完全失重的比较 超重现象失重现象完全失重 概念 物体对支持物的压力 (或对悬挂物的拉力)大于 物体所受重力的现象 物体对支持物的压力 (或对悬挂物的拉力)小于物 体所受重力的现象 物体对支持物的压力 (或对悬挂物的拉力)等于零 的现象 产生条件物体的加速度方向向上物体的加速度方向向下 物体的加速度方向向 下,大小a=g 原理方程 F-mg=ma F=m(g+a) mg-F=ma F=m(g-a) mg-F=mg F=0 运动状态加速上升或减速下降加速下降或减速上升 无阻力的抛体运动;绕 地球匀速圆周运动

讲义 - 牛顿第二定律练习题(3)

龙文教育学科教师辅导讲义 教师:______ 学生:______ 时间:_____年_____月____日____段 ★★1.用2N 的水平力拉一个物体沿水平面运动时,物体可获得1m /s 的加速度;用3N 的水平力拉物体沿原地面运动,加速度是2m /s 2,那么改用4N 的水平力拉物体,物体在原地面上运动的加速度是______m /s 2,物体在运动中受滑动摩擦力大小为______N .【2】 纵向应用 ★★2.一轻质弹簧上端固定,下端挂一重物体,平衡时弹簧伸长4cm ,现将重物体向下拉1cm 然后放开,则在刚放开的瞬时,重物体的加速度大小为( ).【1.5】 (A )2.5m /s 2 (B )7.5m /s 2 (C )10m /s 2 (D )12.5m /s 2 ★★3.力F 1单独作用在物体A 上时产生的加速度为a 1=5m /s 2,力F 2单独作用在物体A 上时产生的加速度为a 2=-1m /s 2.那么,力F 1和F 2同时作用在物体A 上时产生的加速度a 的范围是( ).【1.5】 (A )0≤a ≤6m /s 2 B )4m /s 2≤a ≤5m /s 2 (C )4m /s 2≤a ≤6m /s 2 (D )0≤a ≤4m /s 2 ★★4.航空母舰上的飞机跑道长度有限.飞机回舰时,机尾有一个钩爪,能钩住舰上的一根弹性钢索,利用弹性钢索的弹力使飞机很快减速.若飞机的质量为M =4.0×103kg ,同舰时的速度为v =160m /s ,在t =2.0s 内速度减为零,弹性钢索对飞机的平均拉力F =______N (飞机与甲板间的摩擦忽略不计).【2】 ★★5.某人站在升降机内的台秤上,他从台秤的示数看到自己体重减少20%,则此升降机的运动情况是______,加速度的大小是______m /s .(g 取10m /s 2).【2】 ★★6.质量为10kg 的物体,原来静止在水平面上,当受到水平拉力F 后,开始沿直线作匀加速运动,设物体经过时间t 位移为s ,且s 、t 的关系为s =2t 2,物体所受合外力大小为______N ,第4s 末的速度是______m /s ,4s 末撤去拉力F ,则物体再经10s 停止运动,则F =______N ,物体与平面的摩擦因数μ=______(g 取10m /s 2).【4】 ★★★7.在粗糙的水平面上,物体在水平推力作用下由静止开始作匀加速直线运动,作用一段时间后,将水平推力逐渐减小到零,则在水平推力逐渐减小到零的过程中( ).【2】 (A )物体速度逐渐减小,加速度逐渐减小 (B )物体速度逐渐增大,加速度逐渐减小 (C )物体速度先增大后减小,加速度先增大后减小 (D )物体速度先增大后减小,加速度先减小后增大 ★★8.如图所示,物体P 置于水平面上,用轻细线跨过质量不计的光滑定滑轮连接一 个重力G =10N 的重物,物体P 向右运动的加速度为a 1;若细线下端不挂重物,而用F =10N 的力竖直向下拉细线下端,这时物体P 的加速度为a 2,则( ).【2】 (A )a 1>a 2 (B )a 1=a 2 (C )a 1

16牛顿第二定律及其应用 知识讲解 基础

物理总复习:牛顿第二定律及其应用 【考纲要求】 1、理解牛顿第二定律,掌握解决动力学两大基本问题的基本方法; 2、了解力学单位制; 3、掌握验证牛顿第二定律的基本方法,掌握实验中图像法的处理方法。 【知识网络】 牛顿第二定律内容:物体运动的加速度与所受的合外力成正比,与物体的质量成反比,加速度的方向与合外力相同。 解决动力学两大基本问题 (1)已知受力情况求运动情况。 (2)已知物体的运动情况,求物体的受力情况。 运动=F ma ???→←??? 合力 加速度是运动和力之间联系的纽带和桥梁 【考点梳理】 要点一、牛顿第二定律 1、牛顿第二定律 牛顿第二定律内容:物体运动的加速度与所受的合外力成正比,与物体的质量成反比,加速度的方向与合外力相同。 要点诠释:牛顿第二定律的比例式为F ma ∝;表达式为F ma =。1 N 力的物理意义是使质量为m=1kg 的物体产生21/a m s =的加速度的力。 几点特性:(1)瞬时性:牛顿第二定律是力的瞬时作用规律,力是加速度产生的根本原因,加速度与力同时存在、同时变化、同时消失。 (2)矢量性: F ma =是一个矢量方程,加速度a 与力F 方向相同。 (3)独立性:物体受到几个力的作用,一个力产生的加速度只与此力有关,与其他力无关。 (4)同体性:指作用于物体上的力使该物体产生加速度。 要点二、力学单位制 1、基本物理量与基本单位 力学中的基本物理量共有三个,分别是质量、时间、长度;其单位分别是千克、秒、米;其表示的符号分别是kg 、s 、m 。 在物理学中,以质量、长度、时间、电流、热力学温度、发光强度、物质的量共七个物理量 作为基本物理量。以它们的单位千克(kg )、米(m )、秒(s )、安培(A )、开尔文(K )、坎 德拉(cd )、摩尔(mol )为基本单位。 2、 基本单位的选定原则 (1)基本单位必须具有较高的精确度,并且具有长期的稳定性与重复性。 (2)必须满足由最少的基本单位构成最多的导出单位。 (3)必须具备相互的独立性。 在力学单位制中选取米、千克、秒作为基本单位,其原因在于“米”是一个空间概念;“千克”是一个表述质量的单位;而“秒”是一个时间概念。三者各自独立,不可替代。 例、关于力学单位制,下列说法正确的是( ) A .kg 、m/s 、N 是导出单位 B .kg 、m 、s 是基本单位 C .在国际单位制中,质量的单位可以是kg ,也可以是g D .只有在国际单位制中,牛顿第二定律的表达式才是 F ma =

关于系统牛顿第二定律的应用

关于系统牛顿第二定律的应用 眉山中学邓学军 牛顿第二定律是动力学的核心内容,它深刻揭示了物体产生的加速度与其质量、所受到的力之间的定量关系,在科研、 生产、实际生活中有着极其广泛的应用。本文就牛顿第二定律在物理解题中的应用作些分析总结, 以加深学生对该定律的认 识与理解,从而达到熟练应用的效果目的。对于连接体问题,牛顿第二定律应用于系统,主要表现在以下两方面: 其一,系统内各物体的加速度相同。 则表达式为:F =( m i +m 2+…)a ,这种情况往往以整个系统为研究对象,分析 系统的合外力,求岀共同的加速度。 例1 ?质量为m i 、m 2的两个物体用一轻质细绳连接,现对 m i 施加一个外力F ,在如下几种情况下运动,试求绳上的拉 力大小。 m 1 m 2 m i m 2 ⑶m i 、m 2放在光滑斜面上向上作加速直线运动 解析:对整体:F —( m i + m 2) g sin a=( m i + m 2) a 对 m 2: T — m 2g sin a = m 2 a 解得:T = m i m 2 ⑷m i 、m 2放在粗糙斜面上向上作加速直线运动 解析:对整体: F —( m i + m 2) g sin a — g( m i + m 2) g cos a=( m i + m 2) a 对 m 2: T — m 2g sin a — g( m i + m 2) g cos a = m 2 a 其二,系统内各物体的加速度不同。 这种题目较难,牛顿第二定律的基本表达式为: F m i a i mba 2 L ,这是一个矢量表达式,可以分为以下几种情形: 1. 系统中只有一个物体有加速度,其余物体均静止或作匀速运动。 例2?如图示,斜面体 M 始终处于静止状态,当物体 m 沿斜面下滑时,下列说法正确的是: A ?匀速下滑时,M 对地面的压力等于(M +m ) g B. 加速下滑时,M 对地面的压力小于(M + m ) g ⑵m i 、m 2放在粗糙水平面上作加速直线运动: T = m 2 —F 解得:T = m 2 m i m 2 ⑸m i 、m 2放在光滑水平面上在 F 作用下绕0i 02作匀速圆周运动 解析:对整体:F =( m i + m 2) a 对 m 2: T = m 2 a (连接绳子极短) 解得:T = m 2 > F 01 [m2 -| ml m i m 2 ⑴m i 、m 2放在光滑水平面上作加速直线运动: T = m 2

牛顿第二定律应用的典型问题

牛顿第二定律应用的典型问题 ——陈法伟 1. 力和运动的关系 力是改变物体运动状态的原因,而不是维持运动的原因。由知,加速度与力有直接关系,分析清楚了力,就知道了加速度,而速度与力没有直接关系。速度如何变化需分析加速度方向与速度方向之间的关系,加速度与速度同向时,速度增加;反之减小。在加速度为零时,速度有极值。 例1. 如图1所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。在小球下落的这一全过程中,下列说法中正确的是() 图1 A. 小球刚接触弹簧瞬间速度最大 B. 从小球接触弹簧起加速度变为竖直向上 C. 从小球接触弹簧到到达最低点,小球的速度先增大后减小 D. 从小球接触弹簧到到达最低点,小球的加速度先减小后增大 解析:小球的加速度大小决定于小球受到的合外力。从接触弹簧到到达最低点,弹力从零开始逐渐增大,所以合力先减小后增大,因此加速度先减小后增大。当合力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。故选CD。

例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是() A. 探测器加速运动时,沿直线向后喷气 B. 探测器加速运动时,竖直向下喷气 C. 探测器匀速运动时,竖直向下喷气 D. 探测器匀速运动时,不需要喷气 解析:受力分析如图2所示,探测器沿直线加速运动时,所受合力方向与运动方向相同,而重力方向竖直向下,由平行四边形定则知推力方向必须斜向上方,由牛顿第三定律可知,喷气方向斜向下方;匀速运动时,所受合力为零,因此推力方向必须竖直向上,喷气方向竖直向下。故正确答案选C。 图2 2. 力和加速度的瞬时对应关系 (1)物体运动的加速度a与其所受的合外力F有瞬时对应关系。每一瞬时的加速度只取决于这一瞬时的合外力,而与这一瞬时之间或瞬时之后的力无关。若合外力变为零,加速度也立即变为零(加速度可以突变)。这就是牛顿第二定律的瞬时性。 (2)中学物理中的“绳”和“线”,一般都是理想化模型,具有如下几个特性: ①轻,即绳(或线)的质量和重力均可视为零。由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等。

(完整版)牛顿第二定律的应用-临界问题(附答案)

例1.如图所示,一质量为M=5 kg的斜面体放在水平地面上,斜面体与地面的动摩擦因数为μ1=0.5,斜面高度为h=0.45 m,斜面体右侧竖直面与小物块的动摩擦因数为μ2=0.8,小物块的质量为m=1 kg,起初小物块在斜面的竖直面上的最高点。现在从静止开始在M上作用一水平恒力F,并且同时释放m,取g=10 m/s2,设小物块与斜面体右侧竖直面间最大静摩擦力等于它们之间的滑动摩擦力,小物块可视为质点。问: (1)要使M、m保持相对静止一起向右做匀加速运动,加速度至少多大? (2)此过程中水平恒力至少为多少? 例1解析:(1)以m为研究对象,竖直方向有: mg-F f=0 水平方向有:F N=ma 又F f=μ2F N 得:a=12.5 m/s2。 (2)以小物块和斜面体为整体作为研究对象,由牛顿第二定律得:F-μ1(M+m)g=(M+m)a 水平恒力至少为:F=105 N。 答案:(1)12.5 m/s2(2)105 N 例2.如图所示,质量为m的光滑小球,用轻绳连接后,挂在三角劈的顶端,绳与斜面平行,劈置于光滑水平面上,求: (1)劈的加速度至少多大时小球对劈无压力?加速度方向如何? (2)劈以加速度a1= g/3水平向左加速运动时,绳的拉力多大? (3)当劈以加速度a3= 2g向左运动时,绳的拉力多大? 例2解:(1)恰无压力时,对球受力分析,得 (2),对球受力分析,得

(3),对球受力分析,得(无支持力) 练习: 1.如图所示,质量为M的木板上放着质量为m的木块,木块与木板间的动摩擦因数为μ1,木板与水平地面间的动摩擦因数为μ2,求加在木板上的力F为多大时,才能将木板从木块下抽出?(取最大静摩擦力与滑动摩擦力相等) 1解:只有当二者发生相对滑动时,才有可能将M从m下抽出,此时对应的临界状态是:M与m间的摩擦力必定是最大静摩擦力,且m运动的加速度必定是二者共同运动时的最大加速度 隔离受力较简单的物体m,则有:,a m就是系统在此临界状态的加速度 设此时作用于M的力为F min,再取M、m整体为研究对象,则有: F min-μ2(M+m)g=(M+m)a m,故F min=(μ1+μ2)(M+m)g 当F> F min时,才能将M抽出,故F>(μ1+μ2)(M+m)g 2.一条不可伸长的轻绳跨过质量可忽略不计的定滑轮,绳的一端系一质量M=15kg的重物,重物静止于地面上,有一质量m=10kg的猴从绳子另一端沿绳向上爬,如图所示,不计滑轮摩擦,在重物不离开地面条件下,猴子向上爬的最大加速度为(g=10m/s2)() A.25m/s2 B.5m/s2 C.10m/s2 D.15m/s2 2.分析:当小猴以最大加速度向上爬行时,重物对地压力为零,故小猴对细绳的拉力等于重物的重力,对 小猴受力分析,运用牛顿第二定律求解加速度. 解答:解:小猴以最大加速度向上爬行时,重物对地压力为零,故小猴对细绳的拉力等于重物的重力,即F=Mg; 小猴对细绳的拉力等于细绳对小猴的拉力F′=F; 对小猴受力分析,受重力和拉力,根据牛顿第二定律,有

(精) 牛顿第二定律的应用

图 3 F 1 牛顿第二定律的应用检测题 (以下各题取2/10s m g ) 第一类:由物体的受力情况确定物体的运动情况 1,如图1所示,用F = 5.0 N 的水平拉力,使质量m = 5.0 kg 的物体由静止开始沿光滑水平面做匀加速直线运动.求: (1)物体加速度a 的大小; (2)物体开始运动后t = 2.0 s 内通过的位移x . 2,如图2所示,用F = 6.0 N 的水平拉力,使质量m = 2.0 kg 的物体由静止开 始沿光滑水平面做匀加速直线运动。 (1)求物体的加速度a 的大小; (2)求物体开始运动后t = 4.0 s 末速度的大小; 3.如图3所示,用F 1 = 16 N 的水平拉力,使质量m = 2.0 kg 的物体由静止开始沿水平地面做匀加速直线运动。已知物体所受的滑动摩擦力F 2 = 6.0 N 。求: (1)物体加速度a 的大小; (2)物体开始运动后t=2.0 s 内通过的位移x 。 4.如图4所示,用F =12 N 的水平拉力,使物体由静止开始沿水平地面做匀加速直线运动. 已知物体的质量m =2.0 kg ,物体与地面间的动摩擦因数μ=0.30. 求: (1)物体加速度a 的大小; (2)物体在t =2.0s 时速度v 的大小. 5,一辆总质量是4.0×103kg 的满载汽车,从静止出发,沿路面行驶,汽车的牵引力是6.0×103N ,受到的阻力为车重的0.1倍。求汽车运动的加速度和20秒末的速度各是多大? 图1 F 图 2 F 图 4 F

6.如图6所示,一位滑雪者在一段水平雪地上滑雪。已知滑雪者与其全部装备的总质量m = 80kg ,滑雪板与雪地之间的动摩擦因数μ=0.05。从某时刻起滑雪者收起雪杖自由滑行,此时滑雪者的速度v = 5m/s ,之后做匀减速直线运动。 求: (1)滑雪者做匀减速直线运动的加速度大小; (2)收起雪杖后继续滑行的最大距离。 7,如图7所示,一个质量为m=20kg 的物块,在F=60N 的水平拉力作用下,从静止开始沿水平地面向右做匀加速直线运动,物体与地面之间的动摩擦因数为0.10, (1)画出物块的受力示意图 (2)求物块运动的加速度的大小 (3)求物块速度达到s m v /0.6 时移动的距离 第二类:由物体的运动情况确定物体的受力情况 1、列车在机车的牵引下沿平直铁轨匀加速行驶,在100s 内速度由5.0m/s 增加到15.0m/s. (1)求列车的加速度大小. (2)若列车的质量是1.0×106 kg ,机车对列车的牵引力是1.5×105 N ,求列车在运动中所受的阻力大小. 2,静止在水平地面上的物体,质量为20kg ,现在用一个大小为60N 的水平力使物体做匀加速直线运动,当物体移动9.0m 时,速度达到6.0m/s ,求: 图6 图7 F

高一物理必修一牛顿第二定律的应用

牛 顿第二定律的应用 一、计算题 1.如图所示,在游乐场里有一种滑沙运动.某人坐在滑板上从斜坡的高处A 点由静止开始滑下,滑到斜坡底端B 点后,沿水平的滑道再滑行一段距离到C 点停下来。若人和滑板的总质量m = 60 kg ,滑板与斜坡滑道和水平滑道间的动摩擦因数均为μ= 0.50,斜坡的倾角θ= 37°(sin37° = 0.6,cos37° = 0.8),斜坡与水平滑道间是平滑连接的,整个运动过程中空气阻力忽略不计,重力加速度g 取10 m/s 2.求: (1)人从斜坡上滑下的加速度为多大? (2)若AB 的长度为25m ,求人到B 点时的速度为多少? 2.如图所示,物体的质量m=4 kg ,与水平地面间的动摩擦因数为μ=0.2,在与水平方向夹角为37°、大小为10 N 的恒力F 的作用下,由静止开始加速运动,取g=10m/s 2,已知sin 37°= 0.6,cos 37°= 0.8,试求: (1)物体运动的加速度的大小a ; (2)若1t =10 s 时撤去恒力F ,物体还能继续滑行的时间2t 和距离 x . 3.放于地面上、足够长的木板右端被抬高后成为倾角为0137θ=的斜面,此时物块恰好能沿着木板匀速下滑,重力加速度取10m/s 2,sin370=0.6,cos370=0.8,求 (1)物块与木板间的动摩擦因数;

(2)若将此木板右端被抬高后成为倾斜角为0253θ=的斜面,让物块以一定初速度v 0=10m/s 从底端向上滑, 能上滑离底端的最远距离是多大. 4.如图所示,物体的质量m=4kg ,与水平地面间的动摩擦因数为μ=0.2,在与水平面成37°,F=10N 的恒力作用下,由静止开始加速运动,当t=5s 时撤去F ,(g=10m/s 2,sin37°=0.6,cos37°=0.8)。求: (1)物体做加速运动时的加速度a ; (2)撤去F 后,物体还能滑行多长时间? 5.如图所示,水平地面上有一质量m=2.0kg 的物块,物块与水平地面间的动摩擦因数μ=0.20,在与水平方向成θ=37°角斜向下的推力F 作用下由静止开始向右做匀加速直线运动。已知F=10N ,sin37o=0.60,cos37o=0.80,重力加速度g 取10m/s 2,不计空气阻力。求: (1)物块运动过程中所受滑动摩擦力的大小; (2)物块运动过程中加速度的大小; (3)物块开始运动5.0s 所通过的位移大小。 6.如图所示,粗糙斜面固定在水平地面上,用平行于斜面的力F 拉质量为m 的物块,可使它匀速向上滑动,若改用大小为3F 的力,扔平行斜面向上拉该物体,让物体从底部由静止开始运动,已知斜面长为L ,物块可看作质点,求: (1)在力3F 的作用下,物体到达斜面顶端的速度; (2)要使物体能够到达斜面顶端,3F 力作用的时间至少多少?

牛顿第二定律的应用

寒假作业 4 (考查:牛顿第二定律的应用) 一、选择题(1-12单选,13-22多选) 1.如图,水平面上一个物体向右运动,将弹簧压缩,随后又被弹回直到离开弹簧, 则该物体从接触弹簧到离开弹簧的这个过程中,下列说法中正确的是( ) A. 若接触面光滑,则物体加速度的大小是先减小后增大 B. 若接触面光滑,则物体加速度的大小是先增大后减小再增大 C. 若接触面粗糙,则物体加速度的大小是先减小后增大 D. 若接触面粗糙,则物体加速度的大小是先增大后减小再增大 2.静止在光滑的水平面上的物体,在水平推力F的作用下开始运动,推力F 随时间t变化的规律如图所示,则物体在 1 0~t时间内( ) A. 速度一直增大 B. 加速度一直增大 C. 速度先增大后减小 D. 位移先增大后减小 3.质量为M的木块位于粗糙水平桌面上,若用大小为F的水平恒力拉木块时,其加速度为a,当拉力方向不变,大小变为2F时,木块的加速度大小为a′,则() A. 2a>a′ B. 2a

牛顿第二定律应用及连接体问题

牛顿定律的应用 一 两类常用的动力学问题 1. 已知物体的受力情况,求解物体的运动情况; 2. 已知物体的运动情况,求解物体的受力情况 上述两种问题中,进行正确的受力分析和运动分析是关键,加速度的求解是解决此类问题的纽带,思维过程可以参照如下: 解决两类动力学问题的一般步骤 根据问题的需要和解题的方便,选出被研究的物体,研究对象可以是单个物体, 也可以是几个物体构成的系统 画好受力分析图,必要时可以画出详细的运动情景示意图,明确物体的运动性 质和运动过程 通常以加速度的方向为正方向 或者以加速度的方向为某一坐标的正方向 若物体只受两个共点力作用,通常用合成法,若物体受到三个或是三个以上不 在一条直线上的力的作用,一般要用正交分解法 根据牛顿第二定律=ma F 合或者x x F ma = ;y y F ma = 列方向求解,必要时对结论进行讨论 解决两类动力学问题的关键是确定好研究对象分别进行运动分析跟受力分析,求出加速度 例1(新课标全国一2014 24 12分) 公路上行驶的两汽车之间应保持一定的安全距离。当前车突然停止时,后车司机以采取刹车措施,使汽车在安全距离内停下而不会与前车相碰。通常情况下,人的反应时间和汽车系统的反应时间之和为1s 。当汽车在晴天干燥沥青路面上以108km/h 的速度匀速行驶时,安全距离为120m 。设雨天时汽车轮胎与沥青路面间的动摩擦因数为晴天时的2/5,若要求安全距离仍为120m ,求汽车在雨天安全行驶的最大速度。 解:设路面干燥时,汽车与路面的摩擦因数为μ0,刹车加速度大小为a 0,安全距离为s ,反应时间为t 0,由 牛顿第二定律和运动学公式得:ma mg =0μ ①0 20002a v t v s += ②式中,m 和v 0分别为汽车的质量和刹车钱的速度。 明确研究对象 受力分析和运动 状态分析 选取正方向或建 立坐标系 确定合外力F 合 列方程求解

相关主题