搜档网
当前位置:搜档网 › 叶绿素荧光分析技术及其在植物光合机理研究中的应用

叶绿素荧光分析技术及其在植物光合机理研究中的应用

叶绿素荧光分析技术及其在植物光合机理研究中的应用
叶绿素荧光分析技术及其在植物光合机理研究中的应用

叶绿素荧光分析技术及其在植物光合机理

研究中的应用

Z一21

2OOO年9月

第34卷第3期

河南农业大学

如l珊a】ofH叽蚰Agncul~Univety

sep.2OOO

V o1.34No.3

文章蝈号:1000—234o(2ooo)o3一o248—04

叶绿素荧光分析技术及其在植物

光合机理研究中的应用

J

赵会杰,邹琦,于振文

(1.河南农业大学农学院面;2,山东农业大学,山东泰安271018)

:.39;一

Ch10r0phyⅡnu0resenceanalysistechniqueanditsapplication tophotosynthesisofplant

ZHAOHui-jie,ZOUQi2,YU21aen-wen2

(1,伽哟

Cdle~eofHmAgriculturalUniversity,Zheagzlxm450002,Ofian;2,Shand~嘶.

ty,Taian271018,China)

AbsI:Inthisminireview,thefimdamentahofchlorophyllfluorescenceanalysis wereintroducedands口lI1eadvances

inapplicationofdllcl加Iy1lfluorescencekineticstophotosynthesisandstr幽physiologyofplant咖叫m田arized

b.

1【昭唧D:chlorophyll;fluor~~enceanalysis;phowsynthesis;曲嘞physiok~gy

植物光合作用是将太阳能转换为化学能的过程,在光能的吸收,传递和转换过程中,叶绿体色素起着

关键作用.在植物体内叶绿素(da1)可以通过自己直接吸收的光量子(hr1)或间接通过天线色素吸收的光

量子(hr2)得到能量,使分子从基态(so)上升到较高能缴的不同激发态.然后很快通过内转换降低到最低

的第一单线态(S),再通过不同的去激途径回到基态.这些去激途径包括引起光化学反应,发射荧光,热能

耗散等.在摔内由于激发船从1b向dl1a的传递效率几乎达到100%,所以检不出体内chlb的荧光.而且

大量实验证明,绝大部分植物体内叶绿素荧光来自PSII的天线色素系统,PsI色素系统基本不发荧光….

受光激发的叶绿素所产生的荧光一直被用来作为研究光合作用机理的探针【』,尤其是近年来随着叶绿素

荧光理论和测定技术的进步,大大推动了光合作用超快原初反应及其他有关光合机理的研究.目前.国际

上对植物体内叶绿素荧光动力学的研究已形成热点,并在强光,高温,低温,干旱等逆境生理研究中得到广

泛应用,取得令人可喜的成果.作者研究了叶绿素荧光分析技术的基本原理及其在光合作用与逆境生

理研究中的应用.

1应用现状

叶绿素荧光分析技术在光合机理研究中主要用于以下4方面.

1.1激发能的传递

光量子被天线系统中的色素分子吸收后.使后者处于激发态,其激发能不是属于单个色素分子所有,

收藕日期:1999—09—10

基盒璃目:河南省白彝鼻科学基金资助项目(994011~oo)

作者筒升:赵台杰(1958一),男,河南尉氏人.河南裹业大学农学院副教授,博士,从事作物生理教学与研究工作

第3期赵会杰等:叶绿素荧光分析技术及其在植物光合机理研究中的应用249

而是以激子(c眈I)共振方式为整个天线中的ch1分子共有,其传递速率

与ch1分子间的距离6次方呈反

比,与色素分子偶援距取向有关的取向因子平方呈正比,此外还与供,受体色素分子的发射与吸收光谱重

叠大小有关.

最近对PsⅡ外周天线色素聋自复合体(LHCⅡ)中激发能传递的研究表明,LHCⅡ分子中处于不同水

平的单线激发态,特别是chla和chlb单线态之间存在快速的能量平衡,而且激发能从c.hla--~’chlb的传递

比以前设想的要快得多.这证实了chlb和chla一样也是激发能快速分布的居留场所,这为激发能在天线

系统中的传递提供了新的线索.

不同光合单位的天线色素系统之间是否存在激发能的传递,一直是人们感兴趣的问题.JOLIOT最先

根据s_型荧光诱导上升曲线推算出在光合单位之闻存在着一定的激发能传递.最近Ⅱ嘲和LA VERGNE

用激子,基团对理论重新对荧光诱导上升曲线进行了计算,并证实光合单位之间存在着象J所提出

的”中间型”的激发能传递.

天线系统中处于单线态的chl激发能除了能够传递约PsⅡ反应中心P680,并为中心所捕获产生电荷

分离外,它还可能传递给隐蔽的玉米黄素单线态,然后玉米黄素单线态以热能形式耗散能量回到基态.植

物可能以这种方式耗散相当大一部分过量激发能,以避免反应中心的光破坏_l.

1.2屎初反应机理

BU3Y.ER根据他的”两分体模型(biperitemode1)提出在光合作用中,原初光化学反应受激子从天线系

统向反应中心迁移的限制,激子一旦传到反应中心就会象倒人精斗一样很快地被捕获,而激子要想从”精

斗”中再跑出来返回到天线中去是不可能的.这就是所谓的扩散限制论.与此相反,HOLZW ARTH等12提

出了陷阱限制论或称为激子一基团对平衡(exciton-radicalp出equiblmtrn)模型.该模型认为,激子不仅在天

线系统dd单线激发态dd之间,而且也在’c1d与反应中心单线激发态和电荷分离形成的基团对B南.]~seo-

之厨存在着快速的能量准平衡(qlmsj.equilibritrn).这样,限制原初光化学反应的步骤不是天线激发能的迁

移或扩散,而是激发能在反应中心的捕获,它包括原初电荷分离和随后的稳定反应过程;伺时,由于反应中

心的陷阱很浅,传到和掉人陷阱中的激子应该也能很容易地从陷阱中返回天线中来.这种与原初电荷分离

相反的过程称为电荷复合.近年来,关于能量平衡中超快荧光成分的发现和光电压的实验还表明该理论不

仅适用于PsⅡ的反应中心,而且也适用于PsI反应中心.

1.3Psl光化学效率

clll荧光诱导班象是1931年由德国KAtrISKY教授首次发现的,所以后来人们称之为KAfflSKY效应.

Chl荧光诱导动力学是指经过暗适应的绿色植物材料当转到光下时,其体内c}Il荧光强度会有规律的随时

间变化.根据现在国际上的统一命名,可把荧光诱导曲

线(图1)划分为:O(原点)一,(偏转)一D(小坑)或pf

(白阶)一P(最高峰)一S(半稳态)一肼(次峰)一(终

点)这几个相(pIIe).有时在0和,之间还可辨认出

个拐点称为J相.其中O—P相为荧光快速上升阶

段(1—2B),从P—r为荧光慢速下降(猝灭)阶段(4

5s).在此阶段,往往出现复杂的情况.有时没有肼

峰,有时出现几个渐次降低的峰,因叶片的生理状态不

同而异.一般而言,遭受环境胁迫的叶片峰消失.而

生理状态良好的叶片往往在P峰之后有几个峰出现.

这可能反睫了即Fo状态),只有在叠加一束

河南农业大学第34卷

强光化光之后,才能诱导Q的积累和荧光诱导现象的形成.调制式荧光计的信号检测采用选频放大或琐

相放大技术.

PsⅡ的光化学效率是表明光化学反应状况的一个重要参数.在低光强下,光化学效率的高低直接决定

叶片光合速率的高低.因此,在低光强下,由于某种原因造成的低光化学效率会成为光合作用的重要限制

因子.在光饱和的情况下,光化学效率的降低不一定会导致光合速率下降,即不一定会成为光合作用的限

制因子.当光合机构形成的同化力完全用于光合碳同化而不用于氮,硫同化等其它代谢时,光合碳同化的

量子效率与PsⅡ的光化学效率之间有很好的直线关系.在这种情况下,可以把光合碳同化的量子效率作

为光化学效率高低的指标【13J.

光合机构中叶绿紊吸收的光能主要用于推动光合作用,也往往有一部分在形成同化力之前以热的形式耗散

和以荧光的形式重新发射出来.由于上述几个过程之间存在着对能量的相互竞争关系,光合作用和热耗散的变

化便会引起荧光发射的相应变化.因此,可以通过对荧光的观测来探究光合作用和热耗散的情况【14,15J.

在荧光分析中,最常用的基本荧光参数是,F和/.这里为初始荧光,是Ps Ⅱ反应中心全

部开放时的荧光水平;为最大荧光,是PsⅡ反应中心全部关闭时的荧光水平;为最大荧光和初始荧

光之差(Fv=一Fo),被称为可变荧光;可变荧光和最大荧光之比(/)被称为PsⅡ的光化学效率.在

非逆境条件下,多种植物的这一效率值在0.85左右,但在逆境条件下,这一效率值明显降低.PsⅡ天线

的热耗散增加导致降低,PsⅡ反应中心的破坏或可逆失活引起的增加.因此,可以根据的变化

推断反应中心的状况.

1.4檀糖在逆境条件下的生理变化

8o年代以来.人们在逐渐弄清植物体内叶绿索荧光动力学与光合作用关系的基础上,发现它对各种

胁迫因子十分敏感.因而越来越多地将其作为鉴定植物抗逆性的理想指标和技术.澳大利亚Snl~e等首

先将检测植物抗寒性的荧光动力学方法规范化.作者先把待测植物的叶片置于O℃下,经过不同时间的预

处理后,仍在O℃下快速测定其荧光动力学,发现样品荧光最大上升速率(,实际是可变荧光最大上升速

度)下降为未经0℃处理的对照叶片的50%时.所需的0℃处理时间(c,),可作为植物抗寒性的相对

度量.杨世青等J用微机控制的非调制式荧光计,每隔10d左右,检测和比较6个已知其抗冻性顺序的冬

小麦品种在自然条件下越冬过程中叶绿紊荧光动力学的变化,发现只有经过冬季低温锻炼,不同品种抗冻

性的差别才能通过荧光动力学有规律地表现出来.到了翌年春季小麦开始返青时,不同品种之间的荧光动

力学曲线表现出最显着的差异.水分亏缺会立即对植物的光合作用产生抑制作用,试验证明,叶绿体荧光

动力学对植物水分和盐渍胁迫均非常敏感,是一种理想的检测手段.用小麦叶片为材料,经不同程度干燥

失水后,用毫秒荧光计测定叶绿体荧光动力学变化,发现随着叶片失水程度增加,其荧光猝灭迅速减少,说

明光合电子传递和膜的能态化逐渐受到缺水的抑制;随着失水的加剧,叶片的可变荧光()也随着减少,

表明PsⅡ的结构与功能受到不同程度的损伤与破坏.近几年来,强光胁迫对植物光合作用的光抑制现象

颇受关注,不少研究认为,PsⅡ的光化学效率(/)是度量光抑制程度的重要指标.I.赵世杰等”9J

通过改变小麦旗叶与茎秆的夹角,研究强光对田间小麦直立叶与平展叶光抑制的差0,发现在叶温达到

27.6℃,最高光强为1600衄?m?8-的晴天,田闻小麦经过午间强光照射4h后,PsⅡ的光化学效率

(/’m)明显下降,平展叶比直立叶发生了更为严重的光抑制.这些研究为农业生产上采取相应的调控

技术提供了理论依据.

2研究前景

叶绿紊荧光是研究植物光合作用的良好探针,由于其分析技术具有快速,灵敏和非破坏性等优点,近

年来发展十分迅速.但目前尚有许多理论和技术问题需要深人探讨.今后一个时期研究的重点是:

1)进一步加强叶绿素荧光理论的研究.如PsI色素系统为何基本不发荧光,体内不同种类的荧光究

竟是由哪一种色素蛋白复合体发射的等等.2)改进和完善叶绿紊荧光分析技术,促进测定技术向着小型

化,智能化的方向发展,并与其它非破坏性检测技术,如叶片的吸收光谱,光合放氧,二氧化碳固定等相结

合,形成一种多功能综合性的检测研究手段.3)进一步扩展其应用领域,要深人探讨叶绿紊荧光分析在海

洋与陆地植物的遥感遥测,植物对环境污染反应的监铡,作物产量的预澍预报等方面的应用问题.可以预

第3期赵会杰等:叶绿素荧光分析技术及其在植物光台机理研究中的应用25l

见,随着ehl荧光理论研究的深人和探测技术的进一步发展,荧光分析技术将会在植物生理学,生态学和

农业科学研究中得到越来超广泛的应用.

参考文献

[1]KltAUSI~cIt,wⅡsF.0Ih曲ⅡfllJoreseeneeandph咖吐

曲:The[J].ArmRevPh~olPlantMolBid,1991t

(42):313—349.

[2]BttlIERwL.a呐Ⅱfluom~enee舶aforelectronⅡ驯andeI盱IA,IANN 叫MA.豳cl0fl1.砒l0w崩岫啊pb姗】眦dl白ct臼诋andmBcl埘正li 曩ns0fph岬o-

怕0f皿Bi砷l帅[JJ.JbB0I,1995,46:119—127

[11】JFtt.1heI髓0fdll∞ⅡnI嗍嘲andrll~r脚ive甲州埘哪hI蛸inP1日l吐plIy胄j0l0gy[JJ一

妇vⅡ出mse明,1990,125:146—332一

[12]哪瞰WL.E哪in忡0fpl[JJ_Ann啪州0I,l978t29~345—

278.

[13]余叔文,历章成.撞物生理与分子生物学.第2版[M].北京:科学出版社,1998.262—267.

[14]豫舡田u盯M,BAⅪmNR.A_r吐i’瞳ived一舶血眦曲咖d.鲫蹦and∞I卜曲咖d.鲫剐日曲面the御ph岫e

0fcu呱曲蝴nIH∞∞n∞_删hi叽clave0fb叫lle嗍[J].BiocI啪Bi咖目

,l9g4,765:275—281.

[15]Ⅲ田s0NRB,缸AKMN,wAI朋mDA.Bel∞蛳betwe血咖8d咖把丑I髓髓旧髓yiIdand曲瞰合作用的光抑制[J].植物生理学通讯,1992,28(4):237—243.

[19]赵世杰,许长成,盂庆伟,等.田间小麦叶片光合作用的光抑{|I[J].西北植物,1998,18(4):兜l一526

三维荧光光谱分析法

三维荧光光谱分析法 荧光强度与激发波长Kex、发射波长Kem、衰变时间( t)、荧光寿命(S)、吸光系数(E)、偏振度(P ) 及待测组分浓度(c) 等因素有关。若主要研究荧光强度与Kex 和Kem 的关系, 就构成了Kex2K em2F 三维荧光光谱(EEM ) , EEM 光谱技术简化了复杂组分繁琐的分离过程, 提高了荧光分析的灵敏度、选择性和实用性, 还可进行指纹分析和技术鉴定。许金钩小组应用EEM 技术和方法,获得了生物大分子、有机小分子荧光探针、以及荧光探针分子与生物大分子相互作用的大量信息, 并运用Mon te2Carlo 数学模型对EEM 进行总体积分,建立了EEM 总体积分方法, 用于样品中有机物质和药物分子的定量分析, 获得满意的结果。除了使用EEM 技术和方法外, 还可以根据实际需要, 选择荧光衰变时间( t)、偏振度(P )、荧光寿命(S) 等参数,构成Kex2K em2x (待定参数) 三维荧光光谱, 从不同的角度出发来提高荧光分析的灵敏度、选择性。这种分析技术不仅被用来进行物质的定性和定量分析,而且被用于测定生物大分子的形状、大小、构象, 以及固态物质、生物大分子与有机分子和金属离子相互作用等的研究, 在临床医学、环境检测、法医鉴定、生命科学以及有序介质中生物大分子荧光探针光谱特性的研究等方面, 发挥着极为重要的作用。但由于多维荧光光谱技术中需要处理大量的实验数据,因此在研制仪器的同时, 还要开发许多有实用价值的数学处理方法和多维光谱软件120 世纪70 年代发展起来的同步导数荧光技术在混合物的连续测定中发挥着重要作用, 这一方法的特点是同时扫描激发波长和发射波长, 并对得出的图谱进行微分处理, 使容易重叠的波峰彼此完全分开, 便于得出可靠的测量结果。有人对人血尿中temopo rt in2po lyethylene glyno l 共轭物分别用HPLC、C I 和荧光光谱分析法进行测定, 发现荧光光谱分析法是其中最简便、迅速、灵敏的分析方法, 新一代荧光指示剂如酪氨

叶绿素荧光参数及意义

第一节 叶绿素荧光参数及其意义 韩志国,吕中贤(泽泉开放实验室,上海泽泉科技有限公司,上海,200333) 叶绿素荧光技术作为光合作用的经典测量方法,已经成为藻类生理生态研究领域功能最强大、使用最 广泛的技术之一。由于常温常压下叶绿素荧光主要来源于光系统II 的叶绿素a ,而光系统II 处于整个光合 作用过程的最上游,因此包括光反应和暗反应在内的多数光合过程的变化都会反馈给光系统II ,进而引起 叶绿素a 荧光的变化,也就是说几乎所有光合作用过程的变化都可通过叶绿素荧光反映出来。与其它测量 方法相比,叶绿素荧光技术还具有不需破碎细胞、简便、快捷、可靠等特性,因此在国际上得到了广泛的 应用。 1 叶绿素荧光的来源 藻细胞内的叶绿素分子既可以直接捕获光能,也可以间接获取其它捕光色素(如类胡萝卜素)传递来 的能量。叶绿素分子得到能量后,会从基态(低能态)跃迁到激发态(高能态)。根据吸收的能量多少, 叶绿素分子可以跃迁到不同能级的激发态。若叶绿素分子吸收蓝光,则跃迁到较高激发态;若叶绿素分析 吸收红光,则跃迁到最低激发态。处于较高激发态的叶绿素分子很不稳定,会在几百飞秒(fs ,1 fs=10-15 s )内通过振动弛豫向周围环境辐射热量,回到最低激发态(图1)。而最低激发态的叶绿素分子可以稳定 存在几纳秒(ns ,1 ns=10-9 s )。 波长吸收荧光红 B 蓝 荧光 热耗散 最低激发态较高激发态基态吸收蓝光吸收红光能量A 图1 叶绿素吸收光能后能级变化(A )和对应的吸收光谱(B )(引自韩博平 et al., 2003) 处于最低激发态的叶绿素分子可以通过几种途径(图2)释放能量回到基态(韩博平 et al., 2003; Schreiber, 2004):1)将能量在一系列叶绿素分子之间传递,最后传递给反应中心叶绿素a ,用于进行光化 学反应;2)以热的形式将能量耗散掉,即非辐射能量耗散(热耗散);3)放出荧光。这三个途径相互竞 争、此消彼长,往往是具有最大速率的途径处于支配地位。一般而言,叶绿素荧光发生在纳秒级,而光化 学反应发射在皮秒级(ps ,1 ps=10-12 s ),因此在正常生理状态下(室温下),捕光色素吸收的能量主要用 于进行光化学反应,荧光只占约3%~5%(Krause and Weis, 1991; 林世青 et al., 1992)。 在活体细胞内,由于激发能从叶绿素b 到叶绿素a 的传递几乎达到100%的效率,因此基本检测不到 叶绿素b 荧光。在常温常压下,光系统I 的叶绿素a 发出的荧光很弱,基本可以忽略不计,对光系统I 叶 绿素a 荧光的研究要在77 K 的低温下进行。因此,当我们谈到活体叶绿素荧光时,其实指的是来自光系 统II 的叶绿素a 发出的荧光。

荧光分析法检测原理及应用举例

1 荧光定义 某些化学物质从外界吸收并储存能量而进入激发态,当其从激发态回到基态时,过剩的能量以电磁辐射的形式放射出去即发光,称之为荧光。可产生荧光的分子或原子在接受能量后引起发光,供能一旦停止,荧光现象随之消失。 2 荧光分类 由化学反应引起的荧光称为化学荧光,由光激发引起的荧光称为光致荧光,课题主要研究光致荧光。按产生荧光的基本微粒不同,荧光可分为原子荧光、X 射线荧光和分子荧光,课题主要研究分子荧光。 3 光致荧光机理 某一波长的光照射在分子上,分子对此光有吸收作用,光能量被分子所吸收,分子具有的能量使分子的能级由最低的基态能级上升至较高的各个激发态的不同振动能级,称为跃迁。分子在各个激发态处于不稳定的状态,并随时在激发态的不同振动能级下降至基态,在下降过程中,分子产生发光现象,此过程为释放能量的过程,即为光致荧光的机理。光致荧光的过程按照时间顺序可分为以下几部分。 分子受激发过程 在波长为10~400nm的紫外区或390~780nm的可见光区,光具有较高的能量,当某一特征波长的光照射分子时,是的分子会吸收此特征波长的光能量,能量由光传递到分子上,此过程为分子受激发过程。分子中的电子会出现跃迁过程,在稳定的基态向不稳定的激发态跃迁。跃迁所需要的能量为跃迁前后两个能级的能量差,即为吸收光的能量。分子跃迁至不稳定的激发态中即为电子激发态分子。 在电子激发态中,存在多重态。多重态表示为2S+1。S为0或1,它表示电子在自转过程中,具有的角动量的代数和。S=0表示所有电子自旋的角动量代数和为0,即所有电子都是自旋配对的,那么2S+1=1,电子所处的激发态为单重态, 用S i 表示,由此可推出,S 即为基态的单重态,S 1 为第一跃迁能级激发态的单重 态,S 2 为第二跃迁能级激发态的单重态。S=1表示电子的自旋方向不能配对,说明电子在跃迁过程中自旋方向有变化,存在不配对的电子为2个,2S+1=3,电子 在激发态中位于第三振动能级,称为三重态,用T i 来表示,T 1 即为第一激发态中 的三重态,T 2 即为第二激发态中的三重态,以此类推。

叶绿素荧光研究背景知识介绍

叶绿素荧光研究背景知识介绍 前言 近些年来,叶绿素荧光技术已经逐渐成为植物生理生态研究的热门方向。荧光数据是植物光合性能方面的必要研究内容。目前这种趋势由于叶绿素荧光检测仪的改进而得到发展。然而荧光理论和数据解释仍然比较复杂。就我们所了解的情况来看,目前许多研究者对荧光理论不是很清楚,仪器应用仅仅限于简单的数据说明的基础上,本文在此基础上,目的在于简单明晰地介绍相关理论和研究要点,以求简单明确地使用叶绿素荧光检测设备,充分分析实验数据,重点在于植物生理生态学技术的应用和限制。 荧光测量基础 植物叶片所吸收的光的能量有三个走向:光合驱动、热能、叶绿素荧光。三个过程之间存在竞争,其中任何一个效率的增加都将造成另外两个产量的下降。因此,测量叶绿素荧光产量,我们可以获得光化学过程与热耗散的效率的变化信息。尽管叶绿素荧光的总量很小(一般仅占叶片吸收光能总量的1-2%),测量却非常简单。荧光光谱不同于吸收光谱,其波长更长,因此荧光测量可以通过把叶片经过给定波长的光线的照射,同时测量发射光中波长较长的部分光线的量来实现。有一点需要注意的是,这种测量永远是相对的,因为光线不可避免会有损失。因此,所有分析必须把数据进行标准化处理,包括其进一步计算的许多参数也是如此。 调制荧光仪的出现是荧光研究技术的革命性的创新。在这类仪器中,测量光源是调制(高频率开关)的,其检测器也被调谐来仅仅检测被测量光激发的荧光。因此,相对的荧光产量可以在背景光线(主要是指野外全光照的条件下)存在的条件下进行测量。目前绝大多数的荧光仪采用了调制系统,同时也强烈建议选择调制荧光仪(Kate Maxwell,2000)。 为什么荧光产量会发生改变?Kautsky效应和Beyond 叶绿素荧光产量的变化最早在1960年被Kautsky和其合作者发现。他们发现,当把植物叶片从黑暗中转入光下,荧光产量瞬间上升(大约在1秒左右)这种上升可以解释为光合途径中电子受体的还原(可接受电子的受体的减少)。一旦PSII吸收光能,初级电子受体Q A(质体醌)接受了电子,它将不能再接受电子,直到它把电子传递给下一级电子载体Q B。此期间,反应中心是关闭的,反应中心关闭的比

荧光分析技术新进展

第27卷第5期 唐山师范学院学报 2005年9月 Vol. 27 No.5 Journal of Tangshan Teachers College Sep. 2005 ────────── 收稿日期:2005-04-02 作者简介:孙继红(1969-),男,河北丰南人,唐山第九中学中教一级教师。 - 19 - 荧光分析技术新进展 孙继红1,钱丹青2 (1.唐山第九中学,河北 唐山 063000;2.唐山学院 机电系,河北 唐山 063000) 摘 要:荧光分析法因具有灵敏度高,线性范围宽等优点。综述了近年来荧光分析技术的发展情况,并对各种荧光分析新技术的特点和应用进行了归纳。 关键词:荧光分析;HPLC ;离子色谱 中图分类号:O657.3 文献标识码:B 文章编号:1009-9115(2005)05-0019-02 近年来荧光分析研究发展迅速,年文献量不断增加。主要应用领域有中西药、临床、生物大分子、食品营养和添加剂等试样。激光诱导荧光法诊断恶性肿瘤,显微荧光法研究药物与细胞的相互,DNA 编序及含量的荧光法测定均是目前受到关注的热点问题。 1 荧光分析新技术 近些年更多的研究者转向充分利用或开发仪器软件技术,以期提高发光分析的选择性和灵敏度,这方面年均论文数量增长了约两倍。刘绍璞先生等率先研究了分子二级散射光谱、共振荧光光谱、共振瑞利散射光谱的分析应用并取得了丰硕成果。郑飞跃等利用解卷积法、黄俊利用相调制技术研究了荧光寿命的测量。潘利华等[1-3]研究了激光诱导荧光寿命测量以及在稀土元素测定中的应用。其它关于金属配合物及镁、铝测定[4][5]及塑封料中铀的测定也有报道[6]。 导数光谱、多维光谱、偏振光谱、磁效应、时间分辨技术、恒能量、固定波长或可变角荧光法等,单独或几种方法的结合并借以化学计量学手段,在提高分析选择性方面具有很大的优越性,而且论文日趋增多,在医药临床、环境检测、石油勘探等领域得到广泛应用。吡哌酸的固体表面延迟荧光测定具有较好的灵敏度[7]。高灵敏检测器以及荧光成像技术对提高分析灵敏度、从有限样品中获取更丰富的化学信息显 示出大的威力。电感偶合检测器件(CCD )[8-10]、增强型CCD (ICCD )[11][12]结合毛细管电泳及激光诱导荧光技术,使得分析检出限显著降低。荧光成像技术[13]可望获得单细胞的化学信息。国外单细胞或单分子检测的研究非常活跃,而上述技术的联合应用对此是必不可少的。 荧光免疫及生化分析持续好的势头。赵启仁等[14]研究了铕标记抗癌胚抗原单克隆抗体C17的应用。周四元等[15]提出对氟苯酚2过氧化氢2辣根过氧化物酶体系酶联荧光免疫法,并用于人血清中乙肝表面抗原和表面抗体测定。姚凤姬等[16]用非标记铕络合物荧光免疫法测定了血清中金属硫蛋白。王敏灿等[17]合成了荧光免疫分析中增强22萘甲酰三氟 丙酮。李建中等用新合成的荧光标记试剂KLUK 标记靶细胞K562,采用时间分辨技术,测量了NK 细胞毒性,具有很好的应用前景。 2 荧光检测技术与其它仪器联用 荧光分析法因具有灵敏度高,线性范围宽等优点,愈来愈引起人们的重视,尤其是近年来激光、计算机、电子学等新技术的飞速发展,加速了荧光分光光度计与其它技术的结合而形成多种多样的新型荧光分析。 荧光分光光度计的联用技术与紫外可见分光光度计的联用技术有许多相似之处。首先它可以作为一种仪器的检测器,其次可以作为一个独立的主体与其它附件相连接,形成一种新的测试系统,最后它还可以与其它分析技术相结合构成一种新型的分析仪器。 2.1 荧光检测与HPLC 联用 液相色谱检测器种类很多,灵敏度较高、选择性较好的荧光检测器在进行微量分析中经常使用。如许多芳香族化合物如蒽、菲、芴等在特定条件下发出特征荧光,利用HPLC 的荧光检测器可以同时测定上述物质。Tanabe 等[18]设计一种供HPLC 用的多波长荧光检测系统,有4个干涉滤光片和光电倍增管通道;Gluckman 等[19]研制的荧光检测器,流通池为150μL ,可用于毛细管HPLC 和超临界色谱,其最小检测量为0.2pg 。 2.2 荧光检测与离子色谱联用 Mho 等人[20]研制一套供离子色谱用的双光束激光激发间接荧光检测器,它用具有荧光的淋洗离子维持恒定背景信号,当待测离子淋出时,信息观测信号减少。这种荧光检测器可以检测纳克级阴离子,方法灵敏度非常高。 2.3 激光光源引入荧光分光光度计 激光光源引入荧光计在我国开发较早,也是目前应用比较成熟的仪器之一,如测铀仪就是其中的代表[21]。时间分辨激光荧光分光光度计的研制成功,大大改善了荧光仪器的性能,这类仪器已广泛应用于环境监测、稀土分析、冶金、化

对于叶绿素荧光全方面的研究

对于叶绿素荧光全方面的研究 叶绿素荧光现象的发现 将暗适应的绿色植物突然暴露在可见光下后,植物绿色组织发出一种暗红色,强度不断变化的荧光。荧光随时间变化的曲线称为叶绿素荧光诱导动力学曲线。最直观的表现是,叶绿素溶液在透射光下呈绿色,在反射光下呈红色的现象。其本质是,叶绿素吸收光后,激发了捕光色素蛋白复合体,LHC将其能量传递到光系统2或光系统1,期间所吸收的光能有所损失,大约3%-9%的所吸收的光能被重新发射出来,其波长较长,即叶绿素荧光。 叶绿素荧光动力学研究的特点 1、叶绿素荧光动力学特性包含着光合作用过程的丰富信息 光能的吸收和转换 能量的传递与分配 反应中心的状态 过剩光能及其耗散 光合作用光抑制与光破坏 2、可以对光合器官进行“无损伤探查” 3、操作步骤简单快捷 光合作用的光抑制 光抑制是过剩光能造成光合功能下降的过程。过剩光能指植物所吸收的光能超出光化学反应所能利用的部分。过去人们把光抑制与光破坏等同起来,认为发生了光抑制就意味着光和机构遭到破坏。甚至把光抑制、光破坏、光氧化等,沦为一体。 光抑制的基本特征表现为: 光合效率下降说明叶片吸收的光能不能有效地转化为化学能。光破坏:PSII 是光破坏的主要场所,破坏也可能发生在反应中心也可能发生在与次级电子受体结合的蛋白上。发生光破坏后的结果:电子传递受阻、光合效率下降。当过剩的光能,不能及时有效地排散时,会对光合机构造成不可逆的伤害,如光氧化、光漂白等等。一切影响二氧化碳同化的外界因素,如低温、高温、水分亏缺、矿质元素亏缺等都会减少对光能的利用,导致过剩光能增加,进而加重光破坏。 植物防御破坏的措施 1、减少对光能的吸收 增加叶片的绒毛、蜡质 减少叶片与主茎夹角 2、增强代谢能力 碳同化 光呼吸 氮代谢 3、增加热耗散 依赖叶黄素循环的热耗散 状态转换 作用中心可逆失活 光合作用

平邑甜茶叶片光合速率及叶绿素荧光参数对氯化镉处理的响应

中国农业科学 2010,43(15):3176-3183 Scientia Agricultura Sinica doi: 10.3864/j.issn.0578-1752.2010.15.015 平邑甜茶叶片光合速率及叶绿素荧光参数 对氯化镉处理的响应 王 利1,2,杨洪强1,3,范伟国3,张 召2 (1山东农业大学资源与环境学院农业资源利用博士后流动站,山东泰安 271018;2山东农业大学林学院农业生态与环境重点实验室, 山东泰安 271018;3山东农业大学园艺科学与工程学院/作物生物学国家重点实验室,山东泰安 271018) 摘要:【目的】研究氯化镉处理对平邑甜茶叶片光系统Ⅱ(PSⅡ)活性、光合速率影响及其相互关系,为进一步揭示镉伤害机理提供理论依据。【方法】平邑甜茶在含不同浓度氯化镉1/2 Hoagland营养液中培养30 d后, 测定其叶片光合速率(Pn)、气孔导度、胞间CO2浓度和荧光参数等,分析氯化镉处理后这些参数间的关系。【结果】 在氯化镉处理下,平邑甜茶叶片光合速率和气孔导度显著降低,胞间CO2浓度增加,300 μs时的叶绿素荧光强度 (Fk)提高,PSⅡ最大光化学效率(Fv/Fm,φPo)、用于电子传递的量子产额(φEo)、光化学性能指数(PI ABS)以及 有活性的反应中心的密度(RC/CS)明显下降,并且这些参数的变化幅度随着氯化镉浓度的增加而提高;通径分析 显示,300 μs时的相对可变荧光强度(V K)及其可变荧光Fv占(J相的荧光强度Fj-O相的荧光强度Fo)振幅的 比例(W K)对Pn的直接作用高于其它荧光参数。【结论】氯化镉使平邑甜茶叶片PSⅡ供体侧、受体侧和反应中心 受到显著伤害,从而降低了PSⅡ活性和光合速率;在氯化镉处理下,V K和W K对Pn的直接作用比较大。 关键词:平邑甜茶;氯化镉;光合速率;光系统Ⅱ;叶绿素荧光 Effect of CdCl2 Treatment on Photosynthetic Rate and Chlorophyll Fluorescence Parameters in Malus hupehensis Leaves WANG Li 1,2, YANG Hong-qiang 1,3, FAN Wei-guo3, ZHANG Zhao2 (1Post-Doctoral Mobile Station of Agricultural Resource Utilization, College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong; 2Key Laboratory of Agricultural Ecology and Environment, College of Forestry, Shandong Agricultural University, Taian 271018, Shandong; 3State Key Laboratory of Crop Biology/College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong) Abstract: 【Objective】For discovering the mechanism of Cd damage on leaves of Malus hupehensis Rehd., the activity of photosystemⅡ (PSⅡ), net photosynthetic rate (Pn) and their correlation in leaves treated with CdCl2 were studied. 【Method】 After 30 days of treatment by CdCl2 in 1/2 Hoagland solution, the Pn, stomatal conductance (Gs), intercellular CO2 concentration (Ci) and chlorophyll fluorescence parameters in leaves of Malus hupehensis Rehd. were measured, and the relationship between these parameters under CdCl2 treatment were analyzed. 【Result】Under the treatment of CdCl2, the Pn and Gs reduced, the Ci and the fluorescence intensity Fk at 300 μs increased, and the maximum photochemistry efficiency of PSⅡ(Fv/Fm, φPo), the quantum yield for electron transport (φEo) , the performance index on absorption basis (PI ABS) and the density of active reaction center (RC/CS) all decreased significantly. Furthermore, the range of variation of these parameters increased with the increasing of CdCl2 concentration. The direct effect of the relatively variable fluorescence intensity V K and the ratio of variable fluorescence Fv on the amplitude Fj-Fo (W K) at 300 μs for Pn were higher than that of others through the path analysis. 【Conclusion】 CdCl2 damaged the sides of acceptor and donor and the reaction centers of PSⅡ of leaves of Malus hupehensis Rehd. The activity of PSⅡand Pn decreased, and the direct 收稿日期:2009-12-02;接受日期:2010-03-01 基金项目:山东农业大学博士后项目、国家自然科学基金项目(30671452) 作者简介:王利,副教授,博士。E-mail:liwang6868@https://www.sodocs.net/doc/db6121598.html,。通信作者杨洪强,教授。E-mail:hqyang@https://www.sodocs.net/doc/db6121598.html,

植物表型组学研究技术(一)FluorCam 叶绿素荧光成像技术

植物表型组学研究技术(一) ——FluorCam叶绿素荧光成像技术

FluorCam叶绿素荧光成像技术 Rousseau等(High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis.Plant Methods, 2013, 9:17),利用FluorCam开放式叶绿素荧光成像系统作为高通量表型分析平台,采用图像阈值分割等分析方法,对植物病原体感染进行了定量分析检测,根据Fv/Fm将感染分为不同阶段/等级,特别是可以将用其它方法难以分辨出来的感染前期加以分辨,并对5个品种的菜豆对普通细菌性疫病的抗性进行了定量分析评价。 PSI公司首席科学家Nedbal教授与公司总裁Trtilek博士等首次将PAM叶绿素荧光技术(Pulse Amplitude Modulated technique—— 脉冲调制技术)与CCD技术结合在一起,于1996 年在世界上成功研制生产出FluorCam叶绿素荧 光成像系统(Heck等,1999;Nedbal等,2000; Govindjee and Nedbal, 2000)。FluorCam叶 绿素荧光成像技术成为上世纪90年代叶绿素荧 光技术的重要突破,使科学家对光合作用与叶 绿素荧光的研究一下子进入二维世界和显微世 界,广泛应用于植物生理生态、植物胁迫与抗 性监测、作物育种、植物表型分析等。不同于 其它成像分析技术,FluorCam叶绿素荧光成像 只对叶绿素荧光波段敏感,可以有效避免环境 光的干扰,特异性、高灵敏度反映植物生理生 态状况。 主要功能特点如下: 1)高灵敏度CCD,时间分辨率可达50帧/秒,有效抓取叶绿素荧光瞬变;可选配高分 辨率CCD,分辨率1392x1040像素,用于气孔功能成像分析、稳态荧光如GFP荧光测量等

荧光光谱分析技术概述

荧光光谱分析技术概述....................................................................................................................... 1荧光光谱分析原理.1 ................................................................................................................................... 4荧光分析法.2 ........................................................................................................................ 4定性分析法.2.1 4 ......................................................................................................................... 2.2定量分析法 荧光光谱分析原理1光谱法是辐射能与物质组成和结构的相光学分析法 分为光谱法和非光谱法,不涉及能级跃非光谱法不包含物质内能的变化,互作用,以光谱的出来为基础,迁,而是辐射方向和物理性质的改变。 光学分析方法分类 1表分析法特征具体方法 射线荧光光谱、分子荧X光谱法原子发射光谱、原子荧光光谱、光的发射光光谱、分子磷光光谱、化学发光、电子能谱、俄歇电子能谱射线原子吸收光谱、紫外-可见分光光度法、红外光谱、X光的吸收吸收光谱、核磁共振光谱、电子自旋共振光谱、光声光谱拉曼光谱光的散射 比浊法、散射浊度法光的散射非光谱法 折射法、干涉法光的折射 X射线衍射、电子衍射光的衍射 旋光色散法、偏振法、圆二向色法光的转动 , 光波愈短荧光发光机理可按量子理论通俗解释: 光具有波动、粒子二重性, 当某些物质受到紫外线或较短波长其光子能量愈强; 反之波长愈长其能量则弱。当, , 吸收了全部或部分光能量, 使其分子的能级升高而处于亚稳定状态光照射其中一部分化为热量, , 这些分子就会立即释放多余的能量恢复到稳定的基态时因为有部分能, 向基态跃迁时是以“光”形式释放而消失。但对某些物质而言, 光波愈, 量被消耗所以重新发出的光能量总比吸收的能量要小。由于能量愈小, , 所以物质所激发的荧光总比照射它的光波要长。磷光的能量较荧光还要小长, 这就是两者的区别。寿命可达数小时之久所以它的波长比荧光要长, , 如果物质的分子吸收了紫外和可见区电磁辐射后,它的电子能跃迁至激发本身又回复到基态如果吸收辐然后以热能的形式将这一部分能量释放出来,态,再发射的波射能后处于电子激发态的分子以发射辐射的方式释放这一部分能量, 长可以同分子所吸收的波长相同,也可以不同,这一现象称为光致发光。最常见的两种光致发光现象是荧光和磷光。这两种光致发光的机理不同,荧光发光过程 -3s-10s的时间间隔。而磷光则往往能延续10因在激发光停止后10s内停止发光,此,可通过测定发光寿命的长短来区分荧光和磷光。 一些化学物质从外界吸收并储存能量而进入激发态,当其从激发态再回复到基态时,过剩的能量以电磁辐射的形式放射(即发光)称之为荧光。可产生荧光的分子

白刺叶不同水分状况下光合速率及其叶绿素荧光特性的研究

西北植物学报!"##$!"$%&&’(""")*""++ ,-./01.20134/5267--894:.2;8:2 文章编号(&###<=#"$%"##$’&&<""")<#> 白刺叶不同水分状况下光合速率及其 叶绿素荧光特性的研究? 何炎红!郭连生@!田有亮 %内蒙古农业大学林学院!呼和浩特#&##&A’ 摘要(采用B C’K L M N O L P"O Q P&!光饱和点为%)R)J&$#’K L M N O L P"O Q P&I叶生长初期和叶成熟期净光合速率水势补偿点%净光合速率 为#时的水势’分别为P+2)$ST U和P$2R)ST U!V T W初始水分胁迫水势分别为P"2"#ST U和P)2)+ST U G研 究指出运用净光合速率水势补偿点和非光化学猝灭初始水分胁迫水势可评价白刺对干旱环境的适应性G 关键词(白刺I水分胁迫I光合速率I叶绿素荧光 中图分类号(W A=$2R>文献标识码(X Y Z[\[]^_\Z‘\a b c d\‘]d_ef Z g[h[i Z^g g j g k[h‘]b‘_b‘[l m8.3/38/./:n o.13o p d\q a l l‘h‘_\r‘d l sd\‘h Y[\‘_\a d g] t uv U w’K L M N O L P"O Q P&!U w+U N|y x%Q U%!$U%|M w-M|w%M"%)R)J&$#’K L M N O L P"O Q P&I C w%x} }U$N&U w+L U%!$}Q%U y}Q M"N}U"y$M,%x!%x}-x M%M Q&w%x}%|’,U%}$-M%}w%|U N’M L-}w Q U%|M w-M|w%Q%%x}N}U" ,U%}$-M%}w%|U N U%<}$Mw}%-x M%M Q&w%x}%|’$U%}’,U Q P+2)$ST UU w+P$2R)ST U$}Q-}’%|(}N&!U w+%x} .=>|w|%|U N,U%}$-M%}w%|U N Q,}$}P"2"#ST UU w+P)2)+ST U!$}Q-}’%|(}N&2~x}Q%!+&-M|w%}+M!%%x U% -x M%M Q&w%x}%|’,U%}$-M%}w%|U N’M L-}w Q U%|M w-M|w%U w+.=>|w|%|U N,U%}$-M%}w%|U N’M!N+8}!Q}+|w }(U N!U%|w y%x}U+U-%U8|N|%|}Q M"./0121/20234506157%MU$|+}w(|$M w L}w%Q2 ?收稿日期("##$<#$<&"I修改稿收到日期("##$<&#<#> 基金项目(国家自然科学基金重点项目%+#"+#"A#’ 作者简介(何炎红%&A R A P’!女!博士研究生!主要从事森林培育理论与技术研究G @通讯联系人G D M$$}Q-M w+}w’}%M(z{E B|U w&)&?Q|w U2’M L

植物体叶绿素荧光测定仪的原理与使用方法

植物体叶绿素荧光测定仪的原理与使用方法 【实验目的】 ?了解目前在光合作用研究中先进的叶绿素荧光技术,了解便携式叶绿素荧光仪测定 植物光合作用叶绿素荧光参数的基本原理和仪器的使用方法。 ?老师演示和学生分组利用便携式叶绿素荧光仪(PAM2100)测定实验植物的叶绿素荧 光基本参数(Fo, Fm, Fv/Fm, Fm’, Fo’, Yield, ETR, PAR, qP, qN等)。 ?了解荧光仪的广泛应用 【实验原理】 仪器介绍和工作原理 叶绿素荧光(Chlorophyll Fluorescence)的产生 ?传统的光合作用测定是通过测量植物光合作用时CO2的消耗或干物质积累计算出 来。叶绿素荧光分析技术通过测量叶绿素荧光量准确获得光合作用量及相关的植物生长潜能数据。 ?叶绿素荧光动力学技术在测定叶片光合作用过程中光系统对光能的吸收、传递、耗 散、分配等方面具有独特的作用,与“表观性”的气体交换指标相比,叶绿素荧光参数更具有反映“内在性”特点。 ?本实验以调制式叶绿素荧光仪PAM-2100(W ALZ)为例,测定植物叶绿素荧光主 要参数。植物叶片的生长状况不同,所处位置的不同,光照不同,叶绿素荧光参数数值也会有所不同,所以不同叶片之间叶绿素荧光产量存在着一定的差异。 【实验内容与步骤】 一、仪器使用步骤讲解 1. 仪器安装连接 将光纤和主控单元和叶夹2030-8相连接。光纤的一端必须通过位于前面板的三孔光纤连接器连接到主控单元,光纤的另一端固定到叶夹2030-B上。同时,叶夹2030-B还应通过LEAF CLIP插孔连接到主控单元。 2. 开机 按“POWER ON”键打开内置电脑后,绿色指示灯开始闪烁,说明仪器工作正常。随后在主控单元的显示器中会出现PAM-2100的表示。从仪器启动到进入主控单元界面大概要40秒。 3. PAM-2100的键盘 PAM-2100主控单元上有20个按键,现分别简要介绍主要按键的功能。

第4章第1节_叶绿素荧光参数及意义-v2.

第四章 叶绿素荧光技术应用 第一节 叶绿素荧光参数及其意义 韩志国,吕中贤(泽泉开放实验室,上海泽泉科技有限公司,上海,200333) 叶绿素荧光技术作为光合作用的经典测量方法,已经成为藻类生理生态研究领域功能最强大、使用最广泛的技术之一。由于常温常压下叶绿素荧光主要来源于光系统 II 的叶绿素 a ,而光系统 II 处于整个光合作用过程的最上游,因此包括光反应和暗反应在内的多数光合过程的变化都会反馈给光系统 II ,进而引起叶绿素 a 荧光的变化,也就是说几乎所有光合作用过程的变化都可通过叶绿素荧光反映出来。与其它测量方法相比,叶绿素荧光技术还具有不需破碎细胞、简便、快捷、可靠等特性,因此在国际上得到了广泛的应用。 1 叶绿素荧光的来源 藻细胞内的叶绿素分子既可以直接捕获光能,也可以间接获取其它捕光色素(如类胡萝卜素)传递来的能量。叶绿素分子得到能量后,会从基态(低能态)跃迁到激发态(高能态)。根据吸收的能量多少,叶绿素分子可以跃迁到不同能级的激发态。若叶绿素分子吸收蓝光,则跃迁到较高激发态;若叶绿素分析吸收红光,则跃迁到最低激发态。处于较高激发态的叶绿素分子很不稳定,会在几百飞秒(fs ,1 fs=10-15 s )内通过振动弛豫向周围环境辐射热量,回到最低激发态(图 1)。而最低激发态的叶绿素分 子可以稳定存在几纳秒(ns ,1 ns=10-9 s )。 A 较高激发态 B 热耗散 吸收蓝 光 吸收红光 最低激发态 能量 荧光 基态 蓝 波长 红 荧光 图 1 叶绿素吸收光能后能级变化(A )和对应的吸收光谱(B )(引自韩博平 et al., 2003) 处于最低激发态的叶绿素分子可以通过几种途径(图 2)释放能量回到基态(韩博平 et al., 2003; Schreiber, 2004):1)将能量在一系列叶绿素分子之间传递,最后传递给反应中心叶绿素 a ,用于进行光化学反应;2)以热的形式将能量耗散掉,即非辐射能量耗散(热耗散);3)放出荧光。这三个途径相互竞争、此消彼长,往往是具有最大速率的途径处于支配地位。一般而言,叶绿素荧光发生在纳秒级,而光化学反应发射在皮秒级(ps ,1 ps=10-12 s ),因此在正常生理状态下(室温下),捕光色素吸收的能量主要用于进行光化学反应,荧光只占约 3%~5%(Krause and Weis, 1991; 林世青 et al., 1992)。 在活体细胞内,由于激发能从叶绿素 b 到叶绿素 a 的传递几乎达到 100%的效率,因此基本检测不到叶绿素 b 荧光。在常温常压下,光系统 I 的叶绿素 a 发出的荧光很弱,基本可以忽略不计,对光系统 I 叶绿素 a 荧光的研究要在 77 K 的低温下进行。因此,当我们谈到活体叶绿素荧光时,其实指的是来自光系统 II 的叶绿素 a 发出的荧光。

浅谈荧光分析法的特点及在环境分析中的应用

荧光分析法的特点及在环境分析中的应用 摘要:论文综述了荧光分析法的特点及在环境分析中的应用。重点分析了荧光分析法的原理、特点,以及常用的荧光分析法的讨论。分析了荧光分析法在环境监测中的应用,测定范围和发展情况。 关键词:荧光分析;环境分析;应用 1.引言 环境中分析、监测的对象往往是微量、超微量的物质,有很多还具有时间性和空间性,因此对分析技术要求越来越高。荧光分析法和分光光度法以其灵敏度高、检测限低、准确性好等优点在近年来得到了迅速发展。荧光分子探针的设计合成以及荧光分析法在环境分析化学中的应用是方兴未艾的研究方向[1]。 分子荧光分析具有检测限低,灵敏度高,选择性好,取样量少,方法简捷快速等特点,是一种重要的光谱化学分析手段,其中荧光分子探针检测技术在环境分析化学中占有重要的地位[2]。因此,在对环境的分析中,荧光分析法应用非常广泛,从天然水、饮用水到废水、污水;从土壤、大气到动植物;从人的头发、骨骼、血液到内脏等各个器官,涉及到的样品和应用范围几乎无所不有[3]。 2.荧光分析法的原理和特点 2.1.荧光分析法 2.1.1荧光及荧光分析 荧光是荧光化合物在受到紫外光、电和化学等能量激发后,电子从基态跃迁到激发态,然后通过辐射衰变释放出光子而回复到基态,即产生荧光。这些物质会在极短的时间内(8-10秒)发射出各种颜色和不同强度的可见光,而当紫外光停止照射时,所发射的光线也随之很快地消失。 荧光分析是指利用某些物质在紫外光照射下产生荧光的特性及其强度进行物质的定性和定量的分析的方法。1852年G.G.斯托克斯(G.G.Strokes)发现荧光,真正的荧光光谱测量则始于本世纪60年代。 2.1.2荧光激发光谱和发射光谱 荧光是一种光致发光现象,由于分子对光的选择性吸收,不同波长的入射光便具有不同的激发效率。如果固定荧光的发射波长不断改变激发光的波长,并记

荧光分析法检测原理及应用举例

1荧光定义 某些化学物质从外界吸收并储存能量而进入激发态,当其从激发态回到基态时,过剩的能量以电磁辐射的形式放射出去即发光,称之为荧光。可产生荧光的分子或原子在接受能量后引起发光,供能一旦停止,荧光现象随之消失。 2荧光分类 由化学反应引起的荧光称为化学荧光,由光激发引起的荧光称为光致荧光,课题主要研究光致荧光。按产生荧光的基本微粒不同,荧光可分为原子荧光、X 射线荧光和分子荧光,课题主要研究分子荧光。 3光致荧光机理 某一波长的光照射在分子上,分子对此光有吸收作用,光能量被分子所吸收,分子具有的能量使分子的能级由最低的基态能级上升至较高的各个激发态的不同振动能级,称为跃迁。分子在各个激发态处于不稳定的状态,并随时在激发态的不同振动能级下降至基态,在下降过程中,分子产生发光现象,此过程为释放能量的过程,即为光致荧光的机理。光致荧光的过程按照时间顺序可分为以下几部分。 3.1 分子受激发过程 在波长为10~400nm的紫外区或390~780nm的可见光区,光具有较高的能量,当某一特征波长的光照射分子时,是的分子会吸收此特征波长的光能量,能量由光传递到分子上,此过程为分子受激发过程。分子中的电子会出现跃迁过程,在稳定的基态向不稳定的激发态跃迁。跃迁所需要的能量为跃迁前后两个能级的能量差,即为吸收光的能量。分子跃迁至不稳定的激发态中即为电子激发态分子。 在电子激发态中,存在多重态。多重态表示为2S+1 o S为0或1,它表示电子在自转过程中,具有的角动量的代数和。S=0 表示所有电子自旋的角动量代数和为0,即所有电子都是自旋配对的,那么2S+仁1,电子所处的激发态为单重态,用S i 表示,由此可推出,S0 即为基态的单重态,S1 为第一跃迁能级激发态的单重态,S2为第二跃迁能级激发态的单重态。S=1表示电子的自旋方向不能配对,说明电子在跃迁过程中自旋方向有变化,存在不配对的电子为2个,2S+仁3,电子在激发态中位于第三振动能级,称为三重态,用T i 来表示,T1 即为第一激发 态中的三重态,T2即为第二激发态中的三重态,以此类推。 分子跃迁至各个激发态中,状态不稳定,随时会释放出能量,释放能量的类型有两种:一种是辐射跃迁,另一种是非辐射跃迁,释放能量会回到稳定的基态。

相关主题