搜档网
当前位置:搜档网 › linux驱动编写(虚拟字符设备编写)

linux驱动编写(虚拟字符设备编写)

linux驱动编写(虚拟字符设备编写)
linux驱动编写(虚拟字符设备编写)

---------------------------------------------------------------最新资料推荐------------------------------------------------------ linux驱动编写(虚拟字符设备编写)

linux 驱动编写(虚拟字符设备编写)昨天我们说了一些简单模块编写方法,但是终归没有涉及到设备的编写内容,今天我们就可以了解一下相关方面的内容,并且用一个实例来说明在 linux 上面设备是如何编写的。

虽然我不是专门做 linux 驱动的,却也经常收到一些朋友们的来信。

在信件中,很多做驱动的朋友对自己的工作不是很满意,认为自己的工作就是把代码拷贝来拷贝去,或者说是改来改去,没有什么技术含量。

有这种想法的朋友不在少数,我想这主要还是因为他们对自己的工作缺少了解导致。

如果有可能,我们可以问问自己这样几个问题:

(1 )我真的搞懂设备的开发驱动流程了吗?我是否可以从0开始,编写一个独立的驱动代码呢?(2)我真的了解设备的初始化、关闭、运行的流程吗?(3)当前的设备驱动流程是否合理,有没有可以改进的地方?(4)对于内核开发中涉及的 api 调用,我自己是否真正了解、是否明白它们在使用上有什么区别?(5)如果我要驱动的设备只是在一个前后台系统中运行,在没有框架帮助的情况下,我是否有信心把它启动和运行起来?当然,上面的内容只是我个人的想法,

1 / 6

也不一定都正确。

但是,知其然,更要知其所以然,熟悉了当前开发流程的优缺点才能真正掌握和了解驱动开发的本质。

这听上去有些玄乎,其实也很简单,就是要有一种刨根问底、不断改进的精神,这样才能做好自己的工作。

因为我们是在 pc linux 上学习驱动的,因此暂时没有真实的外接设备可以使用,但是这丝毫不影响我们学习的热情。

通过定时器、进程,我们可以仿真出真实设备的各种需求,所以对于系统来说,它是无所谓真设备、假设备的,基本的处理流程对它来说都是一样的。

只要大家一步一步做下去,肯定可以了解 linux 驱动设备的开发工程的。

下面,为了说明问题,我们可以编写一段简单的 char 设备驱动代码,文件名为 char.c,

\n, m

---------------------------------------------------------------最新资料推荐------------------------------------------------------

3

/ 6

staticssize_tchr_read(structfile*filp,char__user*u,size_tsz

\

minor=%d\ret=cdev_add(chr_dev,ndev

\

unregister_chrdev_region(nd

过程就全部

完成了, 就是这么简单。

当然为了编写这个文件, 我们还需要编写一个 Makefile

文件, [ cpp] view plainco

if经加入到系统当中,完全可以通过输入 lsmod | grep char 进行查找和验证。

为了创建设备节点,我们需要知道设备为我们创建的 major、minor 数值是多少,所以 dmesg | tail 查找一下数值。

在我 hp的机器上,这两个数值分别是249和0,所以下面可以利用它们直接创建设备节点了,输入mknod /dev/chr_dev c 249 0即可,此时可以输入 ls /dev/chr_dev 验证一下。

那么,按照这种方法,真的可以访问这个虚拟设备了吗,我们可以编写一段简单的代码验证一下, [ cpp] view plaincopy

\

代码的内容非常简单,就是利用 CHAR_DEV_NAME 直接打开设备,读

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 写设备。

当然。

首先还是需要对这个文件进行编译,文件名为 test.c,输入gcc test.c -o test,其次就是运行这个文件,直接输入./test 即可。

如果没有问题的话,那么说明我们的代码是 ok 的,但是我们还是没有看到任何内容。

没关系,我们还是通过 dmesg 这个命令查看内核中是否存在相关的打印内容,直接输入 dmesg | tail 即可。

此时如果没有意外的话,我们就可以看到之前在 chr_open 和chr_read 中留下的 printk 打印,这说明我们的代码完全是 ok 的。

上面的代码只是一段小例子,真实的内容要比这复杂一下。

不过既然我们都已经入门了,那么后面的内容其实也没有什么好怕的了。

最后有两个事情补充一下:

(1)如果大家在创建节点后想删除设备节点,直接 rm -rf /dev/chr_dev 即可;(2)上面这段代码的原型来自于《深入 linux 设备驱动程序内核机制》这本书,稍作修改,如果大家对内核机制的内容感兴趣,可以参考这本书的内容。

5 / 6

Linux设备驱动程序举例

Linux设备驱动程序设计实例2007-03-03 23:09 Linux系统中,设备驱动程序是操作系统内核的重要组成部分,在与硬件设备之间 建立了标准的抽象接口。通过这个接口,用户可以像处理普通文件一样,对硬件设 备进行打开(open)、关闭(close)、读写(read/write)等操作。通过分析和设计设 备驱动程序,可以深入理解Linux系统和进行系统开发。本文通过一个简单的例子 来说明设备驱动程序的设计。 1、程序清单 //MyDev.c 2000年2月7日编写 #ifndef __KERNEL__ #define __KERNEL__//按内核模块编译 #endif #ifndef MODULE #define MODULE//设备驱动程序模块编译 #endif #define DEVICE_NAME "MyDev" #define OPENSPK 1 #define CLOSESPK 2 //必要的头文件 #include //同kernel.h,最基本的内核模块头文件 #include //同module.h,最基本的内核模块头文件 #include //这里包含了进行正确性检查的宏 #include //文件系统所必需的头文件 #include //这里包含了内核空间与用户空间进行数据交换时的函数宏 #include //I/O访问 int my_major=0; //主设备号 static int Device_Open=0; static char Message[]="This is from device driver"; char *Message_Ptr; int my_open(struct inode *inode, struct file *file) {//每当应用程序用open打开设备时,此函数被调用 printk ("\ndevice_open(%p,%p)\n", inode, file); if (Device_Open) return -EBUSY;//同时只能由一个应用程序打开 Device_Open++; MOD_INC_USE_COUNT;//设备打开期间禁止卸载 return 0; } static void my_release(struct inode *inode, struct file *file)

linux驱动程序的编写

linux驱动程序的编写 一、实验目的 1.掌握linux驱动程序的编写方法 2.掌握驱动程序动态模块的调试方法 3.掌握驱动程序填加到内核的方法 二、实验内容 1. 学习linux驱动程序的编写流程 2. 学习驱动程序动态模块的调试方法 3. 学习驱动程序填加到内核的流程 三、实验设备 PentiumII以上的PC机,LINUX操作系统,EL-ARM860实验箱 四、linux的驱动程序的编写 嵌入式应用对成本和实时性比较敏感,而对linux的应用主要体现在对硬件的驱动程序的编写和上层应用程序的开发上。 嵌入式linux驱动程序的基本结构和标准Linux的结构基本一致,也支持模块化模式,所以,大部分驱动程序编成模块化形式,而且,要求可以在不同的体系结构上安装。linux是可以支持模块化模式的,但由于嵌入式应用是针对具体的应用,所以,一般不采用该模式,而是把驱动程序直接编译进内核之中。但是这种模式是调试驱动模块的极佳方法。 系统调用是操作系统内核和应用程序之间的接口,设备驱动程序是操作系统内核和机器硬件之间的接口。设备驱动程序为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个设备文件,应用程序可以像操作普通文件一样对硬件设备进行操作。同时,设备驱动程序是内核的一部分,它完成以下的功能:对设备初始化和释放;把数据从内核传送到硬件和从硬件读取数据;读取应用程序传送给设备文件的数据和回送应用程序请求的数据;检测和处理设备出现的错误。在linux操作系统下有字符设备和块设备,网络设备三类主要的设备文件类型。 字符设备和块设备的主要区别是:在对字符设备发出读写请求时,实际的硬件I/O一般就紧接着发生了;块设备利用一块系统内存作为缓冲区,当用户进程对设备请求满足用户要求时,就返回请求的数据。块设备是主要针对磁盘等慢速设备设计的,以免耗费过多的CPU时间来等待。 1 字符设备驱动结构 Linux字符设备驱动的关键数据结构是cdev和file_operations结构体。

Linux驱动程序工作原理简介

Linux驱动程序工作原理简介 一、linux驱动程序的数据结构 (1) 二、设备节点如何产生? (2) 三、应用程序是如何访问设备驱动程序的? (2) 四、为什么要有设备文件系统? (3) 五、设备文件系统如何实现? (4) 六、如何使用设备文件系统? (4) 七、具体设备驱动程序分析 (5) 1、驱动程序初始化时,要注册设备节点,创建子设备文件 (5) 2、驱动程序卸载时要注销设备节点,删除设备文件 (7) 参考书目 (8) 一、linux驱动程序的数据结构 设备驱动程序实质上是提供一组供应用程序操作设备的接口函数。 各种设备由于功能不同,驱动程序提供的函数接口也不相同,但linux为了能够统一管理,规定了linux下设备驱动程序必须使用统一的接口函数file_operations 。 所以,一种设备的驱动程序主要内容就是提供这样的一组file_operations 接口函数。 那么,linux是如何管理种类繁多的设备驱动程序呢? linux下设备大体分为块设备和字符设备两类。 内核中用2个全局数组存放这2类驱动程序。 #define MAX_CHRDEV 255 #define MAX_BLKDEV 255 struct device_struct { const char * name; struct file_operations * fops; }; static struct device_struct chrdevs[MAX_CHRDEV]; static struct { const char *name; struct block_device_operations *bdops; } blkdevs[MAX_BLKDEV]; //此处说明一下,struct block_device_operations是块设备驱动程序内部的接口函数,上层文件系统还是通过struct file_operations访问的。

字符设备基础

Linux 字符设备基础 字符设备驱动程序在系统中的位置 操作系统内核需要访问两类主要设备,简单的字符设备,如打印机,键盘等;块设备,如软盘、硬盘等。与此对应,有两类设备驱动程序。分别称为字符设备驱动程序和块设备驱动程序。两者的主要差异是:与字符设备有关的系统调用几乎直接和驱动程序的内部功能结合在一起。而读写块设备则主要和快速缓冲存储区打交道。只有需要完成实际的输入/输出时,才用到块设备驱动程序。见下图: Linux 设备驱动程序的主要功能有: ● 对设备进行初始化; ● 使设备投入运行和退出服务; ● 从设备接收数据并将它们送到内核; ● 将数据从内核送到设备; ● 检测和处理设备出现的错误。 当引导系统时,内核调用每一个驱动程序的初始化函数。它的任务之一是将这一设备驱动程序使用的主设备号通知内核。同时,初始化函数还将驱动程序中的函数地址结构的指针送给内核。 内核中有两X 表。一X 表用于字符设备驱动程序,另一X 用于块设备驱动程序。这两X 表用来保存指向file_operations 结构的指针, 设备驱动程序内部的函数地址就保

存在这一结构中。内核用主设备号作为索引访问file_operations结构,因而能访问驱动程序内的子程序。 从开机到驱动程序的载入 系统启动过程中可能出现几种不同的方式检测设备硬件。首先机器硬件启动时BIOS会检测一部分必要的设备,如内存、显示器、键盘和硬盘等等。机器会把检测到的信息存放在特定的位置,如CMOS数据区。而另外某些设备会由设备驱动程序进行检测。 1 开机 2 引导部分(linux/config.h,arch/i386/boot/bootsect.S) 3 实模式下的系统初始化(arch/i386/boot/setup.S) 4 保护模式下的核心初始化 5 启动核心(init/main.c) init函数中函数调用关系如下: main.c init() filesystems.c sys_setup() genhd.c device_setup() mem.c chr_dev_init() 至此,驱动程序驻入内存。 设备驱动程序基本数据结构: struct device_struct 系统启动过程中要登记的块设备和字符设备管理表的定义在文件fs/devices.c中:struct device_struct { const char * name; struct file_operations * fops; }; static struct device_struct chrdevs[MAX_CHRDEV]; static struct device_struct blkdevs[MAX_BLKDEV]; 其实块设备表和字符设备表使用了相同的数据结构。在某些系统中,这些设备表也称作设备开关表,不同的是它们直接定义了一组函数指针进行对设备的管理。而这里系统用文件操作(file_operations)代替了那组开关。文件操作是文件系统与设备驱动程序之间的接口,系统特殊文件在建立的时候并没有把两者对应起来,只是把设备的缺省文件结构和i节点结构赋给设备文件,而真正的对应定义在系统启动之后,当设备被打开时时才进行的。 操作blkdev_open和chrdev_open定义在文件devices.c中,它们的基本功能是当设备文件初次打开时,根据该文件的i节点信息找到设备真正的文件操作接口,然后更新原来的设

一个简单的演示用的Linux字符设备驱动程序.

实现如下的功能: --字符设备驱动程序的结构及驱动程序需要实现的系统调用 --可以使用cat命令或者自编的readtest命令读出"设备"里的内容 --以8139网卡为例,演示了I/O端口和I/O内存的使用 本文中的大部分内容在Linux Device Driver这本书中都可以找到, 这本书是Linux驱动开发者的唯一圣经。 ================================================== ===== 先来看看整个驱动程序的入口,是char8139_init(这个函数 如果不指定MODULE_LICENSE("GPL", 在模块插入内核的 时候会出错,因为将非"GPL"的模块插入内核就沾污了内核的 "GPL"属性。 module_init(char8139_init; module_exit(char8139_exit; MODULE_LICENSE("GPL"; MODULE_AUTHOR("ypixunil"; MODULE_DESCRIPTION("Wierd char device driver for Realtek 8139 NIC"; 接着往下看char8139_init( static int __init char8139_init(void {

int result; PDBG("hello. init.\n"; /* register our char device */ result=register_chrdev(char8139_major, "char8139", &char8139_fops; if(result<0 { PDBG("Cannot allocate major device number!\n"; return result; } /* register_chrdev( will assign a major device number and return if it called * with "major" parameter set to 0 */ if(char8139_major == 0 char8139_major=result; /* allocate some kernel memory we need */ buffer=(unsigned char*(kmalloc(CHAR8139_BUFFER_SIZE, GFP_KERNEL; if(!buffer { PDBG("Cannot allocate memory!\n"; result= -ENOMEM;

linux设备驱动中常用函数

Linux2.6设备驱动常用的接口函数(一) ----字符设备 刚开始,学习linux驱动,觉得linux驱动很难,有字符设备,块设备,网络设备,针对每一种设备其接口函数,驱动的架构都不一样。这么多函数,要每一个的熟悉,那可多难啦!可后来发现linux驱动有很多规律可循,驱动的基本框架都差不多,再就是一些通用的模块。 基本的架构里包括:加载,卸载,常用的读写,打开,关闭,这是那种那基本的咯。利用这些基本的功能,当然无法实现一个系统。比方说:当多个执行单元对资源进行访问时,会引发竞态;当执行单元获取不到资源时,它是阻塞还是非阻塞?当突然间来了中断,该怎么办?还有内存管理,异步通知。而linux 针对这些问题提供了一系列的接口函数和模板框架。这样,在实际驱动设计中,根据具体的要求,选择不同的模块来实现其功能需求。 觉得能熟练理解,运用这些函数,是写号linux设备驱动的第一步。因为是设备驱动,是与最底层的设备打交道,就必须要熟悉底层设备的一些特性,例如字符设备,块设备等。系统提供的接口函数,功能模块就像是工具,能够根据不同的底层设备的的一些特性,选择不同的工具,方能在linux驱动中游刃有余。 最后就是调试,这可是最头疼的事。在调试过程中,总会遇到这样,那样的问题。怎样能更快,更好的发现并解决这些问题,就是一个人的道行咯!我个人觉得: 发现问题比解决问题更难! 时好时坏的东西,最纠结! 看得见的错误比看不见的错误好解决! 一:Fops结构体中函数: ①ssize_t (*read) (struct file *, char __user *, size_t, loff_t *); 用来从设备中获取数据. 在这个位置的一个空指针导致 read 系统调用以-EINVAL("Invalid argument") 失败. 一个非负返回值代表了成功读取的字节数( 返回值是一个 "signed size" 类型, 常常是目标平台本地的整数类型). ②ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *); 发送数据给设备. 如果 NULL, -EINVAL 返回给调用 write 系统调用的程序. 如果非负, 返回值代表成功写的字节数 ③loff_t (*llseek) (struct file *, loff_t, int); llseek 方法用作改变文件中的当前读/写位置, 并且新位置作为(正的)返回值. loff_t 参数是一个"long offset", 并且就算在 32位平台上也至少 64 位宽. 错误由一个负返回值指示. 如果这个函数指针是 NULL, seek 调用会以潜在地无法预知的方式修改 file 结构中的位置计数器( 在"file 结构" 一节中描述). ④int (*open) (struct inode *, struct file *);

LINUX字符设备驱动编写基本流程

---简介 Linux下的MISC简单字符设备驱动虽然使用简单,但却不灵活。 只能建立主设备号为10的设备文件。字符设备比较容易理解,同时也能够满足大多数简 单的硬件设备,字符设备通过文件系统中的名字来读取。这些名字就是文件系统中的特 殊文件或者称为设备文件、文件系统的简单结点,一般位于/dev/目录下使用ls进行查 看会显示以C开头证明这是字符设备文件crw--w---- 1 root tty 4, 0 4月 14 11:05 tty0。 第一个数字是主设备号,第二个数字是次设备号。 ---分配和释放设备编号 1)在建立字符设备驱动时首先要获取设备号,为此目的的必要的函数是 register_chrdev_region,在linux/fs.h中声明:int register_chrdev_region(dev_t first, unsigned int count, char *name);first是你想 要分配的起始设备编号,first的次编号通常是0,count是你请求的连续设备编号的 总数。count如果太大会溢出到下一个主设备号中。name是设备的名字,他会出现在 /proc/devices 和sysfs中。操作成功返回0,如果失败会返回一个负的错误码。 2)如果明确知道设备号可用那么上一个方法可行,否则我们可以使用内核动态分配的设 备号int alloc_chrdev_region(dev_t *dev, unsigned int firstminor,unsigned int count, char *name);dev是个只输出的参数,firstminor请求的第一个要用的次编号, count和name的作用如上1)对于新驱动,最好的方法是进行动态分配 3)释放设备号,void unregister_chrdev_region(dev_t first unsigned int count); ---文件操作file_operations结构体,内部连接了多个设备具体操作函数。该变量内部 的函数指针指向驱动程序中的具体操作,没有对应动作的指针设置为NULL。 1)fops的第一个成员是struct module *owner 通常都是设置成THIS_MODULE。 linux/module.h中定义的宏。用来在他的操作还在被使用时阻止模块被卸载。 2)loff_t (*llseek) (struct file *, loff_t, int);该方法用以改变文件中的当前读/ 写位置 返回新位置。 3)ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);该函数用 以从设备文件 中读取数据,读取成功返回读取的字节数。

linux字符设备驱动课程设计报告

一、课程设计目的 Linux 系统的开源性使其在嵌入式系统的开发中得到了越来越广泛的应用,但其本身并没有对种类繁多的硬件设备都提供现成的驱动程序,特别是由于工程应用中的灵活性,其驱动程序更是难以统一,这时就需开发一套适合于自己产品的设备驱动。对用户而言,设备驱动程序隐藏了设备的具体细节,对各种不同设备提供了一致的接口,一般来说是把设备映射为一个特殊的设备文件,用户程序可以像对其它文件一样对此设备文件进行操作。 通过这次课程设计可以了解linux的模块机制,懂得如何加载模块和卸载模块,进一步熟悉模块的相关操作。加深对驱动程序定义和设计的了解,了解linux驱动的编写过程,提高自己的动手能力。 二、课程设计内容与要求 字符设备驱动程序 1、设计目的:掌握设备驱动程序的编写、编译和装载、卸载方法,了解设备文件的创建,并知道如何编写测试程序测试自己的驱动程序是否能够正常工作 2、设计要求: 1) 编写一个简单的字符设备驱动程序,该字符设备包括打开、读、写、I\O控制与释放五个基本操作。 2) 编写一个测试程序,测试字符设备驱动程序的正确性。 3) 要求在实验报告中列出Linux内核的版本与内核模块加载过程。 三、系统分析与设计 1、系统分析 系统调用是操作系统内核和应用程序之间的接口,设备驱动程序是操作系统内核和机器硬件之间的接口。设备驱动程序为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个设备文件,应用程序可以象操作普通文件一样对硬件设备进行操作。设备驱动程序是内核的一部分,它完成以下的功能: 1、对设备初始化和释放; 2、把数据从内核传送到硬件和从硬件读取数据; 3、读取应用程序传送给设备文件的数据和回送应用程序请求的数据; 4、检测和处理设备出现的错误。 字符设备提供给应用程序的是一个流控制接口,主要包括op e n、clo s e(或r ele as e)、r e ad、w r i t e、i o c t l、p o l l和m m a p等。在系统中添加一个字符设备驱动程序,实际上就是给上述操作添加对应的代码。对于字符设备和块设备,L i n u x内核对这些操作进行了统一的抽象,把它们定义在结构体fi le_operations中。 2、系统设计: 、模块设计:

Linux设备驱动程序学习(5)-高级字符驱动程序操作[(2)阻塞型IO和休眠]

Linux设备驱动程序学习(5)-高级字符驱动程序操作[(2)阻 塞型I/O和休眠] Linux设备驱动程序学习(5) -高级字符驱动程序操作[(2)阻塞型I/O和休眠]这一部分主要讨论:如果驱动程序无法立即满足请求,该如何响应?(65865346) 一、休眠 进程被置为休眠,意味着它被标识为处于一个特殊的状态并且从调度器的运行队列中移走。这个进程将不被在任何CPU 上调度,即将不会运行。直到发生某 些事情改变了那个状态。安全地进入休眠的两条规则: (1)永远不要在原子上下文中进入休眠,即当驱动在持有一个自旋锁、seqlock或者RCU 锁时不能睡眠;关闭中断也不能睡眠。持有一个信号量时休眠是 合法的,但你应当仔细查看代码:如果代码在持有一个信号量时睡眠,任何其他的等待这个信号量的线程也会休眠。因此发生在持有信号量时的休眠必须短暂, 而且决不能阻塞那个将最终唤醒你的进程。 (2)当进程被唤醒,它并不知道休眠了多长时间以及休眠时发生什么;也不知道是否另有进程也在休眠等待同一事件,且那个进程可能在它之前醒来并获取了 所等待的资源。所以不能对唤醒后的系统状态做任何的假设,并必须重新检查等待条件来确保正确的响应。 除非确信其他进程会在其他地方唤醒休眠的进程,否则也不能睡眠。使进程可被找到意味着:需要维护一个称为等待队列的数据结构。它是一个进程链表,其中饱含了等待某个特定事件的所有进程。在Linux 中,一个等待队列由一个wait_queue_head_t 结构体来管理,其定义在中。 wait_queue_head_t 类型的数据结构非常简单: 它包含一个自旋锁和一个链表。这个链表是一个等待队列入口,它被声明做wait_queue_t。wait_queue_head_t包含关于睡眠进程的信息和它想怎样被唤

一个简单字符设备驱动实例

如何编写Linux设备驱动程序 Linux是Unix操作系统的一种变种,在Linux下编写驱动程序的原理和思想完全类似于其他的Unix系统,但它dos或window环境下的驱动程序有很大的区别。在Linux环境下设计驱动程序,思想简洁,操作方便,功能也很强大,但是支持函数少,只能依赖kernel中的函数,有些常用的操作要自己来编写,而且调试也不方便。本文是在编写一块多媒体卡编制的驱动程序后的总结,获得了一些经验,愿与Linux fans共享,有不当之处,请予指正。 以下的一些文字主要来源于khg,johnsonm的Write linux device driver,Brennan's Guide to Inline Assembly,The Linux A-Z,还有清华BBS上的有关device driver的一些资料. 这些资料有的已经过时,有的还有一些错误,我依据自己的试验结果进行了修正. 一、Linux device driver 的概念 系统调用是操作系统内核和应用程序之间的接口,设备驱动程序是操作系统内核和机器硬件之间的接口。设备驱动程序为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个设备文件,应用程序可以象操作普通文件一样对硬件设备进行操作。设备驱动程序是内核的一部分,它完成以下的功能: 1)对设备初始化和释放; 2)把数据从内核传送到硬件和从硬件读取数据; 3)读取应用程序传送给设备文件的数据和回送应用程序请求的数据; 4)检测和处理设备出现的错误。 在Linux操作系统下有两类主要的设备文件类型,一种是字符设备,另一种是块设备。字符设备和块设备的主要区别是:在对字符设备发出读/写请求时,实际的硬件I/O一般就紧接着发生了,块设备则不然,它利用一块系统内存作缓冲区,当用户进程对设备请求能满足用户的要求,就返回请求的数据,如果不能,就调用请求函数来进行实际的I/O操作。块设备是主要针对磁盘等慢速设备设计的,以免耗费过多的CPU时间来等待. 已经提到,用户进程是通过设备文件来与实际的硬件打交道。每个设备文件都都有其文件属性(c/b),表示是字符设备还是块设备。另外每个文件都有两个设备号,第一个是主设备号,标识驱动程序,第二个是从设备号,标识使用同一个设备驱动程序的不同的硬件设备,比如有两个软盘,就可以用从设备号来区分他们。设备文件的主设备号必须与设备驱动程序在登记时申请的主设备号一致,否则用户进程将无法访问到驱动程序. 最后必须提到的是,在用户进程调用驱动程序时,系统进入核心态,这时不再是抢先式调度。也就是说,系统必须在你的驱动程序的子函数返回后才能进行其他的工作。如果你的驱动程序陷入死循环,不幸的是你只有重新启动机器了,然后就是漫长的fsck。 二、实例剖析 我们来写一个最简单的字符设备驱动程序。虽然它什么也不做,但是通过它可以了解Linux的设备驱动程序的工作原理.把下面的C代码输入机器,你就会获得一个真正的设备

linux 驱动程序开发

1 什么是驱动 a)裸板驱动 b)有系统驱动linux 将驱动封装了一套框架(每个驱动) c)大量和硬件无关的代码已写好只需要编程实现和硬件相关的代码 d)难点:框架的理解代码的理解 e)需要三方面的知识: i.硬件相关的知识 1.电路原理图 2.芯片的数据手册 3.总线协议rs232 i2c等 ii.内核的知识 1.内核驱动属于内核的一部分,它运行在内核态需要对内核知识有了解 2.内存管理 3.解决竞争状态(如上锁) 4.。。。 iii.驱动框架的知识 1.内核中已经实现了大量硬件驱动完成了驱动的框架编程只需要根据硬 件进行添加 2 搭建linux驱动开发工具 a)安装交叉编译环境 i.arm-linux-gcc uboot PATH b)移植uboot c)移植内核 d)制作根文件系统然后通过nfs方式让开发板可以加载 3 内核驱动开发的基本知识 a)如何学驱动编程? i.最好的老师就是内核源码(没有man 功能) 1.要是用某个函数就去查看某个函数的定义注释 2.查看内核中其他模块儿时如何使用该函数的 3.专业书籍: a)内核开发:linux内核的设计与实现机械工程出版社 b)驱动开发:圣经级别的-LDD3:LINUX DEVICE c)操作性别叫强的:精通linux设备驱动程序开发

关于linux内核: 1)linux内核中所使用的函数都是自身实现的它肯定不会调用c库中的函数 2)linux中代码绝大多数代码时gun c语言完成的不是标准c语言可以理解为标c的扩展版和少部分汇编 需要注意的问题: 1)内核态不能做浮点数运算 2)用户空间的每个进程都有独立的0-3G的虚拟空间 多个进程共享同一个内核 内核使用的地址空间为3G-4G 3)每个线程有独立的栈空间 4 写一个最简单的内核模块儿(因为驱动时内核的一个模块套路都一样) a)几个宏 i.__FUNCTION__:展开为所在函数的名称 ii.__LINE__:展开为printk所在的行号 iii.__DATE__:展开为编译程序的日期 b)通用头文件 i.#include ii.#include c)没有main函数 然后写一个makefile 其中:obj -m +=helloworld.o -m表示生成模块儿 make -C 内核路径编译对象路径modules(固定表示模块儿) 例子:make -C /home/changjian/dirver/kernel M=$(PWD) modules 报错:如taints kernel(污染内核)因为写的驱动没有声明license 因为linux为开源所以写的驱动也必须声明为开源可以在程序里加入:MODULE_LICENSE(“GPL”);声明为开源 模块儿驱动开发 1、模块儿参数 a)内核中安装模块时也可以传递参数 i.insmod xx.ko var=123 b)模块参数的使用方法 i.首先在模块中定义全局变量 ii.然后使用module_param 或者module_param_array来修饰该变量 这样一个普通的全局变量就变成可以安装模块时传递参数的模块参数 module_param(name,type,perm) name:变量名称 type: name的类型(不包括数组) perm:权限类型rwxr-x 等类型内核做了相关的宏定义形如efine S_IRWXG 表示r w x g(同组) module_param_array(name,type,nump,perm)将某个数组声明为模块 参数

Linux设备驱动程序说明介绍

Linux设备驱动程序简介 Linux是Unix操作系统的一种变种,在Linux下编写驱动程序的原理和思想完全类似于其他的Unix系统,但它dos或window环境下的驱动程序有很大的区别。在Linux环境下设计驱动程序,思想简洁,操作方便,功能也很强大,但是支持函数少,只能依赖kernel 中的函数,有些常用的操作要自己来编写,而且调试也不方便。本人这几周来为实验室自行研制的一块多媒体卡编制了驱动程序,获得了一些经验,愿与Linux fans共享,有不当之处,请予指正。 以下的一些文字主要来源于khg,johnsonm的Write linux device driver,Brennan's Guide to Inline Assembly,The Linux A-Z,还有清华BBS上的有关device driver的一些资料. 这些资料有的已经过时,有的还有一些错误,我依据自己的试验结果进行了修正. 一、Linux device driver 的概念 系统调用是操作系统内核和应用程序之间的接口,设备驱动程序是操作系统内核和机器硬件之间的接口.设备驱动程序为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个设备文件,应用程序可以象操作普通文件一样对硬件设备进行操作.设备驱动程序是内核的一部分,它完成以下的功能: 1.对设备初始化和释放. 2.把数据从内核传送到硬件和从硬件读取数据. 3.读取应用程序传送给设备文件的数据和回送应用程序请求的数据. 4.检测和处理设备出现的错误. 在Linux操作系统下有两类主要的设备文件类型,一种是字符设备,另一种是块设备.字符设备和块设备的主要区别是:在对字符设备发出读/写请求时,实际的硬件I/O一般就紧接着发生了,块设备则不然,它利用一块系统内存作缓冲区,当用户进程对设备请求能满足用户的要求,就返回请求的数据,如果不能,就调用请求函数来进行实际的I/O操作.块设备是主要针对磁盘等慢速设备设计的,以免耗费过多的CPU时间来等待. 已经提到,用户进程是通过设备文件来与实际的硬件打交道.每个设备文件都都有其文件属性(c/b),表示是字符设备还蔤强樯璞?另外每个文件都有两个设备号,第一个是主设备号,标识驱动程序,第二个是从设备号,标识使用同一个设备驱动程序的不同的硬件设备,比如有两个软盘,就可以用从设备号来区分他们.设备文件的的主设备号必须与设备驱动程序在登记时申请的主设备号一致,否则用户进程将无法访问到驱动程序. 最后必须提到的是,在用户进程调用驱动程序时,系统进入核心态,这时不再是抢先式调度.也就是说,系统必须在你的驱动程序的子函数返回后才能进行其他的工作.如果你的驱动程序陷入死循环,不幸的是你只有重新启动机器了,然后就是漫长的fsck. 读/写时,它首先察看缓冲区的内容,如果缓冲区的数据 如何编写Linux操作系统下的设备驱动程序 二、实例剖析 我们来写一个最简单的字符设备驱动程序。虽然它什么也不做,但是通过它可以了解Linux的设备驱动程序的工作原理.把下面的C代码输入机器,你就会获得一个真正的设备驱动程序.不过我的kernel是2.0.34,在低版本的kernel上可能会出现问题,我还没测试过. [code]#define __NO_VERSION__

Linux设备驱动程序学习(18)-USB 驱动程序(三)

Linux设备驱动程序学习(18)-USB 驱动程序(三) (2009-07-14 11:45) 分类:Linux设备驱动程序 USB urb (USB request block) 内核使用2.6.29.4 USB 设备驱动代码通过urb和所有的 USB 设备通讯。urb用 struct urb 结构描述(include/linux/usb.h )。 urb以一种异步的方式同一个特定USB设备的特定端点发送或接受数据。一个USB 设备驱动可根据驱动的需要,分配多个 urb 给一个端点或重用单个 urb 给多个不同的端点。设备中的每个端点都处理一个 urb 队列, 所以多个 urb 可在队列清空之前被发送到相同的端点。 一个 urb 的典型生命循环如下: (1)被创建; (2)被分配给一个特定 USB 设备的特定端点; (3)被提交给 USB 核心; (4)被 USB 核心提交给特定设备的特定 USB 主机控制器驱动; (5)被 USB 主机控制器驱动处理, 并传送到设备; (6)以上操作完成后,USB主机控制器驱动通知 USB 设备驱动。 urb 也可被提交它的驱动在任何时间取消;如果设备被移除,urb 可以被USB 核心取消。urb 被动态创建并包含一个内部引用计数,使它们可以在最后一个用户释放它们时被自动释放。 struct urb

struct list_head urb_list;/* list head for use by the urb's * current owner */ struct list_head anchor_list;/* the URB may be anchored */ struct usb_anchor *anchor; struct usb_device *dev;/* 指向这个 urb 要发送的目标 struct usb_device 的指针,这个变量必须在这个 urb 被发送到 USB 核心之前被USB 驱动初始化.*/ struct usb_host_endpoint *ep;/* (internal) pointer to endpoint */ unsigned int pipe;/* 这个 urb 所要发送到的特定struct usb_device 的端点消息,这个变量必须在这个 urb 被发送到 USB 核心之前被 USB 驱动初始化.必须由下面的函数生成*/ int status;/*当 urb开始由 USB 核心处理或处理结束, 这个变量被设置为 urb 的当前状态. USB 驱动可安全访问这个变量的唯一时间是在 urb 结束处理例程函数中. 这个限制是为防止竞态. 对于等时 urb, 在这个变量中成功值(0)只表示这个 urb 是否已被去链. 为获得等时 urb 的详细状态, 应当检查 iso_frame_desc 变量. */ unsigned int transfer_flags;/* 传输设置*/ void*transfer_buffer;/* 指向用于发送数据到设备(OUT urb)或者从设备接收数据(IN urb)的缓冲区指针。为了主机控制器驱动正确访问这个缓冲, 它必须使用 kmalloc 调用来创建, 不是在堆栈或者静态内存中。对控制端点, 这个缓冲区用于数据中转*/ dma_addr_t transfer_dma;/* 用于以 DMA 方式传送数据到 USB 设备的缓冲区*/ int transfer_buffer_length;/* transfer_buffer 或者 transfer_dma 变量指向的缓冲区大小。如果这是 0, 传送缓冲没有被 USB 核心所使用。对于一个 OUT 端点, 如果这个端点大小比这个变量指定的值小, 对这个USB 设备的传输将被分成更小的块,以正确地传送数据。这种大的传送以连续的 USB 帧进行。在一个 urb 中提交一个大块数据, 并且使 USB 主机控制器去划分为更小的块, 比以连续地顺序发送小缓冲的速度快得多*/

Linux设备驱动程序简介

第一章Linux设备驱动程序简介 Linux Kernel 系统架构图 一、驱动程序的特点 ?是应用和硬件设备之间的一个软件层。 ?这个软件层一般在内核中实现 ?设备驱动程序的作用在于提供机制,而不是提供策略,编写访问硬件的内核代码时不要给用户强加任何策略 o机制:驱动程序能实现什么功能。 o策略:用户如何使用这些功能。 二、设备驱动分类和内核模块 ?设备驱动类型。Linux 系统将设备驱动分成三种类型 o字符设备 o块设备 o网络设备 ?内核模块:内核模块是内核提供的一种可以动态加载功能单元来扩展内核功能的机制,类似于软件中的插件机制。这种功能单元叫内核模块。 ?通常为每个驱动创建一个不同的模块,而不在一个模块中实现多个设备驱动,从而实现良好的伸缩性和扩展性。 三、字符设备 ?字符设备是个能够象字节流<比如文件)一样访问的设备,由字符设备驱动程序来实现这种特性。通过/dev下的字符设备文件来访问。字符设备驱动程序通常至少需要实现 open、close、read 和 write 等系统调用 所对应的对该硬件进行操作的功能函数。 ?应用程序调用system call<系统调用),例如:read、write,将会导致操作系统执行上层功能组件的代码,这些代码会处理内核的一些内部 事务,为操作硬件做好准备,然后就会调用驱动程序中实现的对硬件进 行物理操作的函数,从而完成对硬件的驱动,然后返回操作系统上层功 能组件的代码,做好内核内部的善后事务,最后返回应用程序。 ?由于应用程序必须使用/dev目录下的设备文件<参见open调用的第1个参数),所以该设备文件必须事先创建。谁创建设备文件呢? ?大多数字符设备是个只能顺序访问的数据通道,不能前后移动访问指针,这点和文件不同。比如串口驱动,只能顺序的读写设备。然而,也 存在和数据区或者文件特性类似的字符设备,访问它们时可前后移动访

如何实现Linux设备驱动模型

文库资料?2017 Guangzhou ZHIYUAN Electronics Stock Co., Ltd. 如何实现Linux 设备驱动模型 设备驱动模型,对系统的所有设备和驱动进行了抽象,形成了复杂的设备树型结构,采用面向对象的方法,抽象出了device 设备、driver 驱动、bus 总线和class 类等概念,所有已经注册的设备和驱动都挂在总线上,总线来完成设备和驱动之间的匹配。总线、设备、驱动以及类之间的关系错综复杂,在Linux 内核中通过kobject 、kset 和subsys 来进行管理,驱动编写可以忽略这些管理机制的具体实现。 设备驱动模型的内部结构还在不停的发生改变,如device 、driver 、bus 等数据结构在不同版本都有差异,但是基于设备驱动模型编程的结构基本还是统一的。 Linux 设备驱动模型是Linux 驱动编程的高级内容,这一节只对device 、driver 等这些基本概念作介绍,便于阅读和理解内核中的代码。实际上,具体驱动也不会孤立的使用这些概念,这些概念都融合在更高层的驱动子系统中。对于大多数读者可以忽略这一节内容。 1.1.1 设备 在Linux 设备驱动模型中,底层用device 结构来描述所管理的设备。device 结构在文件中定义,如程序清单错误!文档中没有指定样式的文字。.1所示。 程序清单错误!文档中没有指定样式的文字。.1 device 数据结构定义 struct device { struct device *parent; /* 父设备 */ struct device_private *p; /* 设备的私有数据 */ struct kobject kobj; /* 设备的kobject 对象 */ const char *init_name; /*设备的初始名字 */ struct device_type *type; /* 设备类型 */ struct mutex mutex; /*同步驱动的互斥信号量 */ struct bus_type *bus; /*设备所在的总线类型 */ struct device_driver *driver; /*管理该设备的驱动程序 */ void *platform_data; /*平台相关的数据 */ struct dev_pm_info power; /* 电源管理 */ #ifdef CONFIG_NUMA int numa_node; /*设备接近的非一致性存储结构 */ #endif u64 *dma_mask; /* DMA 掩码 */ u64 coherent_dma_mask; /*设备一致性的DMA 掩码 */ struct device_dma_parameters *dma_parms; /* DMA 参数 */ struct list_head dma_pools; /* DMA 缓冲池 */ struct dma_coherent_mem *dma_mem; /* DMA 一致性内存 */ /*体系结构相关的附加项*/ struct dev_archdata archdata; /* 体系结构相关的数据 */ #ifdef CONFIG_OF

从零开始搭建Linux驱动开发环境

参考: 韦东山视频第10课第一节内核启动流程分析之编译体验 第11课第三节构建根文件系统之busybox 第11课第四节构建根文件系统之构建根文件系统韦东山书籍《嵌入式linux应用开发完全手册》 其他《linux设备驱动程序》第三版 平台: JZ2440、mini2440或TQ2440 交叉网线和miniUSB PC机(windows系统和Vmware下的ubuntu12.04) 一、交叉编译环境的选型 具体的安装交叉编译工具,网上很多资料都有,我的那篇《arm-linux- gcc交叉环境相关知识》也有介绍,这里我只是想提示大家:构建跟文件系统中所用到的lib库一定要是本系统Ubuntu中的交叉编译环境arm-linux- gcc中的。即如果电脑ubuntu中的交叉编译环境为arm-linux-

二、主机、开发板和虚拟机要三者互通 w IP v2.0》一文中有详细的操作步骤,不再赘述。 linux 2.6.22.6_jz2440.patch组合而来,具体操作: 1. 解压缩内核和其补丁包 tar xjvf linux-2.6.22.6.tar.bz2 # 解压内核 tar xjvf linux-2.6.22.6_jz2440.tar.bz2 # 解压补丁

cd linux_2.6.22.6 patch –p1 < ../linux-2.6.22.6_jz2440.patch 3. 配置 在内核目录下执行make 2410_defconfig生成配置菜单,至于怎么配置,《嵌入式linux应用开发完全手册》有详细介绍。 4. 生成uImage make uImage 四、移植busybox 在我们的根文件系统中的/bin和/sbin目录下有各种命令的应用程序,而这些程序在嵌入式系统中都是通过busybox来构建的,每一个命令实际上都是一个指向bu sybox的链接,busybox通过传入的参数来决定进行何种命令操作。 1)配置busybox 解压busybox-1.7.0,然后进入该目录,使用make menuconfig进行配置。这里我们这配置两项 一是在编译选项选择动态库编译,当然你也可以选择静态,不过那样构建的根文件系统会比动态编译的的大。 ->Busybox Settings ->Build Options

相关主题