搜档网
当前位置:搜档网 › 玻璃纤维直径对强度的影响

玻璃纤维直径对强度的影响

玻璃纤维直径对强度的影响
玻璃纤维直径对强度的影响

玻璃纤维直径对纤维强度及复合材料强度影响的研究

来源:中国化工信息网 2007年3月15日

0 前言

玻璃纤维是玻璃制品中的一种,它是将高温熔融状态下的玻璃液,经漏嘴流出,在漏嘴出口处施加高速向下的拉引力,玻璃液被拉伸并冷却固化成为很细的纤维,通常直径为5-30μm。玻璃纤维具有许多优良性能,用途也相当广泛,一直是用量最大用途最广的非金属增强材料。随着玻璃纤维工业的迅速发展,应用迅速扩大,对于玻璃纤维性能的研究也相当多,但是一直以来存在这样一个误区,认为纤维直径越细,纤维的强度越高,制成的复合材料的强度也越高。但大量的事实证明,并非如此,因此有必要对玻璃纤维制品的性能及纤维直径对复合材料强度的影响进行研究。

玻璃纤维只是作为一种过渡性产品,并不能完全决定复合材料的最终强度。也就是说,纤维的强度高并不能就可以说明玻璃钢复合材料的强度就越高。由于单质材料转化为复合材料,目的在于取得单质材料所没有的性能和经济效益,因此研究复合材料的性能,不仅在于原材料、复合过程和复合结构,更重要的要看最后的复合效果。这将有利于指导玻璃纤维制品的发展方向,从而可以改善过去着重于生产小直径玻璃纤维的生产状况,转向注重粗纤维产品的生产,这将大大提高生产效率以及经济效益。不仅如此,同时也提高了复合材料的生产效益,尤其是大结构复合材料的生产效率,比如缠绕管、冷却塔、贮罐等。

1 实验部分

1.1 原材料及制备工艺

1.1.1 原材料

玻璃纤维:统一采用山东泰山复合材料有限公司池窑拉丝工艺生产的无碱玻璃纤维,其化学成分相同,所用的浸润剂也相同。其中直径分别有30μm,24μm,15μm,14μm,

11μm,8μm。

树脂:制聚酯棒试样的树脂为南京费隆复合材料有限公司生产的S-583通用型不饱和

聚酯树脂。

1.1.2 聚酯棒制备工艺

将玻璃纤维无捻粗纱束浸入配制好的树脂中,待完全浸渍后用金属丝将无捻粗纱束向上垂直牵引到模具中,当玻璃纤维无捻粗纱的下端进入模具口几毫米处时,用塑料或软木塞封住模具,以防树脂外溢,然后按树脂系统规定的固化条件固化,制备足够数量弯曲试

样。

1.2 实验方法及仪器

1.2.1 玻璃纤维直径

用放大倍数为800-1000倍的显微镜测定,依据GB/T 7690.3纵向法进行。

1.2.2 单丝拉伸强度

用日本UTM-Ⅱ-20单丝拉伸强力试验机测玻璃纤维单丝的拉伸强度。

1.2.3 聚酯棒弯曲强度

用长春试验机研究所研制的电子万能试验机测定,依据GB/T 1449进行。

2 实验结果与讨论

2.1 玻璃纤维直径与单丝拉伸强度的关系

玻璃纤维单丝拉伸强度试验结果见表1及图1(略)。

表1 不同直径的纤维强度

由于纤维的内部和外部均存在微裂纹,纤维越粗,表面积越大,出现裂纹的几率越大。当施加外力时,最薄弱区裂纹迅速扩展直至纤维断裂,纤维直径粗表面积大就大大增加了纤维断裂的可能性,因此纤维直径越细纤维的强度越高。

玻璃微裂纹的产生原因,最重要条件是玻璃中存在缺陷,主要是结构不均一性。玻璃中存在着有序区、微晶子、化合物、近程有序的集合体等等都构成了玻璃的不均一性,玻璃中存在着弱键,构成了产生大小不同的微裂纹的有利条件。当施加外力时,微不均匀处

及薄弱区首先破裂,便形成了裂纹的胚胎。

玻璃液中的缺陷又增大了玻璃的不均一性,因而导致纤维的强度大大降低。拉丝作业中不可避免地要形成表面裂纹,因为丝根冷却是一个渐变过程。在拉丝力作用下,每根纤维都受到一定的应力,这种应力作用于先硬化的纤维外壳时就产生表面裂纹。

2.2 玻璃纤维直径对聚酯棒弯曲强度的影响

聚酯棒弯曲强度试验结果见表2及图2(略)。

2.2.1 影响聚酯棒弯曲强度的主要因素

2.2.1.1 从化学键理论分析

该理论认为基体表面上的官能团与纤维表面上的官能团起化学反应,因此基体与纤维间产生化学键而结合,形成界面,也称为“偶联理论”。由于在拉丝过程中,玻璃纤维表面都涂有增强型浸润剂,使玻璃纤维与基体之间有良好的粘结性,主要是偶联剂的作用。一方面,从成键的几率上分析看,玻璃纤维比表面积大,偶联剂与基体成键的几率就越大。不仅仅如此,对于含有多个官能团的偶联剂分子来说,所有的官能团能否与基体的官能团反应成键,即有效成键数目的多少将大大影响聚酯棒的强度。另一方面,基体(树脂)的分子中也同样含有多个官能团,如果树脂分子中的多个官能团或者使较长的链段能与偶联剂

结合成键,那么也将会提高聚酯棒的强度。

表2 不同纤维直径的聚酯棒强度

如果认为两组分能完全浸润,则树脂在高能表面的物理吸附所提供的粘结强度,将大大超过树脂的内聚强度。玻璃纤维与树脂的结合模式属于机械粘结与润湿吸附。机械粘结模式是一种机械铰合现象,即树脂固化后,大分子进入纤维的孔隙和不平的凹陷之中形成机械铰连;物理吸附主要是范德华力的作用,使两项间进行粘附。这两种作用的同时存在也提高了聚酯棒的强度。

2.2.1.3 从摩擦理论分析

对于基体与玻璃纤维表面的界面,粘结摩擦作用也有很大的影响,基体与玻璃纤维表面的摩擦系数决定了复合材料的强度。处理剂的作用在于增加了基体与玻璃纤维表面的摩擦系数,从而使复合材料的强度提高。水等低分子物质浸入后,复合材料的强度下降,但干燥后强度又能部分恢复。这是由于水进入界面后,基体与增强材料间的摩擦系数减小,界面传递应力的能力减弱,故强度降低,而干燥后界面的水减少,基体与玻璃纤维间的摩擦系数增大,传递应

力的能力增加,故强度部分恢复。

2.2.1.4 张力的影响

由于纤维都是以纤维束的形式存在,而且纤维通常还需要加捻合股等工序,在纤维束中就很可能存在纤维的长短不匀的现象,造成了纤维的张力不均,即在纤维受力时并不是所有的纤维都起到了作用,这也降低了聚酯棒的强度。

2.2.1.5 聚酯棒在干态和湿态下弯曲强度的比较与分析

由于湿度对于玻璃钢的性能影响比较大,而在很多的应用上其环境的湿度都是比较大的,所以也有必要研究玻璃钢在湿态下的性能。

从试验的数据结果显示来看,聚酯棒在干态下的弯曲强度要比在湿态的弯曲强度高100MPa左右,因此如何采取有效的方法防止玻璃钢在湿态下强度的降低,还有待进一步研究。以下是对两种情况下玻璃钢性能的分析,即水对玻

璃钢破坏的分析。

清洁的玻璃纤维表面吸附水的能力很强,并且纤维表面与水分子之间的作用力,通过已吸附的水膜传递,所以玻璃纤维表面对水的吸附是多层吸附,形成较厚的水膜,因此这就很大程度上影响了玻璃纤维与树脂的粘结。

玻璃纤维复合材料表面上吸附的水浸入界面后,发生水和玻璃纤维及树脂间的化学变化,引起界面粘结破坏,致使复合材料破坏。

复合材料吸附的水进入界面的途径,一是通过工艺过程中在复合材料内部形成的气泡,这些气泡在应力作用下破坏,形成互相串通的通道,水很容易沿通道到达很深的部位;另一条是树脂内存在的杂质,尤其是水溶性无机物杂质,遇到水时,因渗透压的作用形成高压区,这些高压区将产生微裂纹,水继续沿微裂纹浸入。此外复合材料制备过程中所产生的附加应力,也会在复合材料内部形成微裂纹,水也能沿着这些裂纹浸入。

进入界面的水,首先是使树脂溶胀,溶胀致使界面上产生横向拉伸应力。这种应力超过树脂与玻璃纤维间的粘结强度时,则界面粘结发生破坏,因此,复合材料的强度会很快降低甚至完全破坏。

3 结论

(1)纤维的直径越细纤维的强度越高。

(2)不同直径的纤维所制得的聚酯棒弯曲强度,纤维越细聚酯棒的强度越低,但是变化不是很大。这主要是树脂对纤维的微裂纹进行了很好的修补,因此纤维直径的粗细对复合材料的强度并没有多大的影响。

(3)聚酯棒在湿态和干态下的弯曲强度均相差100MPa,说明湿度对复合材料的强度影

响比较大,有待进一步提高在湿态下的强度。

ASTMC297夹层结构平面拉伸强度标准试验方法中文版.doc

ASTM 标准:C 297/C 297M–04 夹层结构平面拉伸强度标准试验方法1 Standard Test Method for Flatwise Tensile Strength of Sandwich Constructions 本标准以固定标准号C 297/C 297M发布;标准号后面的数字表示最初采用的或最近版本的年号。带括号的数据表明最近批准的年号。上标( )表明自最近版本或批准以后进行了版本修改。 本标准已经被美国国防部批准使用。 1 范围 1.1 本试验方法适用于测量组合夹层壁板的夹芯、夹芯-面板胶接或者面板的平面拉伸强度。允许的夹芯材料形式包括连续的胶接表面(如轻质木材或泡沫)和不连续的胶接表面(如蜂窝)。 1.2 以国际单位(SI)或英制单位(inch–pound)给出的数值可以单独作为标准。正文中,英制单位在括号内给出。每一种单位制之间的数值并不严格等值,因此,每一种单位制都必须单独使用。由两种单位制组合的数据可能导致与本标准的不相符。 1.3 本标准并未打算提及,如果存在的话,与使用有关的所有安全性问题。在使用本标准之前,本标准的用户有责任建立合适的安全与健康的操作方法,以及确定规章制度的适用性。 2 引用标准 2.1 ASTM标准2 C 274 夹层结构术语 Terminology of Structural Sandwich Constructions D 792 置换法测量塑料的密度和比重(相对密度)的试验方法; Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement D 883 与塑料有关的术语; Terminology Relating to Plastics D 2584 固化增强树脂的灼烧损失试验方法; Test Method for Ignition Loss of Cured Reinforced Resins D 2734 增强塑料孔隙含量试验方法; Test Method for Void Content of Reinforced Plastics D 3039/D 3039M 聚合物基复合材料拉伸性能试验方法 Test Method for Tensile Properties of Polymer Matrix Composite Materials D 3171 复合材料的组分含量试验方法; Test Methods for Constituent Content of Composites Materials D 3878 复合材料术语; Terminology for Composite Materials D 5229/D 5229M 聚合物基复合材料的吸湿性能及平衡状态调节试验方法; 1本试验方法由ASTM的复合材料委员会D30审定,并由单层和层压板试验方法专业委员会D30.09直接负责。当前版本于2004年5月1日批准,2004年5月出版。最初出版于1952年批准,上一版本为:C 297–94(1999),于1999年批准。 2有关的ASTM标准请访问ASTM网站https://www.sodocs.net/doc/dc10645375.html,,或者与ASTM客户服务@https://www.sodocs.net/doc/dc10645375.html,联系。ASTM标准年鉴的卷标信息,参看ASTM 网站标准文件摘要页。

1高分子材料拉伸强度测定

实验1 高分子材料拉伸强度测定 一、实验目的 1、测定聚丙烯材料的屈服强度、断裂强度和断裂伸长,并画应力—应变曲线; 2、观察结晶性高聚物的拉伸特征; 3、掌握高聚物的静载拉伸实验方法。 二、实验原理 1、应力—应变曲线 本实验是在规定的实验温度、湿度及不同的拉伸速度下,在试样上沿轴向方向施加静态拉伸负荷,以测定塑料的力学性能。 拉伸实验是最常见的一种力学实验,由实验测定的应力—应变曲线,可以得出评价材料性能的屈服强度,断裂强度和断裂伸长率等表征参数,不同的高聚物,不同的测定条件,测得的应力—应变曲线是不同的。 结晶性高聚物的应力—应变曲线分三个区域,如图1所示。 (1)OA段曲线的起始部分,近似直线,属普弹性变形,是由于分子的键长、键角以及原子间的距离改变所引起的,其形变是可逆的,应力与应变之间服从胡克定律。即: σ=?ε 式中σ——应力,MPa; ε——应变,%; Ε——弹性模量,MP 。 A为屈服点,所对应力屈服应力或屈服强度。 (2)BC段到达屈服点后,试样突然在某处出现一个或几个“细颈”现象,出现细颈现象的本质是分子在该自发生取向的结晶,该处强度增大,拉伸时细颈不会变细拉断,而是向两端扩展,直至整个试样完全变细为止,此阶段应力几乎一变,而变形增加很大。 (3)CD段被均匀拉细后的试样,再长变细即分子进一步取向,应力随应变的增大而

增大,直到断裂点D,试样被拉断,D点的应力称为强度极限,即抗拉强度或断裂强度σ,是材料重要的质量指标,其计算公式为: σ=P/(b×d) (MPa) 式中P——最大破坏载荷,N; b——试样宽度,mm; d——试样厚度,mm; 断裂伸长率ε是试样断裂时的相对伸长率,ε按下式计算: ε=(F-G)/G×100% 式中 G——试样标线间的距离,mm; F——试样断裂时标线间的距离,mm。 三、实验设备、用具及试样 1、电子式万能材料试验机WDT-20KN。 2、游标卡尺一把 3、聚丙烯(PP)标准试样6条,拉伸样条的形状(双铲型)如图2所示。 L——总长度(最小),150mm; b——试样中间平行部分宽度,10±0.2mm; C——夹具间距离,115mm; d——试样厚度,2~10mm; G——试样标线间的距离,50±0.5mm; h——试样端部宽度,20±0.2mm; R——半径,60mm。 四、实验步骤 准备两组试样,每组三个样条,且用一种速度,A组25mm/min,B组5mm/min。 1、熟悉万能试验机的结构,操作规程和注意事项。 2、用游标卡尺量样条中部左、中、右三点的宽度和厚度,精确到0.02mm,取平均值。 3、实验参数设定 接通电源,启动试验机按钮,启动计算机; 双击桌面上“MCGS环境”进入系统主界面;分别点击“试验编号”、“试样设定”、“试样参数”、“测试项目”等按扭,设定参数。 设定试验编号;注意试验编号不能重复使用;

高强玻璃纤维的现状及发展趋势

高强玻璃纤维的现状及发展趋势 1 引言 1938年,美国欧文斯-科宁(OC)公司发明了无碱E玻璃纤维开创了玻璃纤维增强复合材料时代,1960年,又应美国空军的需求开发的一种比E玻纤强度和模量更高一种玻璃纤维,名为S玻纤。S-2是它的商业化生产的注册品牌,现由AGY公司生产。法国的圣戈班(SAINT-GOBINE) 集团的维托特克斯(VETROTEX)公司,日本的日东纺织株式会社,也分别宣布开发出了商标为R高强玻纤和T高强玻纤,前苏联的波洛茨克公司(现白俄罗斯POLOTSK-STEKLOVOLOKNO)生产BMⅡ (为上标)型高强玻纤,此外还有日本的板旭子公司生产U、K高强玻纤用于玻纤帘子线的生产。 中材科技股份有限公司南京玻纤院自上世纪70年代以来独立自主开发并规模化工业生产我国的HS系列高强玻纤,产品性能接近或达到国外先进水平。 将上述各公司生产的S、R、T、BMⅡ(为上标)、 HS玻纤统称为高强玻纤。 2 高强玻纤的化学成份 高强玻璃系统主要为SiO2-Al203-Mg0或SiO2-Al2O3-CaO-MgO体系(数字为下标),各种高强玻璃成份不尽相同,但其中Al2O3的含量均在25%左右。高强玻纤的化学成分见表1。 3 高强玻纤的性能 高强玻纤与常用E玻纤相比具有下列主要六大特点:拉伸强度高、弹性模量高刚性好;断裂伸长量大抗冲击性能好,化学稳定性好,耐高温,抗疲劳特性及雷达透波性能好。 3.1 高强玻纤的拉伸强度及模量 高强玻纤的拉伸强度,弹性模量分别比E玻纤提高了30%~40%和16%~20%以上。用高强玻纤制成的复合材料其强度及模量比E玻纤制成的复合材料分别高5O%以上,见图1和图2。

SIC纤维单丝拉伸性能测试

碳化硅纤维单丝拉伸性能检验方法 Test method for tensile properties of S iC fiber strands 本方法适用于测定碳化硅纤维单丝拉伸强度、拉伸模量和断裂伸长率。 1 试样 1.1 试样形状及尺寸 测定SiC 纤维单丝拉伸性能用的试样尺寸如图1所示。 1.2 试样制备 1.2.1 试样由SiC 纤维束丝中随机取出,纤维长度不低于32mm 。 1.2.2 试样按照图1所要求的尺寸,粘结在加强纸片上,C 区与D 区为胶剂粘结区,加强纸片的厚度在0.2~0.4mm 之间。可用任何室温固化的胶粘剂,粘结方法见附录A 。 1.2.3 试样粘结在加强纸片上之后在3.1规定的条件下至少放置24h 。 1.3 试样外观与粘结胶量 1.3.1 试样应光滑、平整、无缺陷、自然伸直。 1.3.2 加强纸板两端粘结的胶量应控制在微量范围之内。 2 试验设备 2.1 采用无惯性拉力机。载荷相对误差不超过1%。备有自动记录负载-变形曲线的装 图1

置。记录仪装置走纸速度误差不超过1%. 3 试验条件 3.1 试验标准环境条件,温度为23±2℃,空气相对湿度50±5%。 3.2 在其他条件下进行试验时,应将试验环境温度与空气相对湿度在试验报告中注明。 4 试验步骤 4.1 检查试样外观。测量试样标距,精确到0.5mm 。 4.2 调整试验机夹头移动速度,可在1~20mm/min 范围内任选一档速度。 4.3 调整记录仪走纸速度,使其不小于夹具移动速度的40倍。 4.4 装夹试样,要求单丝和上下夹具的加载轴线重合。 4.5 用打火机小心烧掉加强纸板。 4.6 开动试验机,同时启动记录仪,在记录仪上绘制负载-变形曲线,直到试样断裂。 5 试验结果及计算 5.1 试验数目 每组试验测20个样。如果试样断在纸框边缘处(图1所示ab 或cd 处),该试样试验结果无效。每组试验有效试样应不少于12个,有效试样不足12个时,应进行重复试验。 5.2 拉伸强度、弹性模量和断裂伸长率的计算 5.2.1 从负载-变形曲线计算拉伸强度、表现拉伸弹性模量和断裂伸长率。 5.2.1.1 拉伸强度σt 按式(1)计算: t P A σ= …………………………………………(1) 式中:σt —拉伸强度,kgf/mm 2(MPa); P —破坏载荷,kgf(N); A —单丝截面积,mm 2(m 2)。 注:扫描电镜观测确定单丝截面积。 5.2.1.2 表观拉伸弹性模量E α按式(2)计算: p L E A i α= ? …………………………………………(2) 式中:E α—表观拉伸弹性模量,kgf/mm 2(MPa); ΔP —由负载-变形曲线初始直线段上截取的负荷值,kgf (N ); L —试样标距,mm ; Δi —标距内对应于ΔP 的变形增量,mm 。 5.2.2 按照附录B “拉伸弹性模量修正计算方法”从表观拉伸弹性模量E α计算拉伸弹性模量E t 。 5.3 算术平均值、标准误差和离散系数的计算 根据需要计算每组试样试验结果的算术平均值、标准误差和离散系数。 5.3.1 每组试样试验数据结果的算术平均值X 按照式(4)计算,取三位有效数字。

玻璃纤维棉

玻璃纤维 目录 玻璃纤维 (1) 1、材料简介 (2) 基本介绍 (2) 特点介绍 (3) 主要成分 (4) 2、材料分类 (5) E-玻璃 (6) C-玻璃 (6) 高强玻璃纤维 (7) AR玻璃纤维 (7) A玻璃 (7) E-CR玻璃 (8) D玻璃 (8) 3、强伸性能测试 (8) 4、品种用途 (9) 无捻粗纱 (9) 无捻粗纱织物(方格布) (11) 玻璃纤维毡片 (11) 短切原丝和磨碎纤维 (13) 玻璃纤维织物 (14) 组合玻璃纤维增强材料 (16) 玻璃纤维湿法毡 (17) 玻璃纤维布 (17) 5、现状前景 (18)

玻璃纤维短切丝 玻璃纤维(英文原名为:glass fiber或fiberglass )是一种性能优异的无机非金属材料,种类繁多,优点是绝缘性好、耐热性强、抗腐蚀性好,机械强度高,但缺点是性脆,耐磨性较差。它是以玻璃球或废旧玻璃为原料经高温熔制、拉丝、络纱、织布等工艺制造成的,其单丝的直径为几个微米到二十几米个微米,相当于一根头发丝的 1/20-1/5 ,每束纤维原丝都由数百根甚至上千根单丝组成。玻璃纤维通常用作复合材料中的增强材料,电绝缘材料和绝热保温材料,电路基板等国民经济各个领域。 1、材料简介 基本介绍 玻璃一般人之观念为质硬易碎物体,并不适于作为结构用材,但如其抽成丝后,则其强度大为增加且具

玻璃纤维 有柔软性,故配合树脂赋予形状以后终于可以成为优良之结构用材。玻璃纤维随其直径变小其强度增高。 CAS NO:14808-60-7 分子结构 [1] 特点介绍 原料及其应用玻璃纤维比有机纤维耐温高,不燃,抗腐,隔热、隔音性好(特别是玻璃棉),抗拉强度高,电绝缘性好(如无碱玻璃纤维)。但性脆,耐磨性较差。玻璃纤维主要用作电绝缘

抗拉强度实验

抗拉强度试验 [试验目的] 测试橡胶材料的抗张强度与延伸率; [试验原理] 运用马达传动螺杆而使下夹具向下移动,从而拉伸试样;结果运用LOAD CELL 力量感应器连接显示器自动显示力量值. [参考标准] 本机符合ASTM-D412 及ISO GB JIS EN等测试方法之需求。 [设备装置]拉力试验机标准斩刀 1/100mm的厚度计尺子 [操作步骤] A. 取大底割下适当试片,两面磨平到厚度为2-3mm;目前是204X153X2MM and 145X145X 4MM B. 用正确刀模斩好试片,量好试片厚度S(mm)(三点为最小值)及平行部位的宽度S0(mm); C. 用尺子在哑铃状试片中间平行部分中心位置量出规定的长度(CNS JIS 2号取2MM,如ASTM C#取2.5MM),并画好延伸长L0距离处的平行线作为延伸率之标线; D. 打开电源,依可户要求设定好测试速度; E. 夹紧试片,按显示器归“0”,按下启动开关,开始测试; F. 测试时,用身长量测指针准确量取试片断裂时延伸长标线之间距离L(mm); G. 试片断裂时,自动停机,荧光幕显示最大的拉力值F(Kg或N); H. 记下延伸长及最大的拉力值; I. 关闭电源,取下试片,依公式计算抗拉强度及延长率: 抗拉强度=F/(S*S0)*100(Kg/cm2)--------(1)延伸率=(L-L0)/L0*100% -----------(2)[注意事项] 1. 本机需放于牢固平坦之地面,保重稳固; 2. 经常检查上下限设定钮位置是否通畅,是否栓紧,避免夹具互撞损及荷重元(100Kgf); 3. 伸长量测指针不用时应推开,使指针尖端靠于左侧,以防给下夹具撞弯; 4. 刀模规格及测试速度需符合客户要求,不可乱用; a: G.R一般采用2#哑铃形刀模:长100mm x 宽25mm x 平行部分长20mm x 宽10MM b:实伦物性采用3#哑铃形刀模: 长 115MM x 宽25MM x 平行部分长33MM x 宽6MM c:W.W物性采用6#哑铃裁刀长 76MM x 宽13MM x 平行部分长 20MM x 宽4MM 5.对于同种胶料开出的试片,试片的裁取必须按胶料流动的方向及在规定统一的位置; 6.试片的宽度原则上为哑铃状试片刀模平行部分的宽度S0,但有时也需根据具体情况量取刃口内缘的实际宽度; 7:拉力计算方法:最大值*0.5+第二大*0.3+三大*0.1+最小值*0.1=拉力值 如果四个片有一个fail 拉力值取三片的平均值.[撕裂:(F拉力/B厚度)X10 KG/CM] 8:试样标准状态:测试前将试样静置于温度23±2℃相对湿度65±5﹪空气中24小时以上方可测试

玻璃纤维的成分及性能

◆玻璃纤维的成分及性能 生产玻璃纤维用的玻璃不同于其它玻璃制品的玻璃。目前国际上已经商品化的纤维用的玻璃成分如下: 1、E-玻璃亦称无碱玻璃,系一种硼硅酸盐玻璃。目前是应用最广泛的一种玻璃纤维用玻璃成分,具有良好的电气绝缘性及机械性能,广泛用于生产电绝缘用玻璃纤维,也大量用于生产玻璃钢用玻璃纤维,它的缺点是易被无机酸侵蚀,故不适于用在酸性环境。 2、C-玻璃亦称中碱玻璃,其特点是耐化学性特别是耐酸性优于无碱玻璃,但电气性能差,机械强度低于无碱玻璃纤维10%~20%,通常国外的中碱玻璃纤维含一定数量的三氧化二硼,而我国的中碱玻璃纤维则完全不含硼。在国外,中碱玻璃纤维只是用于生产耐腐蚀的玻璃纤维产品,如用于生产玻璃纤维表面毡等,也用于增强沥青屋面材料,但在我国中碱玻璃纤维占据玻璃纤维产量的一大半(60%),广泛用于玻璃钢的增强以及过滤织物,包扎织物等的生产,因为其人格低于无碱玻璃纤维而有较强的竞争力。 3、高强玻璃纤维其特点是高强度、高模量,它的单纤维抗拉强度为2800MPa,比无碱玻纤抗拉强度高25%左右,弹性模量86000MPa,比E-玻璃纤维的强度高。用它们生产的玻璃钢制品多用于军工、空间、防弹盔甲及运动器械。但是由于价格昂贵,目前在民用方面还不能得到推广,全世界产量也就几千吨左右。 4、AR玻璃纤维亦称耐碱玻璃纤维,主要是为了增强水泥而研制的。 耐碱玻璃纤维,又称AR玻璃纤维,英文:alKali -resistant glass fibre,主要用于玻璃纤维增强(水泥)混凝土(简称GRC)的肋筋材料,是100%无机纤维,在非承重的水泥构件中是钢材和石棉的理想替代品。它的特点是耐碱性好,能有效抵抗水泥中高碱物质的侵蚀,握裹力强,弹性模量、抗冲击、抗拉、抗弯强度极高,不燃、抗冻、耐温度、湿度变化能力强,抗裂、抗渗性能卓越,具有可设计性强,易成型等特点,是广泛应用在高性能增强(水泥)混凝土中的一种新型的绿色环保型增强材料。 5、A玻璃亦称高碱玻璃,是一种典型的钠硅酸盐玻璃,因耐水性很差,很少用于生产玻璃纤维。 6、E-CR玻璃是一种改进的无硼无碱玻璃,用于生产耐酸耐水性好的玻璃纤维,其耐水性比无碱玻纤改善7~8倍,耐酸性比中碱玻纤也优越不少,是专为地下管道、贮罐等开发的新品种。 7、D玻璃亦称低介电玻璃,用于生产介电强度好的低介电玻璃纤维。 除了以上的玻璃纤维成分以外,近年来还出现一种新的无碱玻璃纤维,它完全不含硼,从而减轻环境污染,但其电绝缘性能及机械性能都与传统的E玻璃相似。另外还有一种双玻璃成分的玻

影响玻璃纤维强度的因素

影响玻璃纤维强度的因素 1、纤维直径和长度对拉伸强度的影响 一般情况,玻璃纤维的直径愈细,抗拉强度越高,但在不同的拉丝温度下拉制的同一直径的纤维强度,也可能有区别。玻璃纤维的拉伸强度和长度有关,随着纤维长度的增加,拉伸强度显著下降直径和长度对玻璃纤维拉伸强度的影响,可以用微裂纹假说来解释。因为随着纤维直径和长度的减小,纤维中微裂纹会相应减少,从而提高了纤维强度。 2、化学组成对强度的影响 一般是含碱量越高、强度越低。无碱纤维比有碱纤维的拉伸强度高20%研究证明,高强和无碱纤维,由于成型温度高,硬化速度快,结构链能大等原因,因此具有很高的抗拉强度。含K2O和PbO 成分多的玻璃纤维强度较低。 3、玻璃液质量对玻璃纤维强度的影响 A)结晶杂质的影响:当玻璃成分波动或漏板温度波动或降低时,可能导致纤维中结晶的出现。实践证明,有结晶的纤维比无结晶的纤维强度要低。 B)玻璃液中的小气泡也会降低纤维的强度。曾试验用含小气泡的玻璃液拉直径为5.7um,的玻璃纤维其强度比 用纯净玻璃液拉制的纤维强度降低20%。 4、成型条件对玻璃纤维的影响

实践证明,用漏板拉制的玻璃纤维强度高于用玻璃棒法拉制的纤维。在玻璃棒法中,用煤气加热生产的纤维又比用电热丝加热生产的纤维强度为高。如用漏板法拉制10um,玻璃纤维的强度为1700MPa,而用棒法拉制相同直径的玻璃纤维强度仅为1100MPa。这是因为玻璃棒只加热到软化,粘度仍然很大,拉丝时纤维受到很大的应力;此外玻璃棒法是在较低温度下拉丝成型,其冷却速度要比漏板法为低。用各种不同成型方法生产的玻璃纤维的强度各不相同。用漏板法拉制的纤维强度最高,气流吹拉长棉次之,玻璃棒法再次之。然后是蒸汽立吹短棉,强度最低是蒸汽喷吹矿棉。在采用漏板拉丝的方法中,采用较高的成型温度,较小的漏孔直径,可以提高纤维强度。 5、表面处理对强度的影响 在连续拉丝时,必须在单根纤维或纤维束上敷以浸润剂,它在纤维表面上形成一层保护膜,防止在纺织加工过程中,纤维间发生相互摩擦,而损伤纤维降低强度。玻璃布经热处理除去浸润剂后,强度下降很多,但在用中间粘结剂处理后,强度一般都可回升,这是因为中间粘结剂涂层一方面对纤维起到保护作用,另一方面对纤维表面缺陷有所弥补。 6、存放时间对强度的影响 玻璃纤维存放一段时间后其强度会降低,这种现象称为纤维的老化。主要是空气中的水分对纤维侵蚀的结果。此,化学稳定性高的纤维强度降低小,如同样存放233年的有碱

新型高强度玻璃纤维制备及其增强环氧树脂性能.

2010 年第 17 期·航空制造技术 75 新型高强度玻璃纤维制备及其 增强环氧树脂性能 * 中材科技股份有限公司刘建勋祖群朱建勋 高强度玻璃纤维与普通无碱玻璃纤维相比具有拉伸强度高、弹性模量高、抗冲击性能好、化学稳定性好、抗疲劳性好、耐高温等优良性能, 广泛应用于航空、航天、兵器、舰船、化工等领域。 目前, 主要高强度玻璃纤维有:美国的“S -2” 、日本的“T” 纤维、俄罗斯的“ВМЛ” 纤维、法国的“R” 纤维和中国的“H S” 系列纤维 [3-6]。表 1是不同牌号高强度玻璃纤维的性能比较, 同时与 E-glass 纤维作对比。 从表 1可以看出, 目前我国性能较高的“H S-4” 玻璃纤维, 其力学性能和法国“R”玻璃纤维、俄罗斯 刘建勋 毕业于南京理工大学国家特种超细粉体研究中心, 获工学博士学位。2008~2010年, 南京玻璃纤维研究设计院博士后、高级工程师, 江苏省颗粒学会理事。主持国防军品配套、江苏省自然科学基金等国家和省科技项目, 现在主要从事特种玻璃纤维成分与性能研究。发表 SCI、 EI 文章 10余篇。 Preparation of New High-Strength Glass Fiber and Performance of Reinforced Epoxy Resin

* 国家高技术研究发展计划 (863计划资助项目 (2007AA03Z549 ; 江苏省自然科学基金资助项目 (BK2009488 。 高强度玻璃纤维与普通无碱玻 璃纤维相比具有拉伸强度高、弹性模量高、抗冲击性能好、化学稳定性好、抗疲劳性好、耐高温等优良性能, 广泛应用于航空、航天、兵器、舰船、化工等领域, 如导弹发动机壳体、宇航飞机内衬、枪托、发射炮筒、防弹装甲、高压容器等。随着科技的发展, 高强度玻璃纤维在各工业领域的需求量也在不断扩大[1-2]。 76 航空制造技术·2010 年第 17 期 及浸胶纱强度及层间剪切强度。 (2 玻璃纤维新生态强度的检测。 根据标准 A S T M D -2102, 取熔制好的玻璃约 60g, 放入单孔铂铑坩埚内, 在1440℃ ~1450℃下再熔融, 通过控制常规的玻璃纤维成型工艺参数 (液面高度、热点温度、拉丝机转速等 , 拉制成直径为7~8μm 的连续玻璃纤维, 采用强力测试机测试其新生态强度, 测试环境湿度必须控制在规定范围内。 (3 玻璃纤维耐温性的检测。玻璃纤维的耐温性采用软化点来判定, 软化点温度越高, 耐温性越好, 反之则耐温性差。软化点的测试方法与其他玻璃纤维软化点测试方法相同, 采用吊丝法(按 A S T M C -338 测试, 匀速升温, 激光位移感应器记录玻璃伸长速率, 当伸长率

聚丙烯腈碳纤维性能表征规范

聚丙烯腈碳纤维性能表征规范 聚丙烯腈碳纤维的性能主要有力学性能、热物理性能和电学性能。对于碳纤维材料来说,拉伸力学性能,包括拉伸强度、拉伸模量以及断裂伸长率是其主要力学性能指标。由于纤维材料本身的特点,很难对其压缩力学性能进行有效的表征,因此基本不考虑纤维本身的压缩性能。碳纤维的热物理性能包括热容、导热系数、线膨胀系数等,也是材料应用的重要指标。电性能主要为体积电阻率以及电磁屏蔽方面的性能。对于碳纤维的拉伸力学性能测试,各国都已经基本形成了相应的测试标准系列,这些标准系列同时包括了在力学性能测试时需要的线密度、体密度、上浆量等相关的测试。对于热物理性能,相关的测试标准较少。 5.5.1 碳纤维性能测试标准 日本从1986年开始发布了其碳纤维力学性能测试标准,有关标准见表5.30,其中JIS R7601-1986《碳纤维试验方法》涵盖了碳纤维单丝、束丝的拉伸力学性能测试方法外,还包括以及密度、上浆剂含量、线密度等测试方法及规范。JIS R7601-2006《碳纤维试验方法(修正1)》是在国际对石棉制品应用规定严格的条件下,将JIS R7601-1986中拉伸性能测试中夹持用垫片的石棉材料进行了删除。相比于JIS R7601-1986,JIS R7608-2007《碳纤维-树脂浸渍丝拉伸性能测试方法》被广泛地用于碳纤维力学性能的测试,其可操作性和规范性也更强。 表5.30 日本碳纤维测试标准 序号标准号标准名称 1 JIS R7601-1986 碳纤维试验方法 2 JIS R7602-1995 碳纤维织物试验方法 3 JIS R7603-1999 碳纤维-密度的试验方法 4 JIS R7604-1999 碳纤维-上浆剂附着率的试验方法 5 JIS R7605-1999 碳纤维-线密度的试验方法 6 JIS R7606-2000 碳纤维单纤维拉伸性能试验方法 7 JIS R7607-2000 碳纤维单纤维直径及断面面积试验方法 8 JIS R7608-2007 碳纤维-树脂浸渍丝拉伸性能测试方法 9 JIS R7609-2007 碳纤维体积电阻率测试方法 10 JIS R7601-2006 碳纤维试验方法(修正1) 日本东丽公司作为世界聚丙烯腈基碳纤维生产能力和水平最高的企业,也有自己的碳纤

玻纤增强PP的特性

玻纤增强PP的特性 PP加玻纤,通常,PP材料的拉伸强度在20M~30MPa之间,弯曲强度在25M~50MPa之间,弯曲模量在800M~1500MPa之间。如果要想 把PP用在工程结构件上,就必须使用玻璃纤维进行增强。 PP加玻纤,通过玻璃纤维增强的PP产品的机械性能能够得到成倍甚至数倍的提高。具体来说,拉伸强度达到了65MPa~90MPa,弯曲强度达到了70MPa~120MPa,弯曲模量达到了3000MPa~4500MPa,这样的机械强度完全可以与ABS及增强ABS产品相媲美,并且更耐热。 PP加玻纤,一般ABS和增强ABS的耐热温度在80℃~98℃之间,而玻璃纤维增强的PP材料的耐热温度可以达到135℃~145℃。 增强改性PP所用的玻璃纤维,要求长度为0.4~0.6ram,若长度小于0.04mm,玻璃纤维只起填充作用而无增强效果,发达国家都在开发长丝增强注射材料。玻璃纤维含量在40%(质量分数)含量内,玻 璃纤维含量越高,PPR弹性模量、抗张、抗弯强度也越高。但一般不能超过40%,否则流动量下降,失去补强作用,一般在10%~30%。 PP填充改性,在PP中加入一定量的无机矿物,如滑石粉、碳酸钙、二氧化钛、云母等,可提高刚性,改善耐热性与光泽性;填加碳 纤维、硼纤维、玻璃纤维等可提高抗张强度;填加阻燃剂可提高阻燃性能; 填加抗静电剂、着色剂、分散剂等可分别提高抗静电性、着色性及流动性等;填加成核剂,可加快结晶速度,提高结晶温度,形成更多更小的球晶 体,从而提高透明性和冲击强度。因此,填充剂对提高塑料制品的性能、改善塑料的成型加工性、降低成本有显著的效果。 玻纤增强PP的应用 PP作为四大通用塑料材料之一,具有优良的综合性能、良好的化学稳定性、较好的成型加工性能和相对低廉的价格;但是它也存 在着强度、模量、硬度低,耐低温冲击强度差,成型收缩大,易老化等缺 点。因此,必须对其进行改性,以使其能够适应产品的需求。对PP材料 的改性一般是通过添加矿物质增强增韧、耐候改性、玻璃纤维增强、阻燃改性和超韧改性等几个途径,每一种改性PP在家用电器领域都有着大量 应用。 PP加玻纤材料,可以被用来制作冰箱、空调等制冷机器中的轴流风扇和贯流风扇。此外,它也可以用于制造高转速洗衣机的内桶、波轮、皮带轮以适应其对机械性能的高要求,用于电饭煲底座和提手、电子微波烤炉等对耐温要求较高的场所。

拉伸性能测试

拉伸性能测试(静态) 拉伸性能测试主要确定材料的拉伸强度,为研究、开发、工程设计以及质量控制和标准规范提供数据。在拉伸测试中,薄的薄膜会遇到一定困难。拉伸试样的切边必须没有划痕或裂缝,避免薄膜从这些地方开始过早破裂。 对于更薄的薄膜,夹头表面是个问题。必须避免夹头发滑、夹头处试样破裂。任何防止夹头处试样发滑和破裂,而且不干扰试样测试部分的技术如在表面上使用薄的橡胶涂层或使用纱布等都可以接受。 从拉伸性能测试中可以得到拉伸模量、断裂伸长率、屈服应力和应变、拉伸强度和拉伸断裂能等材料性能。ASTM D 638 (通用)[4]和ASTM D 882 [5](薄膜)中给出了塑料的拉伸性能(静态)。 拉伸强度 拉伸强度是用最大载荷除以试样的初始截面面积得到的,表示为单位面积上的力(通常用MPa为单位)。 屈服强度 屈服强度是屈服点处的载荷除以试样的初始截面面积得到的.用单位面积上的力(单位MPa)表示,通常有三位有效数字。 拉伸弹性模量 拉伸弹性模量(简称为弹性模量,E)是刚性指数,而拉伸断裂能(TEB,或韧性)是断裂点处试样单位体积所吸收的总能量。拉伸弹性模量计算如下:在载荷-拉伸曲线上初始线性部分画一条切线,在切线上任选一点,用拉伸力除以相应的应变即得(单位为MPa),实验报告通常有三位有效数字。正割模量(应力-应变间没有初始线性比值时)定义为指定应变处的值。将应力-应变曲线下单位体积能积分得到TEB,或者将吸收的总能量除以试样原有厚度处的体积积分。TEB表示为单位体积的能量(单位为MJ/m3),实验报告通常有两位有效数字。 拉伸断裂强度 拉伸断裂强度的计算与拉伸强度一样,但要用断裂载荷,而不是最大载荷。应该注意的是,在大多数情况中,拉伸强度和拉伸断裂强度值相等。 断裂伸长率 断裂伸长率是断裂点的拉伸除以初始长度值。实验报告通常有两位有效数字。 屈服伸长率 屈服伸长率是屈服点处的拉伸除以试样的初始长度值,实验报告通常有两位有效数字。 塑料薄膜的包装产率 有一种专门的ASTM测试方法(ASTMD 4321[6])测定塑料薄膜的“包装产率”,以试样单位质量上的面积表示。在这种测试中,定义并得到标称产率(用户和供应商之间达成的目标产率值)、包装产率(按标准计算的产率)、标称厚度(用户和供应商之间达成的薄膜厚度目标值)、标称密度和测量密度等值。对于加工厂商来说包装产率值很重要,因为它决定了某种应用中一定质量的薄膜可以得到的实际包装数量。

【CN109929132A】一种高强度的玻璃纤维复合材料及其加工工艺【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910254078.9 (22)申请日 2019.03.30 (71)申请人 裴广华 地址 215000 江苏省苏州市工业园区万盛 街8号圆融大厦1003 (72)发明人 裴广华  (51)Int.Cl. C08J 7/04(2006.01) C09D 129/04(2006.01) C09D 7/62(2018.01) C09D 7/63(2018.01) C08L 23/12(2006.01) C08L 71/02(2006.01) C08L 51/06(2006.01) C08K 13/06(2006.01) C08K 9/04(2006.01) C08K 3/04(2006.01)C08K 7/06(2006.01)C08K 7/14(2006.01)C08K 3/32(2006.01)C08K 5/3492(2006.01) (54)发明名称 一种高强度的玻璃纤维复合材料及其加工 工艺 (57)摘要 本发明公开了一种高强度的玻璃纤维复合 材料及其加工工艺,现如今的导热聚合物复合材 料多用采用聚酰胺、聚苯硫醚等作为树脂基体, 这些树脂基体的加工成本高,性能较差,不易成 型,相对而言,以聚丙烯作为树脂基体的导热复 合材料,它的成本更低,性能更加优越,同时易加 工成型,因此聚丙烯树脂成为研究导热复合材料 的重点。聚丙烯树脂的导热系数较低,无法广泛 应用,因此现如今都通过添加石墨烯来提高聚丙 烯树脂的导热系数。本发明配方设计合理,工艺 参数优化,不仅实现了高强度玻璃纤维复合材料 的制备,同时抑制了复合材料的阻燃现象,提高 了复合材料的导热性能,应用范围更广,具有较 高的实用性。权利要求书2页 说明书9页CN 109929132 A 2019.06.25 C N 109929132 A

岩石的抗拉强度试验

岩石的抗拉强度试验 一、实验目的与要求 岩石在单轴拉伸载荷作用下达到破坏时所能承受的最大拉应力 称为岩石的单轴抗拉强度。通常所说的抗拉试验是指直接拉伸破坏实验。由于进行直接拉伸实验在准备试件方面要花费大量的人力、物力和时间,因此采用间接拉伸实验方法来测试岩石的抗拉强度。劈裂法是最基本的方法。 通过本实验要了解标准试件的加工机械、加工过程及检测程序,实验所用夹具的具体要求,掌握岩石单向抗拉强度的测试过程及计算方法。二、实验仪器 1.钻石机或车床,锯石机,磨石机或磨床。 2.劈裂法实验夹具,或直径2.0mm钢丝数根。 3.游标卡尺(精度0.02mm),直角尺,水平检测台,百分表架和百分表。 4.材料实验机

三、试件规格、加工精度、数量 1.试件规格 标准试件采用圆盘形5+0.6直径,厚2.5±0.2cm,也可采用5cm ×5cm×2.5cm(公?0.2cm, 差±0.2cm)的长方形试件。 2.试件加工精度、数量应符合mt44-87《煤和岩石单向抗压强度及软化系数测定方 法》中的规定 四、实验原理 图1显示的是在压应力作用下,沿圆盘直径y-y的应力分布图。在圆盘边缘处,沿y-y方向(σy)和垂直y-y(σx)方向均为压应力,而离开边缘后,沿y-y方向仍为压应力,但应力值比边缘处显著减少,并趋于平均化;垂直y-y方向变成拉应力。并在沿y-y的很长一段距离上呈均匀分布状态。虽然拉应力的值比压应力值低很多,但由于岩石的抗拉强度很低,所以试件还是由于x方向的拉应力而导致

试件沿直径的劈裂破坏,破坏是从直径中心开始,然后向两端发展,反映了岩石的抗拉强度比抗压强度要低得多的事实。 χ r/r0.5σ y y σ x x 40拉伸 160压缩 1208040图1劈裂实验应力分布示意图 五、实验内容 1.了解试件的加工机具、检测机具,规程对精度的要求及检测方法; 2.学会材料实验机的操作方法及拉压夹具的使用方法; 3.学会间

玻璃纤维——文献综述

文献综述 题目:玻璃纤维及其复合材料的性能与应用 姓名:顾典梅 专业:化学工程与工艺 班级:化工102 班 学号: 1008110206 指导教师:潘老师 日期:2013-6-17

玻璃纤维及其复合材料的性能与应用 摘要 材料是工业的基础,工业的发展,在很大程度上取决于新材料的开发与应用。玻璃纤维作为一种综合性能优良的无机非金属材料,被广泛应用于国民经济的众多领域,给工业的发展注入了新的活力。本文主要对玻璃纤维的发展、基本性能、复合材料及其应用做了介绍。 关键字:玻璃纤维复合材料性能 Abstract Material is the basis of industry,industrial development,development and depends greatly on the application of new materials.Glass fiber as a kind of inorganic non-metallic materials with excellent comprehensive properties,has been widely used in many fields of national economy,has injected new vitality to the development of industry.This paper mainly discusses the development,the basic properties of glass fiber,composite material and its application is introduced. Key words: glass fiber composite materials performance. 1、前言 在一般人的观念中,玻璃为质硬易碎物体,并不适于作为结构用材,但如其抽成丝后,则其强度大为增加且具有柔软性,配合树脂赋予形状以后终于可以成为优良之结构用材。可见,玻璃纤维并不是我们平日里想象的这般无用。玻璃纤维是塑料改性增强的主要品种,是实现通用塑料工程化的重要途径之一,它的使用能使制品的抗拉强度、刚性、热变形温度明显提高。玻璃纤维的应用已渗透到国民经济的各个领域,如交通、电子、建筑、卫生、环保、化工、造船、航空、航天等,已成为不可缺少的优良材料。玻璃纤维复合材料由于其材料性能的可设计性及轻质高强的特点,应用于航空、航天及国民经济的诸多领域,如建筑、陆上交通工具、船艇和近海工程、电子、电器、体育、医疗器械等。 在国发2号文件的指导及贵州省十二五规划中提出大力发展制造业,其中合成纤维产业也占很大比重,这是个良好的契机,充分利用好玻璃纤维及其复合材料,对于加快工业的进步,改善贵州经济又重要意义。 2、玻璃纤维的发展历程 文献[1][2][3]主要对玻璃纤维及其复合材料的发展性能等做了详细的介绍。玻璃纤维的发展主要经历了以下几个个阶段:

拉伸试验的作用及试样的形状及尺寸

1.拉伸试验的作用及试样的形状及尺寸 答:作用:测定材料的弹性,强度,塑性,应变硬化和韧性等许多重要力学性能指标; 形状:光滑圆柱试件,板状试件; 尺寸:①圆柱形拉伸试件:试件的标距长度Lo应比Do要大得多,通常Lo>5Do; 板状拉伸试件:标距长度Lo应满足下列关系式:Lo﹦5.65Ao或11.3Ao;其中Ao为 试件的初始面积。 2.应力状态柔度系数的物理意义及应用? 答:应力状态柔度系数:在各种加载条件下,最大切应力τmax与最大正应力σmax之比,记为α,α=τmax/σmax.。α(拉伸)﹤α(扭转)﹤α(压缩) 3.金属材料的弹性不完善性包括那几个方面? 答:弹性不完善性是指收到应力作用是,没有立即发生相应的弹性应变去除应力时应变也不是随即消失,包括弹性后效,弹性滞后,包申效应三个方面。 4.金属材料使用过程和生产过程对材料有什么要求?(强度和塑性) 答:在进行材料选择时,设计师必须首先考虑强度,导电性或导热性,密度及其他性能。然后,在考虑材料的加工性能和使用行为(其中材料的可成塑性,机械加工性,电稳定性,化学持久性及辐照行为是重要的。)以及成本和材料来源。 所谓强度是指金属材料在静载荷作用下,材料抵抗变形和破坏(断裂)的能力成为强度。根据外力的作用方式,有多种强度指标,如抗拉强度,抗弯强度,抗剪强度等。一般情况下多以抗拉强度作为判别金属强度高低的招标。 机械零件在使用时,一般不允许发生塑性变形,所以屈服强度是大多数机械零件设计时选材的主要依据也是评定金属材料承载能力的重要机械性能指标。材料的屈服强度越高,允许的工作应力越高,零件所需的截面尺寸和自身重量就可以较小。 材料发生屈服后,到最高点应力达最大值σb。在这以后,试样产生“缩颈”,迅速伸长,应力明显下降,最后断裂。试样裂前能够承受的最大应力值σb称为抗拉强度或强度极限。如果单从保证零件不产生断裂的安全角度考虑,可用作为设计依据,但所取的安全系数应该大一些。 材料在外力作用下,产生永久残余变形而不被断裂的能力,称为塑性。塑性指标也主要是通过拉伸试验测得的。工程上常用延伸率和断面收缩率作为材料的塑性指标。屈服强度与抗拉强度的比值σs/σb称为屈强比。屈强小,工程构件的可靠性高,说明即使外载或某些意义外因素使金属变形,也不至于立即断裂。但屈强比过小,则材料强度有效利用率太低。延伸率和断面收缩率的值越大,表示材料的塑性越好。塑性对材料进行冷塑变形有重要的意义。此外,工件的偶然过载,可因塑性变形而防止突然断裂,工件的应力集中处,也可因塑性变形使应力松弛,从而使工件不至于过早断裂。这就是大多数机械零件除要求一定强度指标外,还要求一定塑性指标的道理。 材料的δ和ψ值越大,塑性越好。两者相比,用ψ表示塑性更接近于材料真实应变。 5.表示脆性材料的力学性能的参量有哪些? 答:弹性模量和脆性断裂强度。 6.工程中测定材料的硬度最常用的方法? 答:测定硬度方法有很多,有压入法,回跳法和刻划法三大类。最常用的是压入法,根据加载速率的不同分为动载入压入法和静载压入法。超声波硬度,肖氏硬度和锤击式布氏硬度属于动载实验法。布氏硬度,洛氏硬度,维氏硬度和显微硬度同于静载压入发。 7.弹性模量的影响因素?材料弹性常数有哪些? 答:1)纯金属的弹性模量:除了过度族金属除外,一般地讲弹性模量E与原子半径r之间

玻璃纤维成份和性能

玻璃纤维行业基本概念: 玻璃纤维成份和性能 生产玻璃纤维的基本原料是:石英砂、腊石、石灰石、白云石,为了熔化以上物质,还要加入硼酸和萤石作助熔剂。玻璃纤维按所含Na2O成分的多少分三类:无碱玻璃纤维、中碱玻璃纤维、高碱玻璃纤维。无碱玻璃纤维中含有SiO2 55~57%,Al2O3 10~17%,CaO 12~25%,MgO 0~8%,B2O3 8.5%,Na2O 0.5%。中碱玻璃纤维Na2O含量为12%,高碱玻璃纤维Na2O含量为15%,其它成分一样,含量稍微变动。从性能上看,无碱、中碱、高碱玻璃纤维其强度依次降低、耐久性依次变差、绝缘性依次减弱,只是耐酸性依次增强。无碱玻璃纤维多用于增强和绝缘材料,高碱玻璃纤维多用于稀酸环境,如蓄电池隔板、电镀槽、酸贮罐、酸过滤材料等,中碱玻璃纤维因价格优势在中国得到普遍使用。玻璃纤维与金属相比具有高强度、耐腐蚀、透光性和绝缘性好等特点。 玻璃纤维生产工艺 生产玻璃纤维常用的方法有两种:池窑法直接拉丝、球法坩锅拉丝。池窑法直接拉丝是将矿物原料磨细配制送入单元窑,用重油燃烧加热熔化物料后直接拉丝,具有产量大、质量稳、能耗低的特点,球法坩锅拉丝是从市场上购进玻璃球然后再通过电加热熔化拉丝,所用坩锅有陶土坩锅、全铂坩锅、代铂坩锅之分,前者只能用平板碎玻璃生产高碱玻璃纤维,全铂坩锅能耐高温且能制出干净纯净玻璃纤维,但单炉需铂铑合金3~4公斤,造价昂贵,现在主要用代铂坩锅,即熔化部分为耐高温陶土材料,拉丝漏板用铂銠合金材料,单炉用贵金属0.6 公斤既可,节省造价,但质量不如全铂坩锅,适合我国。球法坩锅拉丝所用漏板为50~800孔,单丝直径在9微米以下,一般需经过加捻纺织后制成各种玻璃纤维制品,此法能耗大、质量不稳定,但非常灵活,可补充池窑拉丝的一切空白。池窑拉丝用漏板为800~4000孔,单丝直径在11微米以上。 单丝用浸润剂涂油保护后集束成原丝,如果用于增强塑料则必需涂覆偶联剂。浸润剂的作用是:A浸润保护作用B粘结集束作用C防止玻璃纤维表面静电荷的积累D为玻璃纤维提供进一步加工和应用所需要的特性E使玻璃纤

相关主题