搜档网
当前位置:搜档网 › 超全的最新的人脸识别特征点定位方法

超全的最新的人脸识别特征点定位方法

超全的最新的人脸识别特征点定位方法
超全的最新的人脸识别特征点定位方法

1.2 人脸特征点定位方法综述

目前为止,国内外学者们已经提出了人脸特征点定位的方法[3],依据定位所需要的基本信息的类型,人脸特征点定位的方法可以大致分为以下六类:(1)灰度信息的方法;(2)先验规则的方法;(3)几何形状的方法;(4)统计模型的方法;(5)小波的方法;(6)3D 方法。

1.2.1 基于灰度信息的方法

几何投影法:几何投影方法是利用人脸特征灰度与其他部分的差异,先统计出不同方向上的灰度值和,根据和的变化找出特定的变化点,然后利用投影灰度值基于统计的方法将不同方向上的变化点位置相结合,找到人脸特征点的位置。投影的方法计算量较低,但当姿态变化较大或者背景较复杂时容易失效。

谷分析:图像中亮度比周围像点暗的区域就称作谷,通过亮度比较的方法,就可以对人脸的各个关键部位如眼睛、眉毛、鼻子、嘴巴等相对较暗的区域进行定位。虽然其受光照影响比较大,但考虑到计算量低的优势也在定位方法中常见。

1.2.1 先验规则的方法

根据人脸特征的一般特点总结出一些经验规则就称作基于先验规则的方法。人脸图像有一些明显的基本特征,比如人脸的长度比例,满足“三庭五眼” ,脸部区域的双眼、鼻子和嘴巴等脸部特征处的亮度一般低于其周边区域;两眼间的对称以及眼睛与鼻子的三角分布规律,都是人脸识别的重要根据。此方法虽然简单,但是远远不能满足复杂的人脸结构的正确定位,于是该方法一般只用于粗定位,精定位还要结合其他的方法来实现。

镶嵌图法:我们可以用一组相同大小的方格去划分图像,每个方格的灰度取格中各像素灰度的均值,根据一定的规则确定哪些可能是人脸的方格区域,将确定的可能存在人脸的方格的变长减半,重新构建镶嵌图,重复第一步的工作,找到眼睛,鼻子,嘴巴等脸部特征所在的位置,然后对这两次得到的脸部区域二值化,利用边缘检测最终精确定位各个特征的位置。

二值化定位:得到图像的直方图,选择合适的阀值将图像二值化,二值化后区域的相对位置和面积形状等几何信息就可以用来确定瞳孔的位置,再通过眼睛与其他特征点的位置关系和几何关系等对其他的人脸特征点进行定位。显然该方法受光照和图像质量等的影响较大。

广义对称法:显然,在人脸图像中,眼睛眼、眉毛、鼻子等都具有较强的点对称性。为我们通过定义广义对称变换来描述点对称性,通过考察人眼中心点的强对称性和脸部特征的几何分布来对人脸的特征点进行定位,该方法仅仅利用了各点的对称性,计算量很大,而且也会因为光照表情等影响产生大量的候选点,大大影响到定位精度。

1.2.3 基于几何形状的方法

Shake 算法:该方法利用一条由几个控制点组成的闭合曲线,再利用一个进行匹配的能量函数来作为评价标准,当不断迭代最后使得能量函数最小化时就定位到人脸特征点。Sn ake是主动的,总是最小化能量函数,因此表现出一种动态特性。但是由于人脸的多样性和复杂性以及图像中的噪声等复杂因素的影响,在使用刚性模型分割人脸轮廓时遇到了很大的困难。另外,Sn ake模型也没有利用

关于对象的知识,所以过于灵活,很难做到精确的特征点提取。

可变形模板方法:把眼睛特征为有两条抛物线(上下眼睑)和一个圆(虹膜)构成的几何图形,通过优化的方法来调整其参数以达到最佳的匹配,嘴巴、下巴等也可以采用类似的几何图形建模。但是,固定的几何图形并不能很好地建模实际上会千差万别的眼睛形状,而光照、姿态和表情的变化更使得采用这种固定的简单数学模型难以适应这些复杂的变化,因此很难实现鲁棒的特征提取。优化速度慢、容易陷入局部极小也阻止了该算法的进一步发展。

基于点分布模型算法:ASM 和AAM 都是基于点分布模型(Point Distribution Model,PDM)的算法在PDM中,外形相似的特定类别物体,比如人脸、人手的形状通过若干关键的特征点的坐标串接成原始形状向量。对训练集中的所有形状向量进行对齐操作后,对它们进行PCA 分析建模,保留的主成分形成最终的形状模型,形状模型的参数反映了形状的主要可变化模式,ASM 搜索则首先通过局部纹理模型匹配得到各个特征点的更佳的位置,经过相似变换对齐后,通过统计形状模型对其进行约束,而后再进行局部纹理模型的匹配,形成一个迭代过程,以期形状模型最终匹配到输入的形状模式

上去。在ASM 中,仅使用了特证点局部纹理特证作为启发式信息,没有使用全局的纹理约束,实践中发现ASM 很容易陷入局部极小。

而在AAM 中,则采用了形状和纹理二者融合的统计约束,即所谓的统计表观模型。AAM 搜索借鉴了基于合成的分析技术的思想,通过模型参数的优化调整使得模型能够不断逼近实际输入模式,模型参数的更新则放弃了ASM 中的局部纹理搜索过程,仅使用一个线性预测模型根据当前模型和输入模式之间的差别来预测和更新模型参数。AAM 尽管利用了全局纹理,但却抛弃了局部纹理匹配过程,因此会在一定程度上降低关键特证点配准的精度,而且其线性预测模型也有较大的局限性,在初始位置偏离目标位置过大时,则很难收敛到正确位置。

1.2.4 基于统计模型的方法

肤色唇色分割法:该方法是使用统计方法建立起人脸特征的色彩模型,定位时遍历候选区域,根据被测点的色彩与模型的匹配度筛选出候选的人脸特征点。该方法主要是对人脸面部特征的色彩信息进行研究,构造人脸特征的色彩模型,利用人脸肤色的色彩信息进行特征点定位。基于色彩信息实现简单,但容易受环境的影响,定位的可靠性不高。

特征脸法:该方法利用K-L 变换将表征人脸的高维向量映射到由若干个特征向量(也称Eigenface 特征脸)张成的子空间中,先用主成分分析模型重构被检区域,求出重构图与原图之间的距离,当距离小于一定阈值时,即被认定为候选区域。该方法的缺点是针对不同脸型要分别建模,搜索时采用金字塔策略,算法复杂度高。另外,主成分分析着重优化和解析图像,而没有着重于特征点的定位。

支持向量机:支持向量机( Support Vector Machines,SVM )是Vapnik 等提出的基于风险最小化原理的统计学习理论,用于分类与回归问题。将SVM 方法用于脸部特征检测,使用了方形扫描窗口,将眉毛与眼睛作为一个整体作为定位的对象,从而减少了眉毛对定位的干扰。Jefrey Huang 则采用该方法来检测眼睛。但是由于训练需要求解计算复杂度极高的二次规划问题,内存需求量大,其次是训练样本个数较大时,会得到大量的支持向量,使分类器计算量过高。

模板匹配法:模板匹配法是较早用于面部特征点定位的方法之一,也是使用范围较广的一种。这是由于模板匹配法具有比较直观、易于构造等优点。在对图像进行预处理

的基础上产生特征的候选区域,之后通过一个具有几何约束(五官模板的相关量)的模板对特征加以定位。Sako 等人采用彩色直方图方法分割脸部区域和嘴唇区域,并根据眼睛的结构和灰度信息特点预先构造了眼睛模板,利用此模板进行搜索以确定眼睛的位置匹配的过程是利用事先建立的面部特征的模板在候选窗口逐点滑动进行特征匹配定位。模板匹配需要考虑面部特征的尺寸缩放、方向旋转等变化,所以计算量很大,并且由于光照的不均匀变化往往引起模板匹配的失败,所以基于模板匹配的人脸检测方法较适合于人脸尺寸、方向、光照等有一定的约束条件或者先前已确定的情况。该方法虽然速度较慢,但正确率较高。

人工神经网络:人工神经网络(ANN )在模式识别中有着广泛的应用,特别适合研究非线性问题。完整的人脸图像受个体差异、眼睛状态和目标对象姿态等变化的影响较大,而子特征点(包括左右眼角和上下眼眶顶点)附近区域相对稳定,根据这一特点,Waite 等以各子特征点附近的灰度图像为输入,分别建立神经网络。检测时,先用各个神经网络对目标区域进行遍历搜索,再结合先验知识对搜索结果进行筛选和结合。这个算法训练过程比较简单,有较强的鲁棒性。但缺点是区分度不足。

贝叶斯概率网络方法:Kin 和Cipolla 使用一个3 层的概率网络来对脸型建模,其网络结构如图1。他们在搜索中采用了自底向上的搜索策略,结合使用高斯滤波器和边缘检测算法找出双眉、鼻和嘴的候选点(对应于网络中的第1 层),据邻近候选点之间的相对关系两两配对为水平或垂直组合(对应于网络中的第2 层),并进一步归入脸部的上、下、左、右4 个区域(对应于网络中的第3 层),从而筛去虚警点。

1.2.5 基于小波的方法

弹性图匹配法:该方法是面部关键特证定位的另一个重要算法,该方法将人脸面部关键特证点的属性及其他们之间的位置关系通过一个属性图进行描述,图

的顶点对关键特征点的局部纹理建模(通过Gabor 特征),图的边则反映了特征点之间的距离等位置关系。对新输入的图像,其特征点则通过基于相位预测的位移估计结合图匹配技术来定位。通过属性图的形变,一方面匹配顶点处的Gabor 局部特征,另一方面匹配全局几何结构特征。尽管弹性图匹配可以达到较高的定位精度,但速度较慢。

DWN (Gabor小波网络):Kr tger等将GabOr小波引入图像处理领域,使用一组同源派生的Gabor 小波函数取代RBF 神经网络的基函数,通过训练,可以将目标图像分解为若干个小波函数的线性组合。GWN 的训练中同时对相关权值和小波函数本身

的参数作优化,这使得GWN 模型可以用很小数量的小波函数实现对目标对象的解析和重构。Feris 使用两层的GWN 树模型来定位脸部特征,两层GWN 分别用于表征全脸和各个脸部特征。在训练中,他们为每幅训练图建立一个GWN 树模型,并标定出各脸部特征的位置,存入人脸库中。实际搜索的时候,他们首先通过全脸比对从库中找出与目标图像最接近的一个模型,然后以该模型的标定位置为搜索起点,在小范围内,通过与该模型中相应的脸部特征信息的比对求出脸部特征的精确位置。

1.2.6 3D 方法

光流向量化技术:光流指的是灰度值图案在整个图像范围内的运动。首先,在每个点对各自的灰度值计算位移向量;然后计算一个连续的向量场,该向量场能充分地再现光流。两个步骤的执行都需要某些限制性假设,而结果也做不到完全无误差。然而,可以获得重要的时域信息,无论是由有利位置产生的连续变化,还是单个物体的不连续变化。因为变化的连续与否并不重要。无论怎样都应该清楚,孤立地考虑单幅图像是没有意义的。检测对象必须是至少包括两幅连续图像的图像序列。

采用光流迭代的方法建立输入人脸与参考人脸之间的稠密的像素级对应关系;Beymer等人提出的基于光流的向量化技术,是计算不同人脸图像之间的密集对应的一个典型算法。在此方法中,2D 的形状由测试图像和参考图像之间的光流域来描述。由于此算法很大精度的限制,因此在实际应用中很难精确求解。也存在计算复杂、计算速度慢的问题。

3D 形变模型:迄今为止,最成功的姿态和光照不变的人脸识别是3D 变形模型方法。该方法通过主成分分析对人脸的3D 形状和纹理分别进行统计建模。在此基础上建立了包含形状、纹理统计参数、Phone 模型参数、光照参数、摄像机内外参数、绘制参数等在内的复杂成像模型,最终采用基于合成的分析技术通过优化算法估计这些参数,得到输入人脸的3D 形状和纹理统计参数用于最终的分类识别。遗憾的是,该方法需要求解一个涉及几百个参数的复杂连续优化问题,迭代优化过程耗费了大量的计算时间,对

3D 形状、纹理、成像参数等形成的形变模型参数进行优化,使得合成的模型图像最佳匹配输入图像,从而得到人脸3D 形状和纹理.

人脸识别技术的应用背景及研究现状

1.人脸识别技术的应用 随着社会的不断进步以及各方面对于快速有效的自动身份验证的迫切要求,生物特征识别技术在近几十年中得到了飞速的发展。作为人的一种内在属性,并且具有很强的自身稳定性及个体差异性,生物特征成为了自动身份验证的最理想依据。当前的生物特征识别技术主要包括有:指纹识别,视网膜识别,虹膜识别,步态识别,静脉识别,人脸识别等。与其他识别方法相比,人脸识别由于具有直接,友好,方便的特点,使用者无任何心理障碍,易于为用户所接受,从而得到了广泛的研究与应用。除此之外,我们还能够对人脸识别的结果作进一步的分析,得到有关人的性别,表情,年龄等诸多额外的丰富信息,扩展了人脸识别的应用前景。当前的人脸识别技术主要被应用到了以下几个方面:(1)刑侦破案公安部门在档案系统里存储有嫌疑犯的照片,当作案现场或通过其他途径获得某一嫌疑犯的照片或其面部特征的描述之后,可以从数据库中迅速查找确认,大大提高了刑侦破案的准确性和效率。 (2)证件验证在许多场合(如海口,机场,机密部门等)证件验证是检验某人身份的一种常用手段,而身份证,驾驶证等很多其他证件上都有照片,使用人脸识别技术,就可以由机器完成验证识别工作,从而实现自动化智能管理。 (3)视频监控在许多银行,公司,公共场所等处都设有24小时的视频监控。当有异常情况或有陌生人闯入时,需要实时跟踪,监控,识别和报警等。这需要对采集到的图像进行具体分析,且要用到人脸的检测,跟踪和识别技术。 (4)入口控制入口控制的范围很广,既包括了在楼宇,住宅等入口处的安全检查,也包括了在进入计算机系统或情报系统前的身份验证。 (5)表情分析根据人脸图像中的面部变化特征,识别和分析人的情感状态,如高兴,生气等。此外,人脸识别技术还在医学,档案管理,人脸动画,人脸建模,视频会议等方面也有着巨大的应用前景。 2.人脸识别技术在国外的研究现状 当前很多国家展开了有关人脸识别的研究,主要有美国,欧洲国家,日本等,著名的研究机构有美国MIT的Media lab,AI lab,CMU的Human-Computer I nterface Institute,Microsoft Research,英国的Department of Engineerin g in University of Cambridge等。综合有关文献,目前的方法主要集中在以下几个方面: (1)模板匹配 主要有两种方法,固定模板和变形模板。固定模板的方法是首先设计一个或几个参考模板,然后计算测试样本与参考模板之间的某种度量,以是否大于阈值来判断测试样本是否人脸。这种方法比较简单,在早期的系统中采用得比较

人脸识别主要算法原理

人脸识别主要算法原理 主流的技术基本上可以归结为三类,即:基于几何特征的方法、基于模板的方法和基于模型的方法。 1. 基于几何特征的方法是最早、最传统的方法,通常需要和其他结合才能有比较好的效果; 2. 基于模板的方法可以分为基于相关匹配的方法、特征脸方法、线性判别分析方法、奇异值分解方法、神经网络方法、动态连接匹配方法等。 3. 基于模型的方法则有基于隐马尔柯夫模型,主动形状模型和主动外观模型的方法等。 1. 基于几何特征的方法 人脸由眼睛、鼻子、嘴巴、下巴等部件构成,正因为这些部件的形状、大小和结构上的各种差异才使得世界上每个人脸千差万别,因此对这些部件的形状和结构关系的几何描述,可以做为人脸识别的重要特征。几何特征最早是用于人脸侧面轮廓的描述与识别,首先根据侧面轮廓曲线确定若干显著点,并由这些显著点导出一组用于识别的特征度量如距离、角度等。Jia 等由正面灰度图中线附近的积分投影模拟侧面轮廓图是一种很有新意的方法。 采用几何特征进行正面人脸识别一般是通过提取人眼、口、鼻等重要特征点的位置和眼睛等重要器官的几何形状作为分类特征,但Roder对几何特征提取的精确性进行了实验性的研究,结果不容乐观。

可变形模板法可以视为几何特征方法的一种改进,其基本思想是:设计一个参数可调的器官模型(即可变形模板),定义一个能量函数,通过调整模型参数使能量函数最小化,此时的模型参数即做为该器官的几何特征。 这种方法思想很好,但是存在两个问题,一是能量函数中各种代价的加权系数只能由经验确定,难以推广,二是能量函数优化过程十分耗时,难以实际应用。基于参数的人脸表示可以实现对人脸显著特征的一个高效描述,但它需要大量的前处理和精细的参数选择。同时,采用一般几何特征只描述了部件的基本形状与结构关系,忽略了局部细微特征,造成部分信息的丢失,更适合于做粗分类,而且目前已有的特征点检测技术在精确率上还远不能满足要求,计算量也较大。 2. 局部特征分析方法(Local Face Analysis) 主元子空间的表示是紧凑的,特征维数大大降低,但它是非局部化的,其核函数的支集扩展在整个坐标空间中,同时它是非拓扑的,某个轴投影后临近的点与原图像空间中点的临近性没有任何关系,而局部性和拓扑性对模式分析和分割是理想的特性,似乎这更符合神经信息处理的机制,因此寻找具有这种特性的表达十分重要。基于这种考虑,Atick提出基于局部特征的人脸特征提取与识别方法。这种方法在实际应用取得了很好的效果,它构成了FaceIt人脸识别软件的基础。 3. 特征脸方法(Eigenface或PCA)

人脸识别技术综述

人脸识别研究综述 摘要:论文首先介绍了人脸识别技术概念与发展历史,解释人脸识别技术的过程与优缺点;随后对近几年人脸识别技术的研究情况与一些经典的方法进行详细的阐述,最后提出人脸识别技术在生活中的应用与展望。 关键词:人脸识别研究现状应用与展望 一、概念 人脸识别技术是基于人的脸部特征,对输入的人脸图像或者视频流。首先判断其是否存在人脸,如果存在人脸,则进一步的给出每个脸的位置、大小和各个主要面部器官的位置信息。并依据这些信息,进一步提取每个人脸中所蕴涵的身份特征,并将其与已知的人脸进行对比,从而识别每个人脸的身份。 广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。 二、发展历史 人脸识别的研究历史比较悠久。高尔顿(Galton)早在1888 年和1910 年就分别在《Nature》杂志发表了两篇关于利用人脸进行身份识别的文章,对人类自身的人脸识别能力进行了分析。但当时还不可能涉及到人脸的自动识别问题。最早的AFR1的研究论文见于1965 年陈(Chan)和布莱索(Bledsoe)在Panoramic Research Inc.发表的技术报告,至今已有四十年的历史。近年来,人脸识别研究得到了诸多研究人员的青睐,涌现出了诸多技术方法。 三、过程与优缺点 人脸的识别过程: (1)首先建立人脸的面像档案。即用摄像机采集单位人员的人脸的面像文件或取他们的照片形成面像文件,并将这些面像文件生成面纹(Faceprint)编码贮存起来。 (2)获取当前的人体面像。即用摄像机捕捉的当前出入人员的面像,或取照片输入,并将当前的面像文件生成面纹编码。 (3)用当前的面纹编码与档案库存的比对。即将当前的面像的面纹编码与档案库

人脸识别主要算法原理

人脸识别主要算法原理 主流的人脸识别技术基本上可以归结为三类,即:基于几何特征的方法、基于模板的方法和基于模型的方法。 1. 基于几何特征的方法是最早、最传统的方法,通常需要和其他算法结合才能有比较好的效果; 2. 基于模板的方法可以分为基于相关匹配的方法、特征脸方法、线性判别分析方法、奇异值分解方法、神经网络方法、动态连接匹配方法等。 3. 基于模型的方法则有基于隐马尔柯夫模型,主动形状模型和主动外观模型的方法等。 1. 基于几何特征的方法 人脸由眼睛、鼻子、嘴巴、下巴等部件构成,正因为这些部件的形状、大小和结构上的各种差异才使得世界上每个人脸千差万别,因此对这些部件的形状和结构关系的几何描述,可以做为人脸识别的重要特征。几何特征最早是用于人脸侧面轮廓的描述与识别,首先根据侧面轮廓曲线确定若干显著点,并由这些显著点导出一组用于识别的特征度量如距离、角度等。Jia 等由正面灰度图中线附近的积分投影模拟侧 面轮廓图是一种很有新意的方法。 采用几何特征进行正面人脸识别一般是通过提取人眼、口、鼻等重要特征点的位置和眼睛等重要器官的几何形状作为分类特征,但Roder对几何特征提取的精确性进行了实验性的研究,结果不容乐观。

可变形模板法可以视为几何特征方法的一种改进,其基本思想是: 设计一个参数可调的器官模型(即可变形模板),定义一个能量函数,通过调整模型参数使能量函数最小化,此时的模型参数即做为该器官的几何特征。 这种方法思想很好,但是存在两个问题,一是能量函数中各种代价的加权系数只能由经验确定,难以推广,二是能量函数优化过程十分耗时,难以实际应用。基于参数的人脸表示可以实现对人脸显著特征的一个高效描述,但它需要大量的前处理和精细的参数选择。同时,采用一般几何特征只描述了部件的基本形状与结构关系,忽略了局部细微特征,造成部分信息的丢失,更适合于做粗分类,而且目前已有的特征点检测技术在精确率上还远不能满足要求,计算量也较大。 2. 局部特征分析方法(Local Face Analysis) 主元子空间的表示是紧凑的,特征维数大大降低,但它是非局部化的,其核函数的支集扩展在整个坐标空间中,同时它是非拓扑的,某个轴投影后临近的点与原图像空间中点的临近性没有任何关系,而局部性和拓扑性对模式分析和分割是理想的特性,似乎这更符合神经信息处理的机制,因此寻找具有这种特性的表达十分重要。基于这种考虑,Atick提出基于局部特征的人脸特征提取与识别方法。这种方法在实际应用取得了很好的效果,它构成了FaceIt人脸识别软件的 基础。 3. 特征脸方法(Eigenface或PCA)

人脸识别系统的原理与发展

人脸识别系统的原理与发展 一、引言 人脸识别系统以人脸识别技术为核心,是一项新兴的生物识别技术,是当今国际科技领域攻关的高精尖技术。它广泛采用区域特征分析算法,融合了计算机图像处理技术与生物统计学原理于一体,利用计算机图像处理技术从视频中提取人像特征点,利用生物统计学的原理进行分析建立数学模型,具有广阔的发展前景。2012年4月,铁路部门宣布车站安检区域将安装用于身份识别的高科技安检系统人脸识别系统;可以对人脸明暗侦测,自动调整动态曝光补偿,人脸追踪侦测,自动调整影像放大; 二、概述 人脸识别系统概述 广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。生物特征识别技术所研究的生物特征包括脸、指纹、手掌纹、虹膜、视网膜、声音(语音)、体形、个人习惯(例如敲击键盘的力度和频率、签字)等,相应的识别技术就有人脸识别、指纹识别、掌纹识别、虹膜识别、视网膜识别、语音识别(用语音识别可以进行身份识别,也可以进行语音内容的识别,只有前者属于生物特征识别技术)、体形识别、键盘敲击识别、签字识别等。 人脸识别系统功能模块 人脸捕获与跟踪功能:人脸捕获是指在一幅图像或视频流的一帧中检测出人像并将人像从背景中分离出来,并自动地将其保存。人像跟踪是指利用人像捕获技术,当指定的人像在摄像头拍摄的范围内移动时自动地对其进行跟踪。 人脸识别比对:人脸识别分核实式和搜索式二种比对模式。核实式是对指将捕获得到的人像或是指定的人像与数据库中已登记的某一对像作比对核实确定其是否为同一人。搜索式的比对是指,从数据库中已登记的所有人像中搜索查找是否有指定的人像存在。 人脸的建模与检索:可以将登记入库的人像数据进行建模提取人脸的特征,并将其生成人脸模板(人脸特征文件)保存到数据库中。在进行人脸搜索时(搜索式),将指定的人像进行建模,再将其与数据库中的所有人的模板相比对识别,最终将根据所比对的相似值列出最相似的人员列表。

人脸自动识别方法综述_周杰

人脸自动识别方法综述 周 杰,卢春雨,张长水,李衍达 (清华大学自动化系,北京100084) 摘 要: 人脸自动识别是模式识别、图像处理等学科的一大研究热点,近几年来关于人脸识别的研究取得了很大进展.本文重点对近三、四年来人脸识别的研究进行综述并对各种方法加以评论. 关键词: 人脸自动识别;人脸检测;人脸定位 中图分类号: TP39114 文献标识码: A 文章编号: 0372-2112(2000)04-0102-05 A Su rvey of Automa tic Human Face Recognition ZHOU Jie,LU Chun -yu,ZHANG Chang -shui,LI Yan -da (De partment o f Automation ,Tsinghua Unive rsit y ,Be ijing 100084,China) Abstract: Automatic human face recogni tion is attractive in pattern recogniti on and i mage processing.In this paper we gave a survey of automatic human face recogni tion,mainly ai ming at the latest progress. Key words: automatic hu man face recognition;face detection;face localization 1 引言 随着社会的发展,各个方面对快速有效的自动身份验证的要求日益迫切.由于生物特征是人的内在属性,具有很强的自身稳定性和个体差异性,因此是身份验证的最理想依据.这其中,利用人脸特征进行身份验证又是最自然直接的手段,相比其它人体生物特征它具有直接、友好、方便的特点,易于为用户所接受[1]. 人脸识别是人类视觉最杰出的能力之一,它的研究涉及模式识别、图像处理、生理学、心理学、认知科学,与基于其它生物特征的身份鉴别方法以及计算机人机感知交互领域都有密切联系,因此早在六七十年代即引起了研究者的强烈兴趣.进入九十年代,由于各方面对人脸识别系统的迫切需求,人脸识别的研究重新变得非常热门.目前美国等国有许多研究组在从事人脸识别的研究,这些研究受到军方、警方及大公司的高度重视和资助,美国军方每年还专门组织人脸识别比赛以促进这一领域的发展.在国内,也开始有一些学校从事人脸识别相关的研究.近几年来关于人脸识别的研究取得了很大进步,国际上发表有关论文的数量大幅增长,IEEE 的PAM I 汇刊还于1997年7月出版了人脸识别专辑,每年的国际会议上关于人脸识别的专题也屡屡可见.而目前人脸识别综述的文章还是截止到1994年,因此我们认为非常有必要对近几年的研究工作进行一下总结.在本文中我们将对人脸识别方法进行综述,其中主要介绍近三、四年的研究工作,之前的研究工作请参看文[2,3]. 2 人脸自动识别系统 人脸自动识别系统包括两个主要技术环节(如图1所 示):首先是人脸检测和定位,即从输入图像中找到人脸及人脸存在的位置,并将人脸从背景中分割出来,然后才是对归一化的人脸图像进行特征提取与识别 . 图1 人脸自动识别系统构成 这两个环节的研究独立性很强.由于在很多特定情况下人脸检测与定位的工作比较简单,因此/特征提取与识别0环节得到了更为广泛和深入的研究;而近几年来随着人们越来越关心各种复杂情形下的人脸自动识别系统,人脸检测与定位才得到了较多的重视. 评价一个人脸自动识别系统的标准,一个是误识率即将某人错识别为其他人,另一个是虚警率即将其他人识别为这个人.这二者之间是存在矛盾的,所以在实际问题中往往需要进行某种折衷.如,在安全性要求较高的计算机登录系统中,必须要求虚警率要尽可能低,而误识率则可以高一些,这样只是增加合法用户的等录时间,并不会降低计算机系统的安全性.这一点同样适用于特征提取与识别环节,但是对于人脸检测与定位,我们一般则要求误识率要尽可能低,因为这样才可以保证所要识别的人不会在这一步就丢失. 收稿日期:1999-03-15;修订日期:1999-07-06基金项目:自然科学基金(No.69775009)资助课题 第4期2000年4月电 子 学 报ACTA ELECTRONICA SINICA Vol.28 No.4 April 2000

人脸识别算法都有哪些

主流的人脸识别技术基本上可以归结为三类,即:基于几何特征的方法、基于模板的方法和基于模型的方法。 1. 基于几何特征的方法 人脸由眼睛、鼻子、嘴巴、下巴等部件构成,正因为这些部件的形状、大小和结构上的各种差异才使得世界上每个人脸千差万别,因此对这些部件的形状和结构关系的几何描述,可以做为人脸识别的重要特征。几何特征最早是用于人脸侧面轮廓的描述与识别,首先根据侧面轮廓曲线确定若干显著点,并由这些显著点导出一组用于识别的特征度量如距离、角度等。Jia 等由正面灰度图中线附近的积分投影模拟侧面轮廓图是一种很有新意的方法。 采用几何特征进行正面人脸识别一般是通过提取人眼、口、鼻等重要特征点的位置和眼睛等重要器官的几何形状作为分类特征,但Roder对几何特征提取的精确性进行了实验性的研究,结果不容乐观。 可变形模板法可以视为几何特征方法的一种改进,其基本思想是:设计一个参数可调的器官模型(即可变形模板),定义一个能量函数,通过调整模型参数使能量函数最小化,此时的模型参数即做为该器官的几何特征。 2. 局部特征分析方法(Local Face Analysis) 主元子空间的表示是紧凑的,特征维数大大降低,但它是非局部化的,其核函数的支集扩展在整个坐标空间中,同时它是非拓扑的,某个轴投影后临近的点与原图像空间中点的临

近性没有任何关系,而局部性和拓扑性对模式分析和分割是理想的特性,似乎这更符合神经信息处理的机制,因此寻找具有这种特性的表达十分重要。基于这种考虑,Atick提出基于局部特征的人脸特征提取与识别方法。这种方法在实际应用取得了很好的效果,它构成了FaceIt人脸识别软件的基础。 3. 特征脸方法(Eigenface或PCA) 特征脸方法是90年代初期由Turk和Pentland提出的目前最流行的算法之一,具有简单有效的特点, 也称为基于主成分分析(principal component analysis,简称PCA)的人脸识别方法。 特征子脸技术的基本思想是:从统计的观点,寻找人脸图像分布的基本元素,即人脸图像样本集协方差矩阵的特征向量,以此近似地表征人脸图像。这些特征向量称为特征脸(Eigenface)。 实际上,特征脸反映了隐含在人脸样本集合内部的信息和人脸的结构关系。将眼睛、面颊、下颌的样本集协方差矩阵的特征向量称为特征眼、特征颌和特征唇,统称特征子脸。特征子脸在相应的图像空间中生成子空间,称为子脸空间。计算出测试图像窗口在子脸空间的投影距离,若窗口图像满足阈值比较条件,则判断其为人脸。 基于特征分析的方法,也就是将人脸基准点的相对比率和其它描述人脸脸部特征的形状参数或类别参数等一起构成识别特征向量,这种基于整体脸的识别不仅保留了人脸部件之间的拓扑关系,而且也保留了各部件本身的信息,而基于部件的识别则是通过提取出局部轮廓信息及灰度信息来设计具体识别算法。

(完整版)有特点的人脸教案

有特点的人脸 一、教学目标: 1、知识目标:通过观察,认识到人的脸型差异。了解人的脸型特点,学习人物正面比例关系“三停五眼”。 2、技能目标:初步学会中国话用笔墨的技法,进行人物画的个性表现。 3、情感目标:运用线条的表现方法,充分展现每个人有个性的造型表现力,从而喜欢上中国画。 二、教学重点与难点: 重点:了解绘画作品中线的运用以及人脸的基本特征。 难点:墨色的浓淡、有特点的人脸创作。 三、教学过程: 导入新课 1、请大家观察图片说说他们都是谁? (说出图片中的人物的名字飞人范伟、姚明、赵本山、潘长江、李咏、成龙等) 2、请大家说说他们的脸部特征?(学生从脸形、眼、鼻、耳朵、头发等不同来进行区分) 3、欣赏国画肖像并与照片相对比:阿Q、齐白石、观鱼图。(教材第4页)不是只有漫画可以表现有特点的人脸,中国画的写意手法也可以画出生动的人物,今天我们就来学习国画写意人物。 4、你知道我们国家把头部概括成几个基本形吗?

(1)甲字型(2)申字型(3)由字型、(4)田字型(5)国字型(老师引导学生回答并且板书) 并请同学们说出周围的有特点的同学,从学生的熟悉之处入手,引出话题,激发学生的好奇心和学习兴趣。 出示课题:有特点的人脸 他们的五官都有哪些特点? 5、教师演示(在学生中选模特) 教同学们观察、研究人物头部的基本形、动态、各部位的位置、比例及形象特征。 在制作的过程中要注意各部位的位置,比例准确,形象特征鲜明“国”“申”“田”“由”“甲”等脸形的特点。 6、用比较的方法分析脸部五官的比例,注意“三停五眼”对五官位置正视情况的定位 7、模仿一下我们人类可以模仿出那些表情。 8、人物绘画的步骤。 9、欣赏采用中国画的方法,描绘的人物形象。

人脸特征的定位和提取

人脸特征的定位和提取 摘要:综述了人脸识别的现状。基于几何特征的识别方法,根据人脸图象的灰度特性用投影图和特征描述相匹配的算法初步确定了人脸各部分的位置。然后利用投影法和模板匹配法准确地确定了瞳孔的位置及其它面部特征。实验表明该方法准确率高,运行速度快。关键词:特征定位特征提取类间方差判断分析法模板匹配 人脸识别的研究近几年受到普遍重视,它与指纹识别、视网膜识别等同属于生物特征识别技术范畴。在公安(犯罪识别等)、安全验证系统、医学、视频会议、交通量控制等方面有着巨大的应用前景,因而成为当前模式识别和人工智能领域的一个研究热点。虽然人类能毫不费力地识别出人脸及表情,但人脸的自动机器识别却是一个难度极大的课题。人脸识别的研究已有20多年的历史,最早它和指纹识别一道作为识别罪犯身份的手段。但人脸的结构比指纹要复杂得多,并且受很多因素的干扰:人脸表情的多样性、成象过程的光照、图像的尺寸、旋转及姿势的变化等。即使同一个人,在不同的环境下拍摄得到的人脸图像也可能不同。所以至今人脸识别尚未能取得象指纹识别那样令人满意的结果。还没有通用成熟的人脸自动识别系统出现。1 人脸识别的理论研究及发展现状人脸识别的输入图象通常有正面、倾斜和侧面三种,由于实际情况的要求,对人脸正面模式的研究最多,它的发展可分为三个阶段。第一阶段以Bertillon、Allen 和 Parke 为代表,主要研究人脸识别所需的面部特征。这一阶段工作的特点是识别过程全部依赖于操作人员。第二阶段是人机交互识别阶段。代表有Goldstion、Harmon 和Lesk。他们用几何特征参数来表示人脸正面图象。采用21维特征矢量表示人脸特征,并设计了基于特征表示法的识别系统。第三个阶段是向实用化发展的自动识别阶段。随着高速度高性能计算机的发展,人脸模式的识别方法有了较大改进。目前国内外研究用于人脸识别的方法层出不穷。但根据人脸表征方式的不同,总体上可分为以下三种:基于几何特征的识别方法、基于代数特征的识别方法和基于连接机制的识别方法。 (1)基于几何特征的人脸正面图象识别方法,将人脸用一组几何特征矢量表示,用模式识别中层次聚类的思想设计分类器达到识别的目的。这要求选取的几何特征矢量有一定的独特性,能够消除时间跨度和光照的影响。几何特征矢量是以人脸器官的形状和几何关系为基础的特征矢量,Govindaraju等首先利用模板技术成功地检测出报刊图片的人脸轮廓,Huang 和Chen 利用动态模板技术检测出人脸的各种面部特征。(2)基于代数特征的人脸正面自动识别方法,将人脸用代数特征矢量来表示。代数特征是由Hong等首先提出的,由图象本身的灰度分布确定的,它描述了图象的内在信息,它是通过对图象灰度进行各种代数变换和矩阵分解提取出的。杨静宇等对代数特征的提取进行了较深入地研究。这种方法将人脸看作一个二维的灰度变化的模板,从整体上捕捉和描述人脸的特征,所运用的主要是一些标准的数理统计的技巧,运算比较复杂。(3)基于连接机制的人脸正面自动识别方法,将人脸直接用灰度图(二维矩阵)表征,利用了神经网络的学习能力及分类能力。这种方法的优势在于保存了人脸图象的材质信息和形状信息,同时避免了较为复杂的特征提取工作。但是普遍存在的问题是识别准确率低,过程复杂。本文从构造实际应用系统的角度,采用基于几何特征的识别方法。具体过程是先根据人脸图象的灰度特性用投影图和特征描述相匹配的方法确定人脸各部分的位置。然后利用投影法和模板匹配方法定位了瞳孔的位置,较准确的提取出眼睛的特征。2 算法描述特征选取应保证最有代表性、信息量大、冗余量小,而且要求在一定的干扰下,也能保持一定的不变性和适应性。基于这种要求,借鉴前人研究成果,融合本文的实验,将眉眼距、眼鼻距、眼嘴巴距、嘴巴下巴距、两内眦距、鼻孔距、嘴巴长度、眼睛处的脸颊宽度、鼻子处的脸颊宽度及嘴巴处的脸颊宽度作为人脸识别的主要特征,并且将这10个特征分别与瞳孔距之比形成的特征矢量存入数据库中。对这些特征矢量作矢量归一化处理后,可以有效的避免头部偏转引起的偏差。2.1 预处理与特征定位实验采用400×600×8bit的灰度图

人脸识别的主要方法

1.1 人脸识别的主要方法 目前,国内外人脸识别的方法很多,并且不断有新的研究成果出现。人脸识别的方法根据研究角度的不同,有不同的分类方法。根据输入图像中人脸的角度不同,可以分为正面,侧面,倾斜的人脸图像的识别;根据图像来源的不同,可分为静态和动态的人脸识别;根据输入图像的特点,又可分为灰度图像和彩色图像的人脸识别等等。本文重点研究基于正面的、静态的灰度图像的识别方法。 对于静态的人脸识别方法从总体上看可以分为三大类:一是基于统计的识别方法,主要包括特征脸(Eigenface)方法和隐马尔科夫模型(Hidden Markov Model 简称HMM)方法等;二是基于连接机制的识别方法,包括人工神经网路(Artifical Neural Network 简称ANN)方法和弹性图匹配(Elastic Bunch Graph Matching 简称EBGM)方法等;三是一些其他的综合方法及处理非二维灰度图像的方法。下面分别进行介绍。 1.1.1 基于特征脸的方法 特征脸方法[5],又称为主成份分析法(Principal Component Analysis 简称PCA),它是20 世纪90 年代初期由Turk 和Pentland 提出的,是一种经典的算法。它根据图像的统计特征进行正交变换(即K-L 变换),以消除原有向量各个分量之间的相关性。变换得到对应特征值依次递减的特征向量,即特征脸。 特征脸方法的基本思想是将图像经过K-L 变换后由高维向量转换为低维向量,并形成低维线性向量空间,利用人脸投影到这个低维空间所得到的投影系数作为识别的特征矢量。这样,就产生了一个由“特征脸”矢量张成的子空间,称为“人脸子空间”或“特征子空间”,每一幅人脸图像向其投影都可以获得一组坐标系数,这组坐标系数表明了人脸在子空间中的位置,因此利用特征脸方法可以重建和识别人脸。 通过人脸向量向特征子空间作投影得到的向量称之为主分量或特征主分量。主分量特征

超全的最新的人脸识别特征点定位方法

1.2 人脸特征点定位方法综述 目前为止,国内外学者们已经提出了人脸特征点定位的方法[3],依据定位所需要的基本信息的类型,人脸特征点定位的方法可以大致分为以下六类:(1)灰度信息的方法;(2)先验规则的方法;(3)几何形状的方法;(4)统计模型的方法;(5)小波的方法;(6)3D 方法。 1.2.1 基于灰度信息的方法 几何投影法:几何投影方法是利用人脸特征灰度与其他部分的差异,先统计出不同方向上的灰度值和,根据和的变化找出特定的变化点,然后利用投影灰度值基于统计的方法将不同方向上的变化点位置相结合,找到人脸特征点的位置。投影的方法计算量较低,但当姿态变化较大或者背景较复杂时容易失效。 谷分析:图像中亮度比周围像点暗的区域就称作谷,通过亮度比较的方法,就可以对人脸的各个关键部位如眼睛、眉毛、鼻子、嘴巴等相对较暗的区域进行定位。虽然其受光照影响比较大,但考虑到计算量低的优势也在定位方法中常见。 1.2.1 先验规则的方法 根据人脸特征的一般特点总结出一些经验规则就称作基于先验规则的方法。人脸图像有一些明显的基本特征,比如人脸的长度比例,满足“三庭五眼” ,脸部区域的双眼、鼻子和嘴巴等脸部特征处的亮度一般低于其周边区域;两眼间的对称以及眼睛与鼻子的三角分布规律,都是人脸识别的重要根据。此方法虽然简单,但是远远不能满足复杂的人脸结构的正确定位,于是该方法一般只用于粗定位,精定位还要结合其他的方法来实现。 镶嵌图法:我们可以用一组相同大小的方格去划分图像,每个方格的灰度取格中各像素灰度的均值,根据一定的规则确定哪些可能是人脸的方格区域,将确定的可能存在人脸的方格的变长减半,重新构建镶嵌图,重复第一步的工作,找到眼睛,鼻子,嘴巴等脸部特征所在的位置,然后对这两次得到的脸部区域二值化,利用边缘检测最终精确定位各个特征的位置。

人脸识别文献综述

文献综述 1 引言 在计算机视觉和模式识别领域,人脸识别技术(Face Recognition Technology,简称FRT)是极具挑战性的课题之一。近年来,随着相关技术的飞速发展和实际需求的日益增长,它已逐渐引起越来越多研究人员的关注。人脸识别在许多领域有实际的和潜在的应用,在诸如证件检验、银行系统、军队安全、安全检查等方面都有相当广阔的应用前景。人脸识别技术用于司法领域,作为辅助手段,进行身份验证,罪犯识别等;用于商业领域,如银行信用卡的身份识别、安全识别系统等等。正是由于人脸识别有着广阔的应用前景,它才越来越成为当前模式识别和人工智能领域的一个研究热点。 虽然人类能够毫不费力的识别出人脸及其表情,但是人脸的机器自动识别仍然是一个高难度的课题。它牵涉到模式识别、图像处理及生理、心理等方面的诸多知识。与指纹、视网膜、虹膜、基因、声音等其他人体生物特征识别系统相比,人脸识别系统更加友好、直接,使用者也没有心理障碍。并且通过人脸的表情/姿态分析,还能获得其他识别系统难以获得的一些信息。 自动人脸识别可以表述为:对给定场景的静态或视频序列图像,利用人脸数据库验证、比对或指认校验场景中存在的人像,同时可以利用其他的间接信息,比如人种、年龄、性别、面部表情、语音等,以减小搜索范围提高识别效率。自上世纪90年代以来,人脸识别研究得到了长足发展,国内外许多知名的理工大学及TT公司都成立了专门的人脸识别研究组,相关的研究综述见文献[1-3]。 本文对近年来自动人脸识别研究进行了综述,分别从人脸识别涉及的理论,人脸检测与定位相关算法及人脸识别核心算法等方面进行了分类整理,并对具有典型意义的方法进行了较为详尽的分析对比。此外,本文还分析介绍了当前人脸识别的优势与困难。 2 人脸识别相关理论 图像是人们出生以来体验最丰富最重要的部分,图像可以以各种各样的形式出现,我们只有意识到不同种类图像的区别,才能更好的理解图像。要建立一套完整的人脸识别系统(Face Recognetion System,简称FRS),必然要综合运用以下几大学科领域的知识: 2.1 数字图像处理技术 数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机

人脸定位

第一章绪论 (3) 1.1人脸识别的研究内容及其应用 (3) 1.2人脸识别技术的研究意义 (4) 1.3人脸识别方法的研究 (5) 1.3.1基于特征的人脸识别方法 (5) 1.3.2基于模板匹配的人脸识别方法 (7) 1.3.3其他方法 (8) 第二章图像处理编程语言环境 (12) 2.1 MATLAB7.0的基本功能简介 (12) 2.1.1图像采集与导出 (13) 2.1.2图像分析与增强 (13) 2.1.3图像处理 (13) 2.2基于MATLAB7.0的图形用户界面GUI (14) 2.2.1控件对象及属性 (14) 2.2.2控件对象的描述 (14) 2.2.3控件对象的属性 (15) 2.3 GUI开发环境 (16) 2.4 GUI程序设计 (18) 第三章系统的整体设计 (21) 3.1系统的整体分析与设计 (21) 3.2系统的运行流程图 (21) 3.3系统的详细图像处理功能 (22) 3.3.1读取图片功能 (22) 3.3.2进行增加对比度的功能实现 (23) 3.3.3进行减小对比度的功能实现 (25) 3.3.4对图像进行灰度化处理 (26) 3.3.5二值化处理 (28) 3.3.6图像直方图的显示 (30) 3.3.7进行均衡化处理 (32)

3.3.8恢复原始图像的功能 (34) 3.3.9退出程序功能: (36) 第四章人脸定位功能的设计与实现 (37) 4.1人脸定位功能的设计 (37) 4.2检测算法的流程图 (37) 4.3人脸定位功能的实现 (38) 4.4结论与展望 (45) 致谢 ................................................... 错误!未定义书签。参考文献 ................................................ 错误!未定义书签。附录1:主要英文参考资料及译文........................... 错误!未定义书签。

人脸识别技术的主要研究方法

1、绪论 人脸识别是通过分析脸部器官的唯一形状和位置来进行身份鉴别。人脸识别是一种重要的生物特征识别技术,应用非常广泛。与其它身份识别方法相比,人脸识别具有直接、友好和方便等特点,因而,人脸识别问题的研究不仅有重要的应用价值,而且在模式识别中具有重要的理论意义,目前人脸识别已成为当前模式识别和人工智能领域的研究热点。本章将简单介绍几种人脸识别技术的研究方法。 关键词:人脸识别 2、人脸识别技术的主要研究方法 目前在国内和国外研究人脸识别的方法有很多,常用的方法有:基于几何特征的人脸识别方法、基于代数特征的人脸识别方法、基于连接机制的人脸识别方法以及基于三维数据的人脸识别方法。人脸识别流程图如图2.1所示: 图2.1人脸识别流程图 3、基于几何特征的人脸识别方法 基于特征的方法是一种自下而上的人脸检测方法,由于人眼可以将人脸在不此研究人员认为有一个潜在的假设:人脸或人脸的部件可能具有在各种条件下都不会改变的特征或属性,如形状、肤色、纹理、边缘信息等。基于特征的方法的目标就是寻找上述这些不变特征,并利用这些特征来定位入脸。这类方法在特定的环境下非常有效且检测速度较高,对人脸姿态、表情、旋转都不敏感。但是由于人脸部件的提取通常都借助于边缘算子,因此,这类方法对图像质量要求较高,对光照和背景等有较高的要求,因为光照、噪音、阴影都极有可能破坏人脸部件的边缘,从而影响算法的有效性。 模板匹配算法首先需要人TN作标准模板(固定模板)或将模板先行参数化(可变模板),然后在检测人脸时,计算输入图像与模板之间的相关值,这个相关值通常都是独立计算脸部轮廓、眼睛、鼻子和嘴各自的匹配程度后得出的综合描述,最后再根据相关值和预先设定的阈值来确定图像中是否存在人脸。基于可变模板的人脸检测算法比固定模板算法检测效果要好很多,但是它仍不能有效地处理人脸尺度、姿态和形状等方面的变化。 基于外观形状的方法并不对输入图像进行复杂的预处理,也不需要人工的对人脸特征进行分析或是抽取模板,而是通过使用特定的方法(如主成分分析方法(PCA)、支持向量机(SVM)、神经网络方法(ANN)等)对大量的人脸和非人脸样本组成的训练集(一般为了保证训练得到的检测器精度,非人脸样本集的容量要为人脸样本集的两倍以上)进行学习,再将学习而成的模板或者说分类器用于人脸检测。因此,这也是j 种自下而上的方法。这种方法的优点是利用强大的机器学习算法快速稳定地实现了很好的检测结果,并且

人脸检测和识别技术的文献综述

人脸识别技术综述 摘要:在阅读关于人脸检测识别技术方面文献后,本文主要讨论了人脸识别技术的基本介绍、研究历史,人脸检测和人脸识别的主要研究方法,人脸识别技术的应用前景,并且总结了人脸识别技术的优越性和当下研究存在的困难。 关键词:人脸识别;人脸检测;几何特征方法;模板匹配方法;神经网络方法;统计方法;模板匹配;基于外观方法; 随着社会的发展,信息化程度的不断提高,人们对身份鉴别的准确性和实用性提出了更高的要求,传统的身份识别方式已经不能满足这些要求。人脸识别技术(FRT)是当今模式识别和人工智能领域的一个重要研究方向.虽然人脸识别的研究已有很长的历史,各种人脸识别的技术也很多,但由于人脸属于复杂模式而且容易受表情、肤色和衣着的影响,目前还没有一种人脸识别技术是公认快速有效的[1]基于生物特征的身份认证技术是一项新兴的安全技术,也是本世纪最有发展潜力的技术之一[2]。 1. 人脸识别技术基本介绍 人脸识别技术是基于人的脸部特征,一个完整的人脸识别过程一般包括人脸检测和人脸识别两大部分,人脸检测是指计算机在包含有人脸的图像中检测出人脸,并给出人脸所在区域的位置和大小等信息的过程[3],人脸识别就是将待识别的人脸与已知人脸进行比较,得

出相似程度的相关信息。 计算机人脸识别技术也就是利用计算机分析人脸图象, 进而从中出有效的识别信息, 用来“辨认”身份的一门技术.人脸自动识别系统包括三个主要技术环节[4]。首先是图像预处理,由于实际成像系统多少存在不完善的地方以及外界光照条件等因素的影响,在一定程度上增加了图像的噪声,使图像变得模糊、对比度低、区域灰度不平衡等。为了提高图像的质量,保证提取特征的有有效性,进而提高识别系统的识别率,在提取特征之前,有必要对图像进行预处理操作;人脸的检测和定位,即从输入图像中找出人脸及人脸所在的位置,并将人脸从背景中分割出来,对库中所有的人脸图像大小和各器官的位置归一化;最后是对归一化的人脸图像应用人脸识别技术进行特征提取与识别。 2. 人脸识别技术的研究历史 国内关于人脸自动识别的研究始于二十世纪80年代,由于人脸识别系统和视频解码的大量运用,人脸检测的研究才得到了新的发展利用运动、颜色和综合信息等更具有鲁棒性的方法被提出来变形模板,弹性曲线等在特征提取方面的许多进展使得人脸特征的定位变得更为准确。 人脸识别的研究大致可分为四个阶段。第一个阶段以Bertillon,Allen和Parke为代表,主要研究人脸识别所需要的面部特征;第二个阶段是人机交互识别阶段;第三个阶段是真正的机器自动识别阶段;第四个阶段是鲁棒的人脸识别技术的研究阶段。目前,国外多所

人脸特征提取与识别参考

本科生毕业设计(论文)文献综述题目:人脸特征提取与识别 姓名: 学号: 学院: 专业: 年级:

指导教师:(签名)系主任(或教研室主任):(签章)

目录 1 前言 (1) 2 人脸特征提取与识别方法 (1) 2.1 基于几何特征的方法 (1) 2.2 基于特征脸的方法 (2) 2.3 局部特征分析LFA方法 (3) 2.4 基于弹性模型的方法 (4) 2.5 神经网络方法 (4) 2.6 其他方法 (5) 3 总结 (5) 致谢: (6) 参考文献: (6)

人脸特征提取与识别 1前言 近年来,Internet和多媒体技术飞速发展,多媒体(包括图像、视频等)数据规模急剧膨胀。为了快速、准确地找到感兴趣的图像或视频,人们提出了基于内容的图像检索(content-based image retrieval,简称CBIR)技术,研究让计算机对图像进行分类和检索的算法。CBIR涉及图像内容表示、相似性度量、高维索引技术等方面。[1]图像内容的表示是需要首先解决的问题。为了实现对图像内容的存取、访问和检索,MPEG-7提出了图像内容描述子的概念,例如颜色描述子、纹理描述子、形状描述子等。 图像颜色内容通常用颜色直方图来表示,纹理特征以纹理模式区分图像,形状特征用于包含特定形状对象的图像检索。颜色直方图(或称为颜色谱)因其简单、有效的性能而在大多数CBIR系统中得到应用,但是颜色直方图对纹理图像的检索效果不好。不同的纹理图像可能有非常相似的颜色直方图。 所谓图像纹理,它反映的是图像的一种局部结构化特征,具体表现为图像像素点某邻域内像素点灰度级或者颜色的某种变化,而且这种变化是空间统计相关的,它由纹理基元和基元的排列两个要素构成。纹理分析方法有统计方法、结构方法和基于模型的方法。 2人脸特征提取与识别方法 人脸识别本质上是三维塑性物体二维投影图像的匹配问题,它的困难体现在:(1)人脸塑性变形(如表情等)的不确定性;(2)人脸模式的多样性(如胡须、发型、眼镜、化妆等);(3)图像获取过程中的不确定性(如光照的强度、光源方向等)。识别人脸主要依靠人脸上的特征。也就是说依据那些在不同个体上存在的较大差异而对同一个人则比较稳定的度量。由于人脸变化复杂,因此特征表述和特征提取十分困难。 在对人脸图像进行特征提取和分类之前一般需要做几何归一化和灰度归一化。几何归一化是指根据人脸定位结果将图像中人脸变换到同一位置和同样大小,灰度归一化是指对图像进行光照补偿等处理,光照补偿能够一定程度地克服光照变化的影响而提高识别率。 2.1 基于几何特征的方法 人脸由眼睛、鼻子、嘴巴、下巴等部件构成,正因为这些部件的形状、大小和结构上的各种差异才使得世界上每个人脸干差万别,因此对这些部件的形状和结构关系的几何描述,可以作为人脸识别的重要特征。几何特征最早是用于人脸侧面轮廓的描述与识别,首

人脸识别技术的几个主要研究方向

人脸识别技术的几个主要研究方向 1 引言 计算机人脸识别是指基于已知的人脸样本库,利用计算机分析图像和模式识别技术从静态或动态场景中,识别或验证一个或多个人脸。通常识别处理后可得到的基本信息包括人脸的位置、尺度和姿态信息。利用特征提取技术还可进一步抽取出更多的生物特征(如:种族、性别、年龄..) 。计算机人脸识别是目前一个非常活跃的研究课题,它可以广泛应用于保安系统、罪犯识别以及身份证明等重要场合。虽然人类对于人脸的识别能力很强,能够记住并辨识上千个不同的人脸,可是对于计算机则困难多了,其表现在:人脸表情丰富;人脸随年龄的增长而变化;发型、胡须、眼镜等装饰对人脸造成的影响;人脸所成图像受光照、成像角度以及成像距离等影响。 计算机人脸识别技术是近20年发展起来的,90年代更成为科研热点,仅从1990 年到1999年之间,EI 可检索到的相关文献多达数千篇,关于人脸识别的综述也屡屡可见[1] 。自动人脸识别系统包括两个主要技术环节首先是人脸检测和定位,然后是对人脸进行特征提取和识别(匹配)。本文着重介绍人脸识别技术的各类方法,通过对比指出各类方法的优缺点及今后的发展方向。 2 人脸检测和定位 人脸检测和定位即对于给定的一幅图像检测图像中是否有人脸,若有则确定其在图像中的位置,并从背景中分割出来。这是个极富挑战性的问题,因为人脸是非刚体,且人脸在图像中的大小和方向以及人的肤色和纹理等方面有很大的可变形。人脸检测问题主要有四种:(1)对于给定的一幅人脸图像,将其中的人脸定位并给出其位置;(2)在一幅混乱的单色场景图中检测出所有的人脸;(3)在彩色图像中检测(定位)所有人脸;(4)在某一视频序列中,检测和定位出所有人脸。文献[2]对人脸检测进行了较为详细的综述,指出常用的人脸检测方法有四种:(1)基于知识的方法;(2)基于人脸固定特征的方法;(3)基于模板匹配的方法;(4)基于外貌的方法(Appearance-based methods),在基于模板匹配的方法中所采用的是预先确定的模板,而在基于外貌的方法中其模板的选择是通过对一系列图像的学习而确定的。一般来说,基于外貌的方法依靠统计和学习技术来找出人脸和非人脸图像的相关特征。在该方法中有特征脸法、基于聚类的方法、神经网络方法和支持向量机的方法。CMU库是常用的人脸检测库,主要的算法评定指标为错误接受率(FAR)和错误拒绝率(ARR)。 3 人脸特征提取和识别 目前大部分研究主要是针对二维正面人脸图像,也有基于三维人脸模型的方法,还有一种所谓的混合系统的身份鉴定系统。 3.1 二维正面人脸识别 在对人脸图像进行特征提取和分类之前一般需要做几何归一化和灰度归一化。几何归一化是指根据人脸定位结果将图像中人脸变换到同一位置和同样大

相关主题