搜档网
当前位置:搜档网 › STM32单片机实现外部中断的步骤及方法

STM32单片机实现外部中断的步骤及方法

STM32单片机实现外部中断的步骤及方法

STM32单片机实现外部中断的步骤及方法

先从最简单的问题开始,用STM32外部中断的方法实现PB.0按键控制PA.0LED灯:

先总的说下实现中断的步骤:

1,配置NVIC寄存器(函数),设置中断为第几组,占先优先级和次优先级;

函数方法:

void NVIC_Configuration()

{

NVIC_InitTypeDef NVIC_InitStruct;

NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1);

NVIC_InitStruct.NVIC_IRQChannel=EXTI0_IRQn;

NVIC_InitStruct.NVIC_IRQChannelPreempTIonPriority=0;

NVIC_InitStruct.NVIC_IRQChannelSubPriority=1;

NVIC_InitStruct.NVIC_IRQChannelCmd=ENABLE;

NVIC_Init(

}

以上为配置优先级的一般步骤:设置优先级分组,设置中断通道,分别设置先占优先级,次占优先级,使能等;

2,配置EXTI寄存器及(函数),设置中断线,中断方式,等;

voidEXTI_Configuration()

{

EXTI_InitTypeDefEXTI_InitStructure;

EXTI_ClearITPendingBit(EXTI_Line0);

GPIO_EXTILineConfig(GPIO_PortSourceGPIOB,GPIO_PinSource0);

EXTI_InitStructure.EXTI_Line=EXTI_Line0;

EXTI_InitStructure.EXTI_Mode=EXTI_Mode_Interrupt;

EXTI_InitStructure.EXTI_Trigger=EXTI_Trigger_Falling;

STM32外部中断处理流程

STM32 外部中断配置 2009-07-22 14:16 1配置中断 1、分配中断向量表: /* Set the Vector Table base location at 0x20000000 */ NVIC_SetVectorTable(NVIC_VectTab_RAM, 0x0); 2、设置中断优先级: NVIC_PriorityGroupConfig(NVIC_PriorityGroup_0); //设置中断优先级 3、初始化外部中断: /*允许EXTI4中断 */ NVIC_InitStructure.NVIC_IRQChannel = EXTI4_IRQChannel; //中断通道 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = PreemptionPriorityValue;//强占优先级 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; //次优先级 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //通道中断使能 NVIC_Init(&NVIC_InitStructure); //初始化中断 注意:如果我们配置的外部针脚为PA4,或PB4,或PC4,PD4等,那么采用的外部中断也必须是EXTI4,同样,如果外部中断针脚是PA1,PB1,PC1,PD1 那么中断就要用EXTI1,其他类推。 2配置GPIO针脚作为外部中断的触发事件 1、选择IO针脚 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4; 注意,如果的针脚是端口的4号针脚,配置的中断一定是EXTI4 2、配置针脚为输入 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; 3、初始化针脚

STM32中EXTI(外部中断)和NVIC(嵌套向量中断)的关系

STM32中EXTI(外部中断)和NVIC(嵌套向量中断)的关 系 NVIC 是Cortex-M3 核心的一部分,关于它的资料不在《STM32 的技术参 考手册》中,应查阅ARM 公司的《Cortex-M3 技术参考手册》Cortex-M3 的向 量中断统一由NVIC 管理EXTI 是ST 公司在其STM32 产品上扩展的外中断控 制。它负责管理映射到GPIO 引脚上的外中断和片内几个集成外设的中断 (PVD,RTC alarm,USB wakeup,ethernet wakeup),以及软件中断。其输出最终被映射到NVIC 的相应通道。因此,配置EXTI 中断的过程必然包含对 NVIC 的配置,例如下面配置EXTI0 的过程,就要首先配置EXTI 控制器(使 能相应的中断线,选择中断/事件模式,触发边沿极性),然后再配置NVIC 控 制器(EXTI0 映射在NVIC 上的通道号,中断优先级,中断屏蔽状态): GPIO_EXTILineConfig(GPIO_PortSourceGPIOB, GPIO_PinSource0); EXTI_InitStructure.EXTI_Line = EXTI_Line0;EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling; // or RisingEXTI_InitStructure.EXTI_LineCmd = ENABLE;EXTI_Init(&EXTI_InitStructure); NVIC_InitStructure.NVIC_IRQChannel = EXTI0_IRQn;// EXTI0_IRQn is defined in stm32f10x.hNVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;NVIC_Init(&NVIC_InitStructure); EXTI0_IRQn 的值,其实就是EXTI0 中断向量在中断向量表中的位置 (STM32 技术参考手册中断向量表Position 栏中的数值)

STM32简记之NVIC和外部中断

STM32简记之NVIC和外部中断 Posted on 2013/06/20 by M 1 之前用stm32也就是用些内部资源或者耍耍前辈留下来的库,最近在写SPWM波的时候才知道自己对于中断这方面的欠缺,更暴漏了我学东西不打基础的恶习,所以打算重新整理下资料,原因有二:1、通过这种方式能加深记忆。2、方便以后查看。因为只追求自己看得懂所以总结的比较简洁,所以称之为简记。 步骤如下: 1、系统初始化,如系统时钟初始化,使之进入72MHZ主频; 程序启动时已调用SystemInit()函数将主频改为72MHZ。 2、 GPIO配置,务必注意打开GPIO时钟时,一定打开AFIO时钟。 在使用引脚的重映射功能和外部中断时需要使用AFIO时钟。 3、 EXTI配置,在这里配置需要选择哪个引脚作为中断引脚。 EXTI_InitTypeDef EXTI_InitStructure; 定义一个EXTI初始化结构体 EXTI_InitStructure.EXTI_Line = EXTI_Line1; 设置中断线:EXTIL_Line1为中断线1 EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt; 模式:这里有两个模式,一个是中断模式,也就是事件,具体区别如下: “事件:是表示检测有一某件触发事件发生了。中断:有某个事件发生并产生中断,并跳转到对应的中断处理程序中。事件可以触发中断,也可以不触发中断有可能被更优先的中断屏蔽,事件不会事件本质上就是一个触发信号,是用来触发特定的外设模块或核心本身(唤醒).事件只是一个触发信号(脉冲),而中断则是一个固定的电平信号” EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling; 设置触发中断方式: EXTI_Trigger_Falling 设置输入线路下降沿为中断请求 EXTI_Trigger_Rising 设置输入线路上升沿为中断请求 EXTI_Trigger_Rising_Falling 设置输入线路上升沿和下降沿为中断请求 EXTI_InitStructure.EXTI_LineCmd = ENABLE; 定义选择中断线的新状态

STM32中断

STM32外部中断详解 2012-07-02 21:59:24| 分类:嵌入式相关| 标签:|举报|字号大中小订阅 一、基本概念 ARM Coetex-M3内核共支持256个中断,其中16个内部中断,240个外部中断和可编程的256级中断优先级的设置。STM32目前支持的中断共84个(16个内部+68个外部),还有16级可编程的中断优先级的设置,仅使用中断优先级设置8bit中的高4位。 STM32可支持68个中断通道,已经固定分配给相应的外部设备,每个中断通道都具备自己的中断优先级控制字节PRI_n(8位,但是STM32中只使用4位,高4位有效),每4个通道的8位中断优先级控制字构成一个32位的优先级寄存器。68个通道的优先级控制字至少构成17个32位的优先级寄存器。 4bit的中断优先级可以分成2组,从高位看,前面定义的是抢占式优先级,后面是响应优先级。按照这种分组,4bit一共可以分成5组 第0组:所有4bit用于指定响应优先级; 第1组:最高1位用于指定抢占式优先级,后面3位用于指定响应优先级; 第2组:最高2位用于指定抢占式优先级,后面2位用于指定响应优先级; 第3组:最高3位用于指定抢占式优先级,后面1位用于指定响应优先级; 第4组:所有4位用于指定抢占式优先级。 所谓抢占式优先级和响应优先级,他们之间的关系是:具有高抢占式优先级的中断可以在具有低抢占式优先级的中断处理过程中被响应,即中断嵌套。 当两个中断源的抢占式优先级相同时,这两个中断将没有嵌套关系,当一个中断到来后,如果正在处理另一个中断,这个后到来的中断就要等到前一个中断处理完之后才能被处理。如果这两个中断同时到达,则中断控制器根据他们的响应优先级高低来决定先处理哪一个;如果他们的抢占式优先级和响应优先级都相等,则根据他们在中断表中的排位顺序决定先处理哪一个。每一个中断源都必须定义2个优先级。 有几点需要注意的是: 1)如果指定的抢占式优先级别或响应优先级别超出了选定的优先级分组所限定的范围,将可能得到意想不到的结果; 2)抢占式优先级别相同的中断源之间没有嵌套关系; 3)如果某个中断源被指定为某个抢占式优先级别,又没有其它中断源处于同一个抢占式优先级别,则可以为这个中断源指定任意有效的响应优先级别。 二、 GPIO外部中断 STM32中,每一个GPIO都可以触发一个外部中断,但是,GPIO的中断是以组位一个单位的,同组间的外部中断同一时间只能使用一个。比如说,PA0,PB0,PC0,PD0,PE0,PF0,PG0这些为1组,如果我们使用PA0作为外部中断源,那么别的就不能够再使用了,在此情况下,我们智能使用类似于PB1,PC2这种末端序号不同的外部中断源。每一组使用一个中断标志EXTIx。EXTI0 –EXTI4这5个外部中断有着自己的单独的中断响应函数,EXTI5-9共用一个中断响应函数,EXTI10-15共用一个中断响应函数。对于中断的控制,STM32有一个专用的管理机构:NVIC。 三、程序实现

stm32知识点最终版!

1.*嵌入式系统:以计算机技术为基础,以应用为中心,软件硬件可剪裁,适合应用系统对功能可靠性、成本、体积、功耗严格要求的专业计算机系统。 2.*嵌入式系统与传统系统等所区分的三个特征:微处理器通常由32位以上的RISC组成;软件通常是以嵌入式操作系统为核心,外加用户应用程序;具有明显的可嵌入性。 3.*嵌入式系统的应用:智能消费电子中;工业控制中;医疗设备中;信息家电及家庭智能管理系统;网络与通信系统中;环境工程;机器人。 4.*ARM定义的三大分工明确的系列:“A”系列面向尖端的基于虚拟内存的操作系统和用户应用(针对日益增长的运行包括linux、Windows、CE和Android在内的消费电子和无线产品);“R”系列针对实时系统(针对需要运行实时操作系统来惊醒控制应用的系统,包括汽车电子、网络和影像系统);“M”系列对胃控制器和点成本应用提供优化(针对开发费用低功耗低,同时针对性能要求不断增加的嵌入式应用而设计,如汽车车身控制系统和各种大型家电)。 5.ARM Cortex处理器系列是基于ARMv7构架的产品,既有ARM Cortex-M系列,也有高性能的A系列。 6.NEON技术是64/128位SIMD指令集,用于新一代媒体和信号处理应用加速。NEON支持8位,16位,32位,64位整数及单精度浮点SIMD操作,以进行音频,视频、图像和游戏的处理。 7.ARM Cortex-M3处理器的特点:性能丰富成本低,低功耗,可配置性能强,丰富的链接。 8.*STM32F10x处理器分为:101,102,103,105,107。 9.*STM32的总线速度:USB接口速度12Mb/s;USART接口速度4.5Mb/s;SPI接口速度可达18Mb/s;IC接口速度400kHz。 10.STM32系列处理器的优点:先进的内部结构;三种功耗控制;最大程度集成整合;出众及创新的外设。 11.STM32F10x按性能分为:基本型STM32F101,USB基本型STM32F102,增强型STM32F103,互联网型STM32F105、STM32F107系列。 12.STM32F103RBT6系列的命名规则:R-引脚数量、B-Flash大小、T-封装、6-工作温度。 13.*STM32F103按照引脚功能分为:电源、复位、时钟控制、启动配置、输入输出口。 14.STM32F103总线系统包括:驱动单元、被动单元、总线矩阵。 15.最小系统是指仅包含必须的元器件、仅可运行最基本软件的基本系统。 16.典型的最小系统包括:微控制器芯片、供电电路、时钟电路、复位电路、启动配置电路和程序下载电路。 第三章 1.STM32标准库命名则:PPP_Init:根据PPP_InitTypeDef中指定的参数初始化外设ppp; PPP_DeInit:将外设PPP寄存器重设为缺省值; PPP_StructInit:将PPP_InitTypeDef结构中的参数设为缺省值; PPP_Cmd:使能或失能PPP外设; PPP_ItConfig:使能或失能PPP外设的中断源; PPP_GetITStatus:判断PPP外设中断发生与否; PPP_ClearITPendingBit:清除PPP外设中断待处理标志位; PPP_DMAConfig:使能或者失能PPP外设的DMA接口; PPP_GetFlagStatus:检查PPP外设的标志位; PPP_ClearFiag:清除PPP外设的标志位。 2.文件结构:每个C程序通常分为两个文件,一个文件用于保存程序的声明,成为头文件,以.h为后缀。另一个用于保存程序的实现,称为源文件,以.c后缀。 3.C语言的关键字有32个,根据作用分为数据类型、控语言、储存类型、其他关键字。 4.指针:是C语言中广泛使用的一种数据类型. 5.指向数组元素的指针 定义一个整形数组和一个指向整型的指针变量: Int a [10]; Int*p=NULL;//定义指针式要初始化 P=a;//数组名a为数组第0个元素的地址 //与p=&a[0]等价 P+i和a+i表示a[i]的地址;*(p+i)和*(a+i)表示P+i和a+i内容。 6.结构体:是由基本数据类型构成的,并并一个标识符来命名的各种变量的组合。

学习笔记:STM32外部中断

学习笔记:STM32的外部中断(库函数) 在为某引脚配置中断前,同样要先初始化该引脚的配置,用GPIO_Init()函数初始化,不同的是,由于是外部中断,所以输入模式要设置上拉输入。假设外部中断引脚为PE.2,则该引脚初始化配置的程序为: IO IO口作为外部中断输入是复用功能,因此在此基础上还需要对另一个时钟信号进行初始化。 这是IO口作为复用功能时需要进行初始化的时钟,另外,要注意的是,做一般功能使用的IO口只需要调用第一个函数即可,而作为复用功能的IO口,两个函数都要调用,两者缺一不可,否则不能正常使用。 STM32的每个IO都可以作为外部中断的中断输入口,这点也是STM32的强大之处。STM32F103的中断控制器支持19个外部中断/事件请求。每个中断设有状态位,每个中断/事件都有独立的触发和屏蔽设置。STM32F103的19个外部中断为: 线0~15:对应外部IO口的输入中断。 线16:连接到PVD输出。 线17:连接到RTC闹钟事件。 线18:连接到USB唤醒事件。 从上面可以看出,STM32供IO口使用的中断线只有16个,但是STM32的IO口却远远不止16个,那么STM32是怎么把16个中断线和IO口一一对应起来的呢?于是STM32就这样设计,GPIO的管脚GPIOx.0~GPIOx.15(x=A,B,C,D,E,F,G)分别对应中断线0~15。这样每个中断线对应了最多7个IO口,以线0为例:它对应了GPIOA.0、GPIOB.0、GPIOC.0、GPIOD.0、GPIOE.0、GPIOF.0、GPIOG.0。而中断线每次只能连接到1个IO口上,这样就需要通过配置来决定对应的中断线配置到哪个GPIO上了。下面我们看看GPIO跟中断线的映射关系图:

STM32中外部中断与外部事件

STM32中外部中断与外部事件 外部中断,外部事件 这张图是一条外部中断线或外部事件线的示意图,图中信号线上划有一条斜线,旁边标志19字样的注释,表示这样的线路共有19套。 图中的蓝色虚线箭头,标出了外部中断信号的传输路径,首先外部信号从编号1的芯片管脚进入,经过编号2的边沿检测电路,通过编号3的或门进入中断“挂起请求寄存器”,最后经过编号4的与门输出到NVIC中断控制器;在这个通道上有4个控制选项,外部的信号首先经过边沿检测电路,这个边沿检测电路受上升沿或下降沿选择寄存器控制,用户可以使用这两个寄存器控制需要哪一个边沿产生中断,因为选择上升沿或下降沿是分别受2个平行的寄存器控制,所以用户可以同时选择上升沿或下降沿,而如果只有一个寄存器控制,那么只能选择一个边沿了。 接下来是编号3的或门,这个或门的另一个输入是“软件中断/事件寄存器”,从这里可以看出,软件可以优先于外部信号请求一个中断或事件,既当“软件中断/事件寄存器”的对应位为“1”时,不管外部信号如何,编号3的或门都会输出有效信号。 一个中断或事件请求信号经过编号3的或门后,进入挂起请求寄存器,到此之前,中断和事件的信号传输通路都是一致的,也就是说,挂起请求寄存器中记录了外部信号的电平变化。 外部请求信号最后经过编号4的与门,向NVIC中断控制器发出一个中断请求,如果中断屏蔽寄存器的对应位为“0”,则该请求信号不能传输到与门的另一端,实现了中断的屏蔽。

明白了外部中断的请求机制,就很容易理解事件的请求机制了。图中红色虚线箭头,标出了外部事件信号的传输路径,外部请求信号经过编号3的或门后,进入编号5的与门,这个与门的作用与编号4的与门类似,用于引入事件屏蔽寄存器的控制;最后脉冲发生器把一个跳变的信号转变为一个单脉冲,输出到芯片中的其它功能模块。 在这张图上我们也可以知道,从外部激励信号来看,中断和事件是没有分别的,只是在芯片内部分开,一路信号会向CPU产生中断请求,另一路信号会向其它功能模块发送脉冲触发信号,其它功能模块如何相应这个触发信号,则由对应的模块自己决定。 在图上部的APB总线和外设模块接口,是每一个功能模块都有的部分,CPU通过这样的接口访问各个功能模块,这里就不再赘述了。 -------------------------------------------------------- 总结: (1)事件是中断的触发源,开放了对应的中断屏蔽位,则事件可以触发相应的中断。 (2)事件还是其它一些操作的触发源,比如DMA,ADC,还有TIM中影子寄存器的传递与更新;而中断是不能触发这些操作的,所以要把事件与中断区分开。 (3)在STM32中,中断与事件不是等价的,一个中断肯定对应一个事件,但一个事件不一定对应一个中断。

STM32中断程序

STM32中断程序 前段时间用STM32F103VBT6写了一个中断的函数,借此机会想了解下STM32的中断机制,用过之后发现STM32的中断配置相当灵活,稳定行很高,测试发现几乎没出过什么差错。我在程序里开了三个中断,一个计数器用于精确延时用,另外两个为外部事件处理中断,下面一一详细介绍,方便初学者入门。 在进行STM32中断配置之前首先需要了解下它的中断部分: 一、Cortex-M3中断机制 在STM32处理器中有43个可屏蔽中断通道(?包含16个Cortex?-M3的中断线)。共设置了16个可编程的优先等级(使用? 4位中断优先级);它的嵌套向?中断控制器(NVIC)和处?器核的接口紧密相连,可以实现低延迟的中断处?和有效处?地处?晚到的中断。嵌套向?中断控制器管?着包括核异常等中断。 Cortex—M3是一个32位的核,在传统的单片机领域中,有一些不同于通用32位CPU应用的要求。比如在工控领域,用户要求具有更快的中断速度,Cortex-M3采用了Tail-Chaining中断技术,完全基于硬件进行中断处理,最多可减少12个时钟周期数,在实际应用中可减少70%中断。 异常或者中断是处理器响应系统中突发事件的一种机制。当异常发生时,Cortex—M3通过硬件自动将编程计数器(PC)、编程状态寄存器(XPSR)、链接寄存器(LR)和R0~R3、R12等寄存器压进堆栈。在Dbus(数据总线)保存处理器状态的同时,处理器通过Ibus(指令总线)从一个可以重新定位的向量表中识别出异常向量,并获取ISR函数的地址,也就是保护现场与取异常向量是并行处理的。一旦压栈和取指令完成,中断服务程序或故障处理程序就开始执行。执行完ISR,硬件进行出栈操作,中断前的程序恢复正常执行。图1为Cortex—M3处理器的异常处理流程。

关于STM32配置中断和GPIO针脚问题

关于STM32配置中断和GPIO针脚问题 STM32是用的什么开发环境?STM32系列单片机,这款单片机功能强大,而且很容易学习,官方示例代码很多,稍加修改就可以开发自己的东西了。嵌入式软体搭配最新版的STM32CubeMX个人电脑开发工具使用,设计人员可在绘图介面向导内配置微控制器,只要按一下,即可生成初始化C代码,直接用於多款市面上流行的第三方开发工具。STM32Nucleo 开发板可让开发人员连接微控制器的全部I/O介面,并整合了ST-Link侦错器(debugger)/程式设计(programmer),无需单独安装侦错器。最後,STM32Nucleo 开发板拥有mbedTM功能,这表示该开发板可与个人电脑直接连结,并直接在mbed线上开发环境执行开发板。 如果之前学51入门的话。STM32F103 系列用keil4 for arm是最方便的,如果是STM32F4 系列就要用Keil5 for arm了。 一。配置中断void NVIC_ConfiguraTIon(void) { NVIC_InitTypeDef NVIC_InitStructure; /* Set the Vector Table base locaTIon at 0x08004000 NVIC_SetVectorTable(NVIC_VectTab_FLASH,0x4000); // 1.分配中断向量表 NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //设置中断优先级 /* Enable the EXTI1 Interrupt NVIC_InitStructure.NVIC_IRQChannel = EXTI1_IRQChannel; // 中断通道 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; // 指定抢占式优先级别1 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; //次优先级为0 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //通道中断使能 NVIC_Init(NVIC_InitStructure); //初始化中断 } 注意:

stm32 EXTI 中断系统 编程步骤

中断系统编程步骤: 以“按K1(按键K1接到PB7管脚)产生一次EXTI中断, L3 (L3接到PC13管脚) 将闪烁一次。”为例。 第一部分配置中断系统 步骤一加入以下头文件: #include "stm32f10x_lib.h" //若使用RCC_Configuration( ); 使能外设对应的时钟,还必须加入以下头文件。//若使用具体的使能外设时钟命令(例如,RCC_APB2PeriphClockCmd( )等),则不需要加入以下头文件。 #include "HelloRobot.h"//(包含RCC_Configuration、GPIO_Configuration、USART_Configuration、NVIC_Configuration这3个函数的HelloRobot.h文件)步骤二GPIO 配置: ①定义用于初始化GPIOx 端口参数的结构体变量 GPIO_InitTypeDef GPIO_InitStructure; ②使能GPIO端口外设对应的时钟(或RCC_Configuration( ); ) RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE); ③定义GPIOx端口管脚、响应速度、工作模式,即定义GPIO端口的初始化参数(通过为结构体变量GPIO_InitStructure 的成员赋值实现): GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; GPIO_Init(GPIOB, &GPIO_InitStructure); ④(调用函数GPIO_Init()来)初始化GPIOx端口,(完成对端口中的寄存器的设置。) GPIO_Init(GPIOx , &GPIO_InitStructure); 步骤三EXTI 的配置: ①定义用于初始化EXTI(外部中断/事件)参数的结构体变量: EXTI_InitTypeDef EXTI_InitStructure; ②使能EXTI外设对应的时钟----注意:当使用EXTI外设时,使能的是AFIO时钟,而不是EXTI外设时钟 RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);

STM32函数库之外部中断

新手入门使用 STM32 函数库之外部中断
作者:佚名 来源:本站原创 点击数: 756 更新时间:2013 年 06 月 12 日 【字体:大 中 小】
啥也不说,先看看我的外星人开发板上的按键原理图。
板子偷懒,或者叫充分利用 IO 口得上拉功能,这边没有加常见的上拉电阻。到时 候编程的时候使能 IO 的上拉就行了~看下面的接口知道了 KEY0 接到了 STM32 的 PA13 上!
曾经 CZZ 在梦里和我说过,STM32 的任何一个 IO 都能作为外部中断输入,哇塞, 超级强大! 参考一般的程序步骤如下: 1、系统初始化,如系统时钟初始化,使之进入 72MHZ 主频; 2、GPIO 配置,务必注意打开 GPIO 时钟时,一定打开 AFIO 时钟。 3、EXTI 配置,在这里配置需要选择哪个引脚作为中断引脚。 4、NVIC 配置,这也是比单片机多出来的部分,我们必须把 NVIC 中对应的通道使 能,并且设置优先级别。 5、使用 while(1)进行死循环,并在中断程序中写入中断发生时应如何处理。 按照上面的方法一步步就能实现功能了~ 首选,定义相关结构体,

GPIO_InitTypeDef GPIO_InitStructure; EXTI_InitTypeDef EXTI_InitStructure; NVIC_InitTypeDef NVIC_InitStructure;
第二步,配置IO及其功能, GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8; 得代码,便于观察! GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_WriteBit(GPIOA,GPIO_Pin_8,Bit_SET); 灭LED //上电立马熄 //此处是配置LED灯
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13; 13上拉输入 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; //上拉输入 GPIO_Init(GPIOA, &GPIO_InitStructure);
//配置PA
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_AFIO,ENABL E); //务必打开GPIOA和AFIO时钟!!! 第三步,配置外部中断,相当于单片机的中断设置。 GPIO_EXTILineConfig(GPIO_PortSourceGPIOA,GPIO_PinSource1 3); //配置A口得13脚为中断 EXTI_ClearITPendingBit(EXTI_Line13); 不加也没得问题,但是保险一下! //清除中断,貌似
EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt; /外部中断 EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Fallin g; //下降沿触发 EXTI_InitStructure.EXTI_Line = EXTI_Line13;


超详细的STM32单片机学习笔记汇总

超详细的STM32单片机学习笔记汇总 1、AHB系统总线分为APB1(36MHz)和APB2(72MHz),其中2>1,意思是APB2接高速设备 2、Stm32f10x.h相当于reg52.h(里面有基本的位操作定义),另一个为stm32f10x_conf.h 专门控制外围器件的配置,也就是开关头文件的作用 3、HSE Osc(High Speed External Oscillator)高速外部晶振,一般为8MHz,HSI RC(High Speed InternalRC)高速内部RC,8MHz 4、LSE Osc(Low Speed External Oscillator)低速外部晶振,一般为32.768KHz,LSI RC (Low Speed InternalRC)低速内部晶振,大概为40KHz左右,提供看门狗时钟和自动唤醒单元时钟源 5、SYSCLK时钟源有三个来源:HSI RC、HSE OSC、PLL 6、MCO[2:0]可以提供4源不同的时钟同步信号,PA8 7、GPIO口貌似有两个反向串联的二极管用作钳位二极管。 8、总线矩阵采用轮换算法对系统总线和DMA进行仲裁 9、ICode总线,DCode总线、系统总线、DMA总线、总线矩阵、AHB/APB桥 10、在使用一个外设之前,必须设置寄存器RCC_AHBENR来打开该外设的时钟 11、数据字节以小端存储形式保存在存储器中 12、内存映射区分为8个大块,每个块为512MB 13、 FLASH的一页为1K(小容量和中容量),大容量是2K。 14、系统存储区(SystemMemory)为ST公司出厂配置锁死,用户无法编辑,用于对FLASH 区域进行重新编程。所以我们烧写程序务必选择BOOT1 = 0,这样通过内嵌的自举程序对FLASH进行烧写,比如中断向量表和代码 15、STM32核心电压为1.8V

STM32学习笔记(2):外部中断的使用

中断对于开发嵌入式系统来讲的地位绝对是毋庸置疑的,在C51单片机时代,一共只 有5个中断,其中2个外部中断,2个定时/计数器中断和一个串口中断,但是在STM32中,中断数量大大增加,而且中断的设置也更加复杂。今天就将来探讨一下关于STM32中的中断系统。 1基本概念 ARM Coetex-M3内核共支持256个中断,其中16个内部中断,240个外部中断和可编程的256级中断优先级的设置。STM32目前支持的中断共84个(16个内部+68个外部),还有16级可编程的中断优先级的设置,仅使用中断优先级设置8bit中的高4位。 STM32可支持68个中断通道,已经固定分配给相应的外部设备,每个中断通道都具备自己的中断优先级控制字节PRI_n(8位,但是STM32中只使用4位,高4位有效),每4个通道的8位中断优先级控制字构成一个32位的优先级寄存器。68个通道的优先级控制字至少构成17个32位的优先级寄存器。 4bit的中断优先级可以分成2组,从高位看,前面定义的是抢占式优先级,后面是响应优先级。按照这种分组,4bit一共可以分成5组 第0组:所有4bit用于指定响应优先级; 第1组:最高1位用于指定抢占式优先级,后面3位用于指定响应优先级; 第2组:最高2位用于指定抢占式优先级,后面2位用于指定响应优先级; 第3组:最高3位用于指定抢占式优先级,后面1位用于指定响应优先级; 第4组:所有4位用于指定抢占式优先级。 所谓抢占式优先级和响应优先级,他们之间的关系是:具有高抢占式优先级的中断可 以在具有低抢占式优先级的中断处理过程中被响应,即中断嵌套。 当两个中断源的抢占式优先级相同时,这两个中断将没有嵌套关系,当一个中断到来后,如果正在处理另一个中断,这个后到来的中断就要等到前一个中断处理完之后才能被处理。如果这两个中断同时到达,则中断控制器根据他们的响应优先级高低来决定先处理哪一个;如果他们的抢占式优先级和响应优先级都相等,则根据他们在中断表中的排位顺序决定先处理哪一个。每一个中断源都必须定义2个优先级。 有几点需要注意的是: 1)如果指定的抢占式优先级别或响应优先级别超出了选定的优先级分组所限定的范围,将可能得到意想不到的结果; 2)抢占式优先级别相同的中断源之间没有嵌套关系; 3)如果某个中断源被指定为某个抢占式优先级别,又没有其它中断源处于同一个抢占式优先级别,则可以为这个中断源指定任意有效的响应优先级别。 2 GPIO外部中断 STM32中,每一个GPIO都可以触发一个外部中断,但是,GPIO的中断是以组位一个单位的,同组间的外部中断同一时间只能使用一个。比如说,PA0,PB0,PC0,PD0,PE0,PF0,PG0这些为1组,如果我们使用PA0作为外部中断源,那么别的就不能够再使用了,在此情况下,我们智能使用类似于PB1,PC2这种末端序号不同的外部中断源。每一组使用

STM32L0单片机 定时中断编程参考知识点

A 嵌入式项目代码结构的分层——HAL(硬件抽象层)、FML(功能模块层)、APL(应用程序层) 一、遇到的问题 在“Zigbee之旅”系列博文中,每写一篇笔者都会编写一个小实验来展开讲解。通过这一段时间的实践,我积累了一些编码经验,但也体会到了之前的代码结构的缺陷: (1)开发效率低:每次使用片内的某一资源(例如定时器等),笔者都要去查询CC2430中文手册,比较eggache~ (2)代码重复较多:每个实验源码中,诸如xtal_init,led_init等初始化函数每次都要编写 (3)不易修改:代码中的业务逻辑与SFR的操作混在一起,可读性较差,修改起来也费力 正是由于以上问题,笔者决定暂停了该系列博文的续写,抽出时间来思考一下解决办法。 笔者在学习嵌入式编程之前,曾有过https://www.sodocs.net/doc/dd11676615.html, 网站开发经验,对其分层理论也有所实践,下面简单提一下: 一般的有一定复杂度的网站可分为以下三层: (1)数据接入层(DAL):负责与数据库的交互,供业务逻辑层调用 (2)业务逻辑层(BLL):调用数据接入层以获取数据,并为具体的业务需求提供支持 (3)用户界面层(UIL):负责呈现最终的用户界面 相信博客园中很大一部分朋友都对此非常熟悉,在此不再赘述。总之,分层以后,大大提高了代码的复用性与扩展性。 那么在嵌入式开发中,能否也利用分层的思想,来提高开发效率,增强其可维护性与可扩展性呢?下面,是一些笔者思考后的浅见。 当然不能照搬https://www.sodocs.net/doc/dd11676615.html, 的具体分层思想,具体问题得具体分析嘛~ 首先,嵌入式开发的核心就是芯片,它提供固定的片内资源共开发者使用。而且它具有一个很重要的特点就是,不随项目的需求变动而变动。所以应将其作为最底层,为上层提供基础支持。我们将其命名为硬件抽象层(Hardware Abstract Layer)。 芯片有了当然还不够,通常我们会在片外扩展一些功能模块来满足具体的项目需求,例如:传感器、键盘、LCD屏等。这一层的特点是,随项目的变动而以模块为单位动态增减。这一层的运作需要芯片内部资源的支持,所以应处于硬件抽象层之上,并为上层调用。我们将其命名为功能模块层(Functional Module Layer)。 OK,现在原材料都准备齐了:芯片+扩展模块,接下来就要开始真正的加工了:我们需要灵活调用之前两层所提供的接口,实现具体的项目需求。我们将其命名为应用程序层(Application Layer)。

STM32学习笔记外部中断的使用

STM32学习笔记(2):外部中断的使用 2011年3月20日外部中断中断对于开发嵌入式系统来讲的地位绝对是毋庸置疑的,在C51单片机时代,一共只有5个中断,其中2个外部中断,2个定时/计数器中断和一个串口中断,但是在STM32中,中断数量大大增加,而且中断的设置也更加复杂。今天就将来探讨一下关于STM32中的中断系统。 1基本概念 ARM Coetex-M3内核共支持256个中断,其中16个内部中断,240个外部中断和可编程的256级中断优先级的设置。STM32目前支持的中断共84个(16个内部+68个外部),还有16级可编程的中断优先级的设置,仅使用中断优先级设置8bit中的高4位。 STM32可支持68个中断通道,已经固定分配给相应的外部设备,每个中断通道都具备自己的中断优先级控制字节PRI_n(8位,但是STM32中只使用4位,高4位有效),每4个通道的8位中断优先级控制字构成一个32位的优先级寄存器。68个通道的优先级控制字至少构成17个32位的优先级寄存器。 4bit的中断优先级可以分成2组,从高位看,前面定义的是抢占式优先级,后面是响应优先级。按照这种分组,4bit一共可以分成5组 第0组:所有4bit用于指定响应优先级; 第1组:最高1位用于指定抢占式优先级,后面3位用于指定响应优先级; 第2组:最高2位用于指定抢占式优先级,后面2位用于指定响应优先级; 第3组:最高3位用于指定抢占式优先级,后面1位用于指定响应优先级; 第4组:所有4位用于指定抢占式优先级。 所谓抢占式优先级和响应优先级,他们之间的关系是:具有高抢占式优先级的中断可以在具有低抢占式优先级的中断处理过程中被响应,即中断嵌套。

STM32单片机实现外部中断的步骤及方法

STM32单片机实现外部中断的步骤及方法 先从最简单的问题开始,用STM32外部中断的方法实现PB.0按键控制PA.0LED灯: 先总的说下实现中断的步骤: 1,配置NVIC寄存器(函数),设置中断为第几组,占先优先级和次优先级; 函数方法: void NVIC_Configuration() { NVIC_InitTypeDef NVIC_InitStruct; NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1); NVIC_InitStruct.NVIC_IRQChannel=EXTI0_IRQn; NVIC_InitStruct.NVIC_IRQChannelPreempTIonPriority=0; NVIC_InitStruct.NVIC_IRQChannelSubPriority=1; NVIC_InitStruct.NVIC_IRQChannelCmd=ENABLE; NVIC_Init( } 以上为配置优先级的一般步骤:设置优先级分组,设置中断通道,分别设置先占优先级,次占优先级,使能等; 2,配置EXTI寄存器及(函数),设置中断线,中断方式,等; voidEXTI_Configuration() { EXTI_InitTypeDefEXTI_InitStructure; EXTI_ClearITPendingBit(EXTI_Line0); GPIO_EXTILineConfig(GPIO_PortSourceGPIOB,GPIO_PinSource0); EXTI_InitStructure.EXTI_Line=EXTI_Line0; EXTI_InitStructure.EXTI_Mode=EXTI_Mode_Interrupt; EXTI_InitStructure.EXTI_Trigger=EXTI_Trigger_Falling;

stm32 外部PB8中断

stm32 外部PB8 中断 一、初始化该引脚时钟 RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOB ,ENABLE); 二、初始化该引脚为外部中断 void GPIO_Config_Init(void) { GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8; //PB8 dog_wake GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB, GPIO_InitStructure); } 三、初始化外部中断函数 void EXTI_Config_Init(void) { EXTI_InitTypeDef EXTI_InitStructure; EXTI_ClearITPendingBit(EXTI_Line8);// GPIO_EXTILineConfig(GPIO_PortSourceGPIOB,GPIO_PinSource8);// EXTI_InitStructure.EXTI_Line=EXTI_Line8; // EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt; // EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling; // EXTI_InitStructure.EXTI_LineCmd = ENABLE;// EXTI_Init(EXTI_InitStructure); }

关于stm32的外部中断与事件的概念

关于stm32的外部中断与事件的概念 最近在写stm32基础库的时候,发现了一个问题, 就是外部中断里,有一个事件寄存器,一直没有明白是 干什么用的。网上查了一下,写个总结。 主要的讲,就是在不进入到中断函数的情况下,触发其 他的操作。比如,我希望在外部中断的时候,去采集ad。

那么其他单片机的做法是,在中断函数中写入adc 采集。而在这里,只需要将事件寄存器置位,然后在其他外设 寄存器中设置即可。这样设置,当外部中断被触发时, 则可以不用在中断函数中处理adc。直接由事件来驱动adc采集。 这张图是一条外部中断线或外部事件线的示意图,图中信号线上划有一条斜线,旁边标志19字样的注释,表示这样的线路共有19套.图中的蓝色虚线箭头,标出了外部中断信号的传输路径,首先外部信号从编号1的芯片管脚进入,经过编号2的边沿检测电路,通过编号3的或门进入中断挂起请求寄存器,最后经过编号4的与门输出到NVIC中断检测电路,这个边沿检测电路受上升沿或下降沿选择寄存器控制,用户可以使用这两个寄存器控制需要哪一个边沿产生中断,因为选择上升沿或下降沿是分别受2个平行的寄存器控制,所以用户可以同时选择上升沿或下降沿,而 如果只有一个寄存器控制,那么只能选择一个边沿了. 按下来是编号3的或门,这个或门的另一个输入是软 件中断/事件寄存器,从这里可以看出,软件可以优先于外部信号请求一个中断或事件,即当软件中断/事件寄存器 的对应位为"1"时,不管外部信号如何,编号3 的或门都会输出有效信号.

一个中断或事件请求信号经过编号3的或门后,进入挂起请求寄存器,到此之前,中断和事件的信号传输通路都是一致的,也就是说,挂起请求寄存器中记录了外部信号的电平变化. 外部请求信号最后经过编号4的与门,向NVIC中断控制器发出一个中断请求,如果中断屏蔽寄存器的对应位为"0",则该请求信号不能传输到与门的另一端,实现了中断的屏蔽. 明白了外部中断的请求机制,就很容易理解事件的请求机制了.图中红色虚线箭头,标出了外部事件信号的传输路径,外部请求信号经过编号3的或门后,进入编号5 的与门,这个与门的作用与编号4的与门类似,用于引入事件屏蔽寄存器的控制;最后脉冲发生器的一个跳变的信号转变为一个单脉冲,输出到芯片中的其它功能模块.从这张图上我们也可以知道,从外部激励信号来看,中断和事件的产生源都可以是一样的.之所以分成2个部分,由于中断是需要CPU参与的,需要软件的中断服务函数才能完成中断后产生的结果;但是事件,是靠脉冲发生器产生一个脉冲,进而由硬件自动完成这个事件产生的结果,当然相应的联动部件需要先设置好,比如引起DMA操作,AD 转换等; 简单举例:外部I/O触发AD转换,来测量外部物品的重量;

相关主题