搜档网
当前位置:搜档网 › 高中数学解题思维策略

高中数学解题思维策略

高中数学解题思维策略
高中数学解题思维策略

第四讲 数学思维的开拓性

一、概述

数学思维开拓性指的是对一个问题能从多方面考虑;对一个对象能从多种角度观察;对一个题目能想出多种不同的解法,即一题多解。

“数学是一个有机的整体,它的各个部分之间存在概念的亲缘关系。我们在学习每一分支时,注意了横向联系,把亲缘关系结成一张网,就可覆盖全部内容,使之融会贯通”,这里所说的横向联系,主要是靠一题多解来完成的。通过用不同的方法解决同一道数学题,既可以开拓解题思路,巩固所学知识;又可激发学习数学的兴趣和积极性,达到开发潜能,发展智力,提高能力的目的。从而培养创新精神和创造能力。

在一题多解的训练中,我们要密切注意每种解法的特点,善于发现解题规律,从中发现最有意义的简捷解法。

数学思维的开拓性主要体现在:

(1)一题的多种解法

例如 已知复数z 满足1||=z ,求||i z -的最大值。

我们可以考虑用下面几种方法来解决:

①运用复数的代数形式;

②运用复数的三角形式;

③运用复数的几何意义;

④运用复数模的性质(三角不等式)||||||||||||212121z z z z z z +≤-≤-; ⑤运用复数的模与共轭复数的关系z z z ?=2||;

⑥(数形结合)运用复数方程表示的几何图形,转化为两圆1||=z 与r i z =-||有公共点时,r 的最大值。

(2)一题的多种解释 例如,函数式22

1ax y =可以有以下几种解释: ①可以看成自由落体公式.2

12gt s = ②可以看成动能公式.2

12mv E = ③可以看成热量公式.2

12RI Q = 又如“1”这个数字,它可以根据具体情况变成各种形式,使解题变得简捷。“1”可以变换为:x tg x a b x x x

x a b a a 2222sec ),(log )(log ,cos sin ,,log -?+,等等。 1. 思维训练实例

例1 已知.1,12222=+=+y x b a 求证:.1≤+by ax

分析1 用比较法。本题只要证.0)(1≥+-by ax 为了同时利用两个已知条件,只需要观察到两式相加等于2便不难解决。

证法1 )()11(2

1)(1by ax by ax +-+=

+-Θ 所以 .1≤+by ax 分析2 运用分析法,从所需证明的不等式出发,运用已知的条件、定理和性质等,得出正确的结论。从而证明原结论正确。分析法其本质就是寻找命题成立的充分条件。因此,证明过程必须步步可逆....

,并注意书写规范。 证法2 要证 .1≤+by ax

只需证 ,0)(1≥+-by ax

即 ,0)(22≥+-by ax

因为 .1,12222=+=+y x b a

所以只需证 ,0)(2)(2222≥+-+++by ax y x b a

即 .0)()(22≥-+-y b x a

因为最后的不等式成立,且步步可逆。所以原不等式成立。 分析3 运用综合法(综合运用不等式的有关性质以及重要公式、定理(主要是平均值不等式)进行推理、运算,从而达到证明需求证的不等式成立的方法)

证法3 .2,22222y b by x a ax +≤+≤Θ.1222

222=+++≤+∴y b x a by ax 即 .1≤+by ax

分析4 三角换元法:由于已知条件为两数平方和等于1的形式,符合三角函数同角关系中的平方关系条件,具有进行三角代换的可能,从而可以把原不等式中的代数运算关系转化为三角函数运算关系,给证明带来方便。

证法4 ,1,12222=+=+y x b a Θ∴可设

分析5 数形结合法:由于条件122=+y x 可看作是以原点为圆心,半径为1的单位圆,而.22b a by

ax by ax ++=+联系到点到直线距离公式,可得下面证法。

证法5 (如图4-2-1)因为直线0:=+by ax l 经过

圆122=+y x 的圆心O ,所以圆上任意一点),(y x M

到直线0=+by ax 的距离都小于或等于圆半径1,

图4-2

即 .11|||

|22≤+?≤+=++=by ax by ax b a by ax d

简评 五种证法都是具有代表性的基本方法,也都是应该掌握的重要方法。除了证法

4、证法5的方法有适应条件的限制这种局限外,前三种证法都是好方法。可在具体应用过程中,根据题目的变化的需要适当进行选择。

例2 如果,0))((4)(2=----z y y x x z 求证:z y x 、、成等差数列。

分析1 要证z y x 、、,必须有z y y x -=-成立才行。此条件应从已知条件中得出。故此得到直接的想法是展开已知条件去寻找转换。

证法1 Θ,0))((4)(2=----z y y x x z

故 z y y x -=-,即 z y x 、、成等差数列。

分析2 由于已知条件具有x z z y y x ---,,轮换对称特点,此特点的充分利用就是以换元去减少原式中的字母,从而给转换运算带来便利。

证法2 设,,b z y a y x =-=-则.b a z x +=-

于是,已知条件可化为:

所以z y x 、、成等差数列。

分析3 已知条件呈现二次方程判别式ac b 42-=?的结构特点引人注目,提供了构造一个适合上述条件的二次方程的求解的试探的机会。

证法3 当0=-y x 时,由已知条件知,,0z y x x z ==∴=-即z y x 、、成等差数列。 当0≠-y x 时,关于t 的一元二次方程:,0)()()(2=-+-+-z y t x z t y x

其判别式=?,0))((4)(2=----z y y x x z 故方程有等根,显然t =1为方程的一个根,从而方程的两根均为1,

由韦达定理知 .121z y y x y

x z y t t -=-?=--=?即 z y x 、、成等差数列。 简评:证法1是常用方法,略嫌呆板,但稳妥可靠。证法2简单明了,是最好的解法,其换元的技巧有较大的参考价值。证法3引入辅助方程的方法,技巧性强,给人以新鲜的感受和启发。

例3已知1=+y x ,求22y x +的最小值。

分析1 虽然所求函数的结构式具有两个字母y x 、,但已知条件恰有y x 、的关系式,可用代入法消掉一个字母,从而转换为普通的二次函数求最值问题。

解法1 .1,1x y y x -=∴=+Θ

设22y x z +=,则.122)1(222+-=-+=x x x x z

Θ 二次项系数为,02>故z 有最小值。

∴ 当2

1222=?--=x 时,.212421242=)-(-=最小值???z ∴ 22y x +的最小值为.2

1 分析

2 已知的一次式1=+y x 两边平方后与所求的二次式22y x +有密切关联,于是所求的最小值可由等式转换成不等式而求得。

解法2 ,1)(,12=+∴=+y x y x Θ即.2122xy y x -=+

即 ,2122≥

+y x 当且仅当21==y x 时取等号。∴ 22y x +的最小值为.2

1 分析3 配方法是解决求最值问题的一种常用手段,利用已知条件结合所求式子,配方后得两个实数平方和的形式,从而达到求最值的目的。 解法3 设.22y x z +=

∴ 当21=

=y x 时,.21=最小z 即22y x +的最小值为.2

1 分析4 因为已知条件和所求函数式都具有解析几何常见方程的特点,故可得到用解析法求解的启发。 解法4 如图4-2-2,1=+y x 表示直线,l 22y x +

表示原点到直线l 上的点),(y x P 的距离的平方。

显然其中以原点到直线l 的距离最短。 此时,,222|

100|=-+=d 即.22)(22=最小y x + 所以22y x +的最小值为.21 注 如果设,22z y x =+则问题还可转化为直线1=+y x 与圆z y x =+22有交点时,半径z 的最小值。

简评 几种解法都有特点和代表性。解法1是基本方法,解法2、3、4都紧紧地抓住题设条件的特点,与相关知识联系起来,所以具有灵巧简捷的优点,特别是解法4,形象直观,值得效仿。

例4设.1,2

R z z R z ∈+?求证:.1||=z

图4-2-

分析1 由已知条件

21z

z +为实数这一特点,可提供设实系数二次方程的可能,在该二次方程有两个虚根的条件下,它们是一对共轭虚根,运用韦达定理可以探求证题途径。

证法1 设),(12R a a z z ∈=+当0=a 时,可得0=z 与R z ?条件不合。 .0≠∴a 于是有 .02=+-a z az

∴?,R z Θ该方程有一对共轭虚根,设为21,z z ,于是.||||,222121z z z z =∴=

又由韦达定理知 .1||.1||||,12221221121=∴===?=?∴==?z z z z z z z a

a z z 分析2 由于实数的共轭复数仍然是这个实数,利用这一关系可以建立复数方程,注意到2||z z z =这一重要性质,即可求出||z 的值。

证法2 设

),(12R a a z

z ∈=+当0=a 时,可得0=z 与R z ?条件不合,.0≠∴a 则有 21z z a +=,.11,22z z z z a a +=+∴=Θ 即 ).()()1()1(22z z z z z z z z z z z z ?+=?+∴+=+

但 ,||2z z z =?.0)||1)((,||||222=--∴?+=?+∴z z z z z z z z z

而 .1||,2=∴?-z R z z 即.1||=z

分析3 因为实数的倒数仍为实数,若对原式取倒数,可变换化简为易于进行运算的形式。再运用共轭复数的性质,建立复数方程,具有更加简捷的特点。

证法3 ,1,122R z z R z z ∈+∴∈+即.11R z z

z z z z ∈??+=+ 从而必有.1||.1=∴=?z z z

简评 设出复数的代数形式或三角形式,代入已知条件化简求证,一般也能够证明,它是解决复数问题的基本方法。但这些方法通常运算量大,较繁。现在的三种证法都应用复数的性质去证,技巧性较强,思路都建立在方程的观点上,这是需要体会的关键之处。证法3利用倒数的变换,十分巧妙是最好的方法。

例5 由圆922=+y x 外一点)12,5(P 引圆的割线交圆于B A 、两点,求弦AB 的中点M 的轨迹方程。

分析1 (直接法)根据题设条件列出几何等式,运用解析几何基本公式转化为代数等式,从而求出曲线方程。这里考虑在圆中有关弦中点的一些性质,圆心和弦中点的连线垂直于弦,可得下面解法。

解法1 如图4-2-3,设弦AB 的中点M 的坐标为),(y x M ,连接OM OP 、, 则AB OM ⊥,在OMP ?中,由两点间的距离公式和勾股定理有

整理,得 .012522=--+y x y x 其中.33≤≤-x

分析2

曲线类型,运用待定系数法求出曲线方程。

解法2 因为M 是AB 的中点,所以AB OM ⊥,

所以点M 的轨迹是以||OP 为直径的圆,圆心为)6,2

5(, 半径为∴=,2

132||OP 该圆的方程为: 化简,得 .012522=--+y x y x 其中.33≤≤-x

分析3 (交轨法)将问题转化为求两直线的交点轨迹问题。因为动点M 可看作直线OM 与割线PM 的交点,而由于它们的垂直关系,从而获得解法。

解法3 设过P 点的割线的斜率为,k 则过P 点的割线方程为:)5(12-=-x k y . Θ AB OM ⊥且过原点,OM ∴的方程为 .1x k

y -=这两条直线的交点就是M 点的轨迹。两方程相乘消去,k 化简,得:.012522=--+y x y x 其中.33≤≤-x

分析4 (参数法)将动点坐标表示成某一中间变量(参数)的函数,再设法消去参数。由于动点M 随直线的斜率变化而发生变化,所以动点M 的坐标是直线斜率的函数,从而可得如下解法。

解法4 设过P 点的割线方程为:)5(12-=-x k y

它与圆922=+y x 的两个交点为B A 、,AB 的中点为M .

解方程组 ???=++-=,

912)5(22y x x k y 利用韦达定理和中点坐标公式,可求得M 点的轨迹方程为:

.012522=--+y x y x 其中.33≤≤-x

分析5 (代点法)根据曲线和方程的对应关系:点在曲线上则点的坐标满足方程。设而不求,代点运算。从整体的角度看待问题。这里由于中点M 的坐标),(y x 与两交点),(),(2211y x B y x A 、通过中点公式联系起来,又点、、M P B A 、构成4点共线的和谐关系,根据它们的斜率相等,可求得轨迹方程。

解法5 设),,(),,(),,(2211y x B y x A y x M 则.2,22121y y y x x x =+=+

两式相减,整理,得 .0))(())((21121212=+--+-y y y y x x x x

所以 ,21211212y

x y y x x x x y y -=++-=--

即为AB 的斜率,而AB 对斜率又可表示为,512x

y --,512y x x y -=--∴ 化简并整理,得 .012522=--+y x y x 其中.33≤≤-x

简评 上述五种解法都是求轨迹问题的基本方法。其中解法1、2、3局限于曲线是圆的条件,而解法4、5适用于一般的过定点P 且与二次曲线C 交于B A 、两点,求AB 中点M 的轨迹问题。具有普遍意义,值得重视。对于解法5通常利用AB PM k k =可较简捷地求出轨迹方程,比解法4计算量要小,要简捷得多。

高中数学模型解题法

高中数学模型解题法 高中数学模型解题理念 数学模型解题首先需要明确以下六大理念(原则): 理念之一——理论化原则。解题必须有理论指导,才能由解题的必然王国走进解题的自由王国,因为思维永远高于方法,伟大的导师恩格斯在100多年前就指出:一个名族要屹立于世界名族之林,就一刻也不能没有理论思维!思维策略永远比解题方法重要,因为具体解题方法可以千变万化,而如何想即怎样分析思考这一问题才是我们最想也是最有价 值的!优秀的解题方法的获得有赖于优化的思维策略的指导,没有好的想法,要想获得好的解法,是不可能的! 理论之二——个性化原则。倡导解题的个性张扬,即要学会具体问题具体分析,致力于追求解决问题的求优求简意识,但是繁复之中亦显基础与个性——通性通法不可丢,要练扎实基本功!具有扎实的双基恰恰是我们的优势,因为万变不离其宗,只有基础打得牢了才可以盖得起知识与思维的坚固大厦。因此要求同学们,在具体的解题过程中,要学会辩证地使用解题模型,突出其灵活性,并不断地体验反思解题模型的有效性,以便于形成自己独特的解题个性风格与特色。 理论之三——能力化原则。只有敢于发散(进行充分地联想和想象,即放得开),才能有效地聚合,不会发散,则无力

聚合!因此,充分训练我们的发散思维能力,尽情地展开我们联想与想象的翅膀,才能在创新的天空自由地翱翔! 理论之四——示范化原则。任何材料都是给我们学生自学方法的示范,因此面对任何有利于增长我们的知识与智慧的机会,我们要应不失时机地抓住,并从不同的角度、不同的层次、甚至通过不同的训练途径、用不同时间段来认识、理解,并不断深化,以达到由表知里、透过现象把握问题本质与规律的目的。关于学思维方法,我们应当经过两个层次:一是:学会如何解题;二是:学会如何想题。 理论之五——形式化原则。哲学上讲内容与形式的辩证形式,内容决定形式,形式反映内容,充实寓于完美的形式之中,简洁完美的形式是充实而有意义的内容的有效载体,一个好的解题设想或者灵感,必然要通过解题的过程来体现,将解题策略设计及优化的解题过程程序化,形成可供我们在解题时遵循的统一形式,就是解题模型。 理论之六——习惯性原则。关于数学的解题,有三个层次:第一个层次,正常的解题,就是按照已知、求解、作答等等。这是我们大多数同学的解题情况,解出来,高兴得不得了,也不再做深层次的追求与思考,解不出来,就一头露水,而且很郁闷,不知其所以然。第二个层次,有思考的解题,主要就是发散和聚合,简单点说就是一题多解和对于解题“统一”模型的思考。第三个层次,主动的解题,就是对题

数学思维

二、《解密数学思维的内核》 数学解题的思维过程 数学解题的思维过程是指从理解问题开始,经过探索思路,转换问题直至解决问题,进行回顾的全过程的思维活动。 对于数学解题思维过程,G . 波利亚提出了四个阶段*(见附录),即弄清问题、拟定计划、实现计划和回顾。这四个阶段思维过程的实质,可以用下列八个字加以概括:理解、转换、实施、反思。 第一阶段:理解问题是解题思维活动的开始。 第二阶段:转换问题是解题思维活动的核心,是探索解题方向和途径的积极的尝试发现过程,是思维策略的选择和调整过程。 第三阶段:计划实施是解决问题过程的实现,它包含着一系列基础知识和基本技能的灵活运用和思维过程的具体表达,是解题思维活动的重要组成部分。 第四阶段:反思问题往往容易为人们所忽视,它是发展数学思维的一个重要方面,是一个思维活动过程的结束包含另一个新的思维活动过程的开始。 数学解题的技巧 为了使回想、联想、猜想的方向更明确,思路更加活泼,进一步提高探索的成效,我们必须掌握一些解题的策略。 一切解题的策略的基本出发点在于“变换”,即把面临的问题转化为一道或几道易于解答的新题,以通过对新题的考察,发现原题的解题思路,最终达到解决原题的目的。 基于这样的认识,常用的解题策略有:熟悉化、简单化、直观化、特殊化、一般化、整体化、间接化等。 一、熟悉化策略 所谓熟悉化策略,就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题。 一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。从结构上来分析,任何一道解答题,都包含条件和结论(或问题)两个方面。因此,要把陌生题转化为熟悉题,可以在变换题目的条件、结论(或问题)以及它们的联系方式上多下功夫。 常用的途径有: (一)、充分联想回忆基本知识和题型: 按照波利亚的观点,在解决问题之前,我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题。 (二)、全方位、多角度分析题意: 对于同一道数学题,常常可以不同的侧面、不同的角度去认识。因此,根据自己

高一数学学习方法:数学解题思维和解题技巧_名师指点

高一数学学习方法:数学解题思维和解题技巧_名师指点 高中数学学习,方法很重要,今天,学习方法网小编为大家整理了高一数学学习方法,供大家参考!更多内容尽请关注学习方法网! 高一数学学习方法:数学解题思维和解题技巧 数学解题的思维过程 数学解题的思维过程是指从理解问题开始,经过探索思路,转换问题直至解决问题,进行回顾的全过程的思维活动。 对于数学解题思维过程,G . 波利亚提出了四个阶段*(见附录),即弄清问题、拟定计划、实现计划和回顾。这四个阶段思维过程的实质,可以用下列八个字加以概括:理解、转换、实施、反思。 第一阶段:理解问题是解题思维活动的开始。 第二阶段:转换问题是解题思维活动的核心,是探索解题方向和途径的积极的尝试发现过程,是思维策略的选择和调整过程。 第三阶段:计划实施是解决问题过程的实现,它包含着一系列基础知识和基本技能的灵活运用和思维过程的具体表达,是解题思维活动的重要组成部分。 第四阶段:反思问题往往容易为人们所忽视,它是发展数学思维的一个重要方面,是一个思维活动过程的结束包含另一个新的思维活动过程的开始。 数学解题的技巧 为了使回想、联想、猜想的方向更明确,思路更加活泼,进一步提高探索的成效,我们必须掌握一些解题的策略。 一切解题的策略的基本出发点在于“变换”,即把面临的问题转化为一道或几道易于解答的新题,以通过对新题的考察,发现原题的解题思路,最终达到解决原题的目的。 基于这样的认识,常用的解题策略有:熟悉化、简单化、直观化、特殊化、一般化、整体化、间接化等。 一、熟悉化策略所谓熟悉化策略,就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题。

高中数学解题八个思维模式和十个思维策略

高中数学解题八种思维模式 和十种思维策略 引言 “数学是思维的体操” “数学教学是数学(思维)活动的教学。” 学习数学应该看成是学习数学思维过程以及数学思维结果这二者的综合,因而可以说数学思维是动的数学,而数学知识本身是静的数学,这二者是辩证的统一。作为思维载体的数学语言简练准确和数学形式具有符号化、抽象化、结构化倾向。 高中数学思维中的重要向题 它可以包括: 高中数学思维的基本形式 高中数学思维的一般方法 高中数学中的重要思维模式 高中数学解题常用的数学思维策略 高中数学非逻辑思维(包括形象思维、直觉思维)问题研究; 高中数学思维的指向性(如定向思维、逆向思维、集中思维和发散思维等)研究; 高中数学思维能力评估:广阔性、深刻性、灵活性、敏捷性、批判性、创造性 高中数学思维的基本形式 从思维科学的角度分析,作为理性认识的人的个体思维题可以分成三种:逻辑思维、形象思维、直觉思维 一数学逻辑思维的基本形式1、概念是逻辑思维的最基本的思维形式,数学概念间的逻辑关系,a同一关系b从属关系c交叉关系以及d对立关系e矛盾关系12、判断是逻辑思维在概念基础上的发展,它表现为对概念的性质或关系有所肯定或否定,是认识概念间联系的思维形式。3、推理是从一个或几个已知判断推出另一个新判断的思维形式,是对判断间的逻辑关系的认识。 二数学形象思维的基本形式1图形表象是与外部几何图形的形状相一致的脑中示意图,2图式表象是与外部数学式子的结初关系相一致的模式形象。3形象识别直感是用数学表象这个类象(普遍形象)的特征去比较数学对象的个象,根据形象特征整合的相似性来判别个象是否与类象同质的思维形式。4模式补形直感是利用主体已在头脑中建构的数学表象模式1,对具有部分特征相同的数学对象进行表象补形,实施整合的思维形式。5形象相似直感是以形象识别直感和模式补形直感为基础基础的复合直感。6 象质转换直感是利用数学表象的变化或差异来判别数学在对象的质变或质异的形象特征判断。7图形

高中数学知识点以及解题方法大全

前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案…………………………………… 前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去 法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、 归纳和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化 归)思想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化( 第一章高中数学解题基本方法 一、配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a+b) 2 =a 2 +2ab+b 2 ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 +b 2 =(a+b) 2 -2ab=(a-b) 2 +2ab; a 2 +ab+b 2 =(a+b) 2 -ab=(a-b) 2 +3ab=(a+ b 2) 2 +( 3 2b) 2 ; a 2 +b 2 +c 2 +ab+bc+ca= 1 2[(a+b) 2 +(b+c) 2 +(c+a) 2 ] a 2 +b 2 +c 2 =(a+b+c) 2 -2(ab+bc+ca)=(a+b-c) 2 -2(ab-bc-ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sinαcosα=(sinα+cosα) 2 ; x 2 + 1 2 x=(x+ 1 x) 2 -2=(x- 1 x) 2 +2 ;……等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a n}中,a1?a5+2a3?a5+a3?a7=25,则 a3+a5=_______。 2. 方程x 2 +y 2 -4kx-2y+5k=0表示圆的充要条件是_____。 A. 1 41 C. k∈R D. k= 1 4或k=1 3. 已知sin 4 α+cos 4 α=1,则sinα+cosα的值为______。 A. 1 B. -1 C. 1或-1 D. 0 4. 函数y=log1 2 (-2x 2 +5x+3)的单调递增区间是_____。 A. (-∞, 5 4] B. [ 5 4,+∞) C. (- 1 2, 5 4] D. [ 5 4,3) 5. 已知方程x 2 +(a-2)x+a-1=0的两根x1、x2,则点P(x1,x2)在圆x 2 +y 2 =4上,则实数a=_____。 【简解】 1小题:利用等比数列性质a m p -a m p +=a m 2 ,将已知等式左边后配方(a3+a5) 2 易求。答案是:5。 2小题:配方成圆的标准方程形式(x-a) 2 +(y-b) 2 =r 2 ,解r 2 >0即可,选B。 3小题:已知等式经配方成(sin 2 α+cos 2 α) 2 -2sin 2 αcos 2 α=1,求出sinαcosα,然后求出所求式的平方值,再开方求解。选C。 4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。选D。 5小题:答案3-11。 Ⅱ、示范性题组: 例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____。 A. 23 B. 14 C. 5 D. 6 【分析】先转换为数学表达式:设长方体长宽高分别为x,y,z,则211 424 () () xy yz xz x y z ++= ++= ? ? ? ,而欲求对角线长x y z 222 ++,将其配凑成两已知式的组合形式可得。

高中数学八种思维方法如何训练数学思维

高中数学八种思维方法如何训练数学思维 在数学学习中,比运算更重要的是思维方式。下面介绍几种适合大家的数学学习思维 方法以及如何训练数学思维,欢迎阅读。 如何学好高中数学高中数学解题方法与技巧怎样学好高中数学高中数学怎么学成绩提 高快 一、转化方法: 转化思维,既是一种方法,也是一种思维。转化思维,是指在解决问题的过程中遇到 障碍时,通过改变问题的方向,从不同的角度,把问题由一种形式转换成另一种形式,寻 求最佳方法,使问题变得更简单、更清晰。 二、逻辑方法: 逻辑是一切思考的基础。逻辑思维,是人们在认识过程中借助于概念、判断、推理等 思维形式对事物进行观察、比较、分析、综合、抽象、概括、判断、推理的思维过程。逻 辑思维,在解决逻辑推理问题时使用广泛。 三、逆向方法: 逆向思维也叫求异思维,它是对司空见惯的似乎已成定论的事物或观点反过来思考的 一种思维方式。敢于“反其道而思之”,让思维向对立面的方向发展,从问题的相反面深 入地进行探索,树立新思想,创立新形象。 四、对应方法: 对应思维是在数量关系之间(包括量差、量倍、量率)建立一种直接联系的思维方法。比较常见的是一般对应(如两个量或多个量的和差倍之间的对应关系)和量率对应。 五、创新方法: 创新思维是指以新颖独创的方法解决问题的思维过程,通过这种思维能突破常规思维 的界限,以超常规甚至反常规的方法、视角去思考问题,提得出与众不同的解决方案。可 分为差异性、探索式、优化式及否定性四种。 点击查看:学好数学的核心概念与思维方法 六、系统方法: 系统思维也叫整体思维,系统思维法是指在解题时对具体题目所涉及到的知识点有一 个系统的认识,即拿到题目先分析、判断属于什么知识点,然后回忆这类问题分为哪几种 类型,以及对应的解决方法。

高考数学解题思维能力是怎样练成的.doc

高考数学解题思维能力是怎样练成的 纵观近几年高考数学试题,可以看出高考数学试题加强了对知识点灵活应用的考察。这就对考生的思维能力要求大大加强,下面是我给大家带来的,希望对你有帮助。 高考数学解题思维能力怎样练成的 第一,从求解(证)入手——寻找解题途径的基本方法遇到有一定难度的考题我们会发现出题者设置了种种障碍。从已知出发,岔路众多,顺推下去越做越复杂,难得到答案,如果从问题入手,寻找要想获得所求,必须要做什么,找到"需知"后,将"需知"作为新的问题,直到与"已知"所能获得的"可知"相沟通,将问题解决。事实上,在不等式证明中采用的"分析法"就是这种思维的充分体现,我们将这种思维称为"逆向思维"——必要性思维。 第二,数学式子变形——完成解题过程的关键解答高考数学试题遇到的第二障碍就是数学式子变形。一道数学综合题,要想完成从已知到结论的过程,必须经过大量的数学式子变形,而这些变形仅靠大量的做题过程是无法真正完全掌握的,很多考生都有这样的经历,在解一道复杂的考题时,做不下去了,而回过头来再看一看答案,才恍然大悟,解法这么简单,后悔莫及,埋怨自己怎么糊涂到没有把式子再这么变一下呢? 其实数学解题的每一步推理和运算,实质都是转换(变形).但是,转换(变形)的目的是更好更快的解题,所以变形的方向必定是化繁为简,化抽象为具体,化未知为已知,也就是创造条件向有利于解题的方向转化.还

必须注意的是,一切转换必须是等价的,否则解答将出现错误。 解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的 桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。寻找差异是变形依赖的原则,变形中一些规律性的东西需要总结。在后面的几章中我们列举的一些思维定势,就是在数学思想指导下总结出来的。在解答高考题中时刻都在进行数学变形由复杂到简单,这也就是转化,数学式子变形的思维方式:时刻关注所求与已知的差异。 第三、回归课本---夯实基础。 1)揭示规律----掌握解题方法高考试题再难也逃不了课本揭示的思维 方法及规律。我们说回归课本,不是简单的梳理知识点。课本中定理,公式推证的过程就蕴含着重要的方法,而很多考生没有充分暴露思维过程,没有发觉其内在思维的规律就去解题,而希望通过题海战术去"悟"出某些道理,结果是题海没少泡,却总也不见成效,最终只能留在理解的肤浅,仅会机械的模仿,思维水平低的地方。因此我们要侧重基本概念,基本理论的剖析,达到以不变应万变。 2)构建网络----融会贯通在课本函数这章里,有很多重要结论,许多学生由于理解不深入,只靠死记硬背,最后造成记忆不牢,考试时失分。 例如: 若f(x+a)=f(b-x)则f(x)关于对称。如何理解?我们令x1=a+x,x2=b-x,则f(x1)=f(x2),x1+x2=a+b,=常数,即两自变量之和是定值,它们对应的函数值相等,这样就理解了对称的本质。结合解析几何中的中点坐标的横坐标为定值,或用特殊函数,二次函数的图像,记忆这个结论就很简单了,

高中数学解题的思想方法

高中数学解题的思想方法(经典) 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ① 常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等; ② 数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③ 数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳和演绎等; ④ 常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助大家掌握解题的金钥匙,掌握解题的思想方法,咱们就先介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想。最后谈谈解题中的有关策略和高考中的几个热点问题。 在每一个方法,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现。再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范。巩固性题组旨在检查学习的效果,起到巩固的作用。每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。 一、配方法 从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。

高中最全数学解题的思维策略资料全

一、《高中数学解题的思维策略》
很抱歉这么晚才来给大家讲课,因为今年暑假刚去安徽写生画图,
昨天下午坐了 24 个小时的火车过来,误了 4 天的课程,最后咱们
下午物理上完之后再给大家补课,再给大家补 5 天的课程,
去年高考难,很多学生数学考得也很不错,,很多人可能会问补课
有用吗。给大家举个例子,那几年留学很流行,大家可能会说,留
学很贵,实际上很多海归回来后一年的工资就把多花的挣回来了,
补课也是,讲到的某些知识点能被大家用到高考中,增加分数,高
考中分数的重要性,,我姐是个老师,我姐经常说孩子们考好了,
家长就说,,考不好,家长就说老师和郭师哥教的不好,实际上主
体还是我们学生,次要的才是老师,家长,环境,据去年那批学生
反映最后对我们 3 个教的还不错,
我先讲一下我补课大概基本要讲的内容,把大家数学必修的知识点
基本过一遍,再做相应的习题,中间穿插还有很多我个人感觉很多
好题;很多我归纳的知识和一些数学技巧;在最后 2 天我要给大家
讲一下数学解题策略,如果最后还有时间的话,还会给大家讲一下
一些英语,语文和其他科目的技巧。


数学教学的目的在于培养学生的思维能力,培养良好思维品质的途径,是进行有效
的训练,本策略结合数学教学的实际情况,从以下四个方面进行讲解:
一、数学思维的变通性(举例子过几天再给他们讲,考试的时候有些难题大家容易钻
牛角尖,这个变通不只是说思维,也可以说是大家对数学卷子的一种变通,高考 120 分
钟,12 道选择,4 道填空,基本用时不超过 50 分钟,选这题一般最后 2 个比较难,填
空题一般最后一个比较难,大家很容易被这卡主,流汗,紧张,看到你旁边的人第 2 道

高中数学解题思维策略

高中数学解题思维策略文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

第四讲 数学思维的开拓性 一、概述 数学思维开拓性指的是对一个问题能从多方面考虑;对一个对象能从多种角度观察;对一个题目能想出多种不同的解法,即一题多解。 “数学是一个有机的整体,它的各个部分之间存在概念的亲缘关系。我们在学习每一分支时,注意了横向联系,把亲缘关系结成一张网,就可覆盖全部内容,使之融会贯通”,这里所说的横向联系,主要是靠一题多解来完成的。通过用不同的方法解决同一道数学题,既可以开拓解题思路,巩固所学知识;又可激发学习数学的兴趣和积极性,达到开发潜能,发展智力,提高能力的目的。从而培养创新精神和创造能力。 在一题多解的训练中,我们要密切注意每种解法的特点,善于发现解题规律,从中发现最有意义的简捷解法。 数学思维的开拓性主要体现在: (1)一题的多种解法 例如 已知复数z 满足1||=z ,求||i z -的最大值。 我们可以考虑用下面几种方法来解决: ①运用复数的代数形式; ②运用复数的三角形式; ③运用复数的几何意义; ④运用复数模的性质(三角不等式)||||||||||||212121z z z z z z +≤-≤-; ⑤运用复数的模与共轭复数的关系z z z ?=2||; ⑥(数形结合)运用复数方程表示的几何图形,转化为两圆1||=z 与r i z =-||有公共点时,r 的最大值。 (2)一题的多种解释 例如,函数式22 1ax y =可以有以下几种解释: ①可以看成自由落体公式.2 12gt s = ②可以看成动能公式.2 12mv E = ③可以看成热量公式.2 12RI Q = 又如“1”这个数字,它可以根据具体情况变成各种形式,使解题变得简捷。“1”可以变换为:x tg x a b x x x x a b a a 2222sec ),(log )(log ,cos sin ,,log -?+,等等。 1. 思维训练实例 例1 已知.1,12222=+=+y x b a 求证:.1≤+by ax 分析1 用比较法。本题只要证.0)(1≥+-by ax 为了同时利用两个已知条件,只需要观察到两式相加等于2便不难解决。

高中数学解题四大思想方法(数学)

思想方法一、函数与方程思想 方法1 构造函数关系,利用函数性质解题 根据题设条件把所求的问题转化为对某一函数性质的讨论,从而使问题得到解决,称为构造函数解题。通过构造函数,利用函数的单调性解题,在解方程和证明不等式中最为广泛,解题思路简洁明快。 例1 (10安徽)设232555322(),(),(),555 a b c ===则,,a b c 的大小关系是( ) ....A a c b B a b c C c a b D b c a >>>>>>>> 例2 已知函数21()(1)ln , 1.2 f x x ax a x a =-+-> (1) 讨论函数()f x 的单调性; (2) 证明:若5,a <则对任意12121212 ()(),(0,),, 1.f x f x x x x x x x -∈+∞≠>--有 方法2 选择主从变量,揭示函数关系 含有多个变量的数学问题中,对变量的理解要选择更加合适的角度,先选定合适的主变量,从而揭示其中的函数关系,再利用函数性质解题。 例3 对于满足04p ≤≤的实数p ,使243x px x p +>+-恒成立的x 的取值范围是 . 方法3 变函数为方程,求解函数性质 实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式,我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题一般是通过方程来实现的……函数与方程是密切相关的。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。 例4 函数()2)f x x π=≤≤的值域是( ) 11111122.,.,.,.,44332233A B C D ????????----?????????? ??????

《高中最全数学解题的思维策略》

一、 《高中数学解题的思维策略》
很抱歉这么晚才来给大家讲课,因为今年暑假刚去安徽写生画图, 昨天下午坐了 24 个小时的火车过来,误了 4 天的课程,最后咱们 下午物理上完之后再给大家补课,再给大家补 5 天的课程, 去年高考难,很多学生数学考得也很不错, ,很多人可能会问补课 有用吗。给大家举个例子,那几年留学很流行,大家可能会说,留 学很贵,实际上很多海归回来后一年的工资就把多花的挣回来了, 补课也是,讲到的某些知识点能被大家用到高考中,增加分数,高 考中分数的重要性, ,我姐是个老师,我姐经常说孩子们考好了, 家长就说, ,考不好,家长就说老师和郭师哥教的不好,实际上主 体还是我们学生,次要的才是老师,家长,环境,据去年那批学生 反映最后对我们 3 个教的还不错, 我先讲一下我补课大概基本要讲的内容, 把大家数学必修的知识点 基本过一遍,再做相应的习题,中间穿插还有很多我个人感觉很多 好题;很多我归纳的知识和一些数学技巧;在最后 2 天我要给大家 讲一下数学解题策略,如果最后还有时间的话,还会给大家讲一下 一些英语,语文和其他科目的技巧。 导 读
数学教学的目的在于培养学生的思维能力,培养良好思维品质的途径,是进行有效 的训练,本策略结合数学教学的实际情况,从以下四个方面进行讲解: 一、数学思维的变通性(举例子过几天再给他们讲,考试的时候有些难题大家容易钻 牛角尖,这个变通不只是说思维,也可以说是大家对数学卷子的一种变通,高考 120 分 钟,12 道选择,4 道填空,基本用时不超过 50 分钟,选这题一般最后 2 个比较难,填空 题一般最后一个比较难,大家很容易被这卡主,流汗,紧张,看到你旁边的人第 2 道大 题都快做完了,这下就慌了,心想肯定完了,最后整个卷子全部慌了,后面计算正确率 也不高了,整个考试最后也可想而知。应该怎么办呀,先做会的,把整个卷子会做的做 完了,再去做会做的,即使有些题不会做也没关系,大题都是按步骤给分,步骤对了,

数学解题的思维过程

数学解题的思维过程 数学解题的思维过程是指从理解问题开始,经过探索思路,转换问题直至解决问题,进行回顾的全过程的思维活动。 对于数学解题思维过程,即弄清问题、拟定计划、实现计划和回顾。这四个阶段思维过程的实质,可以用下列八个字加以概括:理解、转换、实施、反思。 第一阶段 理解问题是解题思维活动的开始 第二阶段 转换问题是解题思维活动的核心,是探索解题方向和途径的积极的尝试发现过程,是思维策略的选择和调整过程。 第三阶段 计划实施是解决问题过程的实现,它包含着一系列基础知识和基本技能的灵活运用和思维过程的具体表达,是解题思维活动的重要组成部分。 第四阶段 反思问题往往容易为人们所忽视,它是发展数学思维的一个重要方面,是一个思维活动过程的结束包含另一个新的思维活动过程的开始。 数学解题的技巧 为了使回想、联想、猜想的方向更明确,思路更加活泼,进一步提高探索的成效,我们必须掌握一些解题的策略。 一切解题的策略的基本出发点在于“变换”,即把面临的问题转化为一道或几道易于解答的新题,以通过对新题的考察,发现原题的解题思路,最终达到解决原题的目的。 基于这样的认识,常用的解题策略有:熟悉化、简单化、直观化、特殊化、一般化、整体化、间接化等。 一、熟悉化策略 所谓熟悉化策略,就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题。 一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。从结构上来分析,任何一道解答题,都包含条件和结论(或问题)两个方面。因此,要把陌生题转化为熟悉题,可以在变换题目的条件、结论(或问题)以及它们的联系方式上多下功夫。 常用的途径有: (一)充分联想回忆基本知识和题型: 按照波利亚的观点,在解决问题之前,我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题。 (二)全方位、多角度分析题意: 对于同一道数学题,常常可以不同的侧面、不同的角度去认识。因此,根据自己的知识和经验,适时调整分析问题的视角,有助于更好地把握题意,找到自己熟悉的解题方向。(三)恰当构造辅助元素: 数学中,同一素材的题目,常常可以有不同的表现形式;条件与结论(或问题)之间,也存在着多种联系方式。因此,恰当构造辅助元素,有助于改变题目的形式,沟通条件与结论(或条件与问题)的内在联系,把陌生题转化为熟悉题。 数学解题中,构造的辅助元素是多种多样的,常见的有构造图形(点、线、面、体),构造算法,构造多项式,构造方程(组),构造坐标系,构造数列,构造行列式,构造等价性命

高中数学解题思想方法大全

目录 前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案……………………………………

前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳 和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思 想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想。最后谈谈解题中的有关策略和高考中的几个热点问题,并在附录部分提供了近几年的高考试卷。 在每节的内容中,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现。再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范。巩固性题组旨在检查学习的效果,起到巩固的作用。每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。

高中数学解题思维提升专题08数列大题部分训练手册

专题08 数列大题部分 【训练目标】 1、 理解并会运用数列的函数特性; 2、 掌握等差数列,等比数列的通项公式,求和公式及性质; 3、 掌握根据递推公式求通项公式的方法; 4、 掌握常用的求和方法; 5、 掌握数列中简单的放缩法证明不等式。 【温馨小提示】 高考中一般有一道小题,一道大题,小题侧重于考等差数列与等比数列的性质,熟练的灵活的使用数列的性质会大大减少计算量;大题则侧重于考查根据递推公式求通项公式,求和的方法。总之,此类题目难度中等,属于必拿分题。 【名校试题荟萃】 1、(宁夏长庆高级中学2019届高三上学期第四次月考数学(理)试卷)设数列{}n a 的前n 项和, 且123,1,a a a +成等差数列. (1)求数列{}n a 的通项公式; (2)记数列1 { }n a 的前n 项和n T ,求使得成立的n 的最小值. 【答案】(1)2n n a = (2)10 (2)由(1)可得112n n a ??= ??? ,所以 , 由 ,即21000n >,因为 ,所以10n ≥,于是使得 成立的n 的最小值为10. 2、(宁夏长庆高级中学2019届高三上学期第四次月考数学(理)试卷)设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2x f x =的图象上(*n N ∈) 。

(1)若12a =-,点87(,4)a b 在函数()f x 的图象上,求数列{}n a 的前n 项和n S ; (2)若11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为1 2ln 2-,求数列 { }n n a b 的前n 项和n T . 【答案】(1) (2) (2)由 函数()f x 的图象在点22(,)a b 处的切线方程为 所以切线在x 轴上的截距为21 ln 2 a -,从而,故22a = 从而n a n =,2n n b =, 2n n n a n b = 所以 故。 3、(辽宁省辽河油田第二高级中学2019届高三上学期期中考试数学(文)试题)设n S 为数列{}n a 的前项和,已知10a ≠,,n *∈N . (1)求1a ,2a ; (2)求数列{}n a 的通项公式; (3)求数列{}n na 的前n 项和.

数学解题思维策略

第一讲 数学解题思维策略 ——高考数学代数推理题 一、数学解题的思维过程 数学解题的思维过程是指从理解问题开始,从经过探索思路,转换问题直至解决问题,进行回顾的全过程的思维活动. 在高考试卷中,有一类问题常以高中代数的主体内容——函数、方程、不等式、数列及其综合部分为知识背景,并与高等数学知识及思想方法接轨,这就是代数推理题.这类问题立意新颖,抽象程度高,是数学问题的典型代表.具体说来,其思维过程一般分为三步:首先要领会题意(审题)——弄清题目的条件是什么?结论是什么?如果条件和结论是用文字表达的,则把它翻译成数学语言;其次要明确方向——在审题的基础上,运用所学知识和数学思想方法,明确解题目标与方向;最后要规范表述——采用适当的步骤,合乎逻辑地进行推理和运算,并正确地表述. 在这里,第一步是关键,这就是我们通常说的审题. 二、如何审题? 1、理清题意 审题,就是明确题目的已知和未知,是解题的第一步,这一步不要怕慢.从近年高考命题的特点来看,试卷容量有减少的趋向,目的也就是要突出对考生的能力检查,增加思考量,倡导多给考生一点思考和探索的时间. 其实,题目本身就是“怎样解这道题”的信息源,所以审题一定要逐字逐句看清楚,可以从语法结构、逻辑关系和数学含义三方面来理清题意. 2、条件启发解题手段,结论诱导解题方向 解题实践表明,条件往往预示可知并启发解题手段,结论则预告需知并诱导解题方向.可以按照条件列出所有的解题手段表解,根据结论写出可能的解题方向,并寻找出它们之间的联系,这样做的另一个好处是,可以将题目进行分解,避免失分. 3、挖掘隐蔽条件 对于条件,一定要用足用够.解题过程中的关键之处,往往是题目未明显写出的,即隐蔽给予的.一方面,解题时如果遇到“盲点”,可以回过头来分析是否用足用够条件;另一方面,也只有细致的审题才能从题目本身获得尽可能多的信息,这也说明,审题一定不要怕慢. 〖例1〗(2005年成都一诊22题)对于函数f (x ),若存在0x ∈R ,使00()f x x =成立,

高中数学解题思路全部内容完整版

一、配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a+b)2=a2+2ab+b2,将这个公式灵活运用,可得到各种基本配方形式,如: a2+b2=(a+b)2-2ab=(a-b)2+2ab; a2+ab+b2=(a+b)2-ab=(a-b)2+3ab=(a+b 2 )2+( 3 2 b)2; a2+b2+c2+ab+bc+ca=1 2 [(a+b)2+(b+c)2+(c+a)2] a2+b2+c2=(a+b+c)2-2(ab+bc+ca)=(a+b-c)2-2(ab-bc-ca)=…结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sinαcosα=(sinα+cosα)2; x2+1 2 x =(x+ 1 x )2-2=(x- 1 x )2+2 ;……等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a n }中,a 1 ?a 5 +2a 3 ?a 5 +a 3 ?a 7 =25,则 a 3 +a 5 =_______。 2. 方程x2+y2-4kx-2y+5k=0表示圆的充要条件是_____。 A. 1 41 C. k∈R D. k=1 4 或k=1 3. 已知sin4α+cos4α=1,则sinα+cosα的值为______。 A. 1 B. -1 C. 1或-1 D. 0 4. 函数y=log 1 2 (-2x2+5x+3)的单调递增区间是_____。 A. (-∞, 5 4] B. [5 4 ,+∞) C. (-1 2 ,5 4 ] D. [5 4 ,3) 5. 已知方程x2+(a-2)x+a-1=0的两根x 1、x 2 ,则点P(x 1 ,x 2 )在圆x2+y2=4上,则 实数a=_____。 【简解】 1小题:利用等比数列性质a m p -a m p + =a m 2,将已知等式左边后配方(a 3 + a 5 )2易求。答案是:5。 2小题:配方成圆的标准方程形式(x-a)2+(y-b)2=r2,解r2>0即可,选B。 3小题:已知等式经配方成(sin2α+cos2α)2-2sin2αcos2α=1,求出sinαcosα,然后求出所求式的平方值,再开方求解。选C。 4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。选D。 5小题:答案3-11。 Ⅱ、示范性题组:

相关主题