搜档网
当前位置:搜档网 › 2.4一维谐振子

2.4一维谐振子

2.4一维谐振子
2.4一维谐振子

§ 2.4 一维谐振子

一、能量本征方程 二、级数解法

三、本征值和本征波函数

平衡位置附近的微振动可近似认为是简谐振动。例如原子核内质子和中子的振动、原子和分子的振动、固体晶格离子的振动等。 一、能量本征方程

取振子的平衡位置为坐标原点

2222

2212?x m x m H ω+-=d d

)()(212222

22x E x x m x m ψ=ψ????????+-ωd d

因为0min =V ,∞

→min out V ,所以∞<

)(lim =ψ±∞→x x 。设

ω

αm =引入无量纲量 ?

??

??==ωλαξ 21,

E x

能量本征值问题转化成如下定解问题

0)()()(222=ψ-+ψξξλξξd d

)(lim =ψ±∞

→ξξ

下面会看到,束缚态条件要求λ只能取特定值

,2,1,0,12=+=n n λ

这导致能量的量子化。

首先把上述方程转化成可以用级数求解的形式。考虑±∞→ξ的渐近解。这时系数为λ的项可以忽略,方程趋近于

02

22

=ψ-ψξξd d

渐近通解为

2

2

22e

e

ξξ-+≈ψB A ,(±∞→ξ)

但因2

2ξe

不满足束缚态的条件,所以渐近解取为

2

2~ξ-ψe

把波函数写成

)(2ξξu -=ψe

代入方程 0)(222=ψ-+ψξλξd d 后,求解ψ的问题则转化成求解u 的方程

)1(222=-+-u u

u λξξξd d d d

这个方程称为Hermite 方程,可以用级数求解。 二、级数解法

在原点0=ξ附近,用幂级数

k

k k a u ξξ∑∞

==0

)(

代入Hermite 方程,得

0)1(2)1(0

11

22

=-+--∑∑∑∞

=-∞

=-∞

=k k k

k k k k k k a ka a k k ξλξξξ

把前两项的求和序号改为从0开始

0)1(2)1)(2(0

2=-+-++∑∑∑∞

=∞

=∞

=+k k k

k k k k k k a ka a k k ξλξξ

由此得到展开系数

k

a 的递推关系

,2,1,0,)1)(2()

1(22=++--=

+k a k k k a k k λ

只要给定0a 或者1a ,就可以把)(ξu 分成只含偶次项和只含奇次项的级数

+++=+++=553312442201)()(ξξξξξξξa a a u a a a u

而波函数为

??

??

?=ψ--)()()(22

122

2

ξξξξξ

u u e e

当∞→k 时)(1ξu 的相邻后项对前项的系数比值的极限为

m k k k k a a k k 1

2)1)(2()1(22=→++--=+λ, ,2,1=m

这与2

e ξ的幂级数相邻项系数比值11+m 的极限相同。因此,)(1ξu 和2

e ξ有相同的发散行为2

e ~)(1ξξu ,类似地

2

e ~)(2ξξξu

??

???∞→=?→∞→=?→=ψ----2

22

2

212

22

22

2222)()()(ξξξξξξξξξξξξξe

e e

e e

e e

e u u

只要)(1ξu 或者)(2ξu 是无穷级数,当±∞→ξ时波函数)(ξψ就一定发散。为让)(ξψ满足束缚态条件,要求

在)(1ξu 和)(2ξu 之中必须有一个中断成为多项式。

如果把待定常数λ取成

,2,1,0,12=+=n n λ

递推关系变为

,2,1,0)1)(2()

(2)1)(2()1(22=++-=++--=+k a k k n k a k k k a k

k k λ

那么当n k =时,级数1u 或2u 将中止在n ξ处,中断成为

多项式。这样形成的多项式称为Hermite 多项式,记为

)

(ξn H .

例如当2=n 时,如果00≠a 则有

)

12)(22()22(22)

10)(20()

20(2240

02=++-=-=++-=

a a a a a

这时级数

2

0012ξa a u -=,中止在2ξ处。

下面列出的是最简单的几个Hermite 多项式

ξ

ξξξξξξξξ12016032,

124816,128,24,2,1355244332210+-=+-=-=-===H H H H H H

Hermite 多项式满足下面递推关系

)(2)(2)(11=+--+ξξξξn n n n H H H

)(2)(1ξξ-='n n

n H H

参见教材P246附录A3. 三、本征值和本征波函数

使级数中断成为多项式的条件为

,2,1,0,12=+=n n λ

?

??

??=ωλ 21E ,则能量本征值为

,2,1,0,)21

(=+=n n E n ω

归一化的本征波函数为

)

(e

)(2

22x A x n x n n ααH -=ψ

其中

!2n A n n ?=

πα

, ωαm =

宇称为 )

()1()(x x n n n ψ-=-ψ 正交归一化条件为

n

m n m n m dx x x ,*

)()(),(δ=?ψψ=ψψ∞

∞-

最低三条能级谐振子波函数如下

2

41022)(x e x απ

α

-=ψ

2

4

11222)(x xe x ααπ

α

-=

ψ

2241222)12(2

1

)(x e

x x ααα

π--=

ψ

谐振子的基本性质: 1.能量等间隔

能量间隔ω =?E 只和振子的本征频率有关。因此Planck 能量子假定的物理根据是,绝对黑体空腔内的电磁场在做简谐振动。

2.存在零点能

ω

210=E 对于做简谐振动的电磁场和晶格点阵上的离子,当温度趋于零度时它们仍然在振动,只是处于基态。这种振动称为零点振动。

3.在简谐振子的任一定态上,动能和势能的平均值相等

n n n n n E V T 21),()?,(=ψψ=ψψ

这和经典力学的情况相同。

证明:利用Hermite 多项式的递推关系可以得到简谐振子定态波函数的递推关系

??

??????ψ++ψ=ψ+-112121n n n n n

x α

[]2

22

2)2)(1()12()1(21+-ψ+++ψ++ψ

-=ψn n n n n n n n n x α

势能在定态

n

ψ上的平均值

)

,(21

),(22n n n n n x m V V ψψ=ψψ=ω

n n n n n n n E n n n n n n m 21)21(21),()2)(1(),)(12(),()1(21

21][2222=+ψψ+++ψψ++ψψ-==+-ωαω

动能的平均值

n n

n n n n n n E E E V H T 2

121

),()?,(=-=ψψ-ψψ=

利用§5.1中的维里定理可以简单地得到上述性质。

4.量子数n 越大量子谐振子与经典谐振子越接近

经典谐振子为 t A x ωcos =,对于基态

ω

ω 212122=A m

ω

αm =

,x αξ=,则振幅 α1=A ,对应 1±=ξ.

由能量关系 2

2221

2121x m x m ωω-= 可知谐振子的速度为

2

1ξα

ω-=x

粒子处于x x x d +~的经典概率为

2

122)(ξπα-=

=

=x

T x

x

T t x x P d d d d

因此,基态0=n 时的经典概率密度为

21)(ξπα-=

x P

2

4

1022)(x x απ

α

-=

ψe

2

0)

(x ψ

谐振子基态波函数和概率分布

(虚线为经典概率分布)

由上图可知,对于基态0

n,量子谐振子与经典谐振子

有明显的差别。

量子数n越大,量子谐振子与经典谐振子越接近。这验证了Bohr提出的“对应原理”:在大量子数极限下,量子理论逐渐趋近经典理论。下面是高激发态(n=10)概率分布(实线)与经典概率分布(虚线)

5.单个谐振子量子ω 的内禀宇称为负

本征波函数

)

()1()(x x n n n ψ-=-ψ,n 个量子的宇称为

n )1(- ,所以单个谐振子量子ω 的内禀宇称为负。

【例】设粒子的势能为

?????????><∞=

,2

10,)(2

2x x m x x V ω

求能级和本征波函数。

解. 本征波函数取为

???

?

?>ψ≤=Φ0

),

(0,0)(x x x x n

其中

)

(x n ψ为谐振子波函数。因为谐振子波函数的宇称

为)

()1()(x x n n n ψ-=-ψ,而波函数连续条件 0)0(=ψn 要

)

(x n ψ为负宇称,因此量子数只能取 ,5,3,1=n

能级:

,5,3,1,)21

(=+=n n E n ω 本征波函数:

??

???

?

?>=ψ≤=Φ0, ),(0,0)(x x x x n ,谐振子波函数 1,3,5,n 【思考】求解二维各向同性谐振子的本征问题的解,讨论能级的简并度。

一维随机变量及其分布题目

一、单项选择题 1 则c =A. 81 B. 41 C. 31 D. 2 1 2.某学习小组有4名男生2名女生共6个同学,从中任选2人作为学习小组长,设随机变 A B C D 3.下列各函数可作为随机变量分布函数的是 ( ) A .???≤≤=其他0102)(1x x x F B .?????≥<≤<=111000)(2x x x x x F C .?????≥<≤--<-=111111)(3x x x x x F D .?? ? ??≥<≤<=121020 0)(4x x x x x F 4.设)(1x F 与)(2x F 分别为随机变量21X X 与的分布函数,为使)()()(21x bF x aF x F -=是 某一个随机变量的分布函数,在下列给定的各组数值中应取 ( ) A .52,53-== b a B .32,32==b a C .23,21=-=b a D .2 3 ,21-==b a 5.设随机变量X 具有对称的概率密度,即)()(x f x f =-,则对任意0>a ,=>)|(|a X P ( ) A .)(21a F - B .1)(2-a F C .)(2a F - D .)](1[2a F - 6.设随机变量X 与Y 均服从正态分布,)2,(~2 μN X ,)5,(~2 μN Y ,记 }2{1-≤=μX P p ,}5{2+≥=μY P p ,则 ( ) A .对任何实数μ,都有21p p = B .对任何实数μ,都有21p p < C .只对μ的个别值才有21p p = D .对任何实数μ,都有21p p > .7 设随机变量X 的密度函数为4,01, ()0,cx x f x ?<<=??其它 ,则常数c =( ). A. 51 B. 4 1 C. 4 D. 5 8 设2 ~(1,)X N σ-且(31)0.4P X -<<-=,则(1)P X ≥= ( ). A. 0.1 B. 0.2 C. 0.3 D. 0.5 二、填空题 1.已知随机变量X 服从参数为λ的泊松分布)(λπ,1 }0{-==e X P ,则=λ 2.设随机变量X 的密度函数为??? ??<<--=其他 111)(2 x x C x f ,则常数=C

一维谐振子的本征值问题

摘要:一维谐振子的本征值问题属于定态问题。本文首先给出了一维谐振子本征值问题的Heisenberg 矩阵力学解法,Dirac算子代数解法和Schr?dinger波动力学解法。在此基础上,给出了一维半壁谐振子势阱(垒)问题的解法。然后讨论了相干态和压缩态,它们是非经典量子效应,在超标准量子极限的高精度光学测量、超低噪光通信及量子通信领域有着广泛的应用前景,是物理学研究前沿课题之一。最后从Dirac算子代数中求解出a?的本征态即谐振子的相干态,并由降算符a?与升算符+a?、光子数n与相位φ的最小不确定关系得出相干态和压缩态。 关键词:量子力学、一维谐振子、Heisenberg矩阵力学、算子代数解法、Schr?dinger波动力学、一维半壁谐振子势阱(垒)、相干态、压缩态。 在量子力学中谐振子不仅是说明量子力学基本原理和方法的一个很好的例子,而且任何体系在平衡位置附近的小振动,例如:分子的振动,原子核辐射场及其他玻色场的振动等,在选择恰当的坐标后,常常可以分解为若干彼此独立的一维谐振子振动]1[.1925年Heisenberg发现矩阵力学,1926年Schr?dinger创立波动力学,同时,Dirac创立在数学上更为一般的理论.可包括矩阵及波动两种形式]2[.一维谐振子的能力本征值问题,在历史上首先为Heisenberg的矩阵力学解决,后来用算子代数的方法给出了极漂亮的解,一般的教材只给定了波动力学的解法]3[.自1963年,Glauber]4[等人提出谐振子相干态以后,相干态和压缩态以其特有的最小不确定性和超完备性备受人们的关注,被广泛应用于量子光5[-。 学等领域]13 一维谐振子的本征值问题属于定态问题。本文首先给出了一维谐振子本征值问题的Heisenberg 矩阵力学解法,Dirac算子代数解法和Schr?dinger波动力学解法。在此基础上,给出了一维半壁谐振子势阱(垒)问题的解法。然后讨论了相干态和压缩态,它们是非经典量子效应,在超标准量子极限的高精度光学测量、超低噪光通信及量子通信领域有着广泛的应用前景,是物理学研究前沿课题之一。最后从Dirac算子代数中求解出a?的本征态即谐振子的相干态,并由降算符a?与升算符+a?、光子数n与相位φ的最小不确定关系得出相干态和压缩态。 1.矩阵力学解法 取自然平衡位置为坐标原点,并选原点为势能零点,则一维谐振子势V可表成

一维谐振子的本征值问题

一维谐振子的本征值问题 姜罗罗 赣南师范学院物理与电子信息科学系物理学专业2000级(2)班 摘要:一维谐振子的本征值问题属于定态问题。本文首先给出了一维谐振子本征值问题的Heisenberg 矩阵力学解法,Dirac算子代数解法和Schr?dinger波动力学解法。在此基础上,给出了一维半壁谐振子势阱(垒)问题的解法。然后讨论了相干态和压缩态,它们是非经典量子效应,在超标准量子极限的高精度光学测量、超低噪光通信及量子通信领域有着广泛的应用前景,是物理学研究前沿课题之一。最后从Dirac算子代数中求解出a?的本征态即谐振子的相干态,并由降算符a?与升算符+a?、光子数n与相位φ的最小不确定关系得出相干态和压缩态。 关键词:量子力学、一维谐振子、Heisenberg矩阵力学、算子代数解法、Schr?dinger波动力学、一维半壁谐振子势阱(垒)、相干态、压缩态。 在量子力学中谐振子不仅是说明量子力学基本原理和方法的一个很好的例子,而且任何体系在平衡位置附近的小振动,例如:分子的振动,原子核辐射场及其他玻色场的振动等,在选择恰当的坐标后,常常可以分解为若干彼此独立的一维谐振子振动]1[.1925年Heisenberg发现矩阵力学,1926年Schr?dinger创立波动力学,同时,Dirac创立在数学上更为一般的理论.可包括矩阵及波动两种形式]2[.一维谐振子的能力本征值问题,在历史上首先为Heisenberg的矩阵力学解决,后来用算子代数的方法给出了极漂亮的解,一

般的教材只给定了波动力学的解法]3[.自1963年,Glauber ]4[等人提出谐振子相干态以后,相干态和压缩态以其特有的最小不确定性和超完备性备受人们的关注,被广泛应用于量子光学等领域]135[-。 一维谐振子的本征值问题属于定态问题。本文首先给出了一维谐振子本征值问题的Heisenberg 矩阵力学解法,Dirac 算子代数解法和Schr ?dinger 波动力学解法。在此基础上,给出了一维半壁谐振子势阱(垒)问题的解法。然后讨论了相干态和压缩态,它们是非经典量子效应,在超标准量子极限的高精度光学测量、超低噪光通信及量子通信领域有着广泛的应用前景,是物理学研 究前沿课题之一。最后从Dirac 算子代数中求解出a ?的本征态即谐振子的相干态,并由降算符a ?与升算符+a ?、光子数n 与相位φ的最小不确定关系得出相干态和压缩态。 1.矩阵力学解法 V 可 表成 2 2 1kx V x = (1) k 为刻画简谐作用力强度的参数.设谐振子质量为μ,令 μ ωk = (2) 它是经典谐振子的自然频率,则一维谐振子的Hamilton 量可表为 图1.一维谐振子势 222?2 12??x p H μωμ+= (3) 在能量H ?表象中,由于

第三章 谐振子

第三章 谐振子 一 内容提要 1 一维线性谐振子的能级与波函数 2221)(x x V μω= 2222 12??x p H μω+= ,3,2,1)2 1(=ω+=n n E n )()(222 1 x H e N x n x n n α-=ψ [其中 ! 2n N n n πα= μω = α ] 2 谐振子的升降算符 [1] 升降算符 )??(2?p i x a μω-μω=+ )??(21p i x μω-α= )??(2?p i x a μω+μω= )??(21p i x μω+α= 则 )??(2?++μω =a a x )??(2?+-μω-=a a i p [2] 升降算符的性质 11?++ψ+=ψn n n a 1?-ψ=ψn n n a 1]?,?[=+a a 二 例题讲解 1 一维谐振子如果考虑非谐振微扰项4 ' ?x H λ=,求体系能级的一级修正。 解:>+<μω λ>=<λ>==<+n a a n n x n n H n E n 42 4 ' ) 1()??()2(? 可以导出 )122(3)??(24++>=+<+n n n a a n 那么 = ) 1(n E )122()(4322++μω λn n 2 已知单摆在重力作用下能在竖直平面内摆动。求: [1] 小角度近似下,体系的能量本征值及归一化本征函数。 [2] 由于小角度近似而引起的体系基态能级的一级近似。 解:摆球平衡位置作为势能零点 摆球重力势能为 )cos 1(θ-==mgl mgh V (1) [1] 由公式 -θ+θ-=θ4 2! 41!211c o s (2)

经典力学与量子力学中的一维谐振子

经典力学与量子力学中的一维谐振子 物理与电子信息工程学院物理学 [摘要]一维谐振动是一种最简单的振动形式,许多复杂的运动都可分析为一维谐振动。本文以一维谐振子为研究对象,首先讨论经典力学与量子力学中的一维谐振子的运动方程和能量特征,然后分析坐标表象以及粒子数表象下的一维谐振子,最后讨论经典力学与量子力学中的一维谐振子的区别与联系。 [关键词]谐振子经典力学量子力学运动方程能量分布 1 前言 所谓谐振,在运动学中就是简谐振动。一个劲度系数为k的轻质弹簧的一端固定,另一端固结一个可以自由运动的质量为m的物体,就构成一个弹簧振子[1]。该振子是在一个位置(即平衡位置)附近做往复运动。在这种振动形式下,物体受力的大小总是和它偏离平衡位置的距离成正比,并且受力方向总是指向平衡位置。这种情况即为一维谐振子。 一维谐振子在应用上有很大价值,因为经典力学告诉我们只要选择适当的坐标,任意粒子体系的微小振动都可以认为是一些相互独立的振子的运动的集合。普朗克在他的辐射理论中将辐射物质的中心当作一些谐振子,从而得到和实验相符合的结果。在分子光谱中,我们可以把分子的振动近似地当作谐振子的波函数。另外在量子场论中电磁场的问题也能归结成谐振子的形式。因此在量子力学中,谐振子问题的地位较经典物理中来得重要。应用线性谐振子模型可以解决许多量子力学中的实际问题。 本文将以一维谐振子为研究对象,首先分别讨论经典力学与量子力学中一维谐振子的运动方程和能量特征,然后讨论坐标表象以及粒子数表象下的一维谐振子,最后分析经典力学与量子力学中的一维谐振子的区别与联系并简要讨论经典力学与量子力学的过渡问题。从而帮助我们更加深入的理解一维谐振子的物理实质,充分认识微观粒子的波粒二象性。

经典力学与量子力学中的一维谐振子

经典力学与量子力学中的一维谐振子 [摘要]一维谐振动是一种最简单的振动形式,许多复杂的运动都可分析为一维谐振动。本文以一维谐振子为研究对象,首先讨论经典力学与量子力学中的一维谐振子的运动方程和能量特征,然后分析坐标表象以及粒子数表象下的一维谐振子,最后讨论经典力学与量子力学中的一维谐振子的区别与联系。 [关键词]谐振子经典力学量子力学运动方程能量分布 1 前言 所谓谐振,在运动学中就是简谐振动。一个劲度系数为k的轻质弹簧的一端固定,另一端固结一个可以自由运动的质量为m的物体,就构成一个弹簧振子[1]。该振子是在一个位置(即平衡位置)附近做往复运动。在这种振动形式下,物体受力的大小总是和它偏离平衡位置的距离成正比,并且受力方向总是指向平衡位置。这种情况即为一维谐振子。 一维谐振子在应用上有很大价值,因为经典力学告诉我们只要选择适当的坐标,任意粒子体系的微小振动都可以认为是一些相互独立的振子的运动的集合。普朗克在他的辐射理论中将辐射物质的中心当作一些谐振子,从而得到和实验相符合的结果。在分子光谱中,我们可以把分子的振动近似地当作谐振子的波函数。另外在量子场论中电磁场的问题也能归结成谐振子的形式。因此在量子力学中,谐振子问题的地位较经典物理中来得重要。应用线性谐振子模型可以解决许多量子力学中的实际问题。 本文将以一维谐振子为研究对象,首先分别讨论经典力学与量子力学中一维谐振子的运动方程和能量特征,然后讨论坐标表象以及粒子数表象下的一维谐振子,最后分析经典力学与量子力学中的一维谐振子的区别与联系并简要讨论经典力学与量子力学的过渡问题。从而帮助我们更加深入的理解一维谐振子的物理实质,充分认识微观粒子的波粒二象性。 2 经典力学中的一维谐振子 在经典力学中基本方程以牛顿定律为基础,研究质点位移随时间变化的规

用Feynman传播函数求解一维谐振子的尝试

用Feynman传播函数求解一维谐振子的尝试 本文旨在结合《高等量子力学》课上关于Feynman传播函数的知识,以及参考侯伯元教授编著的《路径积分与量子物理导引》的知识,尝试用路径积分的方法来求解一维谐振子的问题。 直接引用课上推导的结果,Feynman传播子为: ()() 12 212 11 ,,exp 22 j j j j j j j x x m m x t x t i V x i εε πεε + ++ ?? ?? - ?? ?? ???? =-+O ?? ? ? ?? ???? ?? ?? ??(1)式子中,令1 j j t t ε+ ≡- ,并已采用自然单位制, 1 =。 式(1)中,有 ()() 2 1 2 j j j j x x m L t V x ε + - ?? ≡- ? ??(2)是拉氏量。考虑一维谐振子,其拉氏量为: 222 22 m m L x x ω =- (3)那么,Feynman传播子为 ()()() 12 22 212 11 ,,exp 222 j j j j j j x x m m D x x i x x i ω εεε πεε + ++ ?? ?? - ?? ?? ???? =--+O ?? ? ? ?? ???? ?? ?? ??(4)令 2 00 12, 222 m m a b ωε εε ?? ?? =-= ?? ? ?? ?? ?? 则,式(4)改写为: ()() {}() 1 2 22 10101 ,,exp2 2 j j j j j j m D x x i a x x b x x i εε πε +++ ???? =--?+O ??? ?? ??(5)而对于Feynman传播函数有, ()()() {} ,;,exp f i t F f f i i t D x t x t D x t i L t dt =?? ?? ?? (6)

在坐标表象中处理一维线性谐振子问题

初中物理 题目:在坐标表象中处理一维线性谐振子问题 作者单位:响水滩乡中心学校 作者姓名:宁国强 2012年9月28日

在坐标表象中处理一维线性谐振子问题 响水滩中心学校 宁国强 摘 要:本文阐述了在坐标表象中处理一维线性谐振子问题的方法和思路,阐述了一般表象的概念。 关键词:一维线性谐振子;坐标表象; 一、 能量本征值、本征函数的求解 取自然平衡位置为坐标原点,并选原点为势能零点,则一维线性谐振子的势能为 221()2V x x μω= (1) 其中μ是谐振子的质量,ω是经典谐振子的自然频率。一维谐振子的哈密顿函数为 222122 p H x μωμ=+ (2) 体系的能量本征方程(亦即不含时Schr ?dinger 方程)为 ()()222221?22d x x E x dx μωψψμ??-+= ??? h (3) 严格的谐振子势是一个无限深势阱(如图1所示),粒子只存在束缚态,即起波函数应满足以下条件: ()0x x ψ→∞ ???→ (4) 将方程(3)无量纲化,为此,令

x ξα==, α= λ=2E ω h (5) (3)式可改写为 () 2220d d ψλξψξ+-= (6) 这是一个变系数二阶常微分方程。为了求解它,我们先看ψ在ξ→±∞时的渐进行为。当ξ????很大时,λ与2ξ相比可以略去,因而在ξ→±∞ 时,方程(6)可近似表示为 2220d d ψξψξ -= (7) ξ→±∞时, 它的渐近解为2/2~e ξψ±。因为波函数的标准条件要求当ξ→±∞时ψ应为有限,所以2/2e ξψ:不满足边界条件(4)式,应弃之。波函数指数上只能取负号,即2/2e ξψ-:。方程(6)在ξ为有限处的 根据以上讨论,可令方程(6)在ξ为有限处的解有如下形式: ()()2 2Ae H ξψξξ-= (8) 式中A 为归一化系数,(8)代入(6)式,得 ()22210d H dH H d d ξλξξ -+-= (9) 用级数解法,即把H 展开成ξ的幂级数来求这个方程的解。这个级数必须只含有有限项,才能在ξ→±∞ 时使()ψξ为有限,而级数只含有限项的条件是λ 为奇数:21n λ=+,()0,1,2n =L L 。代入(5)中的第三式,可得一维线性谐振子的能级为 12n E n ω??=+ ?? ?h , ()0,1,2n =L L (10) 因此,线性谐振子的能量只取分立值(如图2所示),两相邻能级间的间隔为ωh ,这与普朗克关于能量是量子化的假设相符合。

一维量子谐振子的概率分布

一维量子谐振子的概率分布 摘要:线性谐振子问题作为一种普遍的模型,所以在经典力学中和量子力学中都受到很大关注。并且谐振子包括很多类型,我们就先研究量子谐振子的问题。量子谐振子是很多复杂物理模型的基础,量子谐振子在前几个量子态时,概率密度与经典情况相差较多,随着量子数的增加,随之相似性也会增加。可以通过使用数学软件将量子谐振子的概率分布绘制成图像,从而得出一维量子谐振子的概率分布。 关键词:经典谐振子 一维量子谐振子 波函数 量子谐振子概率分布 1.引言: 谐振子的振动是一种很常见的物理模型,它在很多方面得到应用。谐振子大体可分为经典力学和量子力学两部分,谐振在运动学就是简谐振动,这样的振动是物体在某一位置附近往复偏离该振动中心位置,在这样的振动方式下,物体所受到的力的大小总是与它偏离平衡位置的大小成正比关系,并且物体总是受到指向平衡位置的力。谐振子具有周期运动的物理特征,一些复杂的物理基础可以运用谐振子运动来解决。 通过对经典谐振子的研究,得到经典谐振子的函数关系式。再利用量子力学中的不确定关系得到量子谐振子的能量最低点,即平衡位置,最后得到谐振子的波函数,从而得到了谐振子的概率。随着量子数的增加,利用软件Mathematica 绘制一维量子谐振子的概率分布。再和经典的线性谐振子来作比较,得到经典谐振子的关系。 2.经典一维谐振子: 首先让我们谐振子在物理中是非常常见的模型,我们很早就已经接触过 ,并且有了一定的了解。下面来讨论一维弹性力的一维简谐振子。例如:质量为m 的物体放在光滑的桌面上,在其水平的方向上受到一个弹簧作用,在某一位置处质点所受力的大小为零,则把这一点叫做平衡位置。弹簧的劲度系数为k ,物体m 在弹簧弹性力的作用下沿弹簧方向运动,作用于质点的力和质点距离平衡位置的位移成正比,这样受力的质点就是一个典型的一维简谐振子。大家都知道,质量为m 的质点在做简谐振动的过程中用x 来表示质点便偏移平衡位置的距离,也就是质点的位置,也是弹簧的伸长或压缩的量。当x 很小时,质点受力为F ,则力F 和x 之间的线性关系为kx F -=,并且可知弹簧的弹性力是线性回复力,弹簧振子

一维随机变量及其分布习题

1 一维随机变量及其分布 本章重点是:离散型随机变量的分布律、分布函数;连续型随机变量的分布律、分布函数;随机变量函数的密度函数 1.口袋中有5个球,编号为1,2,3,4,5,.从中任取3个,以X 表示取出的3个球中的最大号码. (1)试求X 的分布列;(2)写出X 的分布函数,并作图.(2)X 的分布函数为 2.有3个盒子,第一个和装有1个白球,4个黑球,第二个和装有2个白球,3个黑球,第三个和装有3个白球,2个黑球,现任取一个盒子,从中任取3个球.以X 表示所取到的白球数. (1)求X 的概率分布列;(2)取到的白球数不少于2个的概率是多少? 3设随机变量的分布函数为 求X 的概率分布列及 ()()()()3,3,1,1P X P X P X P X <≤>≥.. 4.随机变量X 的密度函数为1, 11,()0,.x x p x ?--≤≤=??其它求X 的分布函数. 5.学生完成一道作业的时间X 是一个随机变量,(单位h )密度函数为 (1)确定常数c ;(2)X 的分布函数;(3)求在20min 内完成一道作业的概率; (4)求在10min 以上完成一道作业的概率. 6.已知随机变量X 的密度函数为()21,x x p x x e e π-=-∞<<+∞+试求随机变量 ()Y g X =的概率分布,其中()1,0;1, 0. x g x x -

一维随机变量的分布函数

关于一维随机变量分布函数的讨论 The disscussion for distribution function of One random variable 分布函数能够完整地描述随机变量的统计规律性,并且分布函数具有良好的性质,它使得许多概率论问题得以简化而归结为函数的运算,因此掌握好分布函数是研究随机变量的有效方法. 在学习过程中我们却发现,不同的教学参考书对分布函数的定义有所不同,这两个定义有何异同之处?对随机变量落在某区间的概率有何影响?本文主要从这两个方面展开讨论. 一、两个定义下分布函数的异同 1、 两个定义 设X 是随机变量,x 为任意实数, 定义1 称函数()(F x P X =≤),x x -∞<<+∞为X 的分布函数[1]45. 定义2 称函数+∞<<∞-<=x x X P x F ,)()(为X 的分布函数[3]119. 2、 离散型随机变量的分布函数 从一个例子来看两个定义下分布函数的异同之处. 例1 [1]45 随机变量X 的分布律如下表: 求其分布函数. 解:用定义1和定义2求得的分布函数分别如下: 0,0x < 0,x ≤0 1,08 ≤1x < 1,08x <≤1 1()F x = 1,12≤2x < 2()F x = 1,12 x <≤2 7,28 ≤3x < 7,28x <≤3 1,x ≥3 1,3x > 需要指出的是:用两个定义求得的分布函数)(1x F 和)(2x F 均唯一.即用定义1求分布函数

时,)(2x F 中的分段方法是不可取的,如:当10< 1,x ≥b 1,x b > 可以看到,不同之处也只在于区间端点处,但事实上,以上三个函数在b x a x ==,处均连续,所以是相同的函数.即不论是用定义1还是定义2,所求得的分布函数都是相同的.一般性的结果如下:

一维量子谐振子几率密度图形的绘制

一维量子谐振子几率密度图形的绘制 钟瑞妍 (华南师范大学,物理与电信工程学院,物理三班,20082301059) 摘要:谐振子是一个重要的物理模型,体现了周期运动的基本特性,也是理解一系列复杂现象的物理基础。本文着重介绍运用科学计算与模拟平台完成一维量子谐振子几率密度的图形绘制,并把它与经典谐振子进行比较。 关键词:谐振子、几率密度、厄米多项式 一维线性谐振子模型在经典力学中和量子力学中都是一个倍受关注的问题,它的重要性在于自然界中广泛碰到简谐运动,常常可以作为研究复杂运动的初步近似。例如分子振动、晶格振动、原子核表面振动以及辐射场振动等都可分解成若干彼此独立的一维简谐振动[1]。本文先根据薛定谔方法推导出谐振子的几率分布函数,再运用科学计算与模拟平台把几率分布函数绘制成几率分布曲线,这样可以在直观上加深对几率密度的理解。 1. 一维量子谐振子的几率密度分布 已知一维线性谐振子模型的薛定谔方程为 2222 2 ()022d u E x u dx ψωψ+-= 1.1 为方便计算,可以令 2,u E x ax ωξλω = == 。把他们带入式1.1可得 22 2 ()0d d ψλξψξ+-= 1.2 当ξ→±∞时,方程1.2可化为 22 2 0d d ψξψξ+= 1.3 它的解的形式应为22 e ξ± ,当ξ→±∞时,ψ应该为有限,因此方程1.2的通解为 2 2 ()()e H ξψξξ- = 1.4 把1.4代入1.2求导可得()H ξ满足下面方程 222(1)0d H dH H d d ξλξξ-+-= 1.5

采用级数解法,令 2 ()H a υυξξ∞ ==∑,代入1.5整理得 232026(2)(1)(1)(21)a a a a a υυξυυξλυλξ+++???++++???=-+???+-++??? 由于ξ的系数必须相等,有 2(21) (1)(2)a a υυ υλυυ+-+= ++ 1.6 要使 2 ()H a υυξξ∞ ==∑有限,λ必须满足21n λ=+(0,1,2,3n =???)故可得 1 ()0,1,22 E n n ω =+=??? 1.7 方程1.5的解为厄米多项式,满足递推公式: 11()2()2()0 n n n H H nH ξξξξ+--+= 1.8 其中01H =,12H ξ=。 方程1.2的解为 2 2 ()()n n n N e H ξψξξ- = 1.9 由归一化条件*()1 n n x dx ψψ∞ -∞ =? 可解出 1 2 1 22!n n a N n π?? ?= ? ?? 1.10 一维量子谐振子的几率密度为 2 2 22()() n n n N e H ξψξξ-= 1.11 2.经典谐振子的几率分布 经典谐振子满足振动方程 sin()x A t ω?=+ 2.1 其中A 为振幅,在x 到x+dx 之间的区域内找到粒子的几率W(x)dx 与粒子在此区域内停留的时间dt 成正比,即

概率与数理统计第2章一维随机变量习题及答案

第2章一维随机变量 习题2 一. 填空题: 1.设 离 散 型 随 机 变 量 ξ 的 分 布 函 数 是 (){}x P x F ≤=ξ, 则 用 F (x) 表 示 概 {}0x P =ξ = __________。 解:()()000--x F x F 2.设 随 机 变 量 ξ 的 分 布 函 数 为 ()()+∞<<∞-+= x arctgx x F π 1 21 则 P{ 0<ξ<1} = ____14_____。 解: P{ 0<ξ<1} = =-)0(F )1(F 1 4 3.设 ξ 服 从 参 数 为 λ 的 泊 松 分 布 , 且 已 知 P{ ξ = 2 } = P{ ξ = 3 }, 则 P{ ξ = 3 }= ___ 278 3 e - 或 3.375e -3____。 4.设 某 离 散 型 随 机 变 量 ξ 的 分 布 律 是 { }???===,2,1,0,! k k C k P K λξ, 常 数 λ>0, 则 C 的 值 应 是 ___ e -λ _____。 解: {}λλλλξ-∞ =∞ =∞==?=?=?=?==∑ ∑∑e C Ce k C k C k P K K K K K 11! 1! 10 5 设 随 机 变 量 ξ 的 分 布 律 是 {}4,3,2,1,21=?? ? ??==k A k P k ξ 则 ??????<<252 1 ξP = 0.8 。 解: ()A A k P k 1615 1618141214 1 =??? ??+++==∑=ξ 令 15161A = 得 A =1615 ()()21252 1 =+==??? ??<<ξξξp p P 8.041211516=??????+= 6.若 定 义 分 布 函 数 (){ }x P x F ≤=ξ, 则 函 数 F(x)是 某 一 随 机 变 量 ξ 的 分 布 函 数 的 充 要 条 件 是 F ( x ) 单 调 不 减 , 函 数 F (x) 右 连 续 , 且 F (- ∞ ) = 0 , F ( + ∞ ) = 1

2.4一维谐振子

§ 2.4 一维谐振子 一、能量本征方程 二、级数解法 三、本征值和本征波函数 平衡位置附近的微振动可近似认为是简谐振动。例如原子核内质子和中子的振动、原子和分子的振动、固体晶格离子的振动等。 一、能量本征方程 取振子的平衡位置为坐标原点 2222 2212?x m x m H ω+-=d d )()(212222 22x E x x m x m ψ=ψ????????+-ωd d 因为0min =V ,∞ →min out V ,所以∞<

能量本征值问题转化成如下定解问题 0)()()(222=ψ-+ψξξλξξd d )(lim =ψ±∞ →ξξ 下面会看到,束缚态条件要求λ只能取特定值 ,2,1,0,12=+=n n λ 这导致能量的量子化。 首先把上述方程转化成可以用级数求解的形式。考虑±∞→ξ的渐近解。这时系数为λ的项可以忽略,方程趋近于 02 22 =ψ-ψξξd d 渐近通解为 2 2 22e e ξξ-+≈ψB A ,(±∞→ξ) 但因2 2ξe 不满足束缚态的条件,所以渐近解取为 2 2~ξ-ψe 把波函数写成 )(2ξξu -=ψe

代入方程 0)(222=ψ-+ψξλξd d 后,求解ψ的问题则转化成求解u 的方程 )1(222=-+-u u u λξξξd d d d 这个方程称为Hermite 方程,可以用级数求解。 二、级数解法 在原点0=ξ附近,用幂级数 k k k a u ξξ∑∞ ==0 )( 代入Hermite 方程,得 0)1(2)1(0 11 22 =-+--∑∑∑∞ =-∞ =-∞ =k k k k k k k k k a ka a k k ξλξξξ 把前两项的求和序号改为从0开始 0)1(2)1)(2(0 2=-+-++∑∑∑∞ =∞ =∞ =+k k k k k k k k k a ka a k k ξλξξ 由此得到展开系数 k a 的递推关系 ,2,1,0,)1)(2() 1(22=++--= +k a k k k a k k λ

相关主题