搜档网
当前位置:搜档网 › 空气钻井偏心井筒压力及注气量计算

空气钻井偏心井筒压力及注气量计算

空气钻井偏心井筒压力及注气量计算

空气钻井偏心井筒压力及注气量计算

空气钻井技术以其诸多优势已经在国内外得到迅速发展和推广,其理论研究也得到了进一步发展,但是到目前为止,基本上所有的理论公式推导都是建立在同心环空的基础之上,没有考虑到钻柱偏心所造成的影响。本文在深入调研的基础上,从空气钻井偏心工况循环系统分析入手,分别建立了直井段、造斜井段、稳斜井段井筒压力模型,引入了偏心环空当量直径,对正循环系统井筒压力分布公式进行了推导,并以文献[13]中所提供的数据作为原始计算数据,以直井为例,计算了直井井筒沿程水力摩阻系数、压力、流体密度和流速,并对其规律进行分析。

可知偏心度对井筒压力、密度、流速的影响不可忽略,而且环空中流体流速和气体单位体积动能的最低值出现在“关键点”处,而非井底,此处是环空携屑最困难的地方之一。分别讨论了气体最小动能标准和岩屑沉降末速度标准,以及偏心度、钻速、井底压力、井深和注气量之间的关系。

东北石油大学石油工程课程设计采油工程部分井筒压力分

东北石油大学课程设计任务书 课程石油工程课程设计 题目井筒压力分布计算 专业石油工程姓名赵二猛学号100302240115 主要内容、基本要求、主要参考资料等 1.设计主要内容: 根据已有的基础数据,利用所学的专业知识,完成自喷井系统从井口到井底的所有相关参数的计算,最终计算井筒内的压力分布。 ①计算出油井温度分布;②确定平均温度压力条件下的参数; ③确定出摩擦阻力系数;④确定井筒内的压力分布; 2. 设计基本要求: 要求学生选择一组基础数据,在教师的指导下独立地完成设计任务,最终以设计报告的形式完成本专题设计,设计报告的具体内容如下: ①概述;②基础数据;③能量方程理论;④气液多相垂直管流压力梯度的 摩擦损失系数法;⑤设计框图及结果;⑥结束语;⑦参考文献。 设计报告采用统一格式打印,要求图表清晰、语言流畅、书写规范,论据充分、说服力强,达到工程设计的基本要求。 3. 主要参考资料: 王鸿勋,张琪等,《采油工艺原理》,石油工业出版社,1997 陈涛平等,《石油工程》,石油工业出版社,2000 万仁溥等,《采油技术手册第四分册-机械采油技术》,石油工业出版社,1993 完成期限2013年7月1日—2013年7月20日 指导教师张文 专业负责人王立军 2013年6月25日

目录 第1章概述 (1) 1.1 设计的目的和意义 (1) 1.2 设计的主要内容 (1) 第2章基础数据 (2) 第3章能量方程理论 (3) 3.1 能量方程的推导 (3) 3.2多相垂直管流压力分布计算步骤 (6) 第4章气液多相垂直管流压力梯度的摩擦损失系数法 (8) 4.1 基本压力方程 (8) 4.2 平均密度平均流速的确定方法 (8) 4.3 摩擦损失系数的确定 (11) 4.4 油气水高压物性参数的计算方法 (12) 4.5 井温分布的的计算方法 (16) 4.6 实例计算 (17) 第5章设计框图及结果 (21) 5.1 设计框图 (21) 5.2 设计结果 (22) 结束语 (29) 参考文献 (30) 附录 (31)

压缩空气用气量计算

压缩空气用气量计算 压缩空气用气量计算 压缩空气理论――状态及气量 1、标准状态 标准状态的定义是:空气吸入压力为0.1MPa,温度为15.6℃(国内行业定义是0℃)的状态下提供给用户系统的空气的容积。如果需要用标准状态,来反映考虑实际的操作条件,诸如海拔高度、温度和相对湿度则将应实际吸入状态转换成标准状态。 2、常态空气 规定压力为0.1MPa、温度为20℃、相对湿度为36%状态下的空气为常态空气。常态空气与标准空气不同在于温度并含有水分。当空气中有水气,一旦把水气分离掉,气量将有所降低。 3、吸入状态 压缩机进口状态下的空气。 4、海拔高度 按海平面垂直向上衡量,海拔只不过是指海平面以上的高度。海拔在压缩机工程方面占有重要因素,因为在海拔高度越高,空气变得越稀薄,绝对压力变得越低。既然在海拔上的空气比较稀薄,那么电动机的冷却效果就比较差,这使得标准电动机只能局限在一定的海拔高度内运行。EP200 标准机组的最大容许运行海拔高度为2286米。 5、影响排气量的因素: Pj、Tj、海拔高度、n、V余、泄漏等。 6、海拔高度对压缩机的影响: (1)、海拔越高,空气越稀薄,绝压越低,压比越高,Nd越大; (2)、海拔越高,冷却效果越差,电机温升越大; (3)、海拔越高,空气越稀薄,柴油机的油气比越大,N越小。 7、容积流量 容积流量是指在单位时间内压缩机吸入标准状态下空气的流量。用单位:M3/min (立方米/分)表示。标方用N M3/min表示。 1CFM=0.02832 M3/min, 或者1 M3/min=35.311CFM, S--标准状态,A--实际状态 8、余隙容积 余隙容积是指正排量容积式(往复或螺杆)压缩机冲程终端留下的容积,此容积的压缩空气经膨胀后返回到吸入口,并对容积系数产生巨大的影响。 9、负载系数

油气井常见生产现象井筒举升条件分析

油气井常见生产现象井筒举升条件分析 西北油田分公司 塔河采油一厂采油四队 詹新 2009年3月2日

目录 前言 (2) 一、关于动态分析的定义 (3) 二、油气井常见生产现象井筒举升条件分析 (5) (一)、气井携液临界气量 (5) (二)、天然气水合物 (7) (三)、电潜泵相对扬程 (10) (四)、气体对抽油泵的影响 (12) (五)、自喷井套压与井筒内流体的关系 (13)

油气井常见生产现象 井筒举升条件分析 前言 交流对象: 班组长、采油工 交流背景: 一些和井筒内举升条件有关的生产现象,部分班组长、采油工在工作过程中不太明白,经常询问,本人汇总后在此做一个的介绍,以期能增强现场人员的分析和判断能力,指导实际生产。 交流内容: (1)简单介绍各个层次动态分析的定义; (2)主要从井筒举升条件对油气井常见的一些生产现象进行分析和解释

一、关于动态分析的定义 广义的动态分析指的是油、气田开发动态分析。 定义:在油、气田开发过程中,利用油、气田生产数据和各项监测方法采集到的资料,来分析、研究地下油、气、水运动规律及其发展变化,检测开发方案及有关措施的实施效果、预测油、气田开发效果,并为调整挖潜提供依据的全部工作称为油、气田开发动态分析。包括三个方面: 生产动态分析:亦叫单井动态分析, 包括油气井动态分析和注水井动态分析

井筒举升条件分析:油井井筒内阻力以及压力消耗等变化情况分 析 油气层动态分析:

二、油气井常见生产现象井筒举升条件分析 (一)、气井携液临界气量 其他条件不变的情况下,产气量越大,携液能力越强 西南石油学院李闽通过研究成果:液滴在高速气流中运动时,液滴前后存在一压差,在这一压差作用下,液滴会从圆球形变成一椭球形,根据液滴形状为椭球形这一特点,经过推导,得到以下改进的计算公式: 从上面公式分析,影响气井携液临界产量的参数主要是A(油管内径决定),p ,T。 气井携液临界产量受油管内径大小影响如下表: q c p A油管内径T(K)Z V t l g 44236 100.0057 853000.850.796 0.06107476.4 39185 100.0050 803000.850.796 0.06107476.4 35364 100.0045 763000.850.796 0.06107476.4 30001 100.0038 703000.850.796 0.06107476.4 23535 100.0030 623000.850.796 0.06107476.4

压缩空气管道规范

压缩空气管道规范 为避免重复建设和节约投资,压缩空气管道考虑近期发展的需要是必要的。近期发展应包括对流量、压力及品质的要求。 9.0.2 本条是原规范第9.0.1 条后段的修订条文。 压缩空气管道系统有辐射状、树枝状和环状三种形式。其中,厂(矿区)管道一般采用辐射状和树枝状系统,车间采用树枝状和环状系统。辐射状系统便于集中调节用气量,压力和泄漏损失小,但一次性投资大,管网较复杂;树枝状系统的优缺点则与辐射状系统相反;环状系统的主要特点是供气可靠,压力稳定。由于各有优缺点,并且在不同的使用条件下均能获得较好的效益,所以,笼统地推荐一种系统是不合适的,特别是近年来,许多厂(矿)已经采用了树枝与辐射混合型的管网系统,其效益也是明显的。在设计管道系统时,可以根据当地的实际情况,因地制宜地选择合适的管道系统。 管道的三种敷设方式:架空、管沟和埋地,各有其特点和使用条件。架空管道安装、维修方便、直观,也便于以后改造。这种敷设方式被夏热冬暖地区、温和地区、夏热冬冷地区和寒冷地区的大多数厂(矿)采用。管沟敷设如能与热力管道同沟,将是经济合理的。直接埋地敷设在寒冷地区及总平面布置不希望有架空管线的厂(矿)采用较多。 寒冷地区和严寒地区的饱和压缩空气管道架空敷设时,冻结的可能性比较大,尤其是严寒地区需采取严格的防冻措施。 9.0.3 本条是原规范第9.0.2 条的修订条文。 管道设坡度有利于排放油水,但也有许多单位在管道设计时均不设坡度。多年来的使用证明,只要设有排除油水的装置,一般是没有问题的,尤其在不冻结地区,并且还有设计和施工方便的优点,因此,本条文对坡度设置问题未作规定,仅规定了管道应设置可排放油水的装置。如有坡度敷设时,推荐不小于0.002。 条文中提到的“饱和压缩空气”是指未经干燥处理或干燥处理后其露点温度仍然高于当地极端环 境最低温度的压缩空气,这样的压缩空气在架空管道中会析出水分,所以,架空敷设时需考虑防冻措施。 干燥、净化压缩空气管道的管材和附件的选择,对于确保供应用气设备符合要求的干燥、净化压缩空气十分重要。若管材和附件选择不当,常会使已经干燥、净化的压缩空气受到污染。根据对各行业企业的调查,将压缩空气按干燥净化程度分为四档,分别推荐使用不同的管材,这样既节约了成本,又保证了压缩空气的品质。 对于近年来出现的PVC塑料管、铝塑管、不锈钢复合管等新材料,由于尚无使用的成熟经验,故这里未予列出。 现在用于干燥和净化压缩空气管道的阀门和附件品种及材质较多,凡在强度、密封、抗腐蚀性方面满足要求者均可采用。 管道连接采用焊接,已有多年成熟的经验。焊接比法兰或螺纹连接更具有省料、施工快和严密性好等优点,故推荐采用。 干燥和净化压缩空气管道的焊接方式与一般压缩空气管道的焊接方式有所不同,这在《洁净厂房设计规范》(GB 50073)中已有明确的规定,因此,本条文要求遵照执行。 9.0.7 本条为新增条文。

油气井生产一体化软件PIPESIM

油气井生产一体化软件 PIPESIM
SIS

PIPESIM 全球客户分布
600多家用户,3000多个最终用户
国际石油公司 – 壳牌, BP, Unocal, Phillips…. 国际工程服务和咨询公司 – INTEC, Aker Kvaerner, Worley, JP Kenny…. 国内石油公司 – 中石油,中海油,胜利油田,中原油田,南阳 油田,中石化西北局,中石化华北局 …..
2

PIPESIM 组成模块
Network Analysis
? 井/管网模拟
Pipeline & Facilities Analysis
? 管道和设备分析
FPT Base System
? 单井分析
? 油田规划工具
ESP/Gas Lift/ RodPump
? 电泵/气举/游梁式设计和诊断
GOAL
? 区块/油田优化
? 复杂结构井分析
HoSim

PIPESIM 采油气工程上的应用
— 单井分析 、人工举升优化设计 及管道设备分析

采油、 采油、气工程上的应用 油、气流体物性分析 常规油、稠油、干气及凝析气井开采 油气井产能分析 井下管柱优选 自喷工作制度 人工举升设计(电泵、气举、抽油机等)
5

采油、 采油、气工程上的应用 气井优化分析设计 结蜡预测 沥青质生成预测 水合物预测及防治 气井携液能力计算 强大的关键字编辑功能
6

地层压力计算

地层压力快速测试解释技术 1.地层压力分布原理: 常规的地层压力是严格遵循达西定律,对于油井的分布曲线应 该是这个规律的。 在不同的压力点其恢复曲线也不同,但最终的地层压力在影响 半径处是相同的。 p r 由上图表明流动过程中如果确定不同的初始压力点,也可以计算出地层re(影响半径)处的地层压力 2压力恢复曲线的测试: 压力恢复曲线的测试是油田油井常用的测压手段,起测试的压力数据是压力-时间变化曲线。常规的测试一般测试地层压力需要3天

以上的时间,而低渗透油藏需要10多天甚至一个月以上的时间来判断和计算地层压力。 P t 3地层压力快速计算的原理: 由地层压力分布曲线和压力测试曲线,看,在同一个井底压力的初始点,测试曲线稍微滞后一点。但压力趋势是一致的,也就是说压力恢复曲线的测试实际就是压力分布曲线的测试。 在这个基础上,我们将t时刻的井底测试压力认为是距生产井r 处的压力传递过来的反应。于是就有了 pt=pr pt----t时刻的井底测试压力 pr---r处的压力于t时刻传递到井筒

基于上述原理,我们就可以利用短时间内的压力恢复曲线来计算地层re处的压力了。 4测试时间要求: 因为地层恢复过程有一些不可预料的因素,而且,测试仪器的精度等一些客观因素,在分析计算的时候,需要大量的数据来修正计算误差。所以低渗透游藏一般测试时间安排至少一天,如果是常规油藏,测试时间4-6小时就可。 测试数据密度点要求:因为是短时间测试,需要高密度和高精度的压力传感器,一般设置为30秒一个测试压力点即可。 5低渗透油藏的新的测试方法: 由于油井恢复速度慢,至少一天的时间,担心影响产量,可以测试对应水井,但要求是水井的注水压力高。在地面用压力传感器和计算机自动化采集压降数据4-6小时即可。这样是以水井的影响半径处的地层压力来替代油井的测试。以减少测试时间。 6 技术优点: 不占大量的生产时间,快速动态的分析地层压力变化。计算方法合理,利用测试密度点是为了得到地层压力分布曲线的曲率,尤其适应低渗透油藏的测试计算。因为老油田具备一些大孔道,其低渗透层的压力恢复规律反而被掩盖了。必须通过分层解释技术来分析。 7 技术要求: 要求开放式测试数据,不下封隔器,常规的测压数据就可以,水

如何计算用气量

确定一个新厂的压缩空气要求的传统方法是将所有用气设备的用气量(m3/min)加起来,再考虑增加一个安全、泄露和发展系数 在一个现有工厂里,你只要作一些简单的测试便可知道压缩空气供给量是否足够。如不能,则可估算出还需增加多少。 一般工业上空气压缩机的输出压力为(G),而送到设备使用点的压力至少 MPa。这说明我们所用的典型空气压缩机有 MPa(G)的卸载压力和 MPa(G)的筒体加载压力或叫系统压力。有了这些数字(或某一系统的卸载和加载值)我们便可确定。 如果筒体压力抵于名义加载点( MPa(G))或没有逐渐上升到卸载压力( MPa(G)),就可能需要更多的空气。当然始终要检查,确信没有大的泄露,并且压缩机的卸载和控制系统都运行正常。 如果压缩机必须以高于 MPa(G)的压力工作才能提供 MPa(G)的系统压力,就要检查分配系统管道尺寸也许太小,或是阻塞点对于用气量还需增加多少气量,系统漏气产生什么影响以及如何确定储气罐的尺寸以满足间歇的用气量峰值要求。 一、测试法——检查现有空气压缩机气量 缩空气的短缺不是由于机器的磨损或故障所造成的。 下面是进行定时泵气试验的程序: A.储气罐容积,立方米 B.压缩机储气罐之间管道的容积立方米 C.(A和B)总容积,立方米 D.压缩机全载运行 E.关闭储气罐与工厂空气系统之间的气阀 F.储气罐放弃,将压力降至 MPa(G) G.很快关闭放气阀 H.储气罐泵气至 MPa(G)所需要的时间,秒 现在你已有了确定现有压缩机实际气量所需要的数据,公式是: C=V(P2-P1)60/(T)PA C=压缩机气量,m3/min V=储气罐和管道容积,m3(C项) P2=最终挟载压力,MPa(A)(H项+PA) P1=最初压力,MPa(A)(F项+PA) PA=大气压力,MPa(A)(海平面上为 MPa)

中国石油大学油气井工程复习资料

第1讲油气井工程理论与方法 现在油气井技术发展趋势:1.向信息化、智能化方向发展趋势2.向综合化、集成化方向发展趋势。3.继续向提高油田采收率方向发展,向少井高产、不堵塞、不污染油层方向发展。4. 继续向难开采油气藏方向发展,提高难开采油气层的采收率。 第2讲大位移钻井技术 大位移井定义:水平位移与垂深之比大于或等于2,且水平位移超过3000米的井。大位移井的主要用途:(1)用大位移井开发海上油气田从钻井平台上钻大位移井,可减少布井数量,减少平台数量,减少井投资。(2)用大位移井开发近海油气田(3)开发不同类型的油气田。几个不相连的小断块油气田;几个油气田不在同一深度,方位也不一样,可采用多目标三维大位移井开发。(4)用大位移井代替海底井(5)保护环境。可在环境保护要求低的地区用大位移井开发环境保护要求高的地区的油气田。大位移井的主要特点:一是水平位移大,能较大范围地控制含油面积,开发相同面积的油田可以大量减少陆地及海上钻井的平台数量;二是钻穿油层的井段长,可以使油藏的泄油面积增大,可以大幅度提高单井产量。大位移井的关键技术:(1)减小钻柱的摩阻摩扭技术(2)钻柱设计技术(3)轨道设计技术(4)测量与轨迹控制技术(5)井眼的清洗技术(6)井壁稳定技术(7)固井完井技术 第3讲欠平衡钻进技术 欠平衡压力钻井:指在钻井过程中泥浆柱作用在井底的压力(包括泥浆柱的静液压力和循环压降),低于地层孔隙压力。欠平衡压力钻井的关键技术:1.压差的合理确定(地层条件)2.井筒内压力分布特征及计算3.欠平衡条件的产生4.欠平衡钻井的井控技术5.产出流体的地面处理技术。2、油层伤害的主要形式:(1)泥浆滤液侵入地层,和地层里的粘土发生水化反应,粘土膨胀、分散、运移,堵塞孔隙后道。(2)泥浆滤液和地层流体起化学反应,产生水锁、乳化、润湿反转和固相沉淀,从而堵塞孔隙喉道。(3)泥浆固相直接堵塞孔隙喉道。压差对机械钻速的影响:(1)压差对岩石强度的影响。压差越大,岩石的强度越大,越难破碎。(2)压差对井底清洗效果的影响。压差增大容易产生压持效应,影响机械钻速。欠平衡压力钻井的优越性1、减轻地层伤害,解放油气层,提高油气井产能。对于低渗油气藏,压力衰竭的油气藏,这一优势更为突出。2、有利于识别评价油气藏。钻进过程中井内泥浆柱的压力低于地层孔隙压力,允许地层流体进入井内,这有利于识别和准确评价油气藏。3、明显提高机械钻速。欠平衡压力钻井比超平衡压力钻井井底岩石容易破碎,而且井底易清洗,机械钻速大幅度提高,同时减轻了钻头磨损,提高钻头的使用寿命。4、减少或避免压差卡钻和井漏事故的发生。 第4讲深井超深井 基本概念:深井:井深在4500—6000米的直井。超深井:井深在6000—9000米的直井。特超深井:井深超过9000米的直井特点:裸眼井段长,要钻穿多套地层压力系统;井壁稳定性条件复杂;井温梯度和压力梯度高;深部地层岩石可钻性差;钻机负荷大。提高深井超深井机械钻速的措施:1、运用井下动力钻具2、使用顶部驱动系统3、使用欠平衡压力钻井4、使用井下液体增压器5、用水射流钻井装置6、水力参数设计深井超深井钻井液:1、深井超深井钻井液应

用气量的计算和确定

用气量得计算与确定 字体大小:大- 中-小bjdailuo发表于11-05-1011:07阅读(773)评论(0)分类: 用气量得计算与确定 确定一个新厂得压缩空气要求得传统方法就是将所有用气设备得用气量(m3/min)加起来, 再考虑增加一个安全、泄露与发展系数 在一个现有工厂里,您只要作一些简单得测试便可知道压缩空气供给量就是否足够。如不能,则可估算出还需增加多少。 一般工业上空气压缩机得输出压力为0、69MPa(G),而送到设备使用点得压力至少0、62MPa。这说明我们所用得典型空气压缩机有0、69 MPa(G)得卸载压力与0、62 MPa(G)得筒体加载压力或叫系统压力。有了这些数字(或某一系统得卸载与加载值)我们便可确定。 如果筒体压力抵于名义加载点(0、62MPa(G))或没有逐渐上升到卸载压力(0、69MPa (G)),就可能需要更多得空气。当然始终要检查,确信没有大得泄露,并且压缩机得卸载与控制系统都运行正常。 如果压缩机</a>必须以高于0、69 MPa(G)得压力工作才能提供0、62MPa(G)得系统压力,就要检查分配系统管道尺寸也许太小,或就是阻塞点对于用气量还需增加多少气量,系统漏气产生什么影响以及如何确定储气罐得尺寸以满足间歇得用气量峰值要求。 一、测试法——检查现有空气压缩机气量定时泵气试验就是一种比较容易精确得检查现有空气压缩机气量或输出得方法,这将有助于判断压缩空气得短缺不就是由于机器得磨损或故障所造成得。下面就是进行定时泵气试验得程序: A.储气罐容积,立方米 B.压缩机储气罐之间管道得容积立方米 C.(A与B)总容积,立方米压缩机

压缩空气在管道中的流速

压缩空气在管道中的流速 1. 压缩空气流量流速参考表 fancongming 发表于: 2008-7-22 13:07 来源: 半导体技术天地 在计算压空管道管径时,压缩空气在管道中的流速一般取多少比较合适? 对于低压冷空气流速在8~12m/s,对于高压空气流速为15m/s左右,一般如果压力不超过1.0MPaG,可以取10~15米/秒。 请问各位高手: 压缩空气压力在0.56MPa-0.75MPa,胶管管径10mm,传输距离约15m,要计算单位时间内的用气量,其流速如何确定? 流速=流量/面积 呵呵,这是施工时计算最头痛的问题 胶管管径10mm应该是3/8"的 4米/秒 5立方/小时 1.0 系统简介 1.1 系统用途 CDA系统主要用于芯片经水清洗后之吹干用、制程设备驱动器动力用、…..等其它用途。 1.2 主要设备 ?空气压缩机 ?空气储槽 ?过滤器 ?干燥机 1.3 控制方式 ?单机设定控制 ?另设控制盘设计联动控制 2.0 设计准则 2.1 管内最大流速10 m/s 2.2 于标准状态下,管路磨擦损失每100 m不大于0.2 Kg/cm2。 2.3 空气过滤标准为制程线径等级之1/10。 3.0 设计步骤及注意事项 3.1 空气压缩机筛选 A. 依业主提供之设备CDA耗量及使用点之需求压力,选用合适之空气压缩机。

B. 空气压缩机依压缩段数可分为单段压缩、双段压缩及多段压缩。 a. 压力≦7 Kg/cm2 (g)时使用单段压缩。 b. 压力≧7 Kg/cm2 (g)时使用双段压缩。 C. 空气压缩机依种类可分为往复式、螺旋式、离心式。高科技厂房以螺旋式较常用。 D. 空气压缩机依冷却方式分为气冷式及水冷式 a. 气冷式用于小容量 b. 一般以水冷式较常用 c. 采用水冷式空气压缩机时,不要忽略冷却水之量,须告知空调设计人员。 d. 冷却水来源有冰水、冷却水或其它。唯使用低温之冰水时,须注意空气压缩机可能结露。 E. 空气压缩机依润滑方式可分无油式及微油式,依业主需求选用。 3.2 缓冲槽筛选 A. 缓冲槽之容量最少须1/10 CDA需求量之容积。 B. 缓冲槽材质 a. 不锈钢 b. 镀锌钢内覆Epoxy c. 需有袪水器 3.3 过滤器筛选 A. 前置过滤器(Pre-filter) a. 处理量约CDA需求量之1.3~1.4倍。 b. Particle滤除可为5μm,1μm c. 需有袪水器 d. 需有差压器 B. 后段过滤器(After-filter) a. 处理量约CDA需求量之1.1~1.2倍。 b. Particle滤除为0.01μm c. 需有差压器 3.4 干燥机筛选 A. 干燥机之形式分为冷冻式干燥机及吸附式干燥机。 B. 一般而言压力露点概分为三级: a. +3oC b. -40 oC c. -70 oC C. 依压力露点之要求,选用干燥机 a. 压力露点+2 oC,可用冷冻式干燥机, b. 压力露点-40 oC,可用吸附式干燥机或冷冻式及吸附式两者并用。 c. 压力露点-70 oC,可用吸附式干燥机或冷冻式及吸附式两者并用。 D. 干燥机处理量约CDA需求量之1.3~1.4倍。 E. 吸附式干燥机后之过滤器处理量约CDA需求量之1.1~1.2倍。 F. 吸附式干燥机为2个处理单元为一组,1个处理单元吸附水分,另一个处理单元则再生,再生需求风量约15%。 3.5 管径筛选 A. 最大流速10 m/s。 B. 磨擦损失于标准状态下,每100 m不得大于0.2 Kg/cm2。 C. 依据附件二"CRANE" B-14可求得合适之管径。

压缩空气管径的设计计算及壁厚doc

管道的设计计算——管径和管壁厚度 空压机是通过管路、阀门等和其它设备构成一个完整的系统。管道的设计计算和安装不当,将会影响整个系统的经济性及工作的可靠性,甚至会带来严重的破坏性事故。 A.管内径:管道内径可按预先选取的气体流速由下式求得: =i d 8.1821 ?? ? ??u q v 式中,i d 为管道内径(mm );v q 为气体容积流量(h m 3);u 为管内气体平均流速(s m ),下表中给出压缩空气的平均流速取值范围。 管内平均流速推荐值 1m 内的管路或管路附件——冷却器、净化设备、压力容器等的进出口处,有安装尺寸的限制,可适当提高瞬间气体流速。 例1:2台WJF-1.5/30及2台H-6S 型空压机共同使用一根排气管路,计算此排气管路内径。 已知WJF-1.5/30型空压机排气量为1.5 m 3/min 排气压力为3.0 MPa 已知H-6S 型空压机排气量为0.6 m 3/min 排气压力为3.0 MPa 4台空压机合计排气量v q =1.5×2+0.6×2=4.2 m 3/min =252 m 3/h 如上表所示u=6 m/s 带入上述公式=i d 8.1821??? ??u q v =i d 8.1821 6252??? ??=121.8 mm 得出管路内径为121mm 。

B.管壁厚度:管壁厚度δ取决于管道内气体压力。 a.低压管道,可采用碳钢、合金钢焊接钢管;中压管道,通常采用碳钢、合金钢无缝钢管。其壁厚可近似按薄壁圆筒公式计算: min δ= []c np npd i +-?σ2 式中,p 为管内气体压力(MPa );n 为强度安全系数5.25.1~=n ,取[σ]为管材的许用应力(MPa ),常用管材许用应力值列于下表;?为焊缝系数,无缝钢管?=1,直缝焊接钢管?=0.8;c 为附加壁厚(包括:壁厚偏差、腐蚀裕度、加工减薄量),为简便起见,通常当δ>6mm 时,c ≈0.18δ;当δ≤6mm 时,c =1mm 。 当管子被弯曲时,管壁应适当增加厚度,可取 'δ=R d 20δ δ+ 式中,0d 为管道外径;R 为管道弯曲半径。 b.高压管道的壁厚,应查阅相关专业资料进行计算,在此不做叙述。 常用管材许用应力 例2: 算出例1中排气管路的厚度。管路材料为20#钢 公式 min δ=[]c np npd i +-?σ2中 n=2 , p=3.0 MPa , i d =121 如上表20#钢150o C 时的许用应力为131,即σ=131 ?=1 , C =1 带入公式 min δ=[]c np npd i +-?σ2=13 21131212132+?-????=3.8 mm 管路厚度取4 mm

井筒流体温度分布计算方法

井筒流体温度分布计算方法 在多相管流压力计算中,需要油藏流体的高压物性数据,而流体的高压物性对压力和温度非常敏感,因而准确预测多相流体的温度是压力梯度计算的基础。另外,油藏流体沿井筒向地面流动过程中,随着不断散热,其温度将不断降低,油温过低可能导致原油结蜡,因而多相流体温度的准确预测对怎样采取防蜡措施、是否增加井口加热设备等也是很重要的。 国内外对井筒流体温度分布进行了大量的工作。早在1937年,Schlumberger 等人就提出了考虑井筒温度分布的意义。五十年代初期,Nowak 和Bird 通过井筒温度分布曲线解释注水和注汽剖面。Lasem 等人于1957年首先提出了计算井筒温度分布的方法。Ramey.H.J 于1962年首先用理论模型描述了井筒中流体温度分布于井深和生产时间的关系。 Ramey.H.J 从能量守恒的观点出发,建立了计算井筒温度分布的能量守恒方程 J dW dQ J g udu J g gdZ dH l c c - =++ (2-8) Ramey.H.J 利用该模型推导了向井中注入液体和气体时的温度分布公式。 当注入液体时: A z l e b aA t T b aA aZ t Z T --+++-=])([),(0 (2-9) 当注入气体时: A z l e c a A b t T c a A b aZ t Z T -????????? ?? ±+-++??? ??±-+=7781)(7781),(0 (2-10) 式中: []Uk r t Uf r k W A c 112)(π+= Eickmeier 等人于1970年在Ramey.H.J 研究的基础上建立了一套关于注液和产液期间液体和井筒周围地层间热交换的有限差分模型。计算过程中,将油管、套管、水泥环及地层的传热全都考虑在内。但作者仍然只是研究单相流体的温度分布,传热计算中把流体的物性等都看作是常数。后来,Satter 对注蒸汽是相态的变化对温度分布的影响进行了研究。Beggs 和Shiu 对Ramey.H.J 方程中的A 提出了估算方法。 在有关井筒流体和地层温度分布的计算中,许多文章中都采用了Ramey.H.J 的计算方法,但由于Ramey.H.J 的方法是建立在井筒流体与地层温度差不变的基

压缩空气用气量计算[资料]

压缩空气用气量计算[资料] 压缩空气用气量计算 压缩空气理论――状态及气量 1、标准状态 标准状态的定义是:空气吸入压力为0.1MPa,温度为15.6?(国内行业定义是0?)的状态下提供给用户系统的空气的容积。如果需要用标准状态,来反映考虑实际的操作条件,诸如海拔高度、温度和相 对湿度则将应实际吸入状态转换成标准状态。 2、常态空气 规定压力为0.1MPa、温度为20?、相对湿度为36,状态下的空气为常态空气。 常态空气与标准空气不同在于温度并含有水分。当空气中有水气,一旦把水气分离掉,气量将有所降低。 3、吸入状态 压缩机进口状态下的空气。 4、海拔高度 按海平面垂直向上衡量,海拔只不过是指海平面以上的高度。海拔在压缩机工程方面占有重要因素,因为在海拔高度越高,空气变得越稀薄,绝对压力变得越低。既然在海拔上的空气比较稀薄,那么电动机的冷却效果就比较差,这使得标准电动机只能局限在一定的海拔高度内运行。EP200 标准机组的最大容许运行海拔高度为2286米。 5、影响排气量的因素: Pj、Tj、海拔高度、n、V余、泄漏等。 6、海拔高度对压缩机的影响:

(1)、海拔越高,空气越稀薄,绝压越低,压比越高,Nd越大; (2)、海拔越高,冷却效果越差,电机温升越大; (3)、海拔越高,空气越稀薄,柴油机的油气比越大,N越小。 7、容积流量 容积流量是指在单位时间内压缩机吸入标准状态下空气的流量。用单 位:M3/min (立方米/分)表示。 标方用N M3/min表示。 1CFM=0.02832 M3/min, 或者 1 M3/min=35.311CFM, S--标准状态,A--实际状态 8、余隙容积 余隙容积是指正排量容积式(往复或螺杆)压缩机冲程终端留下的容积,此容积的压缩空气经膨胀 后返回到吸入口,并对容积系数产生巨大的影响。 9、负载系数 负载系数是指某一段时间内压缩机的平均输出与压缩机的最大额定输出之比。不明智的做法就是卖给用户的压缩机,正好满足用户的最大的需求,增加一个或几个工具或有泄漏会导致工厂的压力下降。为了避免这种情况,英格索兰多年来一直建议采用负载系数:取用户系统所需气量的极大值,并除以0.9或 0.8的负载系数。(或任何用户认为是个安全系数) 这种综合气量选择能顾及未预计到的空气需量的增加。无需额外的资本的投入,就可做一些小型的 扩建。 10、气量测试 (1)、往复式压缩机气缸容积

油气井

石油工程专业—油气井工程模块 ●油气井工程学科对国民经济和社会发展的重要作用 油气井工程是建设地面通往地下油气资源通道的综合性工程技术,是发现和开采地下油气资源必需的直接手段,其投资约占整个石油天然气勘探、开发成本的50%左右。油气井工程是多学科综合的应用学科,深井、复杂井、海洋井的钻井能力历来是一个国家综合科技水平的具体体现。 我国国民经济的高速发展和人民生活水平的持续提高,造成了对油气能源需求的大幅度增加。为了满足国家对油气能源的需求、保证国民经济的良性持续发展,我国的油气勘探开发技术、尤其是油气井工程技术必需有大的进步:以更低的成本、更快的速度,发现、利用更多的石油和天然气。而目前油气井技术已成为提高油气勘探开发的瓶颈之一,因此,油气井工程学科应是国家重点发展的学科之一。 ●西南石油大学本学科点的历史 西南石油大学的“油气田开发工程”学科最早起源于1958年该校的“开发系”及其下设的“钻井、采油、油藏工程、油气田开发、油田化学、海洋石油工程”共6个本科专业和相应的研究室、教研室,分别于1958、1978、1986、1991年开始招收本科、硕士、博士和博士后,于1988年成为国家首批重点学科。当时该学科包含“油气田开发工程”与“油气井工程”两个学科方向,1990年国家将其调整为“油气田开发工程”和“油气井工程”两个新的二级学科,“油气井工程”即成为单独的国家重点学科。该学科点于2001年通过了教育部的再次申报、评审,继续保留国家重点学科。 本学科学术方向: 钻井过程控制理论与技术:在钻井过程中的井眼轨迹控制、破岩清岩控制、钻井信息技术、钻井过程仿真等领域连续承担了国家“863”项目、国家自然科学基金项目、省部级项目和油田协作项目。在三维井眼轨迹计算方法、井底水力增压机理、深井复杂井防止井下事故、提高机械钻速、井下参数测量、钻井过程仿真、“虚拟现实”模拟及数据处理技术等研究领域取得了重要进展,参与了国内油田大位移井、小井眼短半径侧钻水平井、深井超深井复杂井钻井等重大工程项目的设计和施工,并提供了技术和决策支持。 油气井工作液化学与力学:以井筒工作液化学与流体力学的功能控制、化学处理剂研制与作用机理分析、工作液与环境(压力、温度、地层、流体等)相互作用等基础研究为重点,研究解

井筒压力分布计算设计与实现

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 题目井筒压力分布计算 目录 第1章概述.............................................................................. 错误!未定义书签。 1.1 设计的目的和意义.......................................................... 错误!未定义书签。 1.2 设计的主要内容.............................................................. 错误!未定义书签。第2章基础数据.......................................................................... 错误!未定义书签。第3章能量方程理论.................................................................. 错误!未定义书签。 3.1 能量方程的推导.............................................................. 错误!未定义书签。 3.2多相垂直管流压力分布计算步骤 (6) 第4章气液多相垂直管流压力梯度的摩擦损失系数法 (8) 4.1 基本压力方程 (8) 4.2 平均密度平均流速的确定方法 (8) 4.3 摩擦损失系数的确定 (11) 4.4 油气水高压物性参数的计算方法 (12) 4.5 井温分布的的计算方法 (16) 4.6 实例计算 (17) 第5章设计框图及结果 (21) 5.1 设计框图 (21) 5.2 设计结果 (22) 结束语 (29) 参考文献 (30) 附录 (31)

如何来确定和计算用气量

如何确定和计算用气量 确定一个新厂的压缩空气要求的传统方法是将所有用气设备的用气量(m3/min)加起来,再考虑增加一个安全、泄露和发展系数。 在一个现有工厂里,你只要作一些简单的测试便可知道压缩空气供给量是否足够。如不能,则可估算出还需增加多少。 一般工业上空气压缩机的输出压力为0.69MPa(G),而送到设备使用点的压力至少0.62MPa。这说明我们所用的典型空气压缩机有0.69MPa(G)的卸载压力和0.62MPa(G)的筒体加载压力或叫系统压力。有了这些数字(或某一系统的卸载和加载值)我们便可确定。 如果筒体压力抵于名义加载点(0.62MPa(G))或没有逐渐上升到卸载压力(0.69MPa(G)),就可能需要更多的空气。当然始终要检查,确信没有大的泄露,并且压缩机的卸载和控制系统都运行正常。如果压缩机必须以高于0.69MPa (G)的压力工作才能提供0.62MPa(G)的系统压力,就要检查分配系统管道尺寸也许太小,或是阻塞点对于用气量还需增加多少气量,系统漏气产生什么影响以及如何确定储气罐的尺寸以满足间歇的用气量峰值要求。 一、测试法——检查现有空气压缩机气量 定时泵气试验是一种比较容易精确的检查现有空气压缩机气量或输出的方法,这将有助于判断压缩空气的短缺不是由于机器的磨损或故障所造成的。下面是进行定时泵气试验的程序: A.储气罐容积,立方米 B.压缩机储气罐之间管道的容积立方米 C.(A和B)总容积,立方米 D.压缩机全载运行

E.关闭储气罐与工厂空气系统之间的气阀 F.储气罐放弃,将压力降至0.48 MPa(G) G.很快关闭放气阀 H.储气罐泵气至0.69 MPa(G)所需要的时间,秒 现在你已有了确定现有压缩机实际气量所需要的数据,公式是: C=V(P2-P1)60/(T)PA C=压缩机气量,m3/min V=储气罐和管道容积,m3(C项) P2=最终挟载压力,MPa(A)(H项+PA) P1=最初压力,MPa(A)(F项+PA) PA=大气压力,MPa(A)(海平面上为0.1MPa)T=时间,s 如果试验数据的计算结果与你工厂空气压缩机的额定气量接近,你可以较为肯定,你厂空气系统的负荷太高,从而需要增加供气量。 二、估算法 V=V现有设备用气量+V后处理设备用气量+V泄露量+V储备量 三、确定所需的增加压缩空气 根据将系统压力提高到所需要压力的空气量,就能确定需要增加的压缩空气供气量。 P2 需要的m3/min=现有的m3/min P1 式中,需要的m3/min=需要的压缩空气供气量 现有的m3/min=现有的压缩空气供气量

压缩空气基础知识

压缩空气基础知识 温度 露点及相对湿度 状态及气量 温度 1、温度 温度是指衡量某一物质在某一时间能量水平的方法。(或更简单的说,某一事物有多少热或多少冷)。 温度范围是根据水的冰点和沸点。在摄氏温度计上,水的冰点为零度,沸点为100度。在华氏温度计上,水的冰点为32度,沸点为212度。从华氏转换成摄氏:华氏=1.8摄氏+32,摄氏=5/9(华氏-32) 2、绝对温度 这是用绝对零度作为基点来解释的温度。 基点零度为华氏零下459.67度或摄氏零下273.15度 绝对零度是指从物质上除去所有的热量时所存在的温度或从理论上某一容积的气体缩到零时所存在的温度。 3、冷却温度差 冷却温度差是确定冷却器的效率的术语。因为冷却器不可能达到100%的效率,我们只能用冷却温差衡量冷却器的效率。 冷却温度差是进入冷却器的冷水或冷空气温度和压缩空气冷却后的温度之差。 4、中间冷却器 中间冷却器是用于冷却多级压缩机中的级与级之间的压缩空气或气体使温度降低的器件。中间冷却器通过降低进入下一级压缩空气温度达到降低压缩功率以有助于增加效率。 返回顶部 露点和相对湿度 1、露点和相对湿度 就象晚上温度下降会产生露水一样,压缩空气系统内的温度下降也会产生水气。露点就是当湿空气在水蒸气分压力不变的情况下冷却至饱和的温度。 这是为什么呢? 含有水分的空气只能容纳一定量的水分。如果通过压力或冷却使体积缩小,就没有足够的空气来容纳所有的水分,因此多于的水分析出成为冷凝水。

离开后冷却器的空气通常是完全饱和的。分离器内的冷凝水就显示了这一点,因此空气温度有任何的降低,就会产生冷凝水。 设定的湿度可认为是湿空气所含水蒸气的重量,即:水蒸气重量和干燥空气重量之比。 相对湿度ψ χ-湿度 Ps ψ= ----------------- = ----------- χ0-饱和绝对湿度 Pb 当Ps=0, ψ=0时,称为干空气; Ps=Pb, ψ=1时,称为饱和空气。 绝对湿度——1M3湿空气所含水蒸气的重量。 Gs—水蒸气重量 χ= ---------------------- V—湿空气体积 水蒸气重量 含湿量= --------------------- 干空气重量 2、饱和空气 当没有再多的水气能容纳在空气中时,就产生了空气的饱和,任何加压或降温均会导致冷凝水的析出。 3、水气分离器 水气分离器是用于收集和除去在冷却过程中从空气或气体中冷凝出来水的器件。 储气筒是用于储存压缩机排放出来的压缩空气和气体的容器。储气筒有利于消除排气管路中的脉冲,并在需求量大于压缩机的能力时,可起储存和补充提供压缩空气的作用。 4、干燥机 干燥机是用于干燥空气的装置。用我们的术语,就是用其干燥的压缩空气。离开后冷却器的空气通常是完全饱和的,就是说任何降温都会产生冷凝水。冷冻式干燥机是通过降低压缩空气的温度,析去水分,然后将空气再加热到接近原来的温度。 再生式干燥机是使空气通过含有化学物质的过滤器以析出水分。这种装置比冷冻式装置更能吸附水气。 返回顶部 状态及气量 1、标准状态

气井井筒流动计算

第一节气体稳定流动的能量方程 一、气体稳定流动方程 气体稳定流动是指在所讨论的的管段内(热力体系内),任何断面上气体的一切参数都不随时间变化,流入和流出的质量守衡,功和热的交换也是一个定值。 2 2 2 22212 11112 2 mgH mu V P E W q mgH mu V P E ++ +=-+++ +E ——内能,J ; pV ——膨胀功或压缩功,J ; 2 2 mu ——动能,J ; mgH ——位能,J ; q ——气体吸收的热量,J ; W ——外界对气体作的功,J 。 其中u 、p 、V 和g 分别表示流速、压力、体积和重力加速度。 气体稳定流动能量方程: 0)(sin =++++w L d dW gdL udu dp θρ 对于垂直管,θ=90°,θsin =1 对于水平管,θ=0°,θsin =0 假设dW=0,并用 dL ρ 乘式中每一项来简化方程 在生产井中,井内气体向上流动,沿气流方向压力是逐渐递减的,可写为如下表达式 dL L d dL udu g dL dp w ) (sin ρρθρ++= 或f acc el dL dp dL dp dL dp dL dp )()()(++= el dL dp )(——重力压降梯度(N/㎡)/m

acc dL dp )( ——加速度压降梯度 f dL dp )(——摩阻梯度 二、管内摩阻 达西阻力公式是计算管内摩阻的基本公式 d L fu L w 22= 确定式中的摩阻系数f ,可以借用水力学中介绍的Moody 图 1. Colebrook 公式 )34.91lg(214.1lg 21 f R e d e d f e +-+= e d ——管径与管子绝对粗糙度的比值 e R ——雷诺数; f ——Moody 摩阻系数。 可以覆盖完全粗糙管、光滑管和过渡区三个流态区域,当Re 相当大时转化为完全粗糙管的Nikuradse 公式。 14.1lg 21 +=e d f 2. Jain 公式: )25 .21lg( 214.11 9 .0e R d e f +-= 3. Chen 公式:

相关主题