搜档网
当前位置:搜档网 › 井筒压力分布计算设计与实现

井筒压力分布计算设计与实现

井筒压力分布计算设计与实现
井筒压力分布计算设计与实现

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 题目井筒压力分布计算

目录

第1章概述.............................................................................. 错误!未定义书签。

1.1 设计的目的和意义.......................................................... 错误!未定义书签。

1.2 设计的主要内容.............................................................. 错误!未定义书签。第2章基础数据.......................................................................... 错误!未定义书签。第3章能量方程理论.................................................................. 错误!未定义书签。

3.1 能量方程的推导.............................................................. 错误!未定义书签。

3.2多相垂直管流压力分布计算步骤 (6)

第4章气液多相垂直管流压力梯度的摩擦损失系数法 (8)

4.1 基本压力方程 (8)

4.2 平均密度平均流速的确定方法 (8)

4.3 摩擦损失系数的确定 (11)

4.4 油气水高压物性参数的计算方法 (12)

4.5 井温分布的的计算方法 (16)

4.6 实例计算 (17)

第5章设计框图及结果 (21)

5.1 设计框图 (21)

5.2 设计结果 (22)

结束语 (29)

参考文献 (30)

附录 (31)

第1章概述

1.1 设计的目的和意义

目的:确定井筒内沿程压力损失的流动规律,完成自喷井系统从井口到井底的所有相关参数的计算,运用深度迭代方法计算多相垂直管流的压力分布。

意义:利用所学的专业知识,结合已有的基础数据,最终计算井筒内的压力分布。对于油气井的优化设计、稳产高产及测试技术的预测性与精确性具有重要的现实意义。

1.2 设计的主要内容

根据已有的基础数据,利用所学的专业知识,完成自喷井系统从井口到井底的所有相关参数的计算,最终计算井筒内的压力分布。

①计算出油井温度分布;②确定平均温度压力条件下的参数;

③确定出摩擦阻力系数;④确定井筒内的压力分布;

详见第四章。

东北石油大学石油工程课程设计采油工程部分井筒压力分

东北石油大学课程设计任务书 课程石油工程课程设计 题目井筒压力分布计算 专业石油工程姓名赵二猛学号100302240115 主要内容、基本要求、主要参考资料等 1.设计主要内容: 根据已有的基础数据,利用所学的专业知识,完成自喷井系统从井口到井底的所有相关参数的计算,最终计算井筒内的压力分布。 ①计算出油井温度分布;②确定平均温度压力条件下的参数; ③确定出摩擦阻力系数;④确定井筒内的压力分布; 2. 设计基本要求: 要求学生选择一组基础数据,在教师的指导下独立地完成设计任务,最终以设计报告的形式完成本专题设计,设计报告的具体内容如下: ①概述;②基础数据;③能量方程理论;④气液多相垂直管流压力梯度的 摩擦损失系数法;⑤设计框图及结果;⑥结束语;⑦参考文献。 设计报告采用统一格式打印,要求图表清晰、语言流畅、书写规范,论据充分、说服力强,达到工程设计的基本要求。 3. 主要参考资料: 王鸿勋,张琪等,《采油工艺原理》,石油工业出版社,1997 陈涛平等,《石油工程》,石油工业出版社,2000 万仁溥等,《采油技术手册第四分册-机械采油技术》,石油工业出版社,1993 完成期限2013年7月1日—2013年7月20日 指导教师张文 专业负责人王立军 2013年6月25日

目录 第1章概述 (1) 1.1 设计的目的和意义 (1) 1.2 设计的主要内容 (1) 第2章基础数据 (2) 第3章能量方程理论 (3) 3.1 能量方程的推导 (3) 3.2多相垂直管流压力分布计算步骤 (6) 第4章气液多相垂直管流压力梯度的摩擦损失系数法 (8) 4.1 基本压力方程 (8) 4.2 平均密度平均流速的确定方法 (8) 4.3 摩擦损失系数的确定 (11) 4.4 油气水高压物性参数的计算方法 (12) 4.5 井温分布的的计算方法 (16) 4.6 实例计算 (17) 第5章设计框图及结果 (21) 5.1 设计框图 (21) 5.2 设计结果 (22) 结束语 (29) 参考文献 (30) 附录 (31)

井筒温度分布 开题报告

本科毕业设计(论文)开题报告 题目:钻井井筒温度场计算 学生姓名: 院(系): 专业班级: 指导教师: 完成时间:2012 年3 月日

1.课题的意义 随着世界能源需求的增加和石油工业的发展,钻深井、超深井已成为油气开发的重要途径,目前国内钻深井和超深井已相当普遍。然而,在钻井工程过程中,复杂条件下深井探井钻井常遇到的复杂情况(喷、漏、塌、卡、斜……)是目前阻碍油气勘探进程的重大障碍,也是至今未能很好解决的重大技术难题。低安全密度窗口已成为钻深井、超深井的主要技术瓶颈。发展深井、超深钻井液是解决这一难题的重要发展方向。由于在钻井过程中,油井工作液与地层间存在温度差,井内流体同近井壁地层发生热量交换,使井壁温度发生改变,导致井周地层岩石产生附加温变应力,改变井壁周围应力状态分布,从而对井壁的稳定性产生显著影响。因此分析钻井过程中井壁及近井壁地层的温度分布特征、扰动变化规律及其影响因素,显得尤为必要。井下循环温度对深井、超深井的钻井与完井工程的影响越来越突出。它不但影响钻井液性能变化、钻井液当量密度的预测、安全密度窗口的确立,而且关系到注水泥作业的成败与注水泥质量的高低。同时它还与井内压力平衡、井壁稳定、套管和钻柱强度设计密切相关。因此,准确预测钻井过程中井内温度值,掌握其分布和变化规律对钻井作业安全、快速的钻进具有十分重要的意义。 其次,井筒的温度分布是气井设计和动态分析必不可少的参数,可以通过直接测量或者计算两种方法得到。但是目前对于一些超深、高温高压或井况复杂的气井,难以进行直接测量;对于高气液比气井,井筒温度分布的计算方法存在计算精度低和可用性问题。因此,研究井简内的温度分布十分必要。 钻井工艺始终贯穿于油气田勘探开发的地质勘探、区域勘探和油田开发的三个阶段中。在深井、超深井的钻井工艺中,受地层加热的作用,温度已成为影响深井快速、安全、经济钻进的重要因素。因此,研究钻井中井筒内的传热具有非常重要的意义。2.国内外研究现状 (1)钻井技术 ?公元二百多年前在我国自贡开始用“顿钻”法钻盐井和天然气井。 ?公元1820年,钻井深度已超过一千米。 ?世界上第一口油井,Drake Well,Titusville(泰特斯维尔城), Pennsylvania, USA, Sunday, August 28, 1859.(69.5 ft),爱德温·德雷克; ?1900年左右,开始使用“旋转钻”进法; ?1976.4.30,钻成我国第一口超深井,四川女基井(井深6011米); ?1978.1.31,钻成四川关基井,井深7175米(1141天); ?1979.4.27,钻成新疆固2井,井深7002米(352天); ?现在,德国、美国和苏联的钻井深度已接近或超过一万米。美国,1974年,井深:9583m;德国,1994年,井深:9101米;前苏联,90年,12260m。

地层压力计算

地层压力快速测试解释技术 1.地层压力分布原理: 常规的地层压力是严格遵循达西定律,对于油井的分布曲线应 该是这个规律的。 在不同的压力点其恢复曲线也不同,但最终的地层压力在影响 半径处是相同的。 p r 由上图表明流动过程中如果确定不同的初始压力点,也可以计算出地层re(影响半径)处的地层压力 2压力恢复曲线的测试: 压力恢复曲线的测试是油田油井常用的测压手段,起测试的压力数据是压力-时间变化曲线。常规的测试一般测试地层压力需要3天

以上的时间,而低渗透油藏需要10多天甚至一个月以上的时间来判断和计算地层压力。 P t 3地层压力快速计算的原理: 由地层压力分布曲线和压力测试曲线,看,在同一个井底压力的初始点,测试曲线稍微滞后一点。但压力趋势是一致的,也就是说压力恢复曲线的测试实际就是压力分布曲线的测试。 在这个基础上,我们将t时刻的井底测试压力认为是距生产井r 处的压力传递过来的反应。于是就有了 pt=pr pt----t时刻的井底测试压力 pr---r处的压力于t时刻传递到井筒

基于上述原理,我们就可以利用短时间内的压力恢复曲线来计算地层re处的压力了。 4测试时间要求: 因为地层恢复过程有一些不可预料的因素,而且,测试仪器的精度等一些客观因素,在分析计算的时候,需要大量的数据来修正计算误差。所以低渗透游藏一般测试时间安排至少一天,如果是常规油藏,测试时间4-6小时就可。 测试数据密度点要求:因为是短时间测试,需要高密度和高精度的压力传感器,一般设置为30秒一个测试压力点即可。 5低渗透油藏的新的测试方法: 由于油井恢复速度慢,至少一天的时间,担心影响产量,可以测试对应水井,但要求是水井的注水压力高。在地面用压力传感器和计算机自动化采集压降数据4-6小时即可。这样是以水井的影响半径处的地层压力来替代油井的测试。以减少测试时间。 6 技术优点: 不占大量的生产时间,快速动态的分析地层压力变化。计算方法合理,利用测试密度点是为了得到地层压力分布曲线的曲率,尤其适应低渗透油藏的测试计算。因为老油田具备一些大孔道,其低渗透层的压力恢复规律反而被掩盖了。必须通过分层解释技术来分析。 7 技术要求: 要求开放式测试数据,不下封隔器,常规的测压数据就可以,水

齿轮压力角计算

方便各位齿轮爱好者学习和使用 齿轮压力角 渐开线及渐开线齿轮 当一直线沿一圆周作纯滚动时,此直线上任一点的轨迹即称为该圆的渐开线,该圆称为渐开线的基圆,而该直线则称为发生线。 图1齿轮压力解析图 如图1: AK——渐开线 基圆,rb n-n:发生线 θK:渐开线AK段的展角 用渐开线作为齿廓的的齿轮称为渐开线齿轮。渐开线齿轮能保持恒定的传动比。 渐开线上任一点法向压力的方向线(即渐开线在该点的法线)和该点速度方向之间的夹角称为该点的压力角。 显然,图2中的 图2 αk即为渐开线上K点的压力角。由图可知: cosαk=ON/OK=rb/Rk 参考文献: 卢玉明.机械设计基础.高等教育出版社,1998

齿轮模数 “模数”是指相邻两轮齿同侧齿廓间的齿距t与圆周率π的比值(m=t/π),以毫米为单位。模数是模数制轮齿的一个最基本参数。模数越大,轮齿越高也越厚,如果齿轮的齿数一定,则轮的径向尺寸也越大。模数系列标准是根据设计、制造和检验等要求制订的。对於具有非直齿的齿轮,模数有法向模数mn、端面模数ms与轴向模数mx 的区别,它们都是以各自的齿距(法向齿距、端面齿距与轴向齿距)与圆周率的比值,也都以毫米为单位。对於锥齿轮,模数有大端模数me、平均模数mm和小端模数m1之分。对於刀具,则有相应的刀具模数mo等。标准模数的应用很广。在公制的齿轮传动、蜗杆传动、同步齿形带传动和棘轮、齿轮联轴器、花键等零件中,标准模数都是一项最基本的参数。它对上述零件的设计、制造、维修等都起着基本参数的作用(见圆柱齿轮传动、蜗杆传动等)。 齿轮计算公式: 分度圆直径 d=mz m 模数z 齿数 齿顶高ha=ha* m 齿根高hf=(ha*+c*)m 齿全高h=ha+hf=(z ha*+c*)m ha*=1 c*=0.25 图片中的应该两箭头之间距离是 渐开线标准直齿圆柱齿轮的 基本参数和几何尺寸的计算 一、渐开线标准直齿圆柱齿轮各部分名称 1、齿顶圆:通过轮齿顶部的圆周。齿顶圆直径以d a表示。 2、齿根圆:通过轮齿根部的圆周。齿根圆直径以d f表示。

压力管道安全监察规定(标准版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 压力管道安全监察规定(标准 版) Safety management is an important part of production management. Safety and production are in the implementation process

压力管道安全监察规定(标准版) 第一章总则 第一条(目的和依据)为了加强压力管道安全监察工作,规范压力管道生产、使用、检验检测和安全监察活动,保障压力管道安全运行,根据《安全生产法》、《特种设备安全监察条例》和《国务院对确需保留的行政审批项目设定行政许可的决定》,制定本规定。 第二条(压力管道定义范围)本规定适用于具备下列条件之一的管道及其附属设施: (一)最高工作压力大于或者等于0.1Mpa(表压,下同),公称直径大于25mm,输送介质为气(汽)体、液化气体的管道; (二)最高工作压力大于或者等于0.1Mpa(表压,下同),公称直径大于25mm,输送可燃、易爆、有毒、有腐蚀性的液体或最高工作温度高于等于标准沸点的液体管道; (三)前二项规定的管道的附属设施及安全保护装置等。

压力管道按其用途划分为长输管道、公用管道和工业管道,具体定义、代号、分级见附件1。 第三条(调整范围)压力管道的生产(含设计、制造、安装、改造、维修)、使用、检验检测及其监督检查,应当遵守本规定。 军事装备、核设施、航空航天器、铁路机车、海上设施和船舶等交通工具上所使用的压力管道、矿井下使用的压力管道和设备本体所属压力管道不适用本规定。 第四条(监察职责分工)国家质量监督检验检疫总局(以下简称国家质检总局)负责全国压力管道安全监察工作,县以上地方质量技术监督部门(以下简称质检部门)负责本行政区域内压力管道的安全监察工作。其中,跨省、自治区、直辖市(以下简称跨省)和中央企业所属的长输管道,由国家质检总局负责实施安全监察;其他长输管道,由省级质检部门负责实施安全监察。 第五条(管理责任)压力管道生产单位(含设计、元件制造、安装、改造、维修单位,下同)、建设单位、使用单位应当对压力管道安全质量和安全使用负责。单位主要负责人对压力管道的安全全

高凝油常规冷采时井筒温度分布分析

第15卷第5期2008年10月 特种油气藏 SpecialOilandGasReservoirs V01.15No.5 Oct.2008 文章编号:1006—6535(2008)05—0091—03 高凝油常规冷采时井筒温度分布分析 邓惠1,杨胜来1,康铭辉2,袁武2,沈政1 (1.中国石油大学,北京昌平102249;2.中油辽河油田公司,辽宁新民110316) 摘要:井筒温度是影响高凝油开发的一个重要参数。以传热学和两相流理论为基础,根据能量 守恒定律建立了高凝油常规冷采时的井筒温度分布模型,确定了产液量和含水率与井筒温度 分布之间的关系。通过实例计算及敏感性因素分析,为高凝油的常规冷采提供了理论支持。 关键词:高凝油;常规冷采;井筒温度;影响因素 中图分类号:TE355文献标识码:A 前言 高凝油目前常规开采方式主要以抽油机加井筒伴热开采,保证产出液的温度高于其凝固点温度,使高凝油具有较好的流动性。研究表明…,含水高凝油的凝固点随含水率的升高先升高后降低,对于中j高含水的高凝油油藏常规冷采,降低井筒伴热方式的高投入和高能耗是高效开采面临的一个重要研究课题,井筒温度分布分析是高凝油常规冷采可行性研究的基础。 1数学模型的建立 1.1基本假设 ’(1)以1口常规冷采的抽油机井井筒作为研究对象。 (2)假设井筒传热为稳态传热,地层传热为非稳态传热。 (3)忽略因产出液经抽油泵后由于各种摩擦损失、容积损失等对举升功的影响。 (4)假设油套环空内液体静止且充至井口,即忽略动液面以上油套环空中气体对传热系数的影响。 1.2井筒温度计算模型的建立 1.2.1常规油管井筒温度计算 根据能量守恒定律,建立井筒内的温度分布模型方程如下‘2卅: r=To+臌+等[1_e翠掣】(1) 式中:T为计算点温度,℃;ro为地表层温度,oC;髫为计算点深度,m;H为油层中部深度,m;m为地温梯度,℃/m;彬,为油层产出液的水当量,W/℃;魁为产出液与地层间的传热系数,W/(m?℃)。1.2.2隔热油管+常规油管井筒温度计算对于采用常规油管的油井,可采用公式(1)直接计算井筒的温度;对下有隔热油管的油井,其常规油管段采用式(1)计算,隔热油管段的计算公式为: H—m//1m//1+眦+等【-一exp粤岩】卜正一+眦+云【卜—}J (2)式中:瓦为常规油管顶部温度,℃;Ⅳ1为隔热油管的长度,m;Kg为隔热油管段产出液与地层间的传热系数,W/(m?oC)。 1.2.3产出液水当量的计算 公式(1)和(2)中的水当量加。计算式为: 埘l=C形=1.1574×10-2Cqi,7(3)式中:C为油水混合液的比热容,J/(g?℃);IT/为油水混合液的质量流量,g/s;q’为油井产液量,m3/d;p7为油井产液密度,g/era3 1.2.4产出液比热计算一J 由能量守恒定律可知: Q=CMAT=C(M。+M。)△r,(4) 收稿日期:2008—04—06;改同日期:2008—06—06 基金项目:辽河油田公司2007年项目“曹台浅层高凝油开采技术研究与试验”部分内容(K107078003) 作者简介:邓惠(1981一),男.2003年毕业于西南石油学院石油工程专业,现为中国石油大学(北京)油气田开发专业硕士研究生。万方数据

压力管道设计技术规定共109页文档

目录 一、压力管道设计基本规定 PGG13.1-2008 (2) 二、压力管道设计、安装、检验相关标准、规范 PGG13.2-2008 (4) 三、压力管道图样绘制规定 PGG13.3-2008 (7) 四、压力管道设计文件编制规定 PGG13.4-2008 (11) 五、压力管道设计基础数据采集规定 PGG13.5-2008 (18) 六、压力管道布置规定 PGG13.6-2008 (24) 七、压力管道材料选用规定 PGG13.7-2008 (36) 八、压力管道元件选用规定 PGG13.8-2008 (49) 九、压力管道支吊架设计规定 PGG13.9-2008 (61) 十、压力管道强度计算规定 PGG13.10-2008 (76) 十一、压力管道应力分析规定 PGG13.11-2008 (78) 十二、压力管道防腐、隔热规定 PGG13.12-2008 (84) 十三、压力管道其他规定 PGG13.13-2008 (94)

一、压力管道设计基本规定 PGG13.1-2008 1.1 总则 1.1.1 本规定根据国务院《特种设备安全监察条例》、国家质量监督检验检疫总局TSGR1001-2008《压力容器压力管道设计许可规则》制定。 1.1.2 本规定适用于公称压力小于或等于42MPa的工业金属压力管道及非金属衬里的工业金属压力管道的设计。非压力管道的设计可参照本规定执行。 1.1.3 本规定不适用于GB/T20801.1-2006《压力管道规范工业管道》第1部分:总则第1.4条规定的管道范围。 1.1.4 压力管道,是指最高工作压力大于或等于0.1MPa(表压)的气体、液化气体、蒸汽介质或者可燃、易爆、有毒、有腐蚀性、最高工作温度高于或者等于标准沸点的液体介质,且公称直径大于25mm的管道。 1.2 压力管道类别、级别划分 1.2.1 GA类(长输管道) 长输(油气)管道是指产地、储存库、使用单位之间的用于输送商品介质的管道,划分为GA1级和GA2级。 GA1级: 符合下列条件之一的长输管道为GA1级: (1)输送有毒、可燃、易爆气体介质,最高工作压力大于4.0MPa的长输管道。 (2)输送有毒、可燃、易爆液体介质,最高工作压力大于或者等于6.4MPa,并且输送距离(指产地、储存地、用户间的用于输送商品介质管道的长度)大于或者等于200km的长输管道。 GA2级: GA1级以外的长输(油气)管道为GA2级。 1.2.2 GB类(公用管道) 公用管道是指城市或乡镇范围内的用于公用事业或民用的燃气管道和热力管道,划分为GB1级和GB2级。 GB1级:城镇燃气管道。 GB2级:城镇热力管道。 1.2.3 GC类(工业管道)

JIS B 度压力角花键计算

齿轮 啮 合齿面 啮 合 标准尺寸标准 尺寸 公差 (R7) 标准 尺寸 公差 (H7) 基本 尺寸 公差 标准 尺寸 标准 尺寸 公差 (d7) 标准 尺寸 基本 尺寸 公差 z m d D D b x D1D2/D ii/M Ri/d1d2/D ie M re/ 60.5 4.000 3.000 2.8190.800 4.150 4.000﹣0.011 ﹣0.023 3.000 ﹢0.009 2.033 ﹢0.068 3.900 4.000 ﹣0.030 ﹣0.042 2.800 4.702 ﹣0.089 ﹣0.149 70.5 4.500 3.500 3.2890.800 4.650 4.500﹣0.011 ﹣0.023 3.500 ﹢0.012 2.444 ﹢0.067 4.400 4.500 ﹣0.030 ﹣0.042 3.300 5.117 ﹣0.090 ﹣0.150 80.5 5.000 4.000 3.7590.800 5.150 5.000﹣0.011 ﹣0.023 4.000 ﹢0.012 3.033 ﹢0.069 4.900 5.000 ﹣0.030 ﹣0.042 3.800 5.747 ﹣0.095 ﹣0.158 90.5 5.500 4.500 4.2290.800 5.650 5.500﹣0.011 ﹣0.023 4.500 ﹢0.012 3.464 ﹢0.068 5.400 5.500 ﹣0.030 ﹣0.042 4.300 6.184 ﹣0.096 ﹣0.160 100.5 6.000 5.000 4.6980.800 6.150 6.000﹣0.011 ﹣0.023 5.000 ﹢0.012 4.033 ﹢0.070 5.900 6.000 ﹣0.030 ﹣0.042 4.800 6.782 ﹣0.100 ﹣0.166 110.5 6.500 5.500 5.1680.800 6.650 6.500﹣0.013 ﹣0.028 5.500 ﹢0.012 4.477 ﹢0.069 6.400 6.500 ﹣0.040 ﹣0.055 5.3007.232 ﹣0.101 ﹣0.168 120.57.000 6.000 5.6380.8007.1507.000﹣0.013 ﹣0.028 6.000 ﹢0.012 5.033 ﹢0.070 6.900 7.000 ﹣0.040 ﹣0.055 5.8007.810 ﹣0.104 ﹣0.173 130.57.500 6.500 6.1080.8007.6507.500﹣0.013 ﹣0.028 6.500 ﹢0.015 5.486 ﹢0.070 7.4007.500 ﹣0.040 ﹣0.055 6.3008.269 ﹣0.105 ﹣0.175 140.58.0007.000 6.5780.8008.1508.000﹣0.013 ﹣0.028 7.000 ﹢0.015 6.033 ﹢0.071 7.9008.000 ﹣0.040 ﹣0.055 6.8008.835 ﹣0.107 ﹣0.179 150.58.5007.5007.0480.8008.6508.500﹣0.013 ﹣0.028 7.500 ﹢0.015 6.492 ﹢0.070 8.4008.500 ﹣0.040 ﹣0.055 7.3009.299 ﹣0.108 ﹣0.180 160.59.0008.0007.5180.8009.1509.000﹣0.013 ﹣0.028 8.000 ﹢0.015 7.034 ﹢0.071 8.9009.000 ﹣0.040 ﹣0.055 7.8009.855 ﹣0.110 ﹣0.184 170.59.5008.5007.9870.8009.6509.500﹣0.013 ﹣0.028 8.500 ﹢0.015 7.497 ﹢0.071 9.4009.500 ﹣0.040 ﹣0.055 8.30010.324 ﹣0.111 ﹣0.186 180.510.0009.0008.4570.80010.15010.000﹣0.013 ﹣0.028 9.000 ﹢0.015 8.034 ﹢0.071 9.90010.000 ﹣0.040 ﹣0.055 8.80010.873 ﹣0.113 ﹣0.189 190.510.5009.5008.9270.80010.65010.500﹣0.016 ﹣0.034 9.500 ﹢0.015 8.501 ﹢0.071 10.40010.500 ﹣0.050 ﹣0.068 9.30011.346 ﹣0.114 ﹣0.190 200.511.00010.0009.3970.80011.15011.000﹣0.016 ﹣0.034 10.000 ﹢0.015 9.034 ﹢0.071 10.90011.000 ﹣0.050 ﹣0.068 9.80011.889 ﹣0.116 ﹣0.193 210.511.50010.5009.8670.80011.65011.500﹣0.016 ﹣0.034 10.500 ﹢0.018 9.504 ﹢0.071 11.40011.500 ﹣0.050 ﹣0.068 10.30012.364 ﹣0.117 ﹣0.194 220.512.00011.00010.3370.80012.15012.000﹣0.016 ﹣0.034 11.000 ﹢0.018 10.034 ﹢0.071 11.90012.000 ﹣0.050 ﹣0.068 10.80012.903 ﹣0.118 ﹣0.197 齿轮啮合 大 径啮合 大径啮合 量棒D Ri=1.0 V1=0.84 小径量棒D Re =0.9 齿数模数公称 直 径 分度圆 直径 基圆 直 径 变位 系数 小径

井筒流体温度分布计算方法

井筒流体温度分布计算方法 在多相管流压力计算中,需要油藏流体的高压物性数据,而流体的高压物性对压力和温度非常敏感,因而准确预测多相流体的温度是压力梯度计算的基础。另外,油藏流体沿井筒向地面流动过程中,随着不断散热,其温度将不断降低,油温过低可能导致原油结蜡,因而多相流体温度的准确预测对怎样采取防蜡措施、是否增加井口加热设备等也是很重要的。 国内外对井筒流体温度分布进行了大量的工作。早在1937年,Schlumberger 等人就提出了考虑井筒温度分布的意义。五十年代初期,Nowak 和Bird 通过井筒温度分布曲线解释注水和注汽剖面。Lasem 等人于1957年首先提出了计算井筒温度分布的方法。Ramey.H.J 于1962年首先用理论模型描述了井筒中流体温度分布于井深和生产时间的关系。 Ramey.H.J 从能量守恒的观点出发,建立了计算井筒温度分布的能量守恒方程 J dW dQ J g udu J g gdZ dH l c c - =++ (2-8) Ramey.H.J 利用该模型推导了向井中注入液体和气体时的温度分布公式。 当注入液体时: A z l e b aA t T b aA aZ t Z T --+++-=])([),(0 (2-9) 当注入气体时: A z l e c a A b t T c a A b aZ t Z T -????????? ?? ±+-++??? ??±-+=7781)(7781),(0 (2-10) 式中: []Uk r t Uf r k W A c 112)(π+= Eickmeier 等人于1970年在Ramey.H.J 研究的基础上建立了一套关于注液和产液期间液体和井筒周围地层间热交换的有限差分模型。计算过程中,将油管、套管、水泥环及地层的传热全都考虑在内。但作者仍然只是研究单相流体的温度分布,传热计算中把流体的物性等都看作是常数。后来,Satter 对注蒸汽是相态的变化对温度分布的影响进行了研究。Beggs 和Shiu 对Ramey.H.J 方程中的A 提出了估算方法。 在有关井筒流体和地层温度分布的计算中,许多文章中都采用了Ramey.H.J 的计算方法,但由于Ramey.H.J 的方法是建立在井筒流体与地层温度差不变的基

压力管道设计规范标准

压力管道设计规范 上海化工设计院有限公司 二OO五年三月

目录 1.管道设计技术规定SH/P20-2005 2.装置布置设计技术规定SH/P21-2005 3.管道布置设计技术规定SH/P22-2005 4.管道材料设计技术规定SH/P23-2005 5.保温、防腐及涂色设计技术规定SH/P24-2005 6.管道应力分析设计技术规定SH/P25-2005 7.管道支吊架设计技术规定SH/P26-2005

管道设计技术规定 SH/P20-2005 上海化工设计院有限公司 二OO五年三月

管道设计技术规定 1 总则 1.1 本规定包括:管道设计、材料、制造、安装、检验和试验的要求。 1.2 本规定为管道布置、管件材料和管道机械的设计原则,各项目的管道设计应符合本规定的要求。 2 设计 2.1 概述 为经济地、合理地选择材料,管道应按其使用要求各自分类,任何一类管道使用的范围应考虑:腐蚀性、介质温度和压力等因素。 2.2 设计条件和准则 2.2.1 在设计中应考虑正常操作时,可能出现的温度和压力的最严重情况,并在管道一览表或流程图上加以说明。 2.2.2 操作介质温度<38℃不保温的金属管道的设计温度同介质温度,内部或外部保温的管道应依据传热计算或试验确定。 2.2.3 在调节阀前的管道(包括调节阀)压力应按最小流量下(关闭或节流时)来设计。而在调节阀后的管道,应按阀后终了的压力加上摩擦和压头损失来设计。 2.2.4 对于按照正常操作条件下,不同的温度和压力(短时的)进行设计时,不应包括风载和地震载荷。 2.2.5 非受压部件包括管架及其配件或管道支撑构件的基本许用应力应与受压部件相同。 2.2.6 管道的腐蚀度,应按具体介质来确定。通常对碳钢和铁素体合金钢的工艺管道应至少有1mm的腐蚀度,对于奥氏体合金钢和有色金属材料一般不加腐蚀余量。 2.3 管道尺寸确定 2.3.1 管子的尺寸依据操作条件而确定。必要时,考虑按正常控制条件下计算的管道和设备的摩擦和25%流量的余量,但下列情况除外: (1)泵、压缩机、风机的管道尺寸,按其相应的能力确定(在设计转速下能适应流量的变化要求)同时要估计到流量到0的情况。当机器的最大能力超过工艺要求的最大能力时,管道的

压力角计算公式

2.2滚子摆动从动件盘形凸轮机构的设计 如图2所示滚子摆动从动件盘形凸轮机构,摆杆摆动中心C ,杆长为l ,机架OC 长为b ,从动件处于起始位置时,滚子中心处于B 0点,摆杆与机架OC 之间的夹角为0ψ,当凸轮转过?角后,从动件摆过ψ角,滚子中心处于B 点。 分析代换后的平面连杆机构OABC ,得从动杆BC 上B 点位移、速度、加 速度矢量式: 0()()(π)OA OA AB AB l l b l θθψψ+-=--e e i e (9) 式中222 0arccos( )2b l b r lb ψ+-= ()()(π)OA OA AB AB AB b o l l l ωθωθωψψ+=--g g g (10) 22200()()()(π)(π)OA OA AB AB AB AB AB AB b b l l l l l ωθωθεθεψψωψψ--+=------e e g g e (11) 注意,在文献[1]』 中,从动件的角速度、角加速度在回程时为负,推程时为正,而此处逆时针为正,顺时针为负,所以引用公式时,须添加负号。 据矢量方程式(8)(9)(10)式推导可得: 00(1)sin()tan (1)cos() b AB b l b l ωψψωθωψψω - += --+ 当tan 0AB θ≥时,arctan(tan )AB AB θθ= 当tan 0AB θ<时,πarctan(tan )AB AB θθ=+ 2 0200cos (1)cos()cos (1)cos()sin() b AB AB AB b b AB AB AB b l l b l l ωθψψθωωε θψψθψψθωω ?? --++???? = --+++++ AB 杆的方向亦即从动件受力方向,从动件运动垂直于CB 杆方向,凸轮机构压力角为: π 2 o AB a ψψθ= --- (12) 图2摆动滚子盘形凸轮机构的演化 Fig.2 Evolution of disk cam with oscillating roller

井筒压力分布计算设计与实现

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 题目井筒压力分布计算 目录 第1章概述.............................................................................. 错误!未定义书签。 1.1 设计的目的和意义.......................................................... 错误!未定义书签。 1.2 设计的主要内容.............................................................. 错误!未定义书签。第2章基础数据.......................................................................... 错误!未定义书签。第3章能量方程理论.................................................................. 错误!未定义书签。 3.1 能量方程的推导.............................................................. 错误!未定义书签。 3.2多相垂直管流压力分布计算步骤 (6) 第4章气液多相垂直管流压力梯度的摩擦损失系数法 (8) 4.1 基本压力方程 (8) 4.2 平均密度平均流速的确定方法 (8) 4.3 摩擦损失系数的确定 (11) 4.4 油气水高压物性参数的计算方法 (12) 4.5 井温分布的的计算方法 (16) 4.6 实例计算 (17) 第5章设计框图及结果 (21) 5.1 设计框图 (21) 5.2 设计结果 (22) 结束语 (29) 参考文献 (30) 附录 (31)

压力管道设计技术规定

压力管道设计技术规定 上海化工设计院有限公司 二OO五年三月

目录 1.管道设计技术规定SH/P20-2005 2.装置布置设计技术规定SH/P21-2005 3.管道布置设计技术规定SH/P22-2005 4.管道材料设计技术规定SH/P23-2005 5.保温、防腐及涂色设计技术规定SH/P24-2005 6.管道应力分析设计技术规定SH/P25-2005 7.管道支吊架设计技术规定SH/P26-2005

管道设计技术规定SH/P20-2005 上海化工设计院有限公司 二OO五年三月

管道设计技术规定 1 总则 1.1 本规定包括:管道设计、材料、制造、安装、检验和试验的要求。 1.2 本规定为管道布置、管件材料和管道机械的设计原则,各项目的管道设计应符合本规定的要求。 2 设计 2.1 概述 为经济地、合理地选择材料,管道应按其使用要求各自分类,任何一类管道使用的范围应考虑:腐蚀性、介质温度和压力等因素。 2.2 设计条件和准则 2.2.1 在设计中应考虑正常操作时,可能出现的温度和压力的最严重情况,并在管道一览表或流程图上加以说明。 2.2.2 操作介质温度<38℃不保温的金属管道的设计温度同介质温度,内部或外部保温的管道应依据传热计算或试验确定。 2.2.3 在调节阀前的管道(包括调节阀)压力应按最小流量下(关闭或节流时)来设计。而在调节阀后的管道,应按阀后终了的压力加上摩擦和压头损失来设计。 2.2.4 对于按照正常操作条件下,不同的温度和压力(短时的)进行设计时,不应包括风载和地震载荷。 2.2.5 非受压部件包括管架及其配件或管道支撑构件的基本许用应力应与受压部件相同。 2.2.6 管道的腐蚀度,应按具体介质来确定。通常对碳钢和铁素体合金钢的工艺管道应至少有1mm的腐蚀度,对于奥氏体合金钢和有色金属材料一般不加腐蚀余量。 2.3 管道尺寸确定 2.3.1 管子的尺寸依据操作条件而确定。必要时,考虑按正常控制条件下计算的管道和设备的摩擦和25%流量的余量,但下列情况除外: (1)泵、压缩机、风机的管道尺寸,按其相应的能力确定(在设计转速下能适应流量的变化要求)同时要估计到流量到0的情况。当机器的最大能力超过工艺要求的最大能力时,管道

压力管道设计技术规定

目录 一、压力管道设计基本规定 ............ 错误!未定义书签。 二、压力管道设计、安装、检验相关标准、规范错误!未定义书签。 三、压力管道图样绘制规定 ............ 错误!未定义书签。 四、压力管道设计文件编制规定 ........ 错误!未定义书签。 五、压力管道设计基础数据采集规定..... 错误!未定义书签。 六、压力管道布置规定 ................ 错误!未定义书签。 七、压力管道材料选用规定 ............ 错误!未定义书签。 八、压力管道元件选用规定 ............ 错误!未定义书签。 九、压力管道支吊架设计规定 .......... 错误!未定义书签。 十、压力管道强度计算规定 ............ 错误!未定义书签。十一、压力管道应力分析规定 .......... 错误!未定义书签。十二、压力管道防腐、隔热规定 ........ 错误!未定义书签。十三、压力管道其他规定 .............. 错误!未定义书签。

一、压力管道设计基本规定 总则 1.1.1 本规定根据国务院《特种设备安全监察条例》、国家质量监督检验检疫总局TSGR1001-2008《压力容器压力管道设计许可规则》制定。 1.1.2 本规定适用于公称压力小于或等于42MPa的工业金属压力管道及非金属衬里的工业金属压力管道的设计。非压力管道的设计可参照本规定执行。 1.1.3 本规定不适用于GB/《压力管道规范工业管道》第1部分:总则第条规定的管道范围。 1.1.4 压力管道,是指最高工作压力大于或等于(表压)的气体、液化气体、蒸汽介质或者可燃、易爆、有毒、有腐蚀性、最高工作温度高于或者等于标准沸点的液体介质,且公称直径大于25mm的管道。 压力管道类别、级别划分 1.2.1 GA类(长输管道) 长输(油气)管道是指产地、储存库、使用单位之间的用于输送商品介质的管道,划分为GA1级和GA2级。 GA1级: 符合下列条件之一的长输管道为GA1级: (1)输送有毒、可燃、易爆气体介质,最高工作压力大于的长输管道。 (2)输送有毒、可燃、易爆液体介质,最高工作压力大于或者等于,并且输送距离(指产地、储存地、用户间的用于输送商品介质管道的长度)大于或者等于200km的长输管道。 GA2级: GA1级以外的长输(油气)管道为GA2级。 1.2.2 GB类(公用管道) 公用管道是指城市或乡镇范围内的用于公用事业或民用的燃气管道和热力管道,划分为GB1级和GB2级。 GB1级:城镇燃气管道。 GB2级:城镇热力管道。 1.2.3 GC类(工业管道) 工业管道是指企业、事业单位所属的用于输送工艺介质的工艺管道、公用工程管道及其他辅助管道,划分为GC1级、GC2级、GC3级。

齿轮压力角计算修订稿

齿轮压力角计算 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

方便各位齿轮爱好者学习和使用 齿轮压力角 渐开线及渐开线齿轮 当一直线沿一圆周作纯滚动时,此直线上任一点的轨迹即称为该圆的渐开线,该圆称为渐开线的基圆,而该直线则称为发生线。 图1齿轮压力解析图 如图1: AK——渐开线 基圆,rb n-n:发生线 θK:渐开线AK段的展角 用渐开线作为齿廓的的齿轮称为渐开线齿轮。渐开线齿轮能保持恒定的传动比。 渐开线上任一点法向压力的方向线(即渐开线在该点的法线)和该点速度方向之间的夹角称为该点的压力角。

显然,图2中的 图2 αk即为渐开线上K点的压力角。由图可知: cosαk=ON/OK=rb/Rk 参考文献: 卢玉明.机械设计基础.高等教育出版社,1998 齿轮模数 “”是指相邻两轮齿同侧齿廓间的齿距t与圆周率π的比值(m=t/π),以毫米为单位。模数是模数制轮齿的一个最基本参数。模数越大,轮齿越高也越厚,如果的齿数一定,则轮的径向尺寸也越大。模数系列标准是根据设计、制造和检验等要求制订的。对於具有非直齿的齿轮,模数有法向模数mn、端面模数ms与轴向模数mx的区别,它们都是以各自的齿距(法向齿距、端面齿距与轴向齿距)与圆周率的比值,也都以毫米为单位。对於锥齿轮,模数有大端模数me、平均模数mm和小端模数m1之分。对於刀具,则有相应

的刀具模数mo等。标准模数的应用很广。在公制的齿轮传动、蜗杆传动、同步齿形带传动和棘轮、齿轮联轴器、花键等零件中,标准模数都是一项最基本的参数。它对上述零件的设计、制造、维修等都起着基本参数的作用(见圆柱齿轮传动、蜗杆传动等)。 齿轮计算公式: 分度圆直径 d=mz m 模数z 齿数 齿顶高ha=ha* m 齿根高hf=(ha*+c*)m 齿全高h=ha+hf=(z ha*+c*)m ha*=1 c*= 图片中的应该两箭头之间距离是 渐开线标准直齿圆柱齿轮的 基本参数和几何尺寸的计算 一、渐开线标准直齿圆柱齿轮各部分名称

压力管道设计审批考试题有答案

压力管道设计审批考试题 工作单位: 姓名:得分: 一、填空题(每空1分,共20分) 1、当在临界温度下,使气体转变为液体所需的压力称为。气体在此状态下称为。在此状态下的参数称为。(临界压力、临界状态、临界参数) 2、金属的机械性能是指在下所表现出来的性能,也称为金属的力学性能。(外力的作用) 3、饱和蒸气经冷却或加压后,遇到接触面或凝结核便液化成露。这时在该压力下的温度称为。液体的饱和蒸气压与外界压力相等时的温度称为液体在该压力下的。(露点、沸点) 4、输气管道直接在主管上开孔与支管连接,其开孔削弱部分可按等面积补强,当支管的公称直径小于或等于mm时,可不补强。当支管外径大于或等于时,宜采用标准三通件或焊接三通件。(50、1 / 2 主管内径) 5、在外径或保护层外径小于或等于50mm的管道上刷标志有困难时,可采用。(标志牌)

6、压力管道材料的选用,应根据、、 和介质特殊要求等条件以及材料加工工艺性能、焊接性能和经济合理性等选用。(管道级别、设计温度、设计压力) 7、根据制造方法不同,钢管分为和两大类。(无缝钢管和焊接钢管) 8、压力管道的法兰密封垫片有三类,分别为、 和。(非金属垫片、半金属垫片、金属垫片) 9、管道涂料的选用,应与被涂管道的、相适应。(表面材质、使用环境) 10、当阀门与管道以法兰或螺纹方式连接时,阀门应在状态下安装。(关闭) 二、判断题(请在正确的后面画√,错误的后面画×。每题1分,共10分) 1、金属耐腐蚀性标准分为9级.(×) 2、海水对碳钢及低合金钢、钛及钛合金、奥氏体不锈钢、铜合金、铝合金都有腐蚀作用(×) 3、压力管道输送介质的压力对安全没有影响(×)

气井井筒流动计算

第一节气体稳定流动的能量方程 一、气体稳定流动方程 气体稳定流动是指在所讨论的的管段内(热力体系内),任何断面上气体的一切参数都不随时间变化,流入和流出的质量守衡,功和热的交换也是一个定值。 2 2 2 22212 11112 2 mgH mu V P E W q mgH mu V P E ++ +=-+++ +E ——内能,J ; pV ——膨胀功或压缩功,J ; 2 2 mu ——动能,J ; mgH ——位能,J ; q ——气体吸收的热量,J ; W ——外界对气体作的功,J 。 其中u 、p 、V 和g 分别表示流速、压力、体积和重力加速度。 气体稳定流动能量方程: 0)(sin =++++w L d dW gdL udu dp θρ 对于垂直管,θ=90°,θsin =1 对于水平管,θ=0°,θsin =0 假设dW=0,并用 dL ρ 乘式中每一项来简化方程 在生产井中,井内气体向上流动,沿气流方向压力是逐渐递减的,可写为如下表达式 dL L d dL udu g dL dp w ) (sin ρρθρ++= 或f acc el dL dp dL dp dL dp dL dp )()()(++= el dL dp )(——重力压降梯度(N/㎡)/m

acc dL dp )( ——加速度压降梯度 f dL dp )(——摩阻梯度 二、管内摩阻 达西阻力公式是计算管内摩阻的基本公式 d L fu L w 22= 确定式中的摩阻系数f ,可以借用水力学中介绍的Moody 图 1. Colebrook 公式 )34.91lg(214.1lg 21 f R e d e d f e +-+= e d ——管径与管子绝对粗糙度的比值 e R ——雷诺数; f ——Moody 摩阻系数。 可以覆盖完全粗糙管、光滑管和过渡区三个流态区域,当Re 相当大时转化为完全粗糙管的Nikuradse 公式。 14.1lg 21 +=e d f 2. Jain 公式: )25 .21lg( 214.11 9 .0e R d e f +-= 3. Chen 公式:

相关主题