搜档网
当前位置:搜档网 › 阳离子有机硅柔软剂的合成及其性能研究

阳离子有机硅柔软剂的合成及其性能研究

阳离子有机硅柔软剂的合成及其性能研究
阳离子有机硅柔软剂的合成及其性能研究

2011年 11 月

收稿日期:2011-02-26

作者简介:吕景春(1979-),女,安徽安庆人,讲师,主要从事纺织印染方面的分析与测试研究

阳离子有机硅柔软剂的合成及其性能研究

吕景春 冯 娟 李 静 (盐城工学院纺织服装学院 江苏 盐城 224051)

摘要:以D 4、1631、1227和水为原料,以KOH为引发剂,合成阳离子有机硅柔软剂;探讨了温度,催化剂用量,搅拌速度,乳化剂用量、比例对D 4转化率的影响,研究表明,催化剂用量为1%(o.m. D 4),温度为80℃,搅拌速度为300~350r/min,乳化剂用量为7.4%,乳化剂比例1631:1227=3.5:1是合成最佳条件。自制柔软剂的各种稳定性均良好,且对织物白度基本没有影响,对织物柔软性和撕裂强力的改善与商品柔软剂相当,对织物的亲水性影响与商品柔软剂相比较小。

关键词:八甲基环四硅氧烷;有机硅羟乳;合成;性能

中图分类号:TS 195.23 文献标识码:B 文章编号 :1005-9350(2011)10-0047-04

随着人们生活水平的提高,人们对织物柔软程度的要求越来越高,纺织行业已将柔软处理作为提高产品质量和附加值的重要手段。柔软剂是指一种能够吸附于纺织品纤维表面并使纤维平滑,以改变手感,使产品更有舒适感的纺织助剂,其中阳离子有机硅柔软剂具有良好的抗静电性和柔软性以及良好的杀菌和消毒能力,并能赋于纤维很好的柔软效果,是目前最为重要,使用最广泛的柔软剂之一。

以八甲基环四硅氧烷单体(D 4)为原料,单体在乳化剂胶束中聚合成高聚物,同时形成乳液,加乳化剂、催化剂等,在规定条件下直接进行开环乳液聚合,得到羟基封端的高分子量聚硅氧烷乳液。反应是以碱为引发剂,作为分子链封端剂的水在反应

开始时与引发剂一起加入反应单体中,使得分子链的链增长与羟基封端同时进行即可制得羟基聚硅氧烷。八甲基环四硅氧烷单体(D 4)开环聚合反应如式1所示[1]。本课题主要研究的是阳离子有机硅柔软剂的合成与应用性能。

式1 八甲基环四硅氧烷单体(D 4)开环聚合反应方程式

2.1 实验仪器和药品

主要仪器:产品合成玻璃实验仪器一套、玻璃恒温水浴、微量高速离心机、鼓风干燥箱、精密电动搅拌器、傅立叶变换红外光谱仪、激光粒度分析仪。

药品:氢氧化钾、无水氯化钙、乙酸、氢氧化钠、对苯二酚、十六烷基三甲基溴化铵(1631)、八甲基环四硅氧烷(D 4)、十二烷基二甲基苄基氯

1 前言

CH 3

Si O Si CH 3

O Si CH 3

CH 3

O Si O

CH 3

3

CH 3

CH 3

碱性

HO Si

CH 3

CH 3

O

OH

33

2 实验

化铵(1227)44%等均为分析纯,商品柔软剂均为

工业品。

2.2 合成方法

将适量的水、D

4

、1227组成混合物和另外一份

水、D

4

、1227、1631混合物分别在1500r/min的速度下制成预乳液,然后将前一份预乳液加到预热的四口烧瓶中搅拌,再加入KOH,然后在30min内将后一份预乳液滴入烧瓶中,继续反应一定的时间。反应结束后将产物倒入烧杯中,用醋酸中和至pH值6.5~7.0,得阳离子有机硅柔软剂。

2.3 单体转化率的测定

在反应过程中,定时吸取一定量乳液滴加到已称重的称量瓶中,放在干燥器中,迅速冷却反应,称重,滴适量2%的对苯二酚水溶液。在140℃的烘箱中烘干至恒重,按式(2-1)和式(2-2)进行计算[2~3]。

固含量=(烘干后乳液和瓶重-瓶重)/乳液质量×100% 式(2-1)

转化率=(固含量×总投料量-不挥发物质量)

×100%/D

4

质量 式(2-2)

2.4 红外光谱测定

试样准备[4]:将羟基硅微乳液用饱和明矾水溶液破乳后,加一定量乙醚,用分液漏斗分出水层,用蒸馏水洗涤至乙醚层透明。乙醚层用旋转蒸发仪80℃下减压脱出残余水分和未反应单体,得到液态羟基硅微乳液。

红外扫描:将提纯的羟基硅微乳液和D

4

分别用红外光谱仪扫描,得红外光谱图。

2.5 粒径分析

取适量自制的硅油乳液,用Beckman Coulter N5激光粒度分析仪进行测量。

2.6 应用工艺

浸轧(柔软剂用量 2% o.m.f,浴比 1:20,时间 40min;一浸一轧,轧余率80%)→ 烘干(90℃×3min)→焙烘(180℃×1min)

使用WSD-Ⅲ型全自动白度计、YG811织物悬垂性测定仪和YG(B)033A落锤式织物撕裂仪测定织物的白度、悬垂系数和撕裂强度等性能。

3.1 合成条件的优化

3.1.1催化剂用量对单体转化率(%)的影响

由于KOH是提供环硅氧烷阳离子乳液聚合活性中心氢氧根离子的来源[5],因此,随着KOH用量的增加,活性中心浓度也增加,聚合速率提高,但KOH用量超过一定量后,聚合速率反而下降,因为活性中心浓度增加到一定程度后,相互之间会生成没有引发活性的配合结构,降低活性中心浓度,导致聚合速率下降。由图1可知,KOH较适宜的用量为相对于单体质量的1%。

图1 催化剂用量对单体转化率的影响

3.1.2 乳化剂的用量对单体转化率(%)的影响

图2 乳化剂用量对单体转化率的影响

由图2可见,随着乳化剂用量的增加,聚合反应速率增加,达到7.4%后,再增加乳化剂的用量,聚合速率反而下降。其原因可能是在D

4

的阳离子乳液聚合中,阳离子型乳化剂能与催化剂KOH进行反应,生

成季铵碱,该碱活性较高,是D

4

开环聚合真正的催化剂[6~8]。因此随着阳离子型乳化剂用量的增加,季铵碱生成量相应增加,导致聚合速率提高。但随着乳化剂浓度进一步提高,由季铵碱引发单体生成的活性中心浓度达到一定程度后,活性中心之间则形成一种没有引发活性的络合结构[9],从而降低活性中心浓度,反而导致了聚合速率下降。较适宜的用量为相对于单体质量的7.4%。

3.1.3乳化剂比例对单体转化率(%)的影响

由图3可知,单独使用1227或1631对D

4

乳液

3 结果和讨论

反应时间/h 转

/

%

/

%

反应时间/h

2011年 11 月

聚合的乳化效果不理想,单体转化率低,乳液稳定性差,很快就会发生表面漂油。将二者混合使用后乳液稳定性有明显提高,当他们的摩尔比例1631:1227=3.5:1时单体转化率比较高,并且生成的乳液外观很好,漂油现象基本可以忽略。

图3 乳化剂比例对单体转化率的影响

3.1.4搅拌速度对单体转化率(%)的影响

由图4可知,单体转化率随搅拌速度的增加而升高。但由于D 4阳离子乳液聚合中是单体液滴和胶束成核并存的一个体系,且乳胶粒界面又是聚合反应场所[10]。因此,当搅拌速度增加,单体液滴直径减小,比表面积增大,聚合场所面积增加,从而导致聚合速率增大。但当搅拌速率过大(图中转速350~400r/min 的曲线)时,乳液聚合体系不稳定,会出现分层现象或有凝胶。适宜的转速为300~350r/min。

图4 搅拌速度对单体转化率的影响

3.1.5温度对单体转化率(%)的影响

图5 反应温度对单体转化率的影响

由图5可知,随着温度的升高,聚合速率增加,又由于环硅氧烷阳离子乳液开环聚合是个无放热效应的可逆平衡聚合反应[10]。所以平衡转化率不随温度变化,平衡转化率在90%左右。考虑到90℃时乳液有漂油现象,所以反应温度选择80℃为佳。 3.2 乳液的物理性能研究3.2.1红外光谱分析

图6 八甲基环四硅氧烷的红外光谱分析图

图7 阳离子有机硅柔软剂的红外光谱分析图

图6和图7分别是D 4聚合前后的红外光谱图。两图在1260cm -1和1410cm -1左右均为-Si(CH 3)2的-CH 3对称变形振动峰和平面摇摆振动峰,图7中在3400~3450cm -1间有一微弱吸收峰,是-OH缔合时-OH 伸展振动吸收峰,说明聚合已经发生。同时在图5中也发现在800~1080cm -1间2个Si-O-Si反对称伸展振动峰峰形发生了明显的变化,也是因为随着链的增长化学环境改变造成的。3.2.2乳液稳定性以及含固量

一般情况下,乳液应有一定的稳定性,比如离心稳定性、电解质稳定性、硬水稳定性、酸碱稳定性等。本实验参考文献[2]的实验方法对合成的最终产品的一些物理性质进行了测量(表1)。由表1可知自制阳离子有机硅柔软剂的各类稳定性良好。

表1 乳液稳定性以及含固量的测量情况

离心 电解质 硬水 耐酸 耐碱 耐热 耐寒 含固量 良好 良好 良好 良好 良好 良好 良好 31.15%

转化率/%

反应时间/h

50℃60℃70℃80℃90℃

转化率/%

反应时间/h

转化率/%

反应时间/h

T r a n s m i t t a n c e /%

Wavenumbers/cm -1

3411.10

3450.25

2964.68

1632.70

1397.421262.281082.31

810.97693.15550.09

T r a n s m i t t a n c e /%

Wavenumbers/cm -1

2963.60

2905.51

1261.29

1409.39

1094.62

1022.67866.33

800.90

699.19

3.2.3乳液粒径分析

用激光粒度分析仪将最终产物进行了粒度分析(图8)。从图8可知,图中只有一个峰,峰值在62.8nm处,说明自制阳离子有机硅柔软剂乳液为纳米级产品。

图8 激光粒度分析仪测试结果

3.3 阳离子有机硅柔软剂的应用

对织物进行柔软整理后,织物的柔软性能、白度、撕裂强力和吸水性等都会发生一定程度的变化,利用自制柔软剂和两种商品柔软剂对织物进行柔软整理,整理后织物的性能测试结果如表2所示。

表2 柔软整理对织物性能的影响

织物 未经柔软整理 柔软剂ES整理 S-1柔软剂整理 自制柔软剂整理悬垂性系数/% 68.25 67.50 64.25 62.25白度Wg/% 85.01 84.88 85.00 84.98撕裂强 经向 16.0 26.0 24.0 26.2力/N 纬向 22.4 28.8 26.5 31.5水滴扩散时间/s 35.02 60+

60+

53.78

一般用织物的悬垂性系数来表征织物的柔软性能,由表2可知,用来进行比较的三种柔软剂对被处理织物的悬垂性系数都有一定的改善作用,并且用自制柔软剂处理后悬垂性系数增加的最大,显然自制柔软剂对织物的柔软性能改善的效果较佳。

柔软剂处理白色织物时,可能会引起织物的泛黄,由表2可知,三种柔软剂对织物的白度基本没有影响,可用于白色织物的柔软整理。一般柔软剂的整理会使织物撕裂强力有一定提高,据表2数据显示,用来进行比较的三种柔软剂都能使织物的撕裂强力有一定提高,且自制柔软剂提高的幅度较大。

将一滴水从固定高度滴落到试样的绷紧表面,测量水滴镜面发射消失所需的时间,并记录为润湿时间

[11]

,由表2可知,与未经柔软整理的织物相比,水滴

在经过柔软整理织物上的扩散时间都有所延长,三种柔软剂都一定程度地增加了织物疏水性,但自制柔软剂对织物的亲水性影响与商品柔软剂相比较小。

(1)实验表明,最佳合成条件:催化剂用量为1%(相对D 4的质量),温度为80℃,搅拌速度为300~350r/min,乳化剂用量为7.4%(相对D 4的质量),其中的比例1631:1227 =3.5:1。

(2)通过对合成的产物进行稳定性、粒径、红外光谱的测定可知,自制阳离子有机硅柔软剂的离心稳定性、电解质稳定性、硬水稳定性、耐热耐寒稳定性以及耐酸碱稳定性均良好,粒径在62.8nm左右,属于纳米级,经红外光谱分析可知本实验中D 4的确发生了开环聚合反应。

(3)自制柔软剂对织物白度基本没有影响,对织物的柔软性能和撕裂强力的改善与商品柔软剂相当;对织物的亲水性影响与商品柔软剂相比较小。

邢凤兰,徐群,贾丽华等.印染助剂[M].北京:化学工

业出版社.2008.286.

唐增荣.有机硅柔软剂的测试(一)[J].印染,1998,

19(6):30-31.

危想平,王自中,周芳.一步法合成阳离子型氨基改性有

机硅微乳[J].荆门职业技术学院学报.2005,20(6):1-4.罗明勇,贺江平,刘梅等.羟基有机硅微乳液的制备及

应用[J]:有机硅材料.2008,22(5):304.

张兴华,杨亚君,刘香鸾.温度对八甲基环四硅氧烷

阳离子乳液聚合的影响[J].高分子通讯,1982,(4): 310-313.

张兴华,杨亚君,刘淑芬.硅氧烷乳液聚合的研究

Ⅱ.八甲基环四硅氧烷阳离子乳液聚合机理[J].高分子通讯,1982,(4):266-270.

张兴华,杨亚君,刘香鸾.硅氧烷乳液聚合的研究

Ⅲ.八甲基环四硅氧烷在阳离子乳液聚合过程中乳液颗粒的形成[J].高分子通讯,1983,(2):104-109.张兴华,杨亚君,刘香鸾.温度对八甲基环四硅氧烷

阳离子乳液聚合的影响[J].高分子通讯,1982,(4): 310-313.

周安安,翁志学,单国荣.有水条件下羟基聚硅氧烷

一步合成的反应动力学模型[J].化工学报,2004,55(1):48-53.

周安安,郑水燕,张立庆等.D4的阳离子乳液聚合速

率的研究[J].有机硅材料,2008,22(6):349-352.AATCC 79-2007,纺织品的吸水性[S].

4 结论

[1][2][3][4][5][6][7][8][9][10][11]5 参考文献

I n t e n s i t y

Size/nm

高性能混凝土配合比设计及路用性能研究

高性能混凝土配合比设计及路用性能研究 发表时间:2016-11-08T10:21:08.737Z 来源:《低碳地产》2016年7月第14期作者:胡兴琼[导读] 高性能混凝土在建筑工程中发挥不可替代的作用,也是使用最为广泛的建筑材料。 中交路桥华南工程有限公司广东佛山 528000 【摘要】高性能混凝土在建筑工程中发挥不可替代的作用,也是使用最为广泛的建筑材料。但是必须严格控制混凝土的配合比,才能真正实现高性能。本文从配合比设计和路用性能两个方面对路面高性能混凝土配合比设计进行研究,旨在优化混凝土的配合比设计参数,实现混凝土高耐久性,并兼顾工作性与强度的设计目标,提高混凝土路面性能,供参考。 【关键词】高性能混凝土;配合比;参数优化设计;试验设计近年来随着建设领域的大规模发展,混凝土材料的性能也日益提高。高性能混凝土是一种新型高技术混凝土 ,是在大幅度提高普通混凝土性能的基础上采用现代混凝土技术制作的混凝土,其高性能包括:良好的工作性能,稳定的力学性能,较高的体积稳定性和高耐久性,也因此得到了土木工程界的广泛应用及关注。鉴于科学合理的进行配合比设计是保证混凝土工作性、强度及后期耐久性的关键前提,因此,关于路用高性能混凝土配合比设计参数的研究具有很重要的价值。下面,笔者将结合试验研究,就高性能混凝土配合比优化设计展开探讨。 1 正交试验设计 高性能混凝土配合比设计的关键设计参数为:水胶比、矿掺比、浆集比、砂率、外加剂掺量。部分应用中为了提高抗折性能,在拌合物中掺加聚合物,如聚丙烯等。路面用混凝土的关键性能技术指标包括:抗折强度、抗压强度、抗冻性及抗渗性能等。目前施工现场多采用复合型高效减水剂,不同外加剂的成分及性能差异较大,针对单一品种外加剂的研究具有很大局限性,对施工实践的指导意义也不强。本文选取水胶比、矿掺比、浆体百分率及砂率进行正交试验设计,通过试验探寻配合比设计参数对路面用高性能混凝土抗折强度、抗折弹性模量、抗冻耐久性指数、氯离子扩散系数及抗渗性能的影响规律。其中,水胶比和矿掺比设计为5个水平,砂率和桨集比为6个水平,共进行49组试验(数据略)。关键配合比设计参数的取值范围如表1所示。 2 试验结果分析 本文采用SPSS软件,对各个设计参数与混凝土性能间的关系进行主效应分析,并进行方差齐性检验。具体分析结果如下: (1)根据试验结果,以氯离子扩散系数为因变量的主体间效应检验结果如表2所示。 不同配合比设计参数对DRCM的具体影响规律如图1~图4所示。

几种常用纠错码的性能分析及应用研究

目录 设计总说明 ............................................................... I Introduction ........................................................... III 1 绪论 (1) 2 纠错码的基本概念 (3) 2.1数字通信系统 (3) 2.1.1 数字通信系统的组成 (3) 2.1.2 信道模型 (4) 2.2差错控制系统和纠错码分类 (7) 2.2.1 差错控制系统的分类 (7) 2.2.2 纠错码的分类 (9) 3 线性分组码 (11) 3.1线性分组码的基本概念 (11) 3.2线性分组码的编码 (11) 3.2.1 生成矩阵 (11) 3.2.2 校验矩阵 (15) 3.2.3 编码的实现 (15) 3.3线性分组码的译码 (16) 3.3.1 线性分组码的纠检错能力 (17) 3.3.2 伴随式解码 (1) 4 循环码 (20) 4.1循环码的一般概念 (20) 4.1.1 循环码的定义 (20) 4.1.2 循环码的生成多项式 (20) 4.2循环码的编码 (20) 4.3循环码的译码 (22) 4.4 BCH码 (24) 4.4.1BCH的编码算法 (24)

4.4.2 BCH的译码算法 (25) 4.5 RS码 (26) 4.5.1 RS编码算法 (26) 4.5.2RS的译码 (26) 5 卷积码 (28) 5.1卷积码的表示 (28) 5.2卷积码的编码原理 (29) 5.3卷积码的译码 (29) 6 纠错码在移动通信中的应用 (32) 6.1移动通信的概述 (32) 6.2移动通信中的差错控制 (32) 6.2.1 移动通信中的差错控制 (32) 6.2.2 移动通信中常用的纠错方式 (33) 6.2.3 编码方法 (34) 6.3移动通信中纠错码的应用和发展 (34) 6.3.1 模拟移动通信系统中数字信令的BCH编码 (34) 6.3.2 GSM的FEC编码 (35) 6.3.3 DMA系统(IS-95)中的FEC编码 (35) 6.3.4.3G中的Turbo码 (36) 7 MATLAB简介及卷积码的仿真 (37) 7.1MATLAB (37) 7.2MATLAB在通信仿真中的应用 (37) 7.3卷积码的仿真 (38) 8 总结 (37) 参考文献................................................ 错误!未定义书签。 附录 (44) 致谢 (46)

常用硅烷偶联剂 (2)

常用硅烷偶联剂——K H550、KH560、KH570、KH792、DL602 1.KH550 KH550硅烷偶联剂CAS号:919-30-2 一、国外对应牌号 A-1100(美国联碳),Z-6011(美国道康宁),KBM-903(日本信越)。本品有碱性,通用性强,适用于环氧、PBT、酚醛树脂、聚酰胺、聚碳酸酯等多种热塑性和热固性树脂。 二、化学名称分子式: 名称:γ-氨丙基三乙氧基硅烷 别名:3-三乙氧基甲硅烷基-1-丙胺 【3-TriethoxysilylpropylamineAPTES】, γ-氨丙基三乙氧基硅烷或3-氨基丙基三乙氧基硅烷【3-AminpropyltriethoxysilaneAMEO】 分子式:NH2(CH2)3Si(OC2H5)3 分子量:221.37 分子结构: 三、物理性质:

外观:无色透明液体 密度(ρ25℃):0.946 沸点:217℃ 折光率nD25:1.420 溶解性:可溶于有机溶剂,但丙酮、四氯化碳不适宜作释剂;可溶于水。在水中水解,呈碱性。 本品应严格密封,存放于干燥、阴凉、避光的室内。 四、KH550主要用途: 本品应用于矿物填充的酚醛、聚酯、环氧、PBT、聚酰胺、聚碳酸酯等热塑性和热固体树脂,能大幅度提高增强塑料的干湿态抗弯强度、抗压强度、剪切强度等物理力学性能和湿态电气性能,并改善填料在聚合物中的润湿性和分散性。 本品是优异的粘结促进剂,可用于聚氨酯、环氧、腈类、酚醛胶粘剂和密封材料,可改善颜料的分散性并提高对玻璃、铝、铁金属的粘合性,也适用于聚氨酯、环氧和丙烯酸乳胶涂料。 在树脂砂铸造中,本品增强树脂硅砂的粘合性,提高型砂强度抗湿性。 在玻纤棉和矿物棉生产中,将其加入到酚醛粘结剂中,可提高防潮性及增加压缩回弹性。 在砂轮制造中它有助于改进耐磨自硬砂的酚醛粘合剂的粘结性及耐水性。 2.KH560

有机硅乳液的发展与应用

有机硅乳液的发展与应用 李冰 PB0320405 中国科学技术大学高分子系 摘要:有机硅乳液是重要的有机硅产品之一,在工业上的应用非常广泛。近几十年,各国对有机硅乳液进行了广泛深入地研究与开发。本篇文章将对有机硅乳液的发展与应用进行初步总结与分析。 关键词:有机硅乳液有机硅微乳液改性有机硅乳液 前言:有机硅乳液按照聚硅氧烷的种类通常分为三种类型:非活性聚硅氧烷类,活性聚硅氧烷类,改性聚硅氧烷类;改性硅油的有机官能基一方面可与纤维上的活性基反应,牢固结合;另一方面赋予整理的织物特定的功能。 有机硅乳液一般为水包油型,少量为油包水型。从理论上讲,阴离子型,阳离子型及非离子性乳化剂均可选用。研究发现,用阴离子型和阳离子型乳化剂制得的有机硅乳液适用性广泛,与多种染料,助剂,整理剂等有很好的配伍性,而且还有不产生气泡,易于清洗等特点。 改性有机硅乳液拓宽了有机硅乳液的应用领域,可适用于不同的应用目的。 1.有机硅乳液作为织物整理剂的发展 在20世纪50年代初期有机硅乳液就开始用作织物憎水处理剂。从20世纪50年代初期开始的29多年中,基本上是二甲基硅油和含氢硅油的机械混合物,这是第一代的有机硅织物整理剂;20世纪70年代,由D4,水,乳化剂和催化剂在一定条件下乳液聚合而成的羟基封端聚二甲基硅氧烷乳液为第二代有机硅织物整理剂;20世纪80年代,第三代有机硅织物整理剂发展迅速;进入20世纪90年代后,第四代有机硅织物整理剂——复配型和改性型有机硅及微乳液逐步走向纺织整理剂市场。 有机硅织物整理剂正在向着多样化,高性能化,一剂多功能化的方向发展,并已成为现代纺织印染工业中不可缺少的加工助剂。 2. 改性有机硅乳液 若使用含活性基团的环体与D4进行乳液共聚合,则可以得到含活性基团的有机硅乳液,或称为改性有机硅乳液。所制得的改性有机硅乳液既具有有机硅的性质又具有活性基团的性质,从而拓宽了有机硅乳液的应用领域。 ①氨烃基改性硅油乳液

硅烷偶联剂

硅烷偶联剂kh560 CAS号:2530-83-8 国外牌号: A-187(美国奥斯佳有机硅有限公司)(原联碳公司),美国道康宁Z-6040,日本信越KBM-403。 KBM-403(日本信越化学工业株式会社) 化学名称及分子式:γ-缩水甘油醚氧丙基三甲氧基硅烷 硅烷偶联剂KH560性质:物理形态:无色或微黄色液体。沸点:290℃。折光率:(nD25) 1.4260-1.4280,比重(dD25)1.065-1.072。溶解性:溶于水,同时发生水解反应,水解反应释放甲醇。溶于醇、丙酮和在5%以下的正常使用水平溶于大多数脂肪族酯。硅烷偶联剂KH560用途: 1.是一种含环氧基的偶联剂,用于多硫化物和聚氨酯的嵌缝胶和密封胶,用于环氧树脂的胶粘剂、填充型或增强型热固性树脂、玻璃纤维胶粘剂和用于无机物填充或玻璃增强的热塑料性树脂等。 2.硅烷偶联剂kh560增强基于环氧树脂电子密封剂和封装材料及印刷电路板的电性能,提高树脂与基体或填充剂之间的粘结力。 3.硅烷偶联剂KH-560能够增强许多无机物填充的尼龙,聚丁烯对苯二酸酯在内的复合材料的电学性能。 对范围广泛的填充剂和基体,象粘土、滑石、硅灰石、硅石、石英或铝、铜和铁在内的金属都有效。 4.从添加硅烷偶联剂KH560获益的具体应用,包括:用石英填充的环氧密封剂、预混配方,用砂填充的环氧树脂混凝土修补材料或涂层和用于制模工具和金属填充的环氧树脂材料。 5.免除了对多硫化物和聚氨酯密封胶和嵌缝化合物中独立底漆的要求。 6.硅烷偶联剂KH560还可以改进含水丙烯酸胶乳嵌缝胶和密封胶,基于聚氨酯和环氧树脂的涂层中的粘合。 7.生产包装运输:KH560用塑料桶包装,每桶净重5kg, 10kg, 20kg,代办托运。 (用量注意:硅烷偶联剂处理无机表面材料并非用量越多越好,理想的添加量是能够使硅烷偶联剂在无机材料表面里形成一层单分子层,与无机材料表面羟基反应,从而提高无机材料的亲油性。如果硅烷偶联剂用量过多,则偶联剂自身水解后发生交联反应,从而是材料力学性能降低。) 硅烷偶联剂kh560使用方法 KH560若要配成水溶液处理无机物,浓度为0.1-0.5%的硅烷。水溶液首先用0.1%醋酸到调至PH值为 3.0- 4.5然后搅拌下滴加硅烷,通常搅15分钟可形成澄清的水溶液。一定时期内由于KH-560点浓度高可能会不稳定,放置一些天后沉降出油状的聚硅氧缩聚物。当然KH-560还可以溶于许多有机溶剂配成溶液使用。在不用任何溶剂时,亦可以在很高的剪切作用下几分钟内与矿物填料混合来处理填料。经硅烷处理的玻璃或矿物填料可在105℃至120℃下加热干燥促使硅醇基缩合在表面上并除去副产物甲醇。最佳应用干燥条件如时间与湿度应依工艺来选择。 用作底胶时,将99份KH-560及1份有机胺如苯基二甲胺(记为混合物A)用约900份甲醇稀释来用。底胶可用于玻璃或金属等固体表面,而聚合物亦可热压或交联在表面上。混合物A或KH-560亦可以0.5至2.0pph 直接加入树脂体系以促进未打底胶的粘合。 硅烷偶联剂KH560MSDS 突发事件概述: 外观:洁净、无色液体。注意:如果吸入皮肤,可能有害健康。易受潮,可导致眼睛和皮肤发炎,可导致呼吸道和消化道疼痛、发炎。造成再生和胎儿的效应。与水分的接触产生甲醛。 目标器官:不详。

柔软剂知识

1.按化学成分分类: 非硅柔软剂:长链脂肪族类:如软片、软油精等。为脂肪酰胺类、特殊的脂肪酸酯、特殊烷基胺基甜菜碱类、高级脂肪酰胺类季胺化合物。 含硅柔软剂:环氧和聚醚改性硅油、氨基改性硅油等如表。 天然油脂和石蜡: 2.按应用性能分类: 1. 亲水型:聚醚氨基改性硅油等亲水硅油。 2. 拒水型:氨基改性硅油。 3. 平滑型: 4. 柔软型: 5. 蓬松型: 6. 复配型:软片(软油)与硅油按一定的比例配制的柔软剂,达到特殊要求。 软片+软油精+硅油 柔软剂原料分类 1.有机硅类: 这类柔软剂爽滑效果比较好,最大的弊端就是价格昂贵,成本较高,使用时及易造成飘油。不适合在日益竞争的现代工业中长期发展; 2.软片类: 这类主要以脂肪酸盐为主,使用比较方便,但这类柔软剂软片用量大,成本也相应比较高。不适合降低综合成本,提高工业利润的需求; 3.D1821: 也即是双十八烷基二甲基氯化铵,这类柔软剂最大的缺点是生物降解性差并且黄变严重;随着公共意识的提高,环保质量的要求,此类产品也不能满足社会发展的需求; 4.酯基季铵盐: 这类柔软剂柔软性能稳定,用量小,突出生物降解性,更兼具有抗黄变、杀菌消毒等多项功能。可以说该类柔软剂产品是今后柔软剂行业的一种主导趋势。 5.Gemini阳离子柔软剂:该产品为特殊结构阳离子Gemini表面活性剂,特殊结构阻抑了其在有序聚集过程中的头基分离力,极大地提高了表面活性;同时该产品与常规单烷基单季铵盐及双烷基单季铵盐相比具有极低的临界胶束浓度,因而在达到同样效果的情况下用量极大地降低。广泛用作高效柔软剂、抗静电剂、膨松剂、杀菌剂;单季铵盐阳离子表面活性剂的增效剂。 一般的柔软剂加一些热水,浸泡一会就行了,或再加一些渗透剂(如JFC)、有机溶剂等。 机洗还是手洗,机洗是在第一次漂水的时候加,手洗是洗过漂一次水,然后加进,在浸泡几分钟,在洗,直到感觉不滑手为止. 1.柔软整理织物布面PH最好酸性,布面温度越低越好。浸轧槽温度小于60℃。 2.软片和软油精化料非常重要水质不含腐败有机物、开稀温度时间严格控制,开稀液中不能有没化开的小颗粒,用前必须过滤。

乙烯基硅烷偶联剂合成方法的研究进展

综 述 ,2007,21(6):360~363SIL ICON E MA TERIAL 乙烯基硅烷偶联剂合成方法的研究进展 徐少华,邓锋杰3,李卫凡,温远庆,李凤仪 (南昌大学化学系,南昌330031) 摘要:介绍了合成乙烯基硅烷偶联剂的方法:直接合成法、有机金属合成法、热缩合法、硅氢加成法、氯代乙基硅烷脱氯化氢法等,并简明地分析了各种方法的优缺点。 关键词:乙烯基硅烷,偶联剂中图分类号:TQ264.1+2 文献标识码:B 文章编号:10094369(2007)0620360204 收稿日期:20070628。 作者简介:徐少华(1977— ),男,硕士生,主要从事有机硅化学和有机合成的研究。3 联系人,E 2mail :fengjiedeng @ncu 1edu 1cn 。 硅烷偶联剂是应用领域较多、使用量较大的偶联剂。在它的分子中,同时存在能与无机材料和有机材料结合的两种不同化学性质的基团。通常,有机材料和无机材料很难结合,硅烷偶联剂的特殊结构使它成为有机材料和无机材料结合的媒介。乙烯基硅烷偶联剂的通式为(C H 2C H )R a Si X 3-a (式中,R 为甲基烷基等;a 为0、1;X 为卤素、甲氧基、乙氧基、甲氧基乙氧基、乙酰氧基等),是用途较广的硅烷偶联剂品种之一,可用作玻璃纤维、无机填料的表面处理剂,密封剂、粘接剂、涂料的增黏剂,聚烯烃的交联剂等[1]。随着其用量的扩大,了解并研究它们的合成方法以降低生产成本就显得尤为重要。 1 直接法 直接法是指在较高温度和催化剂存在下直接 反应,生成烃基卤硅烷的方法[2]。此法由美国化学家Rochow 于1941年发现。用此法制备乙烯基硅烷偶联剂时,通常是在加热及铜催化剂存在下,将含有乙烯基的卤代烷与硅粉直接反应(如式1)。 CH 2 CHCl +Si Cu △ (CH 2 CH 2)SiCl 3+(CH 2 CH 2)2SiCl 2 (1) 原苏联有机硅化学家M 1F 1Shoes -Takoskii 等人尝试了各种合成乙烯基氯硅烷的方法,发表了大量的研究报告和专利。对直接法合成乙烯基氯硅烷作出了巨大的贡献。他们发现,用Cu 的 合金(铜镍硅合金、铜硅合金等)为催化剂,在N 2保护下,硅与氯乙烯直接反应合成乙烯基氯硅烷的产率仅有1013%~14%。G.S Popeleva 发现,在氧化铜存在下,氯乙烯和硅块在460℃下接触10~35s ,乙烯基氯硅烷的收率为45%~60%[3]。使用硅镍合金或硅锡合金作催化剂时,虽然可以提高反应活性及产物的收率,但产物收率还是比较低,总收率难以超过50%[4]。 直接法虽然可以用于合成乙烯基硅烷偶联剂;但是由于乙烯基卤化物中的卤原子与双键直接相连,反应活性较差,且副产物多,导致目标产物收率较低。再者反应能耗又大。因此,此法在实际生产中未能获得广泛应用。 2 有机金属合成法 有机金属合成法是以有机金属化合物为媒介,使有机基与硅化合物中的硅原子连接,生成有机硅化合物的方法[5]。它主要包括:格氏试剂法、有机锂法以及钠缩合法等。211 格氏试剂法 格氏试剂法一般是在有机溶剂存在下,将含乙烯基的格氏试剂与含Si —X 键或Si —OR 键的硅烷进行反应,使乙烯基与硅原子相连而得到乙烯基硅烷偶联剂的方法。常用的溶剂有:二甲苯、石油醚、乙醇、四氢呋喃、氯苯以及烷氧基

有机硅产品的应用

有机硅产品的应用 有机硅产品都有很好的耐高、低温性能,一般都能在180℃高温下长期工作。硅橡胶在250℃下还可较长时间工作,瞬时能耐1000多摄氏度高温。有机硅材料耐低温性能良好,一般在-55℃下仍能工作。有的硅橡胶在-110℃下仍有弹性。有机硅材料有很好的电绝缘性能,介电性不随温度变化而剧烈变化;介电常数不随频率升高而增加数值;并且耐电弧、耐电晕、耐漏电;耐臭氧、耐辐射、耐候、难燃,故用途极为广泛。以下按有机硅产品的几个大类,分别简要介绍其一部分主要的用途: 1.硅烷偶联剂硅烷偶联剂是一类低分子化合物,与硅原子一端相连的是能水解的氯或各种烷氧基,水解后能与无机物相连;另一端有各种能与有机物相作用的官能团,如氨基、乙烯基、巯基等,故硅烷偶联剂能将有机物和无机物桥联起来。常用的硅烷偶联剂有近百种。如玻璃钢用的玻璃纤维要就要用含乙烯基的偶联剂处理以提高湿强度。当前风行的“绿色”轮胎就大量使用含巯基的硅烷偶联剂;用乙烯基三烷氧基硅烷交联的聚乙烯,其工作温度能比普通聚乙烯和聚氯乙烯高,适宜制热水管、电缆护套等。 2.硅油硅油是含有单一或不同有机基团的低分子聚硅氧烷,可以制成各种不同的粘度。硅油的表面张力低,与水的接触角大,是优质斥水材料。硅油的粘温系数变化小,低温下不会凝固,是既耐高温又耐低温的航空航天器的陀螺仪油、防冻和耐热润滑油、液压油、仪表油等的基油,还有蒸气压极低的高真空扩散泵油等。有机硅油或其改性制剂在化妆品中的应用近年来增长很快。硅油搽在皮肤上不油不腻,感觉滑爽、舒适,可制成各种护肤霜等。 3.硅橡胶根据硫化机理,硅橡胶可分成高温硫化硅橡胶(HTV);室温硫化硅橡胶(RTV)和加成型液体硅橡胶(LSR),具有耐热、耐寒、耐臭氧、耐紫外线、耐原子氧、耐宇宙射线的特性及防水、防震等综合性能。LSR液体硅橡胶(也称硅凝胶)是半导体芯片和电子器件优良的灌封和保护材料;透光率高达91%的有机硅凝胶是要求耐高温、耐潮湿、不发黄的飞机三合风档玻璃的中间粘合层。LSR硅橡胶模具胶用于发动机部件的精密铸造。HTV和RTV的产量在有机硅产品中占很大的份额(一般占40%~50%),HTV的用途比RTV广。(1)RTV室温熟化硅橡胶RTV一般是用羟基封端的低分子聚硅氧烷(107胶)、配以催化剂、填料等制成双组分或单组分,使用方便且能在室温下固化的硅橡胶,对玻璃、陶瓷、金属、混凝土等各种材料粘结性良好,被大量应用于全视野玻璃幕墙、铝合金门窗等结构部位的粘结密封,以及家庭的浴室、洗手间等堵漏和嵌缝。RTV硅橡胶为基础的耐烧蚀隔热涂层的热导率小、施工方便,用于火箭的尾喷管及返回式航天运载器免受烧蚀的绝热材料,也是制作宇宙飞行器部件的重要材料。RTV硅橡胶还是各种艺术性的雕花装饰建材的柔性模具。 (2)HTV高温硫化硅橡胶HTV是高分子量(40万~80万)的聚有机硅氧烷,加入补强填料和其它各种添加剂,硫化,成型交联成橡皮。HTV硅橡胶制的高压输变电用复合绝缘子,不仅重量只有瓷质绝缘子的1/5~1/10,方便使用,而且耐污闪性能好,能安全运行于高压输变电电网中。以炭黑等作导电介质的HTV硅橡胶用作按键垫片,大量用于手机和计算机等的键盘上;硅橡胶大量用以制作轴封、垫圈、油封、工业胶辊、减震橡胶、绝缘制品、医用制品等。硅橡胶绝缘的难燃电线、电缆用于军舰、飞机等要求高可靠的场合。硅橡胶具有生理惰性、不凝血、消毒简便等特性,可制作能植入人体的硅橡胶制件和各种能长时间使用的硅橡胶导管、插管,脑积水引流管,腹膜透析管,以及人工心肺机输血泵管等。此外硅橡胶有透气性,对不同气体的透过性不同。氧气透过率在合成聚合物中是最高的,可做富氧膜、气体分离膜。 4.硅树脂硅树脂制成的绝缘材料因耐热性和绝缘性能好而属于H级,用它制作的电动机体积小、重量轻、可靠性高,在短时过热、过负荷情况下不会烧坏。硅树脂能配制耐500℃高温涂料;有机硅改性

硅烷偶联剂

硅烷偶联剂 一项目建设的目的: 为减少单一产品的经营风险,改进有机硅主要产品的结构,考虑发展有机硅下游产品——硅烷偶联剂,降低经营风险,在市场占据有利形势。 近几年,由于我国玻纤行业和子午线轮胎生产的快速发展,使得市场对硅烷偶联剂的需求量增长很快。 我国的玻璃纤维产业属于朝阳产业,而随着建筑、机械、电子等玻璃纤维增强复合材料等应用领域的发展,使得我国的玻璃纤维产业正在进入新一轮高速发展期。预计“十一五”期间,玻纤生产量的发展速度将接近10%,2010年我国玻璃纤维量有望达到130万吨,对硅烷偶联剂的需求量将达到18000吨左右;加上橡胶行业及其他行业发展的需求,预计2010年国内硅烷偶联剂总需求量将达到25000吨以上。 目前国内虽有多家硅烷偶联剂生产企业,但绝大多数企业生产规模小,而且产品档次较低,品种规格较少。因此,有条件的地区或企业建设较大型的多功能硅烷偶联剂生产线,提高我国硅烷偶联剂的生产水平是必要的。 二概述 1 基本情况: 硅烷偶联剂是一类具有特殊结构的低分子有机硅化合物,其通式为RSiX3,式中R代表氨基、巯基乙烯基、环氧基、氯丙基、氰基及甲基丙烯酰氧基等基团,这些基团和不同的基体树脂均具有较强的反应能力,x代表能够水解的基团,如卤素、烷氧基、酰氧基等。 硅烷偶联剂是由三氯氢硅(HSiCl3)和带有反应性基团的不饱和烯烃在铂氨酸催化下加成,再经醇解而得。硅烷偶联剂既能与无机物中的羟基又能与有机聚合物中的长分子链相互作用,使两种不同性质的材料偶联起来,从而改善生物材料的各种性能。 2 用途:

硅烷偶联剂的应用大致可归纳为三个方面; (1) 用于玻璃纤维的表面处理。硅烷偶联剂能改善玻璃纤维和树脂的粘合性能,提高玻璃纤维增强复合材料的强度、抗水、抗气候等性能。2004年玻璃纤维使用的硅烷偶联剂约占其消耗总量的50%以上,其中用得较多的品种有乙烯基硅烷、氨基硅烷、甲基丙烯酰氧基硅烷等。 (2) 用于无机填料的表面处理。硅烷偶联剂在对无机填料及树脂进行偶联时可预先对填料进行表面处理,也可直接加入树脂中,以改善填料在树脂中的分散性及粘合力,提高工艺性能和填充塑料(包括橡胶)的机械、电学和耐气候等性能。 (3) 用作密封剂、粘接剂和涂料的增粘剂。硅烷偶联剂能提高它们的粘接强度、耐水、耐气候等性能。硅烷偶联剂往往可以解决某些材料长期以来无法粘接的难题。 3 硅烷偶联剂的品种: 硅烷偶联剂品种很多(常用硅烷偶联剂品种见下表),其中产量最大的是双-[3-(三乙氧基)硅丙基]四硫化物(Si-69或KH-846),它是由三氯氢硅、氯丙烯为原料催化合成γ-氯丙基三氯硅烷(它是生产多种硅烷偶联剂的中间产品),然后进行醇解得到γ-氯丙基三乙氧基硅烷,再与硫化物在一定条件下反应而制得。它是橡胶料行业中得到成功使用的多功能硅烷偶联剂,广泛应用在子线午轮胎及其它橡胶制品中。 目前常用的硅烷偶联剂品种

新型硅烷偶联剂YC-618的合成及应用

γ-氨乙基哌嗪基丙基甲基二乙氧基硅烷的合成与应用研究 闫蕾1,杨涛2 (1.浙江省羊毛衫质量检验中心,嘉兴314502; 2.杭州业诚有机硅有限公司,杭州311200)摘要:对氨乙基哌嗪基丙基甲基二乙氧基硅烷的合成方法进行了介绍,探讨了主要反应条件对其性能的影 响,并用红外光谱和核磁共振氢谱对其结构进行了表征。并通过合成的氨基改性硅油,与传统的偶联剂在 后整理应用中进行了比较,发现:对比普通三胺基偶联剂在软滑性有明显提升,而黄变性大大降低;对比 普通哌嗪基偶联剂在蓬松性和滑弹性则有明显提升。 主题词:氨乙基哌嗪硅烷偶联剂氨基改性硅油应用 前言 γ-氨乙基哌嗪基丙基甲基二乙氧基硅烷是一种新型二官能团受阻型三胺基硅烷偶联剂,其分子结构上有别于二乙烯三胺基丙基甲基二甲氧基硅烷(以下简称YC-603)的高反应性,含有伯氨基、仲氨基和叔氨基三种氨基团,同时因哌嗪基的引入,在保持原有YC-603偶联剂滑弹、蓬松性的基础上,极大地降低了织物的黄变性。经其乳液处理过的织物,具有以下特点:柔软及平滑性优于三胺硅油;蓬松及弹性优于哌嗪硅油;而织物整理后黄变性较之二乙烯三胺基偶联剂(YC-603)大大降低,可获得极好的白度;同时由于哌嗪基具有一定的亲水性,其整理液不易粘辊等。 1.合成反应原理 1.1胺化反应式 2.试验 2.1试剂和仪器 原料(胺化) 氯丙基甲基二甲氧基硅烷:纯度≥98% 氯丙基甲基二乙氧基硅烷:纯度≥98% 江苏晨光偶联剂有限公司 氨乙基哌嗪:纯度≥99% 大连连晟贸易有限公司 甲苯:分析纯南京试剂厂 原料(本体聚合) DMC:浙江新安化工集团股份有限公司 四甲基氢氧化铵;AR,市售 γ-氨乙基哌嗪基丙基甲基二甲氧基硅烷(YC-618): 工业品,杭州业诚有机硅有限公司 乙酸、异丙醇:AR。西安化学试剂厂 碳酸钠:AR,上试一厂 复合乳化剂:非离子异构十三醇型,自配 织物:针织丝光棉布、桃皮绒坯布、针织全毛织物 仪器(合成及分析)

有机硅偶联剂概述及其作用机理总结

有机硅偶联剂概述及其作用机理总结 一、偶联剂概述 偶联剂是一种具有特殊结构的有机硅化合物。在它的分子中,同时具有能与无机材料(如玻璃、水泥、金属等)结合的反应性基团和与有机材料(如合成树脂等)结合的反应性基团。常用的理论有化学键理论、表面浸润理论、变形层理论、拘束层理论等。偶联剂作表面改性剂,用于无机填料填充塑料时,可以改善其分散性和黏合性。 二、偶联剂种类 偶联剂主要有有机铬偶联剂、有机硅偶联剂和钛酸偶联剂。胶黏剂中常选用有机硅偶联剂,其通式为RSiX3,其中R为有机基团,如-C6H5、-CH=CH2等,能与树脂结合;X为可以水解的基团,如-OCH3、-OC2H5、-Cl等。 三、偶联剂作用过程 B?Arkles根据偶联剂的偶联过程提出了4步反应模型,即: ①与硅原子相连的SiX基水解,生成SiOH; ②Si-OH之间脱水缩合,生成含Si-OH的低聚硅氧烷; ③低聚硅氧烷中的SiOH与基材表面的OH形成氢键; ④加热固化过程中,伴随脱水反应而与基材形成共价键连接。 一般认为,界面上硅烷偶联剂水解生成的3个硅羟基中只有1个与基材表面键合;剩下的2个Si-OH,或与其他硅烷中的Si-OH缩合,或呈游离状态。因此,通过硅烷偶联剂可使2种性能差异很大的材料界面偶联起来,从而提高复合材料的性能和增加黏结强度,并获得性能优异、可靠的新型复合材料。硅烷偶联剂广泛用于橡胶、塑料、胶黏剂、密封剂、涂料、玻璃、陶瓷、金属防腐等领域。现在,硅烷偶联剂已成为材料工业中必不可少的助剂之一。

硅烷偶联剂的作用和效果以被人们认识和肯定,但界面上极少量的偶联剂为什么会对复合材料的性能产生如此显著的影响,现在还没有一套完整的偶联机理来解释。偶联剂在两种不同性质材料之间界面上的作用机理已有不少研究,并提出了化学键合和物理吸着等解释。其中化学键合理论是最古老却又是迄今为止被认为是比较成功的一种理论。 四、偶联剂作用理论 1.化学结合理论 该理论认为偶联剂含有一种化学官能团,能与玻璃纤维表面的硅醇基团或其他无机填料表面的分子作用形成共价键;此外,偶联剂还含有一种别的不同的官能团与聚合分子键合,以获得良好的界面结合,偶联剂就起着在无机相与有机相之间相互连接的桥梁似的作用。 下面以硅烷偶联剂为例说明化学键理论。例如氨丙基三乙氧基硅烷,当用它首先处理无机填料时(如玻璃纤维等),硅烷首先水解变成硅醇,接着硅醇基与无机填料表面发生脱水反应,进行化学键连接。具体过程如下: 硅烷中的基团水解--水解后羟基与无机填料反应--经偶联剂处理的无机料填进行填充制备复合材料时,偶联剂中的R基团将与有机高聚物相互作用,最 终搭起无机填料与有机物之间的桥梁。 硅烷偶联剂的品种很多,通式中R基团的不同,偶联剂所适合的聚合物种类也不同,这是因为基团R对聚合物的反应有选择性,例如含有乙烯基和甲基丙烯酰氧基的硅烷偶联剂,对不饱和聚酯树脂和丙烯酸树脂特别有效。其原因是偶联剂中的不饱和双键和树脂中的不饱和双键在引发剂和促进剂的作用下发生了化学反应的结果。但含有这两种基团的偶联剂用于环氧树脂和酚醛树脂时则效果不明显,因为偶联剂中的双键不参与环氧树脂和酚醛树脂的固化反应。但环氧基团的硅烷偶联剂则对环氧树脂特别有效,又因环氧基可与不饱和聚酯中的羟基反应,所以含环氧基硅烷对不饱和聚酯也适用;而含胺基的硅烷偶联剂则对环氧、酚醛、

柔软剂的使用方法介绍

柔软整理剂 1.柔软剂定义: 柔软剂是一种能吸附于纤维表面并使纤维表面平滑、改善手感或触感的物质。柔软剂除能使织物柔软外、往往还兼有抗静电、防再污染、提高平滑性、撕破强力和提高缝制性等效果。 2.柔软剂的要求: ①具有优良的柔软性、平滑性、蓬松性。 ②对纤维或织物的白度或染色牢度影响小。 ③在各种柔软加工条件下(浸渍、浸轧、温度、PH变化等),工作液要有相当的稳定性。 ④柔软整理后的纤维或织物不宜受热变色,在贮藏中不应产生色泽、气味、手感的变化。 ⑤柔软剂若是乳液,其乳液稳定性要好不破乳。 ⑥人体皮肤接触后无不良影响,符合环保要求。 ⑦按不同的处理要求:能具有适当的吸水性、拒水性、防静电性等性能。 3.柔软剂的分类: 3.1按化学成分分类: 3.1.1. 非硅柔软剂:长链脂肪族类:如软片、软油精等。为脂肪酰胺类、特殊的脂肪酸酯、特殊烷基胺基甜菜 碱类、高级脂肪酰胺类季胺化合物。 3.1.2. 含硅柔软剂:环氧和聚醚改性硅油、氨基改性硅油等如表。 3.1.3 天然油脂和石蜡: 3.2按应用性能分类: 1. 亲水型:聚醚氨基改性硅油等亲水硅油。 2. 拒水型:氨基改性硅油。 3. 平滑型: 4. 柔软型: 5. 蓬松型: 6. 复配型:软片(软油)与硅油按一定的比例配制的柔软剂,达到特殊要求。 软片+软油精+硅油 4.2有机硅柔软剂是一类应用最广泛的性能好、效果最突出的纺织品柔软剂,可分为非活性、活性和改性型几 类。 4.2.1.非活性有机硅柔软剂:主要为聚二甲基硅氧烷属第一代产品他自身不能交联不和纤维发生反应、因此不耐 洗,且手感弹性均不理想,甲基硅油的氧原子向着纤维表面定向,甲基则在纤维外侧定向排 列甲基能自由饶者硅原子旋转,以产生较好的平滑感。 4.2.2.活性有机硅柔软剂:主要为羟基硅油或含氢硅氧烷属第二带产品他能和纤维发生交联反应,在纤维表面形成 薄膜增加弹性,具有一定的耐洗涤效果,但存在易飘油,不耐剪切,手感有油腻状等缺点。 4.2.3.改性型有机硅柔软剂:是新一代(第三代)有机硅柔软剂,包括氨基改性硅油、环氧和聚醚改性硅油等,其 中以氨基改性有机硅柔软剂最多,他可以改善硅氧烷在纤维上的定向排列增加对纤维的亲和 力,大大改善织物的柔软性,手感具有丰满、蓬松、柔软、滑糯的综合效果。但也存在不足 之处,亲水性下降,抗污性不够,高温易黄变,回修重染时剥除硅油困难,改色也困难。 我公司开发的多为氨基改性硅油、聚醚氨基改性聚硅氧烷类的柔软剂,亲水性氨基硅油,低 黄变氨基硅油,超柔软氨基硅油、超平滑氨基硅油,是我司主推的产品。 5.柔软剂也可按如方法下分类: 阳离子 长链脂肪族阴离子 非离子 两性型 天然油脂及石蜡 聚乙烯乳液类 高分子聚合物 有机硅类 5.1.有机硅柔软剂分类: 非活性有机硅:(第一代有机硅)聚二甲基硅氧烷,国内称甲基硅油。 含氢有机硅油, : 羟基硅油(第二代有机硅) 环氧和聚醚改性硅油 具反应性基团的有机硅(第三代有机硅): 氨基改性硅油 氨基有机硅微乳:粒径在0.15um以下的微乳有机硅为稳定的分散状态,耐热稳定性、抗剪切稳定性、储存稳定性、渗透性极大提高,微小的粒径,表面积大提高与纤维接触几率,表面吸附量增大均匀性提高, 能渗透到纤维微结构中,用量可以减少1/2~1/3,克服飘油的缺点。 5.2.各类有机硅柔软剂的特点: A. 甲基硅油:有较好的平滑性,由于不能自身交联,也不能与纤维交联,所以耐洗性较差。 B. 羟基硅油:有阴离子或阳离子羟基硅油乳液,手感平滑、有弹性,相比甲基硅油提高了耐洗性。如SAH-288A,

硅烷偶联剂改性酚醛树脂的合成

CHINA?SYNTHETIC?RESIN?AND?PLASTICS 研究与开发合?成?树?脂?及?塑?料?,?2017,?34(6):?17 酚醛树脂是酚类与醛类在酸性或碱性催化剂作用下形成树脂的统称,是工业化最早的合成高分子材料,具有优异的黏接强度、耐水、耐热、耐磨、耐化学药品腐蚀性及化学稳定性等特点,特别是耐沸水性能最佳。目前,酚醛树脂仍是相当重要的合成高分子材料,特别在生产耐水、耐候性木制品等,具有十分特别的意义。酚醛树脂同样有着一些缺点,颜色太深、脆性易裂等,所以在应用上有着一定的限制[1-4]。许多科研工作者从分子结构、聚合工艺以及共混等方面对其进行了研究,取得了一定的成效[5-9]。由于传统的酚醛树脂在耐热性能和韧性等方面存在缺陷,在很大程度上限制了其进一步应用,而有机硅树脂具有良好的耐热性能和韧性。本工作针对普通酚醛树脂的脆性和耐热性能的不足,采用硅烷偶联剂KH560改性酚醛树脂,在结构中引入Si—O—Si和环氧基,通过优化实验条件,对树脂的性能进行分析,期望改善树脂的耐热性能和韧性,为酚醛树脂的改性提供一种可供选择的参考方法,拓展酚醛树脂的应用领域,对推动酚醛树脂产业发展具有重要的意义。 硅烷偶联剂改性酚醛树脂的合成 游胜勇1,戴润英2*,董晓娜1,李?玲1,陈衍华1,曹?修1 (1.江西省科学院应用化学研究所,江西省南昌市 330029;2.江西农业大学,江西省南昌市 330045) 摘要:以硅烷偶联剂KH560作为改性剂,采用化学合成方法合成了KH560改性酚醛树脂。通过傅里叶变换红外光谱、热重分析以及力学性能测试研究了硅烷偶联剂KH560对酚醛树脂热性能和力学性能的影响。结果表明: 当w(KH560)为2.5%时,改性酚醛树脂在318 ℃时开始分解,树脂质量损失约为17.0%,耐热性能较好;与改性前相 比,改性酚醛树脂的拉伸强度提高了32.9 MPa,冲击强度提高了4.03 kJ/m2,力学性能得到了改善。 关键词:酚醛树脂 硅烷偶联剂 韧性 耐热性能 改性 中图分类号:TB 332文献标识码: B 文章编号:1002-1396(2017)06-0017-03 Synthesis and properties of phenolic resin modi?ed by silane coupling agent You Shengyong1, Dai Runying2, Dong Xiaona1, Li Ling1, Chen Yanhua1, Cao Xiu1 (1. Institute of Applied Chemistry,Jiangxi Academy of Sciences,Nanchang 330029,China; 2. College of Science,Jiangxi Agricultural University,Nanchang 330045,China) Abstract: The phenolic resin was modified by silane coupling agent KH560 to prepare KH560 modified phenolic resin. The effect of KH560 on the thermal and mechanical properties of phenolic resin were investigated by Fourier transform infrared spectroscope, thermogravimetry analyzer, and mechanical property tests. The results show that the phenolic resin decomposes at 318 ℃ when the mass fraction of KH560 modifier is 2.5%, and the mass loss is approximately 17.0%, which represents better thermal resistance. The mechanical properties of the resin modified such as the tensile strength and the impact strength are improved by 32.9 MPa and 4.03 kJ /m2 respectively. Keywords: phenolic resin; silane coupling agent; toughness; heat resistance; modification 收稿日期:2017-08-01;修回日期:2017-09-25。 作者简介:游胜勇,男,1981年生,硕士,2008年毕业于江 西师范大学有机化学专业,研究方向为有机硅新材料加工 与应用。E-mail:ysygood1981@https://www.sodocs.net/doc/de17375573.html,。 基金项目:江西省科学院预研项目和杰出青年基金项目 (2016-JCQN-02)。 通信联系人。E-mail: runyingdai@https://www.sodocs.net/doc/de17375573.html,。 *

海草材料性能分析及应用研究

N E W B U I L D I N G M A T E R I A L S 0引言在中国与丹麦现存着最为典型的传统海草房民居,皆采 用干海草(主要是大叶藻)来苫盖屋顶,以石块砌筑墙体。在我 国主要分布于胶东半岛的威海、烟台、青岛等沿海地带,目前 以荣成沿海村镇分布最为广泛。在建筑材料发展日新月异的 今天,海草房依然是胶东半岛村民的居住首选,已被列为省级 非物质文化遗产。而丹麦依索岛上的海草房更被宣布为北日 德兰半岛的七大奇迹之一。海草房(见图1)的独特外形与绿 色性能被逐渐关注,并引发在当代生活方式下建筑如何利用 海草的研究。 图1丹麦兰依索岛和中国胶东半岛海草房1海草房保温隔热性能测试胶东半岛海草房草顶厚达1m ,石墙厚达45cm ,气候边界的厚度提高了房屋的热稳定性。为确定海草房相较瓦房的保温性能,分别选择在夏、冬两季对山东省荣成市宁津镇某海 草房与瓦房的室内温度变化进行测试与比较。 基金项目:山东省高校科研计划项目(J18RB255); 东南大学城市与建筑遗产保护教育部重点实验室资助项目 (KLUAHC1802) 收稿日期:2018-11-12;修订日期:2019-01-22 作者简介:杨俊,女,1983年生,山东烟台人,讲师。通讯作者:钱玉 莲,地址:山东省烟台市场莱山区清泉路30号,E-mail :yj8023@126. com 。海草材料性能分析及应用研究 摘要:海洋赋予了海草在建筑材料中独特的生物特性,也构成我国胶东半岛与丹麦兰依索岛海草房成为生态民居的主要原因。结合国内外海草植物领域的研究成果,利用跨学科研究平台,通过材料实验设计与建筑构造模拟,证实海草的生物特性与海草苫匠的技艺造就了海草房冬暖夏凉、耐燃耐久的优良性能,并结合丹麦当代的海草应用,提出海草材料利用的前景。 关键词:海草;生态民居;材料实验;构造模拟;当代利用 中图分类号:TU531.6文献标识码:A 文章编号:1001-702X (2019)04-0091-04 Experimental analysis and utilization of seaweed materials YANG Jun ,QIAN Yulian (Yantai University ,Yantai 264005,China ) Abstract :The ocean endows seagrass with unique biological characteristics in building materials ,which is also the main rea - son why seagrass houses in Laniso Island ,Denmark and Jiaodong Peninsula in China have become ecological dwellings.Based on the research results in the field of seaweed plants at home and abroad ,and on the platform of interdisciplinary research ,through material experimental design and architectural structure simulation ,this paper confirms that the biological characteristics of seaweed and the skills of seaweed craftsmen have created the excellent properties of seaweed houses ,which are warm in winter ,cool in sum -mer ,fire-resistant and https://www.sodocs.net/doc/de17375573.html,bining with the contemporary application of seaweed in Denmark ,it proposed prospect of sea -grass material utilization.Key words :seagrass ,ecological residence ,material experiment ,structural simulation ,contemporary utilization 杨俊,钱玉莲 (烟台大学,山东烟台264005 ) 全国中文核心期刊中国科技核心期刊 91··

相关主题