搜档网
当前位置:搜档网 › 石墨烯_金属氧化物复合材料的制备及电化学性能研究

石墨烯_金属氧化物复合材料的制备及电化学性能研究

石墨烯_金属氧化物复合材料的制备及电化学性能研究

关于石墨烯电池的调研报告范文

关于石墨烯电池的调研报告 0引言 《世界报》的一则关于西班牙Graphenano 公司同西班牙科尔瓦多大学合作研究出首例石墨烯聚合材料电池的消息,引起了世界各地的转发与评论,该消息称石墨烯聚合材料电池能够提给电动车1000公里的续航能力,而其充电时间不到8分钟。为调查此消息的真实性与石墨烯聚合材料电池的可行性,于是检索、收集了大量的资料,并总结做出了自己的调查结果。 1石墨烯简介 石墨烯(Graphene )是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二維材料。石墨烯一直被认为是假设性的结构,无法单独稳定存在,直至2004年,英国曼彻斯特大学物理学家安德烈?海姆和康斯坦丁?诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因「在二维石墨烯材料的开创性实验」为由,共同获得2010年诺贝尔物理学奖。 石墨烯是已知的世上最薄、最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达K m W ?/5300,高于碳纳米管和金刚石,常温下其电子迁移率超过s V cm ?/215000,又比纳米碳管或硅晶体高,而电阻率只约m ?Ω-810,比铜或银更低,为世上电阻率最小的材料。因其电阻率极低,电子迁移的速度极快,因此被期待可用来发展更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。 特斯拉CEO 马斯克近目在接受英国汽车杂志采访时表示,正在研究高性能电池,特斯拉电动车的续行里程很快将能达到800公里,比目前增长近70%。其表示,特斯拉始终致力于打造纯电动汽车,将继续革新电池技术,不考虑造混合动力车。特斯拉Model3电动汽车的续行里程有望达N320公里,售价约为3.5万美元。[]《功能材料信息》 2014年第11卷第4期 56-56页据悉,石墨烯兼具高强度、高导电性、柔韧性等优点,应用于锂电池负极材料后,可大幅度提高其电容量和大倍率充放电性能 ,或成特斯拉电池的理想材料。 特斯拉研究高能电池石墨烯或为理想材料 这项新技术的核心在于,新型多孔石墨烯材料含有巨大的内部表面区域,因此能实现在极短时间内充电。所充电能量与普通锂电池的电能量相当。更重要的是,石墨烯电池电极在经过1万次充放电之后。能量密度并未出现明显损失。 这种多孔石墨烯材料的超级电容,还可以为电动车节省大量的能量"如今,电动车的电能浪费现象仍旧普遍存在" 1新闻方面 首先,我从网上搜索了相关的新闻,包括ZOL 新闻中心科技频道的“石墨烯电池或将引领改革:充电10分钟跑1000公里”说道“这项突破性研究,为人类认知石墨烯等材料特性带来全新发现,并有望为燃料电池和氢相关技术领域带来革命性的进步”;21世纪经济报道的“中国2015年量产石墨烯锂电池或颠覆电动车行业”说道“2014年12月初,西方媒体报

化学气相沉积法制备石墨烯材料

化学气相沉积法新材料的制备 1 化学气相沉积法 化学气相沉积(CVD)是半导体工业中应用最为广泛的用来沉积多种材料的技术,包括大范围的绝缘材料,大多数金属材料和金属合金材料。从理论上来说,它是很简单的:两种或两种以上的气态原材料导入到一个反应室内,然后他们相互之间发生化学反应,形成一种新的材料,沉积到晶片表面上。淀积氮化硅膜(Si3N4)就是一个很好的例子,它是由硅烷和氮反应形成的。 1.1 化学气相沉积法的原理 化学气相沉积法是利用气相反应,在高温、等离子或激光辅助灯条件下,控制反应器呀、气流速率、基板材料温度等因素,从而控制纳米微粒薄膜的成核生长过程;或者通过薄膜后处理,控制非晶薄膜的晶化过程,从而或得纳米结构的薄膜材料。 CVD方法可以制备各种物质的薄膜材料。通过反应气体的组合可以制备各种组成的薄膜,也可以制备具有完全新的结构和组成的薄膜材料,同时让高熔点物质可以在较低温度下制备。 1.2 分类 用化学气相沉积法可以制备各种薄膜材料,包括单元素物、化合物、氧化物、氮化物、碳化物等。采用各种反应形式,选择适当的制备条件—基板温度、气体组成、浓度和压强、可以得到具有各种性质的薄膜才来。 通过反应类型或者压力来分类,可以将化学气相沉积法分为:低压CVD(LPCVD),常压CVD(APCVD),亚常压CVD(SACVD),超高真空CVD(UHCVD),等离子体增强CVD(PECVD),高密度等离子体CVD(HDPCVD)以及快热CVD(RTCVD),以及金属有机物CVD(MOCVD) 化学气相沉积的化学反应形式,主要有热分解反应、氢还原反应、金属还原反应、基板还原反应、化学输运反应、氧化反应、加水分解反应、等离子体和激光激发反应等。具体表现如下表: 表1-1 化学气相沉积的各种反应形式

电化学法制备石墨烯

电化学法制备石墨烯 石墨烯(Graphene,GN)是由sp2杂化C原子组成的具有蜂窝状六边形结构的二维平面晶体。石墨烯独特的结构特征使其具有优异的物理、化学和机械等性能,在晶体管太阳能电池传感器、锂离子电池、超级电容器、导热散热材料、电发热膜、场发射和催化剂载体等领域有着良好的应用前景。石墨烯的制备方法对其品质和性能有很大影响,低成本、高品质、大批量的制备技术是石墨烯能得到广泛应用的关键。现有制备石墨烯的方法有很多,包括机械剥离石墨法、液相剥离法、溶剂热合成法、化学气相沉积法、外延生长法和电化学法等。其中,电化学方法因其成本低、操作简单、对环境友好、条件温和等优点而越来越受到人们的关注。据最新研究报道,通过电化学方法制备的石墨烯可以达到克量级,这为石墨烯的工业化生产带来了曙光。 电化学制备技术则是通过电流作用进行物质的氧化或还原,不需要使用氧化剂或还原剂而达到制备与提纯材料的目的,具有生产工艺简单、成本低、清洁环保等优点,已在冶金、有机与聚合物合成、无机材料制备等方面得到广泛应用。而且通过电化学电场作用,可以实现外在电解液离子(分子)对一些层状材料的插入,如锂离子电池石墨负极充电时就是锂离子在石墨层间的插入及石墨层间化合物的电化学制备。根据电化学原理主要有两种路线制备石墨。 1、通过电化学氧化石墨电极可得氧化石墨烯,再通过电化学还原以实 现电化学或化学氧化的氧化石墨烯的还原而得到石墨烯材料。 2、采用类似液相剥离,但施以电场力作用驱动电解液分子以电化学方式直接对石墨阴极进行插层,使石墨层间距变大,层间范德华力变弱,以非氧化方式直接对石墨片层进行电化学剥离制备得到石墨烯。 电化学法制备石墨烯的优势主要为:1)与普通化学氧化还原法相比,不需要用到强氧化剂、强还原剂及有毒试剂,成本低,清洁环保;2)通过电化学方式,在氧化时可以更多地以离子插入方式剥离而减少氧化程度降低对石墨烯结构的破坏,电化学还原时则能更彻底还原,因此制得的石墨烯具有更好的物理化学性质;3)以石墨工作电极为阴极进行非氧化直接剥离时,石墨片层结构没有受到破坏,可以得到与液相或机械剥离法一样高品质的石墨烯片,但因为电化学的强电场作用,比单纯的溶剂表面作用力或超声作用力要大得多,剥离的效率更高,与液相或机械剥离法相比,电化学剥离易实现高品质石墨烯批量制备;4)电化学制备过程中,电流与电压很容易精确控制,因此容易实现石墨烯的可控制备与性能调控,而且电化学法工艺过程与设备简单,容易操作控制;5)与CVD 及有机合成法相比,电化学法采用石墨为原料,我国石墨产量居世界前列,原料丰富成本低廉,不需要用到烯类等需大量进口的高价石化原料。 一、石墨阳极氧化剥离制备石墨烯 阳极氧化剥离制备石墨烯就是将石墨作为阳极,电源在工作时电解质中的阴离子向阳极移,进而进入阳极石墨导致石墨被插层而体积膨胀,当阳极石墨的体积增加到一定程度时,就会由于层间范德华作用力的减小而最终从块体上脱落下来,形成层状具有一定含氧官能团的石墨烯或氧化石墨烯(包括单层和2~10层的少层氧化石墨烯)。石墨由于电化学氧化和酸性阴离子的插层导致表面体积剧烈膨胀,这种现象在很早之前就有报道。近年来提出了电化学法阳极氧化石墨制备石墨烯的机理,在进行电化学反应时电解液中的阴离子会向阳极迁移,由于石

水热合成Fe2O3石墨烯纳米复合材料及其电化学性能研究

常熟理工学院学报(自然科学)Journal of Changshu Institute Technology (Natural Sciences )第26卷第10Vol.26No.102012年10月Oct.,2012 收稿日期:2012-09-05 作者简介:季红梅(1982—),女,江苏启东人,讲师,工学硕士,研究方向:无机功能材料.水热合成Fe 2O 3/石墨烯纳米 复合材料及其电化学性能研究 季红梅1,于湧涛2,王露1,王静1,杨刚1 (1.常熟理工学院化学与材料工程学院,江苏常熟215500;2.吉林石化公司研究院,吉林吉林132021) 摘要:利用水热法成功合成了Fe 2O 3/石墨烯(RGO )锂离子电池负极材料.导电性能良好的石墨烯网络起到连接导电性能极差的Fe 2O 3和集流体的作用.电化学性能测试表明,180℃下得到的 Fe 2O 3/RGO 具有良好的比容量和循环稳定性.在不同倍率充放电过程中,初始放电比容量为1023.6mAh/g (电流密度为40mA/g ),电流密度增加到800mA/g 时,放电比容量维持在406.6 mAh/g ,大于石墨的理论放电比容量~372mAh/g.在其他较高的电流密度下比容量均保持基本不变.该Fe 2O 3/RGO 有望成为高容量、低成本、低毒性的新一代锂离子电池负极材料.关键词:Fe 2O 3;石墨烯;负极材料中图分类号:TM911文献标识码:A 文章编号:1008-2794(2012)10-0055-05 自从P.Poizot [1]等报道过渡金属氧化物可以作为锂离子电池负极材料这一研究后,金属氧化物负极便逐渐引起人们的重视.铁的氧化物具有比容量大、倍率性能好和安全性能高等优点,且原料来源丰富、价格低廉、环境友好,因此是一类很有发展潜力的动力锂离子电池负极材料.Fe 2O 3作为一种常温下最稳定的铁氧化合物,理论容量为1005mAh/g ,远高于石墨类材料的理论比容量,已经成为锂离子电池负极材料的一个研究热点.近年来,石墨烯由于其高的电传导性,大的比表面积,良好的化学稳定性和柔韧性而被尝试用于与活性锂离子电池负极材料复合,提升材料的电化学性能.比如,Cui Y [2]课题组在溶剂热条件下两步法得到Mn 3O 4与石墨烯的复合材料,改善了Mn 3O 4的比容量和循环性能.Co 3O 4,Fe 3O 4等金属氧化物材料与石墨烯复合也有被研究,本课题组在石墨烯和金属氧化物材料复合方面也做了大量的工作[3].本文通过水热法一步合成Fe 2O 3/石墨烯纳米复合材料,并研究了其电化学性能,合成过程中采用三乙烯二胺提供反应的碱性环境,并控制Fe 2O 3的粒子生长.1 实验 1.1试剂和仪器 三乙烯二胺(C 6H 12N 2);无水三氯化铁(FeCl 3);石墨;硝酸钠(NaNO 3);浓硫酸(H 2SO 4);高锰酸钾(KMnO 4);双氧水(H 2O 2)和盐酸(HCl ),以上试剂均为分析纯.实验用水为去离子水.日本理学H-600型透射电子显微镜;日本理学D/max2200PC 型X 射线衍射仪;德国Bruker Vector 22红外光谱仪;日本JEOL-2000CX 透射电镜;美国Thermo Scientific Escalab 250Xi 光电子能谱仪;LAND 电池

新型石墨烯涂层使金属耐腐蚀性提高百倍

新型石墨烯涂层使金属耐腐蚀性提高百倍 链接:https://www.sodocs.net/doc/d117476620.html,/tech/39047.html 新型石墨烯涂层使金属耐腐蚀性提高百倍 最近,澳大利亚莫纳什大学和美国莱斯大学研究人员合作,用肉眼看不见的石墨烯薄膜作为涂层,使铜的耐腐蚀性增强近百倍,为恶劣环境下的金属防洪提供了巨大潜力。研究人员指出,用石墨烯薄膜作防腐蚀涂层也意味着在开发保护性涂层方面有了模式性转变。相关论文发表在9月出版的《碳》杂志上。 作为广受关注的新材料,目前,科学家们正在开发用石墨烯提高金属耐腐蚀性方面的潜能。研究小组通过一种叫做“化学气相沉积”的技术,在800—900摄氏度时使石墨烯紧密贴在铜上,并在盐水中对其进行测试。“我们的成果也是迄今为止所报道的最佳改进之一。”论文合著者曼纳卡玛加姆德说,“其耐腐蚀性比未经处理的铜提高了近100倍。其他研究可能只有五六倍或更多。这是一个相当大的飞跃。” 该研究的主要实验人员帕拉玛班纳吉说,石墨烯具有优良的机械性能和很高的强度。金属上常用的聚合物涂层很容易被刮伤,降低了保护性能。虽然石墨烯涂层从外观上既看不到也摸不着,却更加坚固抗损伤。“我把它叫做‘神奇的材料’。” “在澳大利亚这样被海洋包围的国家,用原子涂层为环境提供特殊保护尤为重要。”班纳吉说,虽然初步实验仅限于铜,目前他们已在用其他金属开展实验。 研究人员指出,这项技术具有广泛的应用前景,从远洋轮船到电子产品,在任何用到金属并有腐蚀风险的地方,都能大大延长金属的使用寿命。这也意味着许多行业将因此节约巨大的成本。目前,该技术的工艺过程尚处于实验测试阶段。玛加姆德说,他们不仅在各种金属上进行实验,还研究怎样在低温下制作涂层,这将简化生产并提高产品的市场潜力。(记者 常丽君) 原文地址:https://www.sodocs.net/doc/d117476620.html,/tech/39047.html 页面 1 / 1

石墨烯修饰电极的电化学性能

https://www.sodocs.net/doc/d117476620.html,锦生炭素 石墨烯修饰电极的电化学性能 石墨烯(Graphene)是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种碳质新材料,是构建零维富勒烯、一维碳纳米管、三维石墨等其他碳质材料的基本单元,具有许多优异而独特的物理、化学和机械性能,在微纳电子器件、光电子器件、新型复合材料以及传感材料等方面有着广泛的应用前景,基于石墨烯的相关研究也成为目前电化学领域的热点研究领域之一。 本论文围绕石墨烯的不同修饰电极条件,结合电化学基础研究,开展了石墨烯及其相关的电化学性能研究。具体内容归纳如下: (1)将石墨烯与具有良好导电性能的聚苯胺(PANI)复合,研究了石墨烯/聚苯胺复合物修饰电极的电化学性能。利用石墨烯与聚苯胺之间电子给体与电子受体的相互作用,实现了聚苯胺在中性甚至强碱性溶液中的电化学活性,并利用红外光谱、拉曼光谱和紫外光谱进行了可能的机理探讨。石墨烯/聚苯胺复合物材料在中性溶液里的电化学活性,在生物传感领域具有可能的应用空间;同时,在不同pH 溶液里的电化学活性也为石墨烯/聚苯胺复合物材料在pH传感中提供了可能的应用空间。 (2)将石墨烯与具有电绝缘性能的凡士林混合,研究了石墨烯/凡士林膜电极的电化学性能。循环伏安测试表明:采用10.0 mg/mL、5.0 mg/mL和1.0 mg/mL的石墨烯/凡士林修饰电极可以依次得到常规尺寸电极、亚微尺寸电极和微尺寸的纳米电极阵列,并且通过简单混合所制备的石墨烯/凡士林膜电极具有良好的电化学活性和稳定性。作为新型碳材料的膜电极,石墨烯/凡士林膜电极在基础电化学研究和应用中具有一定的潜在价值。 (3)将石墨烯组装在具有完全电绝缘性能的硫醇自组装膜电极上,研究了石墨烯/硫醇自组装膜电极的电化学性能。交流阻抗数据表明,随着组装时间的增加,石墨烯/硫醇自组装膜电极的电化学阻抗逐渐降低,表明石墨烯在硫醇自组装膜上是一个可控的组装过程。循环伏安测试还表明,石墨烯的组装时间是120 min和5 min时,可以分别得到常规尺寸和微尺寸纳米电极阵列的石墨烯/硫醇自组装膜电极,而且对抗坏血酸、多巴胺、尿酸具有较好的电催化活性。同时,为了探讨可能的实验机理,我们讨论了电子传递的可能原因以及影响自组装膜电极双电层结构的两个因素。结果表明随着硫醇中碳链长度的增加,电子传递速率逐渐降低,氧化还原峰电位的差值逐渐增大;不同碳材料的电子转移速率呈现为:石墨烯>多孔碳>石墨。这种采用简单而有效的方法制备的石墨烯/硫醇自组装膜电极,在电化学理论研究和实际应用中具有较好的前景。 超级电容器是一种绿色、新型的储能元件,由于其高效、无污染的优良特性,符合“低碳”经济的发展要求,受到了人们的高度重视。超级电容器的核心是电极材料。 新兴的石墨烯二维单层原子碳材料因具有大的比表面积、优异的导电性、高的机械强度,被认为是理想的超级电容器电极材料。化学方法制备的氧化石墨烯具有良好的成膜性,可用于制备“石墨烯纸”并进而应用于无支撑电极。 此外,氧化石墨烯上丰富的含氧官能团可用于锚定金属纳米粒子,形成石墨烯复合材料。本论文围绕石墨烯薄膜制备、修饰和电化学电容性质开展研究工作,发展了石墨烯/碳纳米管复合薄膜的溶液铸造制备方法,提出了水热还原制备石墨烯基复合薄膜的途径,并研究了所制备材料的电容性能,取得了

石墨烯复合材料的研究及其应用

石墨烯复合材料的研究及其应用 任成,王小军,李永祥,王建龙,曹端林 摘要:石墨烯因其独特的结构和性能,成为物理化学和材料学界的研究热点。本文综述了石墨烯复合材料的结构和分类,主要包括石墨烯-纳米粒子复合材料、石墨烯-聚合物复合材料和石墨烯-碳基材料复合材料。并简述石墨烯复合材料在催化领域、电化学领域、生物医药领域和含能材料领域的应用。 关键词:石墨烯;复合材料;纳米粒子;含能材料 Research and Application of Graphene composites ABSTRACT: Graphene has recently attracted much interest in physics,chemistry and material field due to its unique structure and properties. This paper reviews the structure and classification of graphene composites, mainly inclouding graphene-nanoparticles composites, graphene-polymer composites and graphene-carbonmaterials composites. And resume the application of graphene composites in the field of catalysis, electrochemistry, biological medicine and energetic materials. Keywords: graphene; composites; nanoparticles; energetic materials 石墨烯自2004年曼彻斯特大学Geim[1-3]等成功制备出以来,因其独特的结构和性能,颇受物理化学和材料学界的重视。石墨烯是一种由碳原子紧密堆积构成的二维晶体,是包括富勒烯、碳纳米管、石墨在内的碳的同素异形体的基本组成单元。石墨烯的制备方法主要有机械剥离法,晶体外延法,化学气相沉积法,插层剥离法以及采用氧化石墨烯的高温脱氧和化学还原法等[4-10]。与碳纳米管类似,石墨烯很难作为单一原料生产某种产品,而主要是利用其突出特性与其它材料体系进行复合.从而获得具有优异性能的新型复合材料。而氧化石墨烯由于其特殊的性质和结构,使其成为制备石墨烯和石墨烯复合材料的理想前驱体。本文综述了石墨烯复合材料的结构、分类及其在催化领域、电化学领域、生物医药领域和含能材料领域的应用。

石墨烯的化学气相沉积法制备_图文(精)

收稿日期:2010 12 31; 修回日期:2011 02 14 基金项目:国家自然科学基金(50872136,50972147,50921004、中国科学院知识创新项目(K J CX 2 YW 231. 通讯作者:任文才,研究员.E m ai:l w cren@i m r .ac .cn;成会明,研究员.E m ai:l chen g @i m r .ac .cn ;高力波.E m ai:l l bgao @i m r .ac .cn 作者简介:任文才(1973-,男,山东东营人,博士,研究员,主要研究方向为石墨烯和碳纳米管的制备、物性和应用. E m ai:l w cren @i m r .ac .cn 文章编号: 1007 8827(201101 0071 10 石墨烯的化学气相沉积法制备 任文才, 高力波, 马来鹏, 成会明 (中国科学院金属研究所沈阳材料科学国家(联合实验室,辽宁沈阳110016 摘要: 化学气相沉积(CVD 法是近年来发展起来的制备石墨烯的新方法,具有产物质量高、生长面积大等优点,逐渐成为制备高质量石墨烯的主要方法。通过简要分析石墨烯的几种主要制备方法(胶带剥离法、化学剥离法、S i C 外延生长法和CV D 方法的原理和特点,重点从结构控制、质量提高以及大面积生长等方面评述了CV D 法制备石墨烯及其转移技术的研究进展,并展望了未来CVD 法制备石墨烯的可能发展方向,如大面积单晶石墨烯、石墨烯带和石墨烯宏观体的制备与无损转移等。关键词: 石墨烯;制备;化学气相沉积法;转移中图分类号: TQ 127.1+1 文献标识码: A 1 前言 自从1985年富勒烯[1] 和1991年碳纳米管[2]

金属嵌入石墨烯

金嵌入石墨烯:一个可能具有高活性的催化剂 Au嵌入石墨烯的催化活性是通过使用CO的氧化为基准探针并且利用第一性原理方法来研究的。CO氧化Au嵌入石墨烯的催化的第一个最可能的步骤是继续进行朗缪尔 - 欣谢尔伍德反应(CO + O2→OOCO→ CO2 +O),其能量势垒是低至0.31ev。氧化的第二步骤将是埃利-Rideal反应(CO+O→ CO2)其具有小得多的能量势垒(0.18ev)。金部分填充d状态处于费米能级的周围,由于Au与相邻的碳原子之间的相互作用。Au嵌入石墨烯的高活性可能归因于CO,O2,Au之间的电子共振,尤其,是在Au原子的d状态和CO和O2的反键2π状态。这将打开一个新的途径来制造低成本,高活性碳系催化剂。 介绍 石墨烯、单原子厚度的碳板具有独特的电子和几何特性,被认为是最有前途的下一代电子材料。完美的石墨烯在正常环境下化学惰性是稳定的。然而,对于过渡金属催化剂而言,纳米结构的碳材料和石墨烯是比较好的基底材料,如碳纳米管(CNT)和碳纳米纤维(CNFs)。主要由于其高的表面积,已被广泛地研究。近来,有报道说,金属subnanoclusters,包含仅有几个原子,在石墨烯片显示出对氧化反应不寻常的高活性。金属簇和石墨烯之间的强相互作用被发现。在单层石墨烯或碳原子的悬空键处的碳空位可以调节负载金属簇的电子结构。调查了过渡金属利用密度泛函理论嵌入石墨烯,发现过渡金属原子和相邻的碳原子之间的键确定系统的磁性和电子结构。因此,惰性石墨烯可以通过碳空位和金属簇,甚至一个单一的原子之间的相互作用转变为非常活泼的催化剂。该金属原子的嵌入石墨烯结构最近已制造,并且金属原子在石墨烯平面中的扩散可被控制。它开辟了新的途径来设计基于石墨烯的先进催化剂。在本文中,我们使用CO氧化为基准探头,对金嵌入石墨烯的催化活性进行研究。我们对金特别感兴趣,因为金是最高贵的金属而且并没有被认为是一个很好的催化剂,直到最近。我们的计算显示,金嵌入石墨烯是一个很好的高效催化剂,并且成本低。

石墨烯基复合材料的制备及吸波性能研究进展

石墨烯基复合材料的制备及吸波性能研究 进展 摘要随着吉赫兹(GHz)频率范围的电磁波在无线通信领域的广泛应用,诸如电磁干扰、信息泄露等问题亟待解决。此外,军事领域中的电磁隐身技术与导弹的微波制导需要,使得电磁波吸收材料受到持续而广泛的关注。因此,迫切需要发展一种厚度薄、频带宽、强吸收的吸波材料。 石墨烯作为世界上最薄硬度最强的纳米材料,优点很多,例如石墨烯制成的片状材料中,厚度最薄,比表面积较大,具有超过金刚石的强度等,这些优点满足吸波材料的需求。石墨烯基复合材料在满足吸波材料基本要求的基础上又提升了材料吸收波的能力。 本文简单地介绍了吸波材料及石墨烯,综述概况了石墨烯基复合材料的研究现状,包括石墨烯复合材料制备方法、微观形貌以及复合材料的吸波性能,提出了石墨烯基复合吸波材料未来的发展方向。 关键词石墨烯基;吸波材料;纳米材料

Progress in Preparation and absorbing properties of graphene-based composites Abstract With the gigahertz (GHz) frequency range of the electromagnetic waves are widely used in wireless communications, such as electromagnetic interference, information leaks and other problems to be solved. In addition, military stealth technology in the field of electromagnetic and microwave guided missiles require such electromagnetic wave absorbing material is subjected to a sustained and widespread concern. Therefore, an urgent need to develop a thin, wide frequency band, a strong absorption of absorbing materials. Graphene as the strongest of the world's thinnest hardness nanomaterials, has many advantages, such as a sheet material made of graphene, the thinnest, large specific surface area, with more than a diamond of strength, these benefits meet absorbers It needs. Graphene-based composites on the basis of absorbing materials to meet the basic requirements but also enhance the ability of the material to absorb waves. This article briefly describes the absorbing material and graphene, graphene reviewed before the status quo based composite materials research, including graphene composite material preparation, morphology and absorbing properties of composites made of graphene-based composite

石墨烯的制备方法

一.文献综述 随着社会的发展,人们对材料的要求越来越高,碳元素在地球上分布广泛,其独特的物理性质和多种多样的形态己逐渐被人类发现、认识并利用。1924年 确定了石墨和金刚石的结构;1985年发现了富勒烯;1991年发现了碳纳米管;2004年,曼彻斯特大学Geim等成功制备的石墨烯是继碳纳米管被发现后富勒烯 家族中又一纳米级功能性材料,它的发现使碳材料领域更为充实,形成了从零维、一维、二维到三维的富勒烯、碳纳米管、石墨烯以及金刚石和石墨的完整系统。而2004年至今,关于氧化石墨烯和石墨烯的研究报道如雨后春笋般涌现,其已 成为物理、化学、材料学领域的国际热点课题。 制备石墨烯的方法有很多种,如外延生长法,氧化石墨还原法,CVD法, 剥离-再嵌入-扩涨法以及有机合成法等。在本文中主要介绍氧化石墨还原法。 除此之外,还对其的一些性能进行表征。 二.石墨烯材料 2.1石墨烯材料的结构和特征 石墨烯(gr即hene)是指碳原子之间呈六角环形排列的一种片状体,由一层 碳原子构成,可在二维空间无限延伸,可以说是严格意义上的二维结构材料,同时,它被认为是宇宙上最薄的材料[`2],也被认为是有史以来见过的最结实的材料。 ZD结构的石墨烯具有优异的电子特性,且导电性依赖于片层的形状和片层数,据悉石墨烯是目前已知的导电性能最出色的材料,可运用于导电高分子复合 材料,这也使其在微电子领域、半导体材料、晶体管和电池等方面极具应用潜力。有专家指出,如果用石墨烯制造微型晶体管将能够大幅度提升计算机的运算速度,其传输电流的速度比电脑芯片里的硅元素快100倍。近日,某科技日报称,mM的 研究人员展示了由石墨烯材料制作而成的场效应晶体管(FET),经测试,其截止频率可达100吉赫兹(GHz),这是迄今为止运行速度最快的射频石墨烯晶体管。石 墨烯的导热性能也很突出,且优于碳纳米管。石墨烯的表面积很大,McAlliste: 等通过理论计算得出石墨烯单片层的表面积为2630扩/g,这个数据是活性炭的 2倍多,可用于水净化系统。

比较三种化学方法制备石墨烯

一、利用液氨作为还原剂,还原氧化石墨。 工艺: 1、将60 g的颗粒状天然石墨,硝酸钠30 g加入l0L的双层玻璃反应釜中冷却至0℃;再将2500 mL浓硫酸缓慢加入反应釜中充分搅拌3 0 min,保持反应体系的温度不高于4℃;然后,将180 g高锰酸钾加入反应釜中并充分搅拌60 min,同时保持反应体系温度不高于8℃,此阶段为低温反应。 2、撤走冷浴,用高温恒温循环泵将反应体系加热至35℃,并充分搅拌3h,得到褐色悬浮液,再缓慢加入90 g高锰酸钾反应12h,保持反应体系的温度不高于

40℃,此阶段为中温反应。 3、撤走高温恒温循环泵,用低温冷却循环泵将反应系统温度控制在5℃以下,将7L去离子水缓慢滴加入褐色悬浮液中,体系温度骤然升高,并伴有大量气体生成,稀释的悬浮液在此温度下搅拌60 min。 4、向悬浮液中加入50 mL的H202(30%),室温下搅拌60 min,得到亮黄色氧化石墨 分散液。 5、将上述分散液静置2 h,分层,去除上清液后,加入一定量的去离子水,过滤,得到黄褐色滤饼。用5000 mL稀盐酸(10%)将滤饼洗涤2次后,再分散于5000 mL 去离子水中,过滤,用大量去离子水洗涤至溶液中无氯离子(可用AgN03溶液检测),且接近中性。然后将剩余固体产物在60 ℃的真空干燥箱中干燥24 h,研磨过筛后得到的氧化石墨。 石墨烯的制备 用低温冷却循环泵在一定温度下将高纯氨在密封容器中液化,加入一定量干燥的氧化石墨用超声细胞粉碎机超声剥离1h,将一定量的金属铿放入液氨中,溶液变成蓝色,继续保持超声30 min溶液变黑,停止冷却自然升温使液氨挥发,向得到的黑色固体中加入乙醇超声分散,过滤用去离子水洗涤至中性,真空60℃干燥12h,得到黑色的石墨烯。在其他实验条件相同的条件下,将铿用金属钠和金属钾代替,得到对应的碱金属还原的石墨烯。 小结:采用液氨作为溶剂超声剥离氧化石墨,利用液氨一碱金属强还原性,碱金属进一步插层剥离氧化石墨同时将其还原。实验结果表明,低温的还原体系有效避免了热还原过程中重新团聚的产生,从透射电镜观察得到的石墨烯片层厚度在2-5 nm,红外和XPS证实大部分含氧基团被去除。 还原剂锂不易存放,石墨烯制备时所使用的试剂腐蚀性强。 二、用抗坏血酸(L-AA)(维生素)作还原剂,还原氧化石墨,所得到的是化学还原氧化石墨(CRG) 工艺: 1.在室温下,将30 μm的颗粒状天然石墨2 g,硝酸钠1g加入250 mL三口瓶中冷却至0 ℃;再将_50 mL浓硫酸缓慢加入三口瓶中充分搅拌30 min,并保持反应体系的温度不高于5 ℃;然后,将0.3 g高锰酸钾加入三口瓶中并充分搅拌30 min,同时保持反应体系温度不高于10 ℃;在1h内,再将7g高锰酸钾分3批加入三口瓶中,保持反应体系温度不高于20 ℃,此阶段为低温反应。 2.撤走冷浴,用水浴将反应体系加热至3 5士3 ℃,并充分搅拌2h,得到褐色悬浮液,此阶段为中温反应。 3.将90 mL水缓慢滴加入褐色悬浮液中,体系温度骤然升高至90 ℃,并伴有大量气体生成,稀释的悬浮液在此温度下反应15 min,此阶段对高温反应。 4.向悬浮液中加入H2O2 (30%, 7 mL)与超纯水(55 mL, 45 ℃)的混合溶液, 并得到亮黄色氧化石墨分散液。

石墨烯的制备及电化学性能研究

目录 摘要............................................................................................................................ I Abstract ......................................................................................................................... I I 1 引言 (1) 1.1 石墨烯的制备 (2) 1.1.1 机械剥离法 (2) 1.1.2 电化学剥离法 (2) 1.1.3 化学气相沉积法 (3) 1.2 石墨烯电极材料的制备 (5) 1.3 石墨烯电极材料电化学性能测试 (5) 2 实验部分 (6) 2.1 实验试剂 (6) 2.2 实验仪器 (6) 2.3 RHAC和GQDs的制备 (6) 2.4 RHAC-GQDs的制备 (6) 2.5 电极制备和电池组装 (7) 3 结果和讨论 (8) 3.1 分析了RHAC的比表面积和孔隙结构 (8) 3.2 GQDs的拉曼光谱和荧光光谱分析 (8) 3.3 红外光谱分析 (8) 3.4 XRD分析 (8) 3.5 扫描电镜分析 (9) 3.6 循环伏安法测试分析 (9) 3.7 恒流充放电试验分析 (9) 3.8 电化学阻抗分析 (10) 4 结论与展望 (12) 4.1 结论 (12) 4.2 主要创新点 (12) 4.3 展望 (12) 参考文献 (13) 致谢............................................................................................ 错误!未定义书签。

化学还原法制备石墨烯的研究进展

化学还原法制备石墨烯的研究进展近年来,研究人员利用多种方法开展了石墨烯的制备工作,主要包括化学剥离法、金属表面外延法、SiC表面石墨化法和化学还原法等[1]。目前应用最广泛的合成方法是化学还原法。石墨烯在氧化的过程中会引入一些化学基团,如羧基(-COOH)、羟基(-OH)、羰基(-C = O)和环氧基(-C-O-C)等,这些基团的生成改变了C-C之间的结合方式,导致氧化石墨烯的导电性急剧下降,并且使具有的各种优异性能也随之消失。因此,对氧化石墨烯进行还原具有非常重要的意义,主要是先将氧化石墨烯分散(借助高速离心、超声等)到水或有机溶剂中形成稳定均相的溶胶,再按照一定比例用还原剂还原,得到单层或者多层石墨烯。还原得到的石墨烯有望在电子晶体管、化学传感器、生物基因测序以及复合材料等众多领域广泛应用。 目前,制备氧化石墨烯的技术已经相当成熟,其层间距(0.7~1.2 nm)较原始石墨烯层间距大,更有利于将其他物质分子插入。研究表明氧化石墨烯表面和边缘有大量的羟基、羧基等官能团,很容易与极性物质发生反应,得到改性氧化石墨烯。氧化石墨烯的有机改性可使其表面由亲水性变为亲油性,表面能降低,从而提高与聚合物单体或聚合物之间的相容性,增强氧化石墨烯与聚合物之间的粘接性。如果使用适当的剥离技术(如超声波剥离法、静电斥力剥离法、热解膨胀剥离法、机械剥离法、低温剥离法等),那么氧化石墨烯就能很容易的在水溶液或有机溶剂中分散成均匀的单层氧化石墨烯溶液,使利用其反应得到石墨烯成为可能。氧化还原法最大的缺点是制备的石墨烯有一定的缺陷,因为经过强氧化剂氧化得到的氧化石墨烯,并不一定能被完全还原,可能会损失一部分性能,如透光性、导热性,尤其是导电性,所以有些还原剂还原后得到的石墨烯在一定程度上存在不完全性,即与严格意义上的石墨烯存在差别。但氧化还原方法价格低廉,可以制备出大量的石墨烯,所以成为目前最常用制备石墨烯的方法。

石墨烯增强铝基复合材料的研究进展

Material Sciences 材料科学, 2019, 9(8), 803-812 Published Online August 2019 in Hans. https://www.sodocs.net/doc/d117476620.html,/journal/ms https://https://www.sodocs.net/doc/d117476620.html,/10.12677/ms.2019.98100 Research Progress on Graphene Reinforced Aluminum-Based Composites Jiangyu Li1, Shourong Zhao2, Wei Zhang1,2, Yunlai Deng2, Keda Jiang2 1Guangxi Liuzhou Yinhai Aluminum Co., Ltd., Liuzhou Guangxi 2Light Alloy Research Institute, Central South University, Changsha Hunan Received: July 29th, 2019; accepted: August 13th, 2019; published: August 20th, 2019 Abstract Graphene possesses excellent mechanical properties, high thermal conductivity and low density. It is recognized as an ideal reinforcing material for metal matrix composites (MMC). In this paper, the preparation methods of graphene reinforced aluminum matrix composites are reviewed, the research status of powder metallurgy, stir casting process and other methods is summarized. Casting process effects of different preparation methods on the microstructure and properties of graphene reinforced aluminum matrix composites were discussed. Its application prospect is also predicted at last. Keywords Grapheme, Aluminum-Based Composites, Manufacturing Methods, Properties 石墨烯增强铝基复合材料的研究进展 李江宇1,赵寿荣2,张伟1,2,邓运来2,姜科达2 1广西柳州银海铝业股份有限公司,广西柳州 2中南大学轻合金研究院,湖南长沙 收稿日期:2019年7月29日;录用日期:2019年8月13日;发布日期:2019年8月20日 摘要 石墨烯具有优异的力学性能、高导热系数和低密度,被公认为金属基复合材料(MMC)的理想增强材料。 本文综述了石墨烯增强铝基复合材料的制备方法,归纳了粉末冶金法、搅拌鋳造法及其他多种方法的研

石墨烯在金属防腐蚀领域中的应用

金属材料的腐蚀不仅给社会带来了巨大的经济损失,而且给工业生产、运输及 家居生活带来了安全隐患。为解决这一问题,常在金属表面涂覆防腐涂料,这 种方法便于施工和维护,且成本低。其原理是利用涂料固化成膜后隔绝氧气、 水分子等腐蚀介质,达到保护基材的作用。石墨烯是碳原子以sp2 轨道杂化形 成的二维网状碳材料,其中每个碳原子与其相邻的3 个碳原子形成C-C σ键,按正六边形紧密有序排列形成稳定结构。单层石墨烯理论厚度0. 35 nm,具有 超大的比表面积(达2630 m2/g),超高的力学性能(杨氏模量达1100 GPa,断裂强度达130 GPa),超快的载流子迁移率(达15 000 cm2/(V·s))。 凭借这些优异的性能,石墨烯在防腐蚀领域得到了广泛的应用。 1石墨烯的制备 1.1 机械剥离法机械剥离法的应用原理是通过物理作用力克服石墨分子层间的范德华力,进而分离石墨片获得石墨烯。2004 年,Novoselov 等使用机械剥离法,用胶带反复剥离石墨片直至获得仅一个原子厚度的石墨单片,即为石墨烯。此外,用石墨反复摩擦另一个固体表面,从而获得附着于该固体表面上的石墨 烯层。早期对石墨烯片层的研究是通过扫描隧道显微镜或原子力显微镜的针尖 与石墨相互作用而获得石墨烯的结构。通过机械玻璃法合成的石墨烯分子缺陷少,但制备时间久、产率低下,不适于大规模生产。 1.2 氧化还原法先将石墨氧化。石墨在氧化过程中,表面和边缘会形成大量含氧官能团,如—COOH、—C = O、—OH、—O—等。氧原子进入石墨层间,拉大 了氧化石墨层间距。再经超声使得层与层剥离得到氧化石墨烯,最后利用还原 反应将氧化石墨烯中氧化基团还原为C—C 结构,得到石墨烯。其中,石墨的 氧化方法包括Brodie法、Staudenmaier 法和Hummers 法,三种方法均用强质 子酸( 如浓H 2SO 4 、HNO3或其混合物) 处理原始石墨,形成石墨层间化合物,再 利用强氧化剂( 如KMnO 4、KClO 3 等)对其进行氧化,得到氧化石墨。经超声后得 氧化石墨烯,再将氧化石墨烯还原。根据还原方法的不同,可以分为热还原、化学试剂还原、光照还原、水热还原等。 1.3 化学气相沉积法( CVD)CVD 法是将含碳化合物作为碳源在基体表面升温至气态,气态碳源裂解形成的碳原子在金属基体表面沉积生成石墨烯。由于铜薄膜对碳源、温度、压力等要求较低,因此一般用铜作为基体,在铜表面富集石墨烯,这是CVD 中最有前景的制备高质量石墨烯的方法。 为了进一步降低石墨烯的制备温度和能耗,采用等离子体增强化学气相沉积法( PECVD),生长温度为700 ℃,在镍/石英衬底上直接生长单层石墨烯,比使用热CVD 合成的石墨烯低250 ℃。Li 等以苯为碳源,在300 ℃下制得质量优异的单层石墨烯片。CVD 法制得的石墨烯质量高、可大面积生长,已成为制备石墨烯的主要方法。 1.4 外延生长法是指利用晶格匹配,在一个晶体层基质上生长出另外一种晶体层的方法。基于不同的基底材料,外延生长法可以分为金属催化外延生长法和碳化硅外延生长法。金属催化外延生长法是指特定温度和压强条件下,在基底( 如Pt、Ir、Ru、Cu 等) 表面进行碳氢化合物(碳源) 的吸附,通过催化剂作用及加热,使吸附气体催化脱氢,从而制得石墨烯。碳化硅外延生长法是通过高温加热碳化硅使其分解,当表面硅原子气化离开后,剩余的碳原子在碳

相关主题