搜档网
当前位置:搜档网 › 四维矢量矩阵行列式及其逆(IJEM-V2-N3-5)

四维矢量矩阵行列式及其逆(IJEM-V2-N3-5)

四维矢量矩阵行列式及其逆(IJEM-V2-N3-5)
四维矢量矩阵行列式及其逆(IJEM-V2-N3-5)

行列式跟矩阵的关系

行列式跟矩阵的关系 行列式是若干数字组成的一个类似于矩阵的方阵,与矩阵不同的是,矩阵的表示是用中括号,而行列式则用线段。 矩阵由数组成,或更一般的,由某元素组成。就是m×n 矩阵就是mn个数排成m个横行n个竖列的阵式。n×n矩阵的行列式是通过一个定义,得到跟这个矩阵对应的一个数,具体定义可以去看书。注意,矩阵是一个阵式,方阵的行列式是跟一个方阵对应一个数。行列式的值是按下述方式可能求得的所有不同的积的代数和,即是一个实数求每一个积时依次从每一行取一个元因子,而这每一个元因子又需取自不同的列,作为乘数,积的符号是正是负决定于要使各个乘数的列的指标顺序恢复到自然顺序所需的换位次数是偶数还是奇数。 也可以这样解释:行列式是矩阵的所有不同行且不同列的元素之积的代数和,和式中每一项的符号由积的各元素的行指标与列指标的逆序数之和决定:若逆序数之和为偶数,则该项为正;若逆序数之和为奇数,则该项为负。 行列式在数学中,是一个函数,其定义域为的矩阵,取值为一个标量,写作或。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和矢量组的行列式的定义。

矩阵行列式的概念与运算

知识点总结: 一、矩阵的概念与运算 1、 矩阵1112 132122 23a a a a a a ?? ??? 中的行向量是()111213a a a a =r ,()2122 23b a a a =r ; 2、 如:1112131112111221222321222122,,c c c a a b b A B C c c c a a b b ?? ???? === ? ? ??????? ,那么 11111212111221212222212233,333a b a b a a A B A a b a b a a ++???? +== ? ? ++????, 1111122111121222 111312232111222121122222 21132223a c a c a c a c a c a c AC a c a c a c a c a c a c +++?? = ?+++?? 矩阵加法满足交换律和结合律,即如果,,A B C 是同阶的矩阵,那么有: ,()()A B B A A B C A B C +=+++=++。 同理如果矩阵,A B 是两个同阶矩阵,那么将它们对应位置上的元素相减所得到的矩阵C 叫做矩阵A 与B 的差,记作C A B =-。 实数与矩阵的乘法满足分配律:即()a A B aA aB +=+。 矩阵对乘法满足:()A B C AB AC +=+,()B C A BA CA +=+,()()()a AB aA B A aB == ()()AB C A BC = 3、 矩阵乘法不满足交换率,如111 11 11 122222222.a b c d c d a b a b c d c d a b ????????≠ ??? ??????????? 矩阵乘法能进行的条件是左边的矩阵A 的列数与右边矩阵B 的行数相等,而且矩阵的乘法不满足交换率,不满足消去律。 二、行列式概念及运算 1.用记号 2 2 11b a b a 表示算式1221b a b a -,即 2 2 11b a b a =1221b a b a -,其中 2 2 11b a b a 叫做二阶行列 式;算式1221b a b a -叫做二阶行列式的展开式;其计算结果叫做行列式的值;2121,,,b b a a 都叫做行列式的元素.利用对角线 2 2 11b a b a 可把二阶行式写成它的展开式,这种方法叫做二阶行列式 展开的对角线法则;即在展开时用主对角线元素的乘积减去副对角线元素的乘积. 2.二元一次方程组的解 二元一次方程组???=+=+222 1 11c y b x a c y b x a (其中2121,,,b b a a 不全为零);记 2 211b a b a 叫做方程组的系数

二、二阶行列式与逆矩阵

二阶行列式与逆矩阵 【学习目标】了解二阶行列式的定义,掌握二阶行列式的计算方法,运用行列式求逆矩阵; 【教材解读】 一、 行列式与矩阵 1. 行列式:我们把a b A c d ??=????两边的“??????”改为“”,于是,我们把a b c d 称为二阶行列式,并称它为矩阵a b A c d ??=???? 2. 3. 矩阵与行列式的区别:矩阵a b A c d ??= ???? 表示一个数表,而行列式a b A c d =是一个数值. 二、 利用行列式求逆矩阵 设a b A c d ??= ???? ,记||a b A ad bc c d ==-.则 1. 矩阵 A 2. 当0A ≠时,1||||||||d b d b A A ad bc ad bc A c a c a A A ad bc ad bc --??-??????--??==??--????????--?? ?? 【典例剖析】 例1. 设4112A -??= ????,判断A 是否是可逆矩阵,若可逆,求出1A -. 例2. 判断下列矩阵是否可逆?若可逆,求出逆矩阵 (1) 1111A -??= ???? (2)101b B ??=???? (3)1111A ??=???? 例3. 已知矩阵234b A ??= ???? 可逆,求实数b 的范围.

【自我评价】 1. 展开下列行列式,并化简 (1)10937-- (2)121m m m m +++ (3)5779 2. 矩阵00a d 可逆的条件为 . 3. 行列式(,,,{1,1,2})a b a b c d c d ∈-的所有可能值中,最大的是 . 4. 若点(2,2)A 在矩阵cos sin sin cos M αααα-??=????对应变换的作用下得到的点为(2,2)B -,求矩阵M 的逆矩阵.

高中数学复习专题矩阵与行列式

专题八、矩阵与行列式 1.矩阵:n m ?个实数n j m i a ij ,,2,1;,,2,1,ΛΛ==排成m 行n 列的矩形数表 ?? ?? ? ? ? ??=mn n m n n a a a a a a a a a A ΛM M ΛΛ212221211211叫做矩阵。记作n m A ?,n m ?叫做矩阵的维数。 矩形数表叫做矩阵,矩阵中的每个数叫做矩阵的元素。 2.线性方程组的系数矩阵、方程组的增广矩阵、行向量、列向量、单位矩阵。 ?? ?=+=+222 1 11c y b x a c y b x a 3.线性方程组矩阵的三种变换: ①互换矩阵的两行; ②把某一行同乘(除)以一个非零的数; ③某一行乘以一个数加到另一行。 变换的目的是将线性方程阻系数矩阵变为单位矩阵,其扩充矩阵的最后一列就是方程组的解。 4.矩阵运算:加法、减法及乘法 (1)矩阵的和(差):记作:A+B (A -B ). 运算律:加法交换律:A+B=B+A ;加法结合律:(A+B )+C=A+(B+C ) (2)矩阵与实数的积:设α为任意实数,把矩阵A 的所有元素与α相乘得到的矩阵叫做矩阵A 与实数 α的乘积矩阵,记作:αA.

运算律:分配律:()B A B A γγγ+=+;A A A λγλγ+=+)(; 结合律:()()()A A A γλλγγλ==; (3)矩阵的乘积:设A 是k m ?阶矩阵,B 是n k ?阶矩阵,设C 为n m ?矩阵。如果矩阵C 中第i 行第j 列元素ij C 是矩阵A 第i 个行向量与矩阵B 的第j 个列向量的数量积,那么C 矩阵叫做A 与B 的乘积,记作:C m ×n =A m ×k B k ×n . 运算律:分配律:AC AB C B A +=+)(,CA BA A C B +=+)(; 结合律:()()()B A B A AB γγγ==,()()BC A C AB =; 注意:矩阵的乘积不满足交换律,即BA AB ≠。 5.二阶行列式的有关概念及二元一次方程组的解法: 设二元一次方程组(*)???=+=+222 1 11c y b x a c y b x a (其中y x ,是未知数,2121,,,b b a a 是未知数的系数 且不全为零,21,c c 是常数项) 用加减消元法解方程组(*): 当01221≠-b a b a 时,方程组(*)有唯一解:??? ? ??? --=--=1221122 112211221b a b a c a c a y b a b a b c b c x , 引入记号 2 1a a 2 1b b 表示算式1221b a b a -,即 2 1a a 2 1b b 1221b a b a -=. 从而引出行列式的相关概念,包括行列式、二阶行列式、行列式的展开式、行列式的值、行列式的元素、对角线法则等。 记= D 2 1a a 2 1b b ,= x D 2 1c c 2 1b b ,= y D 2 1a a 2 1c c ,则: ①当= D 2 1a a 2 1b b =01221≠-b a b a 时,方程组(*)有唯一解, 可用二阶行列式表示为??? ? ?? ? ==D D y D D x y x . ②当D =0时,0x y D D ==,方程组(*)无穷组解; ③当D =0时,0,0x y D or D ≠≠,方程组(*)无解。 系数行列式112 2 a b D a b =也为二元一次方程组解的判别式。

上海版教材 矩阵与行列式习题(有问题详解)

矩阵、行列式和算法(20131224) 成绩 一、填空题 1.行列式 cos sin 3 6 sin cos 3 6 π π π π 的值是 . 2.行列式 a b c d (,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 . 3.将方程组203253x y z x y =?? +=??+=? 写成系数矩阵形式为 . 4.若由命题A :“ 2 2031x x ”能推出命题B :“x a >”,则a 的取值围是 . 5.若方程组111 222a x b y c a x b y c +=??+=?的解为2,1==y x ,则方程组 ?? ?=++=++03520 352222 111c y a x b c y a x b 的解为x = ,y = . 6.方程21 24 1 013 9 x x ≤-的解集为 . 7.把 22111133 33 22 2 4 x y x y x y x y x y x y +- 表示成一个三阶行列式为 . 8.若ABC ?的三个顶点坐标为(1,2),(2,3),(4,5)A B C ----, 其面积为 .

9.在函数()211 1 2 x f x x x x x -=--中3x 的系数是 . 10.若执行如图1所示的框图,输入12341,2,4,8,x x x x ====则输出的数等于 . 11.矩阵的一种运算,???? ??++=???? ??????? ??dy cx by ax y x d c b a 该运算的几何意义为平面上的点),(y x 在矩阵??? ? ??d c b a 的作用下 变换成点(,)ax by cx dy ++,若曲线10x y +-=在矩阵??? ? ??11b a 的作用下变换成曲线10x y --=,则a b +的值为 . 12.在集合{}1,2,3,4,5中任取一个偶数a 和奇数b 构成以原点为起点的向量(),a b α=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,记所有作成的平行四边形的个数为n ,其中面积不超过...4的平行四边形的个数为m ,则m n = 二.选择题 13.系数行列式0D =是三元一次方程组无解的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充分必要条件 D. 既非充分也非必 要条件 14.下列选项中错误的是( ). A. b d a c d b c a - = B. a b c d d b c a = C. d c d b c a 33++ d c b a = D. d c b a d b c a ----- =

2-2逆矩阵及其运算

线性代数 第二节逆矩阵及其运算 一、逆矩阵的概念和性质五、初等变换求逆矩阵 四、矩阵的初等变换和初等矩阵二、矩阵可逆的条件三、用伴随矩阵法求逆矩阵

线性代数 (或称的逆);其中为的倒数, a 1 1 a a -=a , 1 1 1aa a a --==在数的运算中,对于数,有 是否存在一个矩阵,. 1 1 AA A A E --==在矩阵的运算中,单位矩阵E 相当于数的乘法运算中 的1, 那么,对于矩阵A ,1 A -使得一、逆矩阵的概念和性质 0a ≠

线性代数 对于n 阶矩阵A ,如果有一个n 阶矩阵B ,使得 则说矩阵A 是可逆矩阵或非奇异矩阵,并把矩阵B 称为A 的逆矩阵,否则称A 是不可逆矩阵或奇异矩阵。 , AB BA E ==例1设,01011010A B -????== ? ?-???? ,AB BA E ==∴B 是A 的一个逆矩阵。 定义1(可逆矩阵)

线性代数 例1 设,2110A ?? = ? -?? 解 设是A 的逆矩阵,a b B c d ?? = ? ??则2110a b AB c d ????= ???-????1001?? = ? ?? 221001a c b d a b ++?????= ? ?--????求A 的逆矩阵

线性代数 ,,,, 212001a c b d a b +=??+=??? -=??-=?, ,,. 0112a b c d =??=-??? =??=?又因为 ??? ??-01120112-?? ?????? ??-0112=0112-?? ???,1001?? = ??? 所以 .1 0112A --?? = ? ?? A B A B (待定系数法)

第一章行列式与矩阵的计算的练习(含答案)

行列式及矩阵的计算(课堂练习) 、填空 1 ?已知三阶方阵A 的行列式为3,贝U 2A = -24 1 2 ,g(x) 0 1 3 .设, ,为3维列向量, 记矩阵 A ( , , ),B ( A 3, 则B 3 = ,,丨 6 1 1 1 4?行列式 1 1 x 的展开式中,X 的系数是 2 . 1 1 1 1 0 1 0 5.设A 则A k 。(k 为正整数). 2 1 2k 1 7.已知四阶行列式D 中第三列元素分别为1 , 3 , 别为3, 2, 1 , 1,则行列式D =二3 24 4 (1) 1 , 2, 3, 2 16m n 2.设A 则 g(A )= n ,则 1 , 2, 3,2 1 2 16m n 2, 2,它们对应的余子式分

(X ) 解:D = 1 X 3+ 3X(— 2) + (— 2)X 1 + 2X 1 = — 3 二、判断题 1. 设A 、B 均为n 阶方阵, |AB | [AB AB A|B. (V ) 二、行列式计算 3 3 3 3 4 3 3 4 (1) D n 3 3 4 3 3 3 3 4 3n 1 3 Cl C 2 3n 1 4 解: Ci C 3 D n 3n 1 3 G C n 3n 1 3 1 1 1 1 1 2 3 1 (2 D 1 4 9 1 1 8 27 1 2. 设A 、B 均为n 阶方阵, 解:(范得蒙行列式)=(— 3 3 3 1 =3n 1 1 0 0 0 1 3 3 3n 1 3 3 D n 0 「3 A 4 3 ——0 3 4 r n r 1 ax 1 X 2 X 3 2 五、 a 为何值时, 线性方程组: X 1 ax 2 X 3 2 有唯一解? X 1 X 2 ax 3 3 a a 1 1 解: det A 1 a 1 (a 2)(a 1)2 a 2且a 1时,有唯一解 1 1 a 1)=— 240 1 — 3) (— 1 + 2) (— 1— 1) (3+ 2) ( 3— 1) ( — 2—

矩阵与行列式的相似与不同

矩阵与行列式的相似与不同 学校:长江大学 院系:信息与数学学院 专业:信息与计算科学 姓名:郑洲 辅导老师:谢老师

【摘要】:本文中主要讨论了高等代数中矩阵和行列式的概念,并且从概念,性质以及运算几个方面阐述了行列式与矩阵的相似与不同。 【关键词】:矩阵.行列式.相似与区别 矩阵是指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵。数学上,一个m×n的矩阵是一个由m行n列元素排列成的矩形阵列.矩阵里的元素可以是数字、符号或数学式。其重要的作用是解线性方程组和表示线性变换。 行列式在数学中,是由解线性方程组产生的一种算式,是由若干数字组成的一个类似于矩阵的方阵。行列式是一个函数,值是一个标量。其值是按下述方式可能求得的所有不同的积的代数和,即是一个实数求每一个积时依次从每一行取一个元因子,而这每一个元因子又需取自不同的列,作为乘数,积的符号是正是负取决于要使各个乘数的列的指标顺序恢复到自然顺序所需的换位次数是偶数还是基数。 我们先看看矩阵和行列式有哪些相似。 1.形式上比较相似:矩阵和行列式看上去比较相似,主要表现在:它们中的元素都有顺序的排成行列表,表面上看起来很相似,导致很多初学者容易把行列式和矩阵弄混淆;其次,它们中的表示方法一致,比如说行列式和 矩阵中第i行第j列的元素都用a ij表示;并且,它们对行列的称呼一致,从 上到下依次称作第一行,第二行…第n行,记作r1,r2,…r n;从左到右依次称为第一列,第二列,…第n列,记作c1,c2…c n。 2.性质上有相同点:在一个不等于0的数乘行列式或矩阵的某一行或某一列时,等于该数乘以此行或此列的每一个元素;行列式和矩阵中把一个不为0的数乘行列式或矩阵的某一行或列后可以加到另一行或列对应的元素上,即某一行(列)的k倍可以加到另一行(列)上。 3.运算上具有相同点:(1)行列式和矩阵都满足叫法交换率和结合律。可以表示为 D1+D2=D2+D1(D1+D2)+D3=D1+(D2+D3) A+B = B+A (A+B)+C = A+(B+C) (2)行列式和矩阵满足乘法结合律,即 D1D2D3=(D1D2)D3 A(BC)=(AB)C (3)行列式适合乘法分配率,矩阵适合乘法左分配率和右分配率,也就是说 D1(D2+D3)=D1D2+D1D3(D2+D3)D1=D2D1+D3D1 A(B + C) = AB + AC (B + C)A=BA + CA 矩阵和行列式虽然说有很多相同点,但它们始终是两个不同的概念,那么矩阵和行列式有什么区别呢。 1.先从概念上可以看出:(1)n阶行列式D n是n2个数按一定顺序排列成的n行n列的方阵,其实际上是一个数,行列式在数表两端加||;而矩阵是m ×n个数按一定方式排列的m行n列数表,归根结底是一个数表,矩阵在数表两端加()或[]。行列式是方形数表中定义,对不上方形的数表,不能讨论任何行列式的问题,而矩阵无此限制(2)行列式和矩阵行列之间存在差

矩阵与行列式知识梳理

矩阵与行列式知识梳理 一、矩阵的概念 1 将mn 个实数),,2,1;,,2,1(n j m i a ij ==排成m 行n 列的矩形数表(通常用圆括号把数表括起来): ?? ? ? ? ? ? ??=mn m m n n a a a a a a a a a A 2 1 22221 11211称为一个m 行n 列的矩阵,简称n m ?矩阵,用______表示. 简记为_____.数ij a 称为矩阵的元素. 几种特殊类型的矩阵:行矩阵、列矩阵、方阵、单位矩阵、零矩阵. 2 对于关于y x ,的线性方程组?? ?=+=+222111c y b x a c y b x a ,则矩阵??? ? ??2211 b a b a 称为该线性方程组的系数矩阵. 矩阵??? ? ??22 2 111 c b a c b a 称为该线性方程组的增广矩阵. 3 矩阵的三种变换: (1) (2) (3) 4 矩阵变换的目的是将线性方程组的系数矩阵变成单位矩阵,其增广矩阵的最后一列就是方程组的解. 二、二阶行列式 1 定义:我们用记号 2 2 11b a b a 表示算式1221b a b a -,即 12212 2 11b a b a b a b a -=,记号 2 2 11b a b a 叫做行列式,因为它只有两行两列,所以把它叫做二阶行列式. 1221b a b a -叫做行列式 2 2 11b a b a 的展开式,其计算结果叫做 2 2 11b a b a 的值.1a 、2a 、1b 、2b 都叫做行列式 2 2 11b a b a 的元素. 2 对角线法则:二阶行列式的展开式是主对角线上的两个数的乘积减去副对角线上的两个数的乘积. 3作为判别式的二阶行列式:关于x 、y 的二元一次方程组???=+=+222 1 11c y b x a c y b x a ①其中1a 、2a 、 1b 、2b 不全为零,行列式2 2 11b a b a D = 叫做方程组①的系数行列式. 设2 2 11b c b c D x = ,

线性代数行列式算与性质

线性代数行列式的计算与性质 行列式在数学中,是一个函数,其定义域为的矩阵,取值为一个标量,写作或。行列式可以看做是有向面积或体积的概 念在一般的欧几里得空间中的推广。或者说,在维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和矢量组的行列式的定义。 行列式的特性可以被概括为一个多次交替线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。 矩阵 A 的行列式有时也记作 |A|。绝对值和矩阵范数也使用这个记法,有可能和行列式的记法混淆。不过矩阵范数通常以双垂直线来表示(如: ),且可以使用下标。此外,矩阵的绝对值是没有定义的。因此,行 列式经常使用垂直线记法(例如:克莱姆法则和子式)。例如,一个矩阵: A= ? ? ? ? ? ? ? i h g f e d c b a , 行列式也写作,或明确的写作: A= i h g f e d c b a , 即把矩阵的方括号以细长的垂直线取代 行列式的概念最初是伴随着方程组的求解而发展起来的。行列式的提出可以追溯到十七世纪,最初的雏形由日本数学家关孝和与德国数学家戈特弗里德·莱布尼茨各自独立得出,时间大致相同。

二阶行列式与逆矩阵优秀教学设计

二阶行列式与逆矩阵 【教学目标】 了解二阶行列式的定义,掌握二阶行列式的计算方法,运用行列式求逆矩阵 【教学重难点】 1.掌握二阶行列式的计算方法,运用行列式求逆矩阵 2.运用行列式求逆矩阵 【教学过程】 一、行列式与矩阵 行列式:我们把a b A c d ??=????两边的“??????”改为“”,于是,我们把a b c d 称为二阶行列式, 并称它为矩阵a b A c d ??=????的行列式,它的结果是一个数值,记为||det()a b A A ad bc c d ===-。 计算方法:主对角线上两数之积减去副对角线上两数之积。 矩阵与行列式的区别:矩阵a b A c d ??=? ???表示一个数表,而行列式a b A c d =是一个数值。 二、利用行列式求逆矩阵 设a b A c d ??=????,记||a b A ad bc c d ==-。则 矩阵A 可逆的充要条件:||0a b A ad bc c d ==-≠。 当0A ≠时,1||||||||d b d b A A ad bc ad bc A c a c a A A ad bc ad bc --??-??????--??==??--???????? --???? 三、典例剖析 设4112A -??=???? ,判断A 是否是可逆矩阵,若可逆,求出1A -。 判断下列矩阵是否可逆?若可逆,求出逆矩阵

(1) 1111A -??=???? (2)101b B ??=???? (3)1111A ??=???? 已知矩阵234b A ??=? ???可逆,求实数b 的范围。 四、课堂练习 展开下列行列式,并化简 (1) 10937-- (2)121m m m m +++ (3)5779 矩阵 00a d 可逆的条件为 。 行列式(,,,{1,1,2})a b a b c d c d ∈-的所有可能值中,最大的是 。 若点(2,2)A 在矩阵cos sin sin cos M αααα-??=???? 对应变换的作用下得到的点为(2,2)B -,求矩阵M 的逆矩

矩阵行列式(较难与困难)

第I卷(选择题) 请点击修改第I卷的文字说明 评卷人得分 一、选择题 1.我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,…,9填入3×3的方格内,使三行、三列、二对角线的三个数之和都等于15,如图1所示,一般地,将连续的正整数1,2,3,…n2填入n×n个方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n阶幻方,记n阶幻方的对角线上数的和为N,如图1的幻方记为N3=15,那么N12的值为() A.869 B.870 C.871 D.875

第II 卷(非选择题) 请点击修改第II 卷的文字说明 评卷人 得分 二、解答题 2.已知矩阵??????=121a A 的一个特征值3=λ所对应的一个特征向量?? ? ???=11e , 求矩阵A 的逆矩阵1-A . 3.已知矩阵 10120206A B -???? ==???? ???? ,,求矩阵1.A B - 4.选修4-2:矩阵与变换 已知直线:23l x y -=,若矩阵13a A b -?? = ??? ,a b R ∈所对应的变换σ把直线l 变换为它自身。 (Ⅰ)求矩阵A ; (Ⅱ)求矩阵A 的逆矩阵. 5.求曲线1x y +=在矩阵M 10103?? ??=?????? 对应的变换作用下得到的曲线所围成图形的面积. 6.(本小题满分7分)选修4-2:矩阵与变换 已知二阶矩阵M 有特征值λ1=4及属于特征值4的一个特征向量??? ? ??=321e 并有特征值 12-=λ及属于特征值-1的一个特征向量???? ??-=112e , ??? ? ??-=11α (Ⅰ )求矩阵M ;(Ⅱ )求5 M αr . 7.选修4—2:矩阵与变换 已知矩阵00a b ??=????M 满足:i i i l =M αα,其中(1,2)i i l =是互不相等的实常数,(1,2)i i =α,是非零的平面列向量,11l =,211?? =???? α,求矩阵M . 8.变换T 1是逆时针旋转 2 π 的旋转变换,对应的变换矩阵是M 1;变换T 2对应的变换矩阵是M 2=. (1)求点P (2,1)在T 1作用下的点P ′的坐标; (2)求函数y =x 2 的图象依次在T 1,T 2变换的作用下所得曲线的方程. 9.二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-

高二数学基本概念——第9章 矩阵和行列式初步

第9章 矩阵和行列式初步 一、 矩阵 9.1 矩阵的概念 矩阵及其相关的概念 1、矩形数表叫做矩阵 矩阵中的每个数叫做矩阵的元素 由个数排成的行列的数表 n m ?m n ()n j m i a ij ,,2,1;,,2,1 ==mn m m n n a a a a a a a a a 21 2222111211称为矩阵. n m ?记作?? ?? ? ? ? ??=mn m m n n a a a a a a a a a A 2122221 11211n m ij a ?=)( 2、矩阵叫做方程组的系数矩阵。? ?? ? ??-1321它是2行2列的矩阵,记为 2 2?A ,矩阵 可简记为A n m A ?注意: 矩阵的符号,是“()”,不能是“| |”. 列元素。 行第称为矩阵的第其中j i a ij 一般的记为大写字母A 、B 、C 、…等。 。 等,或者必要时可记为n m ij n m n m a B A ???)(,

说明: 通过对线性方程组的增广矩阵的变换可以得到线性方程组的解,这里所用的矩阵变换有 下列三种: (1)互换矩阵的两行 (2)把某一行同乘以(除以)一个非零常数 (3)某行乘以一个数加到另一行 通过上述三种矩阵变换,使线性方程组系数矩阵变成单位矩阵时,其增广矩阵的最后一个列向量给出了方程组的解。

9.2 矩阵的运算 矩阵 列的矩形表,称为一个行排列成一个个数由n m n m n j m i a n m ij ?==?) ,,2,1;,2,1( 11 12121 2221 2 .....................n n m m mn a a a a a a a a a ?? ? ? ? ? ??? 记为列元素。 行第称为矩阵的第其中j i a ij 一般的记为大写字母A 、B 、C 、…等。 ,()m n m n ij A B a ??必要时可记为等,或者A=。 0m n O O ?所有元素均为的矩阵,称为零矩阵,记作或定义1一、复习 定义2若两个矩阵A ,B 有相同的行数与相同的列数,并且对 应的位置上的元素相等,则称矩阵A 与矩阵B 相等。记为:A=B n m ij n m ij b B a A ??==)(,)(即如果,(1,2,...,;1,2,...,) ij ij a b i m j n ===且则A=B 。 ...)3,2,1,...;3,2,1(===j i b a ij ij 二、矩阵的运算 (一)矩阵的加(减)法和数与矩阵的乘法 3(),()ij ij m n A a B b m n A B ==定义两个行列矩阵对应位置元素相加(或相减)得到的行列矩阵,称为矩阵与矩阵的和(差)。A-B A B +记为或()。 A B ±即 ()()ij m n ij m n a b ??=±()ij ij m n a b ?=± 定义4以实数乘矩阵A 中的每一个元素所得到的矩阵,称为实数与矩阵A 的乘积矩阵.记做A A α即 ()ij m n a α?=()ij m n a α?=的负矩阵的元素变号,称为的乘积使与A A A 1-A -记作n m ij a A ?-=-)(即 α)(ij a =αα1A 1A A 2A B A B αααααα=+=+注意:()矩阵与实数相乘满足如下交换率和分配律:()()()

第四讲矩阵的运算和逆矩阵

§2.2 矩阵的运算 1.矩阵的加法定义:设有两个n m ?矩阵)(),(ij ij b B a A ==,那么矩阵A 与B 的和记作A +B ,规定为 n m ij ij b a B A ?+=+)( 设矩阵)(),(ij ij a A a A -=-=记,A -称为矩阵A 的负矩阵.显然有 0)(=-+A A . 规定矩阵的减法为)(B A B A -+=-. 2.数与矩阵相乘定义:数λ与矩阵)(ij a A =的乘积记作A λ,规定为n m ij a A ?=)(λλ 由数λ与矩阵A 的每一个元素相乘。 数乘矩阵满足下列运算规律(设B A ,为同型矩阵,μλ,为数): )(i )()(A A μλλμ= )(ii A A A μλμλ+=+)( )(iii B A B A λλλ+=+)( 3.矩阵与矩阵相乘定义:设)(ij a A =是一个s m ?矩阵,)(ij b B =是一个n s ?矩 那么规定矩阵A 与矩阵B 的乘积是一个n m ?矩阵)(ij c C =,其中),,2,1;,,2,1(,12211n j m i b a b a b a b a c kj s k ik sj is j i j i ij ===+++=∑= 并把此乘积记作AB C =,两矩阵相乘,要求左边距阵的列等于右边矩阵的行,乘积的矩阵的行与左边的行相同,列与右边的列相同。 例3:求矩阵???? ? ??-=???? ??-=043211,012301B A 的乘积BA AB 及. 解 ???? ? ??--=???? ??--=1204638311,50113BA AB 从本例可以看出AB 不一定等于BA ,即矩阵乘法不满足交换律

(完整版)逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析 矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 1.利用定义求逆矩阵 定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用. 例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且 (E-A )1-= E + A + A 2+…+A 1-K 证明 因为E 与A 可以交换, 所以 (E- A )(E+A + A 2+…+ A 1-K )= E-A K , 因A K = 0 ,于是得 (E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E , 因此E-A 是可逆矩阵,且 (E-A)1-= E + A + A 2+…+A 1-K . 同理可以证明(E+ A)也可逆,且 (E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K . 由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵. 例2 设 A =? ? ?? ? ???? ???0000 30000020 0010,求 E-A 的逆矩阵. 分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵. 解 容易验证

A 2 =????????? ???0000000060000200, A 3=? ? ?? ? ? ? ?? ???00000000 00006000 , A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,所以 (E-A)1-= E+A+ A 2+ A 3= ? ? ?? ? ???????1000 31006210 6211. 2.初等变换法 求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使 (1)s p p p Λ21A=I ,用A 1-右乘上式两端,得: (2) s p p p Λ21I= A 1- 比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-. 用矩阵表示(A I )??? →?初等行变换 为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵. 例1 求矩阵A 的逆矩阵.已知A=???? ? ?????521310132. 解 [A I]→??????????100521010310001132→???? ? ?????001132010310100521 → ??????????--3/16/16/1100010310100521→???? ??????-----3/16/16/110012/32/10103/46/136/1001

矩阵行列式的概念与运算(标准答案)

矩阵、行列式的概念与运算 知识点总结: 一、矩阵的概念与运算 1、 矩阵1112 132122 23a a a a a a ?? ??? 中的行向量是()111213a a a a =r ,()2122 23b a a a =r ; 2、 如:111213111211122122 2321222122,,c c c a a b b A B C c c c a a b b ?? ???? === ? ? ? ?????? ,那么 11111212111221212222212233,333a b a b a a A B A a b a b a a ++???? +== ? ? ++????, 1111122111121222 111312232111222121122222 21132223a c a c a c a c a c a c AC a c a c a c a c a c a c +++?? = ?+++?? 矩阵加法满足交换律和结合律,即如果,,A B C 是同阶的矩阵,那么有: ,()()A B B A A B C A B C +=+++=++。 同理如果矩阵,A B 是两个同阶矩阵,那么将它们对应位置上的元素相减所得到的矩阵C 叫做矩阵A 与B 的差,记作C A B =-。 实数与矩阵的乘法满足分配律:即()a A B aA aB +=+。 矩阵对乘法满足:()A B C AB AC +=+,()B C A BA CA +=+,()()()a AB aA B A aB == ()()AB C A BC = 3、 矩阵乘法不满足交换率,如1 11 11 11 122222222.a b c d c d a b a b c d c d a b ????????≠ ??? ??????????? 矩阵乘法能进行的条件是左边的矩阵A 的列数与右边矩阵B 的行数相等,而且矩阵的乘法不满足交换率,不满足消去律。 二、行列式概念及运算 1.用记号 2 2 11b a b a 表示算式1221b a b a -,即 2 2 11b a b a =1221b a b a -,其中 2 2 11b a b a 叫做二阶行列式; 算式1221b a b a -叫做二阶行列式的展开式;其计算结果叫做行列式的值;2121,,,b b a a 都叫做行列式的元素.利用对角线 2 2 11b a b a 可把二阶行式写成它的展开式,这种方法叫做二阶行列式展开的 对角线法则;即在展开时用主对角线元素的乘积减去副对角线元素的乘积. 2.二元一次方程组的解

行列式与矩阵求逆练习综述

第二章行列式与矩阵求逆练习班级: 姓名: 学号 : 一、计算下列行列式: 1.600 300301395200199204 100103= 20000 315214 131000300152001410032 12 32=--=--=--c c c c 解:原式 2.1 2 4 99102201112-= 31 241211 121 241121

12100124121112124110021001200112-==-+=+-++=解:原式 二、确定下列排列的逆序数,并指出是偶排列还是奇排列? 1. 53214 解:逆序数t=7,为奇排列。 2. 18273645 解:逆序数t=12,为偶排列。 三、在6阶行列式中,256651144332651456423321a a a a a a a a a a a a , 这两项应带有什么符 号? 解: ,带正号。 ,逆序数为,带负号; 逆序数为85,665143322514256651144332655642332114651456423321a a a a a a a a a a a a a a a a a a a a a a a a == 四、利用行列式的定义证明: 5 66 000000000000002000230 023402345x x x x x x =-- . 1054321666116651423324155

66 51423324156543216 54321===-==-===-=-=∑t t a x a x a x a x a x a x a a a a a a a a a a a a t j j j j j j t 的逆序数,为排列,,,,,其中((解:由定义,左式 五、利用行列式的性质计算下列各行列式: 1. 216 4 72954 1732152 ----- 90 123 116 2110 01 23011602 12 1523

矩阵和行列式初步

第 九 章 矩阵和行列式初步 第一课时 9.1 矩阵的概念(1) [教学目标] 1、了解矩阵的产生背景,并会用矩阵形式表示一些实际问题; 2、了解矩阵、行向量、列向量、方矩阵、零矩阵、单位矩阵等概念; 3、理解同阶矩阵、相等的矩阵等概念; 4、理解线性方程组与系数矩阵及其增广矩阵之间的转化。 [教学重点] 1、与矩阵有关的概念; 2、线性方程组的系数矩阵及增广矩阵的概念。 [教学难点] 学习矩阵的目的。 [教学过程] 一、情境设置、引入: 引例1:已知向量()1,3OP =,如果把的坐标排成一列,可简记为13?? ??? ; 引例2:2008 我们可将上表奖牌数简记为:512128363836232128?? ? ? ??? ; 引例3:将方程组231 324244x y mz x y z x y nz ++=?? -+=??+-=? 中未知数z y x ,,的系数按原来的次序排列,可简记为 2332441m n ?? ?- ? ?-??;若将常数项增加进去,则可简记为:2313242414m n ?? ?- ? ?-?? 。 二、概念讲解:

1、上述形如13?? ???、512128363836232128?? ? ? ???、2332441m n ?? ?- ? ?-??、2313242414m n ?? ? - ? ? -?? 这样的矩形数表 叫做矩阵。 2、在矩阵中,水平方向排列的数组成的向量()12,,n a a a ???称为行向量;垂直方向排列的数 组成的向量12 n b b b ?? ? ? ???? ???称为列向量;由m 个行向量与n 个列向量组成的矩阵称为m n ?阶矩阵, m n ?阶矩阵可记做m n A ?,如矩阵13?? ???为21?阶矩阵,可记做21A ?;矩阵512128363836232128?? ? ? ? ?? 为33?阶矩阵,可记做33A ?。有时矩阵也可用A 、B 等字母表示。 3、矩阵中的每一个数叫做矩阵的元素,在一个m n ?阶矩阵m n A ?中的第i (i m ≤)行第 j (j n ≤)列数可用字母ij a 表示,如矩阵512128363836232128?? ? ? ??? 第3行第2个数为3221a =。 4、当一个矩阵中所有元素均为0时,我们称这个矩阵为零矩阵。如000000?? ??? 为一个23 ?阶零矩阵。 5、当一个矩阵的行数与列数相等时,这个矩阵称为方矩阵,简称方阵,一个方阵有n 行(列), 可称此方阵为n 阶方阵,如矩阵512128363836232128?? ? ? ???、2332441m n ?? ? - ? ?-?? 均为三阶方阵。在一个 n 阶方阵中,从左上角到右下角所有元素组成对角线,如果其对角线的元素均为1,其余 元素均为零的方阵,叫做单位矩阵。如矩阵1001?? ???为2阶单位矩阵,矩阵100010001?? ? ? ? ?? 为 3阶单位矩阵。 6、如果矩阵A 与矩阵B 的行数和列数分别相等,那么A 与B 叫做同阶矩阵;如果矩阵A 与矩阵B 是同阶矩阵,当且仅当它们对应位置的元素都相等时,那么矩阵A 与矩阵B 叫做相等的矩阵,记为A B =。

相关主题