搜档网
当前位置:搜档网 › 超声波探伤标准

超声波探伤标准

超声波探伤标准
超声波探伤标准

GB 11345-1989《钢焊缝手工超声波探伤方法和探伤结果分级》

JG/T 203-2007《钢结构超声波探伤及质量分级法》

中华人民共和国国家标准

钢焊缝手工超声波探伤方法和探伤结果分级 11345-89

Method for manual ultrasonic testing and classification

of testing results for ferritic steel wdlds

1 主题内容与适用范围

本标准规定了检验焊缝及热影响区缺陷,确定缺陷位置、尺寸和缺陷评定的一般方法及探伤结果的分级方法.

本标准适用于母材厚度不小于8mm的铁素体类钢全焊透熔化焊对接焊缝脉冲反射法手工超声波检验.

本标准不适用于铸钢及奥氏体不锈钢焊缝;外径小于159mm的钢管对接焊缝;内径小于等于200mm的管座角焊缝及外径小于250mm和内外径之比小于80%的纵向焊缝.

2 引用标准

ZB Y 344 超声探伤用探头型号命名方法

ZB Y 231 超声探伤用探头性能测试方法

ZB Y 232 超声探伤用1号标准试块技术条件

ZB J 04 001 A型脉冲反射式超声探伤系统工作性能测试方法

3 术语

3.1 简化水平距离l'

从探头前沿到缺陷在探伤面上测量的水平距离.

3.2 缺陷指示长度△l

焊缝超声检验中,按规定的测量方法以探头移动距离测得的缺陷长度.

3.3 探头接触面宽度W

环缝检验时为探头宽度,纵缝检验为探头长度,见图1.

3.4 纵向缺陷

大致上平行于焊缝走向的缺陷.

3.5 横向缺陷

大致上垂直于焊缝走向的缺陷.

3.6 几何临界角β'

筒形工件检验,折射声束轴线与内壁相切时的折射角.

3.7 平行扫查

在斜角探伤中,将探头置于焊缝及热影响区表面,使声束指向焊缝方向,并沿焊缝方向移动的扫查方法.

3.8 斜平行扫查

在斜角探伤中,使探头与焊缝中心线成一角度,平等于焊缝方向移动的扫查方法.

3.9 探伤截面

串列扫查探伤时,作为探伤对象的截,一般以焊缝坡口面为探伤截面,见图2.

3.10 串列基准线

串列扫查时,作为一发一收两探头等间隔移动基准的线.一般设在离探伤截面距离为0.5跨距的位置,见图2.

3.11 参考线

探伤截面的位置焊后已被盖住,所以施焊前应予先在探伤面上,离焊缝坡口一定距离画出一标记线,该线即为参考线,将作为确定串列基准线的依据,见图3.

3.12 横方形串列扫查

将发、收一组探头,使其入射点对串列基准线经常保持等距离平行于焊缝移动的扫查方法,见图4.

3.13 纵方形串列扫查

将发、收一组探头使其入射点对串列基准线经常保持等距离,垂直于焊缝移动的扫查方法,见图4.

4 检验人员

4.1 从事焊缝探伤的检验人员必须掌握超声波探伤的基础技术,具有足够的焊缝超声波探伤经验,并掌握一定的材料、焊接基础知识.

4.2 焊缝超声检验人员应按有关规程或技术条件的规定经严格的培训和考核,并持有相考核组织颁发的等级资格证书,从事相对应考核项目的检验工作.

注:一般焊接检验专业考核项目分为板对接焊缝;管件对接焊缝;管座角焊缝;节点焊缝等四种.

4.3 超声检验人员的视力应每年检查一次,校正视力不得低于1.0.

5 探伤仪、探头及系统性能

5.1 探伤仪

使用A型显示脉冲反射式探伤仪,其工作频率范围至少为1-5MHz,探伤仪应配备衰减器或增益控制器,其精度为任意相邻12dB误差在±1dB内.步进级每档不大于2dB, 总调节量应大于60dB,水平线性误差不大于1%,垂直线性误差不大于5%.

5.2 探头

5.2.1 探头应按ZB Y344标准的规定作出标志.

5.2.2 晶片的有效面积不应超过500mm2,且任一边长不应大于25mm.

5.2.3 声束轴线水平偏离角应不大于2°.

5.2.4 探头主声束垂直方向的偏离,不应有明显的双峰,其测试方法见ZB Y231.

5.2.5 斜探头的公称折射角β为45°、60°、70°或K值为1.0、1.5、2.0、2.5,折射角的实测值与公称值的偏差应不大于2°(K值偏差不应超过±0.1),前沿距离的偏差应不大于1mm.如受工件几何形状或探伤面曲率等限制也可选用其他小角度的探头.

5.2.6 当证明确能提高探测结果的准确性和可靠性,或能够较好地解决一般检验时的困难而又确保结果的正确,推荐采用聚焦等特种探头.

5.3 系统性能

5.3.1 灵敏度余量

系统有效灵敏度必须大于评定灵敏度10dB以上.

5.3.2 远场分辨力

a.直探头:X≥30dB;

b.斜探头:Z≥6dB.

5.4 探伤仪、探头及系统性能和周期检查

5.4.1 探伤仪、探头及系统性能,除灵敏度余量外,均应按ZB J04 001的规定方法进行测试.

5.4.2 探伤仪的水平线性和垂直线性,在设备首次使用及每隔3个月应检查一次.

5.4.3 斜探头及系统性能,在表1规定的时间内必须检查一次.

6 试块

6.1 标准试块的形状和尺寸见附录A,试块制造的技术要求应符合ZB Y232的规定,该试块主要用于测定探伤仪、探头及系统性能.

6.2 对比试块的形状和尺寸见附录B.

6.2.1 对比试块采用与被检验材料相同或声学性能相近的钢材制成.试块的探测面及侧面,在以2.5MHz以上频率及高灵敏条件下进行检验时,不得出现大于距探测面20mm处的Φ2mm平底孔反射回来的回波幅度1/4的缺陷回波.

6.2.2 试块上的标准孔,根据探伤需要,可以采取其他形式布置或添加标准孔,但应注意不应与试块端角和相邻标准孔的反射发生混淆.

6.2.3 检验曲面工件时,如探伤面曲率半径R小于等于W2/4时,应采用与探伤面曲率相同的对比试块.反射体的布置可参照对比试块确定,试块宽度应满足式(1):

b≥2λ S/De (1)

式中 b----试块宽度,mm;

λ--波长,mm;

S---声程,m;

De--声源有效直径,mm

6.3 现场检验,为校验灵敏度和时基线,可以采用其他型式的等效试块.

7 检验等级

7.1 检验等级的分级

根据质量要求检验等级分为A、B、C三级,检验的完善程度A级最低,B级一般,C级最高,检验工作的难度系数按A、B、C顺序逐级增高.应按照工件的材质、结构、焊接方法、使用条件及承受载荷的不同,合理的选用检验级别.检验等级应接产品技术条件和有关规定选择或经合同双方协商选定.

注:A级难度系数为1;B级为5-6;C级为10-12.

本标准给出了三个检验等级的检验条件,为避免焊件的几何形状限制相应等级检验的有效性,设计、工艺人员应考虑超声检验可行性的基础上进行结构设计和工艺安排.

7.2 检验等级的检验范围

7.2.1 A级检验采用一种角度的探头在焊缝的单面单侧进行检验,只对允许扫查到的焊缝截面进行探测.一般不要求作横向缺陷的检验.母材厚度大于50Mm时,不得采用A级检验.

7.2.2 B级检验原则上采用一种角度探头在焊缝的单面双侧进行检验,对整个焊缝截面进行探测.母材厚度大于100mm时,采用双面双侧检验.受几何条件的限制,可在焊缝的双面半日侧采用两种角度探头进行探伤.条件允许时应作横向缺陷的检验.

7.2.3 C级检验至少要采用两种角度探头在焊缝的单面双侧进行检验.同时要作两个扫查方向和两种探头角度的横向缺陷检验.母材厚度大于100mm时,采用双面侧检验.其他附加要求是:

a.对接焊缝余高要磨平,以便探头在焊缝上作平行扫查;

b.焊缝两侧斜探头扫查经过的母材部分要用直探头作检查;

c.焊缝母材厚度大于等于100mm,窄间隙焊缝母材厚度大于等于40mm时,一般要增加串列式扫查,扫查方法见附录C.

8 检验准备

8.1 探伤面

8.1.1 按不同检验等级要求选择探伤面.推荐的探伤面如图5和表2所示.

8.1.2 检验区域的宽度应是焊缝本身再加上焊缝两侧各相当于母材厚度30%的一段区域,这个区域最小

10mm,最大20mm,见图6.

8.1.3 探头移动区应清除焊接飞溅、铁屑、油垢及其他外部杂技.探伤表面应平整光滑,便于探头的自由扫查,其表面粗糙度不应超过6.3μm,必要时应进行打磨:

a.采用一次反射法或串列式扫查探伤时,探头移动区应大于1.25P:

P=2δtgβ (2)

或P=2δK (3)

式中 P----跨距,mm;

δ--母材厚度,mm

b.采用直射法探伤时,探头移动区应大于0.75P.

8.1.4 去除余高的焊缝,应将余高打磨到与邻近母材平齐.保留余高的焊缝,如焊缝表面有咬边,较大的隆起凹陷等也应进行适当的修磨,并作圆滑过渡以影响检验结果的评定.

8.1.5 焊缝检验前,应划好检验区段,标记出检验区段编号.

8.2 检验频率

检验频率f一般在2-5MHz范围内选择,推荐选用2-2.5MHz公称频率检验.特殊情况下,可选用低于2MHz或高于2.5MHz的检验频率,但必须保证系统灵敏度的要求.

8.3 探头角度

8.3.1 斜探头的折射角β或K值应依据材料厚度,焊缝坡口型式及预期探测的主要缺陷来选择.对不同板厚推荐的探头角度和探头数量见表2.

8.3.2 串列式扫查,推荐选用公称折射角为45°的两个探头,两个探头实际折射角相差不应超过2°,探头前洞长度相差应小于2mm.为便于探测厚焊缝坡口边缘未熔合缺陷,亦可选用两个不同角度的探头,但两个探头角度均应在35°-55°范围内.

8.4 耦合剂

8.4.1 应选用适当的液体或糊状物作为耦合剂,耦合剂应具有良好透声性和适宜流动性,不应对材料和人体有作用,同时应便于检验后清理.

8.4.2 典型的耦合剂为水、机油、甘油和浆糊,耦合剂中可加入适量的"润湿剂"或活性剂以便改善耦合性能.

8.4.3 在试块上调节仪器和产品检验应采用相同的耦合剂.

8.5 母材的检查

采用C级检验时,斜探头扫查声束通过的母材区域应用直探头作检查,以便探测是否有有探伤结果解释的分层性或其他缺陷存在.该项检查仅作记录,不属于对母材的验收检验.母材检查的规程要点如下:

a.方法:接触式脉冲反射法,采用频率2-5MHz的直探头,晶片直径10-25mm;

b.灵敏度:将无缺陷处二次底波调节为荧光屏满幅的100%;

c.记录:凡缺陷信号幅度超过荧光屏满幅20%的部位,应在工件表面作出标记,并予以记录.

9 仪器调整和校验

9.1 时基线扫描的调节

荧光屏时基线刻度可按比例调节为代表缺陷的水平距离l(简化水平距离l');深度h;或声程S,见图7.

9.1.1 探伤面为平面时,可在对比试块上进行时基线扫描调节,扫描比例依据工件工和选用的探头角度来确定,最大检验范围应调至荧光屏时基线满刻度的2/3以上.

9.1.2 探伤面曲率半径R大于W2/4时,可在平面对比试块上或与探伤面曲率相近的曲面对比试块上,进行时基线扫描调节.

9.1.3 探伤面曲率半径R小于等于W2/4时,探头楔块应磨成与工件曲面相吻合,在6.2.3条规定的对比试块上作时基线扫描调节.

9.2 距离----波幅(DAC)曲线的绘制

9.2.1 距离----波幅曲线由选用的仪器、探头系统在对比试块上的实测数据绘制见图8,其绘制方法见附录D,曲线由判废线RL,定量线SL和评定线EL组成,不同验收级别的各线灵敏度见表3.表中的DAC是以Φ3mm标准反射体绘制的距离--波幅曲线--即DAC基准线.评定线以上至定量线以下为1区(弱信号评定区);定量线至判废线以下为Ⅱ区(长度评定区);判废线及以上区域为Ⅲ区(判废区).

9.2.2 探测横向缺陷时,应将各线灵敏度均提高6dB.

9.2.3 探伤面曲率半径R小于等于W2/4时,距离--波幅曲线的绘制应在曲面对比试块上进行.

9.2.4 受检工件的表面耦合损失及材质衰减应与试块相同,否则应进行传输损失修整见附录E,在1跨距声程内最大传输损失差在2dB以内可不进行修整.

9.2.5 距离--波幅曲线可绘制在坐标纸上也可直接绘制在荧光屏刻度板上,但在整个检验范围内,曲线应处于荧光屏满幅度的20%以上,见图9,如果作不到,可采用分段绘制的方法见图10.

9.3 仪器调整的校验

9.3.1 每次检验前应在对比试块上,对时基线扫描比例和距离--波幅曲线(灵敏度)进行调节或校验.校验

点沙于两点.

9.3.2 检验过程中每4h之内或检验工作结束后应对时基线扫描和灵敏度进行校验,校验可在对比试块或其他儿试块上进行.

9.3.3 扫描调节校验时,如发现校验点反射波在扫描线上偏移超过原校验点刻度读数的10%或满刻度的

5%(两者取较小值),则扫描比例应重新调整,前次校验后已经记录的缺陷,位置参数应重新测定,并予以更正.

9.3.4 灵敏度校验时,如校验点的反射波幅比距离--波幅曲线降低20%或2dB以上,则仪灵敏度应重新调整,并对前次校验后检查的全部焊缝应重新检验.如校验点的反射波幅比距离--波幅曲线增加20%或2dB以上,仪器灵敏度应重新调整,而前次校验后,已经记录的缺陷,应对缺陷尺寸参数重新测定并予以评定.

10 初始检验

10.1 一般要求

10.1.1 超声检验应在焊缝及探伤表面经外观检查合格并满足8.1.3条的要求后进行.

10.1.2 检验前,探伤人员应了解受验工件的材质、结构、曲率、厚度、焊接方法、焊缝种类、坡口形式、焊缝余高及背面衬垫、沟槽等情况.

10.1.3 探伤灵敏度应不低于评定线灵敏度.

10.1.4 扫查速度不应大于150mm/s, 相邻两次探头移动间隔保证至少有探头宽度10%的重叠.

10.1.5 对波幅超过评定线的反射波,应根据探头位置、方向、反射波的位置及10.1.2条了解的焊缝情况,判断其是否为缺陷.判断为缺陷的部位应在焊缝表面作出标记.

10.2 平板对接焊缝的检验

10.2.1 为探测纵向缺陷,斜探头垂直于焊缝中心线在探伤面上,作锯齿型扫查见图11.探头前后移动的范围应保证扫查到全部焊缝截面及热影响区.在保持探头垂直焊缝作前后移动的同时,还应作10°-15°的左右转动.

10.2.2 为探测焊缝及热影响区的横向缺陷应进行平行和斜平行扫查.

a. B级检验时,可寅边缘使探头与焊缝中心线成10°-20°作斜平行的扫查(图12);

b. C级检验时,可将探头放在焊缝及热影响区上作两个方向的平行扫查(图13),焊缝母材厚度超过100mm 时,应在焊缝的两面作平行扫查或者采用两种角度探头(45°和60°或45°和70°并用)作单面两个方向的平行扫查;亦可用两个45°探头作串列式平行扫查;

c. 对电渣焊缝还应增加与焊缝中心线成45°的斜向扫查.

10.2.3 为确定缺陷的位置、方向、形状、观察缺陷动态波形或区分缺陷讯号与伪讯号,可采用前后、左右、转角、环绕等四种探头基本扫查方式(图14).

10.3 曲面工件对接焊缝的检验

10.3.1 探伤面为曲面时,应按6.2.3和9.1.3条的规定选用对比试块,并采用10.2条的方法进行检验,C 级检验时,受工件几何形状限制,横向缺陷探测无法实施时,应在检验记录中予以注明.

10.3.2 环缝检验时,对比试块的曲率半径为探伤面曲率半径0.9-1.5倍的对比试块均可采用.探测横向缺陷时按10.3.3条的方法进行.

10.3.3 纵缝检验时,对比试块的曲率半径与探伤面曲率半径之差应小于10%.

10.3.3.1 根据工件的曲率和材料厚度选择探头角度,并考虑几何临界角的限制,确保声束能扫查到整个焊缝厚度.条件允许时,声束在曲底面的入射角度不应超过70°.

10.3.3.2 探头接触面修磨后,应注意探头入射点和折射角或K值的变化,并用曲面试块作实际测定.

10.3.3.3 当R大于W2/4采用平面对比试块调节仪器时,检验中应注意到荧光屏指示的缺陷深度或水平距离与缺陷实际的径向埋藏深度或水平距离孤长的差异,必要时应进行修正.

10.4 其他结构焊缝的检验

10.4.1 一般原则

a.尽可能采用平板焊缝检验中已经行之有效的各种方法;

b.在选择探伤面和探头时应考虑到检测各种类型缺陷的可能性,并使声束尽可能垂直于该结构焊缝中的主要缺陷.

10.4.2 T型接头

10.4.2.1 腹板厚度不同时,选用的折射角见表4,斜探头在腹板一侧作直射法和一次反射法探伤见图15位置2.

10.4.2.2 采用折射角45°(K1)探头在腹板一侧作直射法和一次反射法探测焊缝及腹板侧热影响区的裂纹(图16).

10.4.2.3 为探侧腹板和翼板间未焊透或翼板侧焊缝下层状撕裂等缺陷,可采用直探头(图15位置1)或斜探头(图16位置3)在翼板外侧探伤或采用折射角45°(K1)探头在翼板内侧作一次反射法探伤(图15位置3).

10.4.3 角接接头

角接接头探伤面及折射角一般按图17和表4选择.

10.4.4 管座角焊缝

10.4.4.1 根据焊缝结构形式,管座角焊缝的检验有如下五种探侧方法,可选择其中一种或几种方式组合实施检验.探测方式的选择应由合同双方商定,并重点考虑主要探测对象和几何条件的限制(图18、19).

a.在接管内壁表面采用直探头探伤(图18位置1);

b.在容器内表面用直探头探伤(图19位置1);

c.在接管外表面采用斜探头探伤(图19位置2);

d.在接管内表面采用斜探头探伤(图18位置3,图19位置3);

e.在容器外表面采用斜探头探伤(图18位置2).

10.4.4.2 管座角焊缝以直探头检验为主,对直探头扫查不到的区域或结构,缺陷向性不适于采用直探头检验时,可采用斜探头检验,斜探头检验应符合10.4.1条的规定.

10.4.5 直探头检验的规程

a.推荐采用频率2.5Mhz直探头或双晶直探头,探头与工件接触面的尺寸W应小于2√R;

b.灵敏度可在与工件同曲率的试块上调节,也可采用计算法或DGS曲线法,以工件底面回波调节.其检验等级评定见表5.

11 规定检验

11.1 一般要求

11.1.1 规定检验只对初始检验中被标记的部位进行检验.

11.1.2 探伤灵敏度应调节到评定灵敏度.

11.1.3 对所有反射波幅超过定量线的缺陷,均应确定其位置,最大反射波幅所在区域和缺陷指示长度.

11.2 最大反射波幅的测定

11.2.1 对判定为缺陷的部位,采取10.2.3条的探头扫查方式、增加探伤面、改变探头折射角度进行探测,测出最大反射波幅并与距离--波幅曲线作比较,确定波幅所在区域.波幅测定的允许误差为2DB.

11.3 位置参数的测定

11.3.1 缺陷位置以获得缺陷最大反射波的位置来表示,根据相应的探头位置和反射波在荧光屏上的位置来确定如下全部或部分参数.

a.纵坐标L代表缺陷沿焊缝方向的位置.以检验区段编号为标记基准点(即原点)建立坐标.坐标正方向距离L表示缺陷到原点之间的距离见图20;

b.深度坐标h代表缺陷位置到探伤面的垂直距离(mm).以缺陷最大反射波位置的深度值表示;

c.横坐标q代表缺陷位置离开焊缝中心线的垂直距离,可由缺陷最大反射波位置的水平距离或简化水平距离求得.

11.3.2 缺陷的深度和水平距离(或简化水平距离)两数值中的一个可由缺陷最大反射波在荧光屏上的位置直接读出,另一数值可采用计算法、曲线法、作图法或缺陷定位尺求出.

11.4 尺寸参数的测定

应根据缺陷最大反射波幅确定缺陷当量值Φ或测定缺陷指示长度△l.

11.4.1 缺陷当量Φ,用当量平底孔直径表示,主要用于直探头检验,可采用公式计算,DGS曲线,试块对比或当量计算尺确定缺陷当量尺寸.

11.4.2 缺陷指示长度△l的测定推荐采用如下二种方法.

a.当缺陷反射波只有一个高点时,用降低6dB相对灵敏度法测长见图21;

b.在测长扫查过程中,如发现缺陷反射波峰值起伏变化,有多个高点,则以缺陷两端反射波极大值之间探头的移动长度确定为缺陷指示长度,即端点峰值法见图22.

12 缺陷评定

12.1 超过评定线的信号应注意其是否具有裂纹等危害性缺陷特征,如有怀疑时采取改变探头角度,增加

探伤面、观察动态波型、结合结构工艺特征作判定,如对波型不能准确判断时,应辅以其他检验作综合判定.

12.2 最大反射波幅位于Ⅱ区的缺陷,其指示长度小于10mm时按5mm计.

12.3 相邻两缺陷各向间距小于8mm时,两缺陷指示长度之和作为单个缺陷的指示长度.

13 检验结果的等级分类

13.1 最大反射波幅位于Ⅱ区的缺陷,根据缺陷指示长度按表6的规定予以评级.

13.2 最大反射波幅不超过评定线的缺陷,均应为Ⅰ级.

13.3 最大反射波幅超过评定线的缺陷,检验者判定为裂纹等危害性缺陷时,无论其波幅和尺寸如何,均评

定为Ⅳ级.

13.4 反射波幅位于Ⅰ区的非裂纹性缺陷,均评为Ⅰ级.

13.5 反射波幅位于Ⅲ区的缺陷,无论其指示长度如何,均评定为Ⅳ级.

13.6 不合格的缺陷,应予返修,返修区域修后,返修部位及补焊受影响的区域,应按原探伤条件进行复验,

复探部位的缺陷亦应按12章评定.

14 记录与报告

14.1 检验记录主要内容:工件名称、编号、焊缝编号、坡口形式、焊缝种类、母材材质、规格、表面情况、探伤方法、检验规程、验收标准、所使用的仪器、探头、耦合剂、试块、扫描比例、探伤灵敏度.所发现的超标缺陷及评定记录,检验人员及检验日期等.反射波幅位于Ⅱ区,其指示长度小于表6的缺陷也应予记录.

14.2 检验报告主要内容:工件名称、合同号、编号、探伤方法、探伤部位示意图、检验范围、探伤比例收标准、缺陷情况、返修情况、探伤结论、检验人员及审核人员签字等.

14.3 检验记录和报告应至少保存7年.

14.4 检验记录和报告的推荐格式见附录F.

附录A

标准试块的形状和尺寸

(补充件)

注:尺寸公差±0.1;各边垂直度不大于0.05;C面尺寸基准面,上部各折射角刻度尺寸值见表A1,下部见表A2.

附录B

对比试块的形状和尺寸

(补充件)

B1 对比试块的形状和尺寸见表B1.

注:①尺寸公差±0.1mm; ②各边垂直度不大于0.1; ③表面粗糙度不大于6.3μm; ④标准孔与加工面的平行度不大于0.05.

附录C

串列扫查探伤方法

(补充件)

C1 探伤设备

C1.1 超声波探伤仪的工作方式必须具备一发一收工作状态.

C1.2 为保证一发一收探头相对于串列基准线经常保持等距离移动,应配备适宜的探头夹具,并适用于横方型及纵方型两种扫查方式.

C1.3 推荐采用,频率2-2.5Mhz,公称折射角45°探头,两探头入射点间最短间距应小于20mm.

C2 仪器调整

C2.1 时基线扫描的调节采用单探头按标准正文9.1 的方法调节,最大探测范围应大于1跨距声程.

C2.2 灵敏度调整

在工件无缺陷部位,将发、收两探头对向放置,间距为1跨距,找到底面最大反射波见图C1及式C1,调节增益使反射波幅为荧光屏满幅高度的40%,并以此为基准波高.灵敏度分别提高8dB、14dB和20dB代表判废灵敏度、定量灵敏度和评定灵敏度.

C3 检验程序

C3.1 检验准备

a.探伤面对接焊缝的单面双侧;

b.串列基准线如发、收两探头实测折射角的平均值为β或K值平均为K.在离参考线(参考线至探伤截面的距离L'-0.5P)的位置标记串列基准线,见图C2及式C2.

0.5P=δtgβ (C1)

或0.5P=δK (C2)

C3.2 初始探伤

C3.2.1 探伤灵敏度不低于评定灵敏度.

C3.2.2 扫查方式采用横方形或纵方形串列扫查,扫查范围以串列基准线为中心尽可能扫查到整个探伤截面,每个探伤截面应扫查一遍.

C3.2.3 标记超过评定线的反射波,被判定为缺陷时,应在焊缝的相应位置作出标记.

C3.3 规定探伤

C3.3.1 对象只对初始检验标记部位进行探伤.

C3.3.2 探伤灵敏度为评定灵敏度.

C3.3.3 缺陷位置不同深度的缺陷,其反射波均出现在相当于半跨距声程位置见图C3.缺陷的水平距离和深度分别为:

(C3)

(C4)

C3.3.4 缺陷以射波幅在最大反射波探头位置,以40%线为基准波高测出缺陷反射波的dB数作为缺陷的相对波幅,记为SL±----dB.

C3.3.5 缺陷指示长度的测定

采用以评定灵敏度为测长灵敏度的绝对灵敏度法测量缺陷指示长度.即进行左右扫查(横方形串列扫查),以波幅超过评定线的探头移动范围作为缺陷指示长度.

C4 缺陷评定

所有反射波幅度超过评定线的缺陷均应按标准正文第12章的规定予以评定,并按第13章的规定对探伤结果作等级分类.

附录D

距离----波幅(DAC)曲线的制作

(补充件)

D1 试件

D1.1 采用标准附录B对比试块或其他等效形式试块绘制DAC曲线.

D1.2 R小于等于W2/4时,应采用探伤面曲率与工件探伤面曲率相同或相近的对比试块.

D2 绘制步骤

DAC曲线可绘制在坐标纸上(称DAC曲线),亦可直接绘制在荧光屏前透明的刻度板上(称DAC曲线板).

D2.1 DAC曲线的绘制步骤如下:

a.将测试范围调整到探伤使用的最大探测范围,并按深度、水平或声程法调整时基线扫描比例;

b.根据工件厚度和曲率选择合适的对比试块,选取试块上民探伤深度相同或接近的横孔为第一基准孔,将

探头置于试块探伤面声束指向该孔,调节探头位置找到横孔的最高反射波;

c.调节"增益"或"衰减器"使该反射幅为荧光屏上某一高度(例如满幅的40%)该波高即为"基准波高",此时,探伤系统的有效灵敏度应比评定灵敏度高10dB;

d.调节衰减器,依次探测其他横孔,并找到最大反射波高,分别记录各反射波的相对波幅值(dB);

e.以波幅(dB)为纵坐标,以探沿距离(声程、深度或水平距离)为横坐标,将c、d记录数值描绘在坐标纸上;

f.将标记各点连成圆滑曲线,并延长到整个探测范围,最近探测点到探距离O点间画水平线,该曲线即为Φ3mm横孔DAC曲线的基准线;

g.依据标准正文表3规定的各线灵敏度,在基准线下分别绘出判废线、定量线、评定线,并标记波幅的分区;

h.为便于现场探伤校验灵敏度,在测试上述数据的同时,可对现场使用的便携试块上的某一参考反射体进行同样测量,记录其反射波位置和反射波幅(dB)并标记在DAC曲线图上.

D2.2 DAC曲线的绘制步骤如下:

a.同D2.1a;

b.依据工件厚度和曲率选择合适的对比试块,在试块上所有孔深小于等于探测深度的孔中,选取能产生最大反射波幅的横孔为第一基准孔;

c.调节"增益"使该孔的反射波为荧光屏满幅高度的80%,将其峰值标记在荧光屏前辅助面板上.依次探测其它横孔,并找到最大反射波 ,地峰值点标记在辅助面板上,如果做分段绘制,可调节衰减器分段绘制曲线;

d.将各标记点连成圆滑曲线,并延伸到整个探测范围,该曲线即为Φ3mm横孔DAC曲线基准线;定量灵敏度下,如分别将灵敏度提高或降低6dB,该线将分别代表评定或判废线.(A级检验DAC基准线即为判废线);

e.将灵敏度提高(8-50mm提高到10dB,50-300mm提高10dB或8dB),该线表示定量线.在定量灵敏度下,如分别将灵敏度提高或降低6dB,该线将分别代表评定或判废线.(A级检验DAC基准线即为判废线);

f.在作上述测试的同时,可对现场使用的便携式试块上的某一参考反射体作同样测,并将其反射波位置和峰值标记在曲线板上,以便现场进行灵敏度校验.

附录E

声能传输损耗差的测定

(补充件)

工件本身反射波幅度有影响的两个主要因素是材料的材质衰减和工件表面粗糙度及耦合情况的表面声能损失.

超声波的材质衰减对普通碳钢或低合金网板材,在频率低于3MHz声程不超过200mm时,可以忽略不记,或者一般来说衰减系数小于0.01dB/mm时,材质衰减可以不予考虑,标准试块和对比试块均应满足这一要求.

受检工件探伤时,如声程较大,或材质衰减系数超过上述范围,在确定缺陷反射波幅时,应考虑作材料衰减修整,如被检工件表面比较粗糙还应考虑表面声能损失问题.

E1 横波超声材质衰减的测量

E1.1 制作与受检工件材质相同或相近,厚度约40mm表面粗糙度与对比试块RB相同的平面型试块图E1.

E1.2 采用工件检验中使用的斜探头按深度1:1调节仪器时基扫描.

E1.3 另选用一只与该探头尺寸、频率、角度相同的斜探头,两探头按图E1所示方向置于平板试块上,两探头入射点间距离为1P,仪器调为一发一收状态,找到接以最大反射波幅,记录其波幅值Hi(dB).

E1.4 将两探头拉开到距离为2P,找到最大反射波幅,记录其波幅值H2(dB).

E1.5 实际探伤中超声波总是往返的,故双程的衰减系数αH可用下式计算:

(E1)

S1=40/COSβ+l' (E2)

S2=80/COSβ+l'0 (E3)

(E4)

式中 L0----晶片到为的距离,作为简化处理亦可取l'0=l0, mm;

△------声程S1、S2不考虑材质衰减时大平面的反射波幅dB差,可用公式

计算或从该探头的D·G·S曲线上查得,dB;

由于S2近拟为S1的2倍,在声程大于3倍近场长度N时,△约为6dB.

E1.6 如果在图E1试块和RB对比试块的侧面测得波幅HZ,相差不过1dB,则可不考虑工件的材质衰减.

E2 传输损失差的测定

E2.1 采用工件检验中使用的斜探头,按深度比例调节仪器时基扫描.

E2.2 选用另一与该探头尺寸、频率、角度相同的斜探头,两探头按图E2所示方向置于对比试块侧面上,两探头入射点间距离为1P,仪器调为一发一收状态.

E2.3 在对比试块上,找到接收波最大反射波幅,记录其波幅值H1(dB).

E2.4 在受检工件板材上(不通过焊缝)同样测出接收波最大反射波幅,记录其波幅值H2(dB).

E2.5 传输损失差△V为:

△V=H1-H2-△1-△2 (E5)

式中△1----声程S1、S2不考虑材质衰减时大平面的反射波幅dB差,可用公式

计算或从探头的D·G·S曲线上查得,dB;

S1----在对比试块中的声程,mm;

S2----在工件板材中的声程,mm;

△2--试块中声程S1时与工件中声程S2时的超声材质衰减差值,dB.

如试块图E1按E1测量材质衰减系数小于0.01dB/mm,此项可以不予考虑.

附录F

焊缝超声波探伤报告和记录

(参考件)

焊缝超声波探伤报告

焊缝超声波探伤记录

附加说明:

本标准由中华人民共和国机械电子工业部提出.

本标准由全国无损检测标准化技术委员会归口.

本标准由哈尔滨焊接研究所负责起草,主要参加单位:哈尔滨锅炉厂、劳动人事部锅炉压力容器检测研究中心.

本标准主要起草人李生田、李家鳌、康纪黔、张泽丰、王梅屏.

无损检测超声波检测二级试题库(UT)带答案

无损检测 超声波试题(UT) 一、是非题 受迫振动的频率等于策动力的频率。V 波只能在弹性介质中产生和传播。X (应该是机械波) 由于机械波是由机械振动产生的,所以波动频率等于振动频率。V 由于机械波是由机械振动产生的,所以波长等于振幅。X 传声介质的弹性模量越大,密度越小,声速就越高。V 材料组织不均匀会影响声速,所以对铸铁材料超声波探伤和测厚必须注意这一问题。V 一般固体介质中的声速随温度升高而增大。X 由端角反射率试验结果推断,使用K A的探头探测单面焊焊缝根部未焊透缺陷,灵敏度较低,可能造成漏检。V 超声波扩散衰减的大小与介质无关。V 超声波的频率越高,传播速度越快。X 介质能传播横波和表面波的必要条件是介质具有切变弹性模量。V 频率相同的纵波,在水中的波长大于在钢中的波长。X 既然水波能在水面传播,那么超声表面波也能沿液体表面传播。X 因为超声波是由机械振动产生的,所以超声波在介质中的传播速度即为质点的振动速度。X 如材质相同,细钢棒(直径<入=与钢锻件中的声速相同。X(C细钢棒=(E/ p)?) 在同种固体材料中,纵、横渡声速之比为常数。V 水的温度升高时,超声波在水中的传播速度亦随着增加。X 几乎所有的液体(水除外),其声速都随温度的升高而减小。V 波的叠加原理说明,几列波在同一介质中传播并相遇时,都可以合成一个波继续传播。X 介质中形成驻波时,相邻两波节或波腹之间的距离是一个波长。x(应是入/4 ;相邻两节点或波腹间 的距离为入/2 ) 具有一定能量的声束,在铝中要比在钢中传播的更远。V 材料中应力会影响超声波传播速度,在拉应力时声速减小,在压应力时声速增大,根据这一特性,可用超声波测量材料的应力。V 材料的声阻抗越大,超声波传播时衰减越大。X(成反比)

超声波测厚仪中文版说明书资料

目录 快速操作指南 (1) 第一章概述 (2) 1.1技术指标 (2) 1.2主要特点 (3) 1.3配置 (4) 第二章整机及键盘简介 (5) 2.1整机介绍 (5) 2.2键盘介绍 (6) 第三章操作简介 (7) 3.1零点校准 (7) 3.2声速设置或校准 (7) 3.2.1已知声速时声速设置 (7) 3.2.2已知厚度校准(单点校准) (8) 3.2.3两点校准 (8) 3.3基本操作流程 (8) 3.3管材测量 (10) 第四章菜单功能及设置 (11) 4.1仪器菜单 (11) 4.1.1穿透涂层 (12) 4.1.2数据存取 (12) 4.1.3报警 (14) 4.1.4单位 (14) 4.1.5扫查 (14) 4.1.6差值 (15) 4.1.7高温 (15) 4.1.8均值 (16) 4.1.9标准 (16) 4.1.10精度 (17)

4.1.11频率 (17) 4.1.12自动关机 (17) 4.1.13出厂设置 (18) 4.1.14对比度 (18) 4.1.15零点校准 (18) 4.1.16手动选择探头 (18) 4.1.17声音设置 (19) 4.1.18屏幕旋转 (19) 4.1.19单点校准和两点校准 (19) 4.1.20声速表 (19) 4.1.21背光 (19) 4.1.22曲面 (20) 第五章维护和保养 (21) 5.1使用注意事项 (21) 5.2日常维护和保养 (21) 第六章故障分析和排除 (22) 附录:常用材料声速表 (23)

快速操作指南 !注意: ●如您使用的测厚仪无“穿透涂层”测量模式,请确认 被测物为裸材,如被测点表面有油漆等,请将其打磨干净! ●如您使用的测厚仪有“穿透涂层”测量模式,在被测 点表面有涂层时,请选择此测量模式,但需确保被测厚度在“穿透涂层”测量模式的量程内! 第一次使用或者更换探头开机时,操作如下: 1)连接探头:将探头两个插头插入测厚仪主机顶端的两 个插孔内,无需分左右,但请确定完全插入。 注意:在插入探头前,请检查探头插头是否拧紧,如未拧紧请拧紧! 2)开机:按键开机。 3)调节声速:如已知材料声速,方法参考3.2.1,如未知材料声速,但已知材料厚度,方法参考3.2.2。 4)校准零点(参考3.1),SW7/SW7U/SW7A无需校零点。 5)测量:在被测点上涂抹耦合剂,将探头与被测点耦合紧密,厚度值稳定后读数。

超声波检测相关标准

GB 3947-83声学名词术语 GB/T1786-1990锻制园并的超声波探伤方法 GB/T 2108-1980薄钢板兰姆波探伤方法 GB/T2970-2004厚钢板超声波检验方法 GB/T3310-1999铜合金棒材超声波探伤方法 GB/T3389.2-1999压电陶瓷材料性能测试方法纵向压电应变常数d33的静态测试 GB/T4162-1991锻轧钢棒超声波检验方法 GB/T 4163-1984不锈钢管超声波探伤方法(NDT,86-10) GB/T5193-1985钛及钛合金加工产品(横截面厚度≥13mm)超声波探伤方法(NDT,89-11)(eqv AMS2631) GB/T5777-1996无缝钢管超声波探伤检验方法(eqv ISO9303:1989) GB/T6402-1991钢锻件超声波检验方法 GB/T6427-1999压电陶瓷振子频率温度稳定性的测试方法 GB/T6519-2000变形铝合金产品超声波检验方法 GB/T7233-1987铸钢件超声探伤及质量评级方法(NDT,89-9) GB/T7734-2004复合钢板超声波检验方法 GB/T7736-2001钢的低倍组织及缺陷超声波检验法(取代YB898-77) GB/T8361-2001冷拉园钢表面超声波探伤方法(NDT,91-1) GB/T8651-2002金属板材超声板波探伤方法 GB/T8652-1988变形高强度钢超声波检验方法(NDT,90-2) GB/T11259-1999超声波检验用钢制对比试块的制作与校验方法(eqv ASTME428-92) GB/T11343-1989接触式超声斜射探伤方法(WSTS,91-4) GB/T11344-1989接触式超声波脉冲回波法测厚 GB/T11345-1989钢焊缝手工超声波探伤方法和探伤结果的分级(WSTS,91-2~3) GB/T 12604.1-2005无损检测术语超声检测代替JB3111-82 GB/T12604.1-1990 GB/T 12604.4-2005无损检测术语声发射检测代替JB3111-82 GB/T12604.4-1990 GB/T12969.1-1991钛及钛合金管材超声波检验方法 GB/T13315-1991锻钢冷轧工作辊超声波探伤方法 GB/T13316-1991铸钢轧辊超声波探伤方法 GB/T15830-1995钢制管道对接环焊缝超声波探伤方法和检验结果分级 GB/T18182-2000金属压力容器声发射检测及结果评价方法 GB/T18256-2000焊接钢管(埋弧焊除外)—用于确认水压密实性的超声波检测方法(eqv ISO 10332:1994) GB/T18329.1-2001滑动轴承多层金属滑动轴承结合强度的超声波无损检验 GB/T18604-2001用气体超声流量计测量天然气流量 GB/T18694-2002无损检测超声检验探头及其声场的表征(eqv ISO10375:1997) GB/T 18696.1-2004声学阻抗管中吸声系数和声阻抗的测量第1部分:驻波比法 GB/T18852-2002无损检测超声检验测量接触探头声束特性的参考试块和方法(ISO12715:1999,IDT) GB/T 19799.1-2005无损检测超声检测1号校准试块 GB/T 19799.2-2005无损检测超声检测2号校准试块 GB/T 19800-2005无损检测声发射检测换能器的一级校准 GB/T 19801-2005无损检测声发射检测声发射传感器的二级校准 GJB593.1-1988无损检测质量控制规范超声纵波和横波检验 GJB1038.1-1990纤维增强塑料无损检验方法--超声波检验 GJB1076-1991穿甲弹用钨基高密度合金棒超声波探伤方法 GJB1580-1993变形金属超声波检验方法 GJB2044-1994钛合金压力容器声发射检测方法 GJB1538-1992飞机结构件用TC4 钛合金棒材规范 GJB3384-1998金属薄板兰姆波检验方法 GJB3538-1999变形铝合金棒材超声波检验方法 ZBY 230-84A型脉冲反射式超声探伤仪通用技术条件(NDT,87-4/84版)(已被JB/T10061-1999代替) ZBY 231-84超声探伤仪用探头性能测试方法(NDT,87-5/84版)(已被JB/T10062-1999代替)

超声波检测笔试试题(含答案)

超声波检测笔试试题(含答案)

笔试考卷 单位:姓名: 评分:日期: 一是非判断题(在每题后面括号内打“X”号表示“错误”,画“○”表示正确) (共20题,每题1.5分,共30分) 1.质点完成五次全振动所需要的时间,可以使超声波在介质中传播五个波长的距离(0) 2.超声波检测时要求声束方向与缺陷取向垂直为宜(0) 3.表面波、兰姆波是不能在液体内传播的(0) 4.纵波从第一介质倾斜入射到第二介质中产生的折射横波其折射角达到90°时的纵波入射角称为第一临界角(X) 5.吸收衰减和散射衰减是材料对超声能量衰减的主要原因(0) 6.我国商品化斜探头标称的角度是表示声轴线在任何材料中的折射角(X) 7.超声波探头的近场长度近似与晶片直径成正比,与波长成反比(0) 8.根据公式:C=λ·f 可知声速C与频率f成正比,同一波型的超声波在同一材料中传播时高频的声波传播速度比低频大(X) 9.一台垂直线性理想的超声波检测仪,在线性范围内其回波高度与探头接收到的声压成正比例(0) 10.在人工反射体平底孔、矩形槽、横孔、V形槽中,回波声压只与声程有关而与探头折射角度无关的是横孔(0) 11.用sinθ=1.22λ/D公式计算的指向角是声束边缘声压P1与声束中心声压P0之比等于0%时的指向角(0) 12.水平线性、垂直线性、动态范围属于超声波探头的性能指标(X) 13.入射点、近场长度、扩散角属于超声波检测仪的性能指标(X) 14.在超声波检测中,如果使用的探测频率过低,在探测粗晶材料时会出现林状回波(X) 15.钢板探伤中,当同时存在底波和伤波时,说明钢板中存在小于声场直径的缺陷(0)

超声波测厚仪DM5E BasicDM5EDM5EDL

GE 传感与检测科技 DM5E 系列腐蚀测厚仪一系列高性能、可靠且便于使用的仪器 DM5E 系列让您以合适的价格选择适合自己的功能。

DM5E 系列 DM5E 系列是GE传感与检测科技推出的最新一代便携式腐蚀监测测厚仪。它大大改进了先前腐蚀测厚仪的性能,在正常温度以及高温时拥有更佳的厚度测量稳定性和可重复性。它可在最恶劣的工作环境下运行,进行油气以及石化和发电行业的管道、压力容器及储罐的壁厚测量。 三种级别 DM5E 系列有三种型号,提供三个级别的功能: ? DM5E Basic ? DM5E ? DM5E DL DM5E Basic DM5E Basic 的坚固外壳是所有型号的通用外壳。它采用人机工程学设计,包括连续工作 60 小时的AA蓄电池在内,重量仅为223g。这种基本型号符合 EN 15317 的规范,具有 LCD数据显示功能,该显示在一切照明条件下均背光可见。仪器操作由一只手通过用户友好型界面完成。该设备是一种密封、水密且防尘的薄膜式键盘,配有最少的功能键和方向键。通过菜单导航让操作简单而直观。这种基本机型融合了包括最小/最大值捕获、B-Scan(B 扫描)生成、报警以及差动厚度测量等多种功能,实现了测量厚度与标称厚度的快速比较。DM5E DM5E 融入了 DM5E Basic 的所有功能,同时提供 DUAL MUL TI 操作模式。该工作模式已运用于 GE 先前的腐蚀测厚仪,在通过涂层测量金属厚度方面作用突出。无需去除测量点处的涂层,节省了时间和成本。用户可以在现场将 DM5E Basic 升级到 DM5E。 DM5E DL DM5E DL 与 DM5E 相似,只是增加了支持网格数据文件格式的内置数据记录仪。数据记录仪可容纳多达50,000 个记录。文件可以通过Mini USB 通信端口传输到个人计算机上。也可以通过宏指令将文件直接导成 Microsoft Excel 格式。文件名和注释的所有字母数字数据直接通过键盘输入。基本和标准型都可在现场升级为 DL 型。 用户友好型操作员界面 所有型号的DM5E 均具有相同的用户友好型操作员键盘界面。该界面具有一个中央模式键、一个校准/开关键、两个用于激活和设置功能控制的功能方向键,以及四个用于调整参数值和浏览直观单级菜单的方向键。通过键盘可以访问仪器的所有校准、设置以及测量显示模式。使用 DL 型时,用户可以通过文件显示模式在文件中创建和存储厚度读数。所有校准均通过菜单完成,操作员将被指导进行各步操作。配有一个内置校准提示仪,可以将其设置 为在规定的测量次数或给定的时间段后提示用户进行校准。

超声波探伤检验标准

超声波探伤检验标准 超声波探伤检验标准 1 目的 为了满足公司发展需要,特制定我公司液压支架超声波探伤件检验标准,提供超声波探伤检验依据,制定超声波探伤结果评定标准。 2 主要内容及使用范围 规定了检验焊缝及热影响区缺陷,确定缺陷位置、尺寸和缺陷评定的一般方法及探伤结果的分级方法,适用于母材不小于8mm的铁素体类钢全焊透熔化焊对接焊缝脉冲反射法手工超声波探伤检验,不适用于以下情况焊缝的探伤检验:1)铸钢及奥氏体不锈钢焊缝; 2)外径小于159mm的钢管对接焊缝; 3)内径小于等于200mm的管座角焊缝; 4)外径小于250mm和内外径之比小于80%的纵向焊缝。 3 检验等级 3.1 检验等级的分级 根据质量要求检验等级分为A.B.C三级,检验的完善程度A级最低,B级一般,C级最高,检验工作的难度系数按A.B.C顺序逐级增高。应按照工件的材质.结构.焊接方法,使用条件及承受载荷的不同,合理地选用检验级别。检验等级应按产品技术条件和有关规定选择或经合同双方协商选定。 注:A级难度系数为1,B级为5-6,C级为10-12。 3.2 检验等级的检验范围 A级检验采用一种角度的探头在焊缝的单面单侧进行检验,只对允许扫查到的焊缝截面进行探测。一般不要求作横向缺陷的检验。母材厚度大于50mm时,不得采用A级检验。 B级检验原则上采用一种角度探头在焊缝的单面双侧进行检验,对整个焊缝截面进行探测。受几何条件的限制,可在焊缝的双面单侧采用两种角度探头进行探伤。母材厚度大于100mm时,采用双面双侧检验。条件允许时应作横向缺陷的检验。 C级检验至少要采用两种角度探头在焊缝的单面双侧进行检验。同时要作两个扫查方向和两种探头角度的横向缺陷检验。母材厚度大于100mm时,采用双面双侧检验。其它附加要求是: a.对接焊缝余高要磨平,以便探头在焊缝上作平行扫查; b.焊缝两侧斜探头扫查经过的母材部分要用直探头作检查; c.焊缝母材厚度大于等于100mm,窄间隙焊缝母材厚度大于等于40mm 时,一般要增加串列式扫查。

超声波UTⅠ级考试题库2016资料.doc

超声波检测UTⅠ级 取证考试(闭卷)题库 一、共580 道题,其中:判断题290,选择题290 。内容如下: 1、金属材料、焊接、热处理知识 判断题: 30 选择题: 30 2、相关法规和规范 判断题: 30 选择题: 30 3、 NB/T47013.3 - 2015 标准 判断题: 30 选择题: 30 4、超声专业理论 判断题: 200 选择题: 200 二、组题要求:每套题100 道题,每题 1 分,共100 分。其中:

1、判断题:50 金属材料焊接热处理: 5 题;相关法规规范: 5 题; JB/T4730 标准: 5 题;专业理论知识:35 题。 2、选择题:50 金属材料焊接热处理: 5 题;相关法规规范: 5 题; JB/T4730 标准: 5 题;专业理论知识:35 题。

UTⅠ级取证考试题库 一.判断题 金属材料、焊接、热处理知识(1~ 30) 1.金属材料的性能包括使用性能和工艺性能。 对 2.材料在外力作用下所表现出的力学性能指标有强度、硬度、塑性、 韧性等。 对 3. 评价金属材料的强度指标有抗拉强度、屈服强度、伸长率和断面收 缩率。 错 4.一般说来,钢材的硬度越高,其强度也越高。 对 5. 承压设备的冲击试验的试样缺口规定采用V 型缺口而不采用U型缺口,是因为前者加工容易且试验值稳定。 错

6.材料的屈强比越高,对应力集中就越敏感。 对 7. 材料的冲击值不仅与试样的尺寸和缺口形式有关,而且与试验温度有关。 对 8. 应力集中的严重程度与缺口大小和根部形状有关,缺口根部曲率半

径越大,应力集中系数越大。 错 9. 氢在钢材中心部位聚集形成的细微裂纹群称为氢白点,可以用UT 检测。 对 10. 低碳钢金属材料中,奥氏体组织仅存在于727℃以上的高温范围内。 对 11.淬火加高温回火的热处理称为调质处理。 对 12、在消除应力退火中,应力的消除主要是依靠加热或冷却过程中钢 材组织发生变化和产生塑性变形带来的应力松弛实现的。 错 13. 锅炉压力容器用钢的含碳量一般不超过0.25%。 对 14.低碳钢中硫、磷、氮、氧、氢等都是有害杂质,应严格控制其含

TT150A超声波测厚仪使用说明书_副本

TT150A 超声波测厚仪使用说明书

1 概述 (3) 1.1 技术参数 (3) 1.2 主要功能 (4) 1.3 工作原理 (4) 1.4 仪器配置 (5) 1.5 工作条件 (6) 2 结构与外观 (7) 2.3 主显示界面 (8) 2.4 键盘定义 (8) 3 测量前的准备 (9) 3.1 仪器准备 (9) 3.2 探头选择 (9) 3.3 被测工件的表面处理 (9) 4 仪器使用 (9) 4.1 仪器开、关机 (9) 4.2 探头零点校准 (10) 4.3 声速设置 (10) 4.4 声速测量 (10) 4.5 两点校准 (11) 4.6厚度测量 (12) 4.7 设置测厚模式 (12) 4.8 设置显示分辨率(测量精度) (12) 4.9 改变单位制式 (12) 4.10 存储功能 (13) 4.11 厚度值打印 (14) 4.12警示声音设置 (14)

4.13 背光功能 (15) 4.14 电池电量指示 (15) 4.15 自动关机 (15) 4.16 恢复出厂设置 (15) 4.17 与PC机通讯 (15) 5 测量应用技术 (16) 5.1 测量方法 (16) 5.2管壁测量法 (16) 6维护及注意事项 (16) 6.1 电源检查 (16) 6.2 一般注意事项 (16) 6.3 测量中注意事项 (17) 6.4 标准试块的清洁 (17) 6.5 机壳的清洁 (17) 6.6 仪器维修 (17) 7 贮存与运输条件 (17) 附录A材料声速 (18) 附录B 超声测厚中的常见问题与处理方法 (19) 用户须知 (25)

1 概述 本仪器是智能型超声波测厚仪,采用最新的高性能、低功耗微处理器技术,基于超声波测量原理,可以测量金属及其它多种材料的厚度,并可以对材料的声速进行测量。可以对生产设备中各种管道和压力容器进行监测,监测它们在使用过程中受腐蚀后的减薄程度,也可以对各种板材和各种加工零件作精确测量。本仪器可广泛应用于石油、化工、冶金、造船、航空、航天等各个领域。 1.1 技术参数 ●显示方法:高对比度的段码液晶显示,高亮度EL背光; ●测量范围:(0.75~300)mm(钢中),公制与英制可自由转换; ●声速范围:(1000~9999) m/s: ●分辨率:示值精度:TT150A: ±(0.5%H+0.04)mm ●H为被测物实际厚度 ●测量周期:单点测量时每秒钟4次、扫描模式每秒钟10次; ●存储容量:可存储20组(每组最多100个测量值)厚度测量 数据 ●工作模式:具有单点测厚和扫描测厚两种测厚工作模式 ●单位制:公制或者英制(可选) ●工作电压:3V(2节AA尺寸碱性电池) ●持续工作时间:大于100h(不开背光时) ●通讯接口:RS232,可与微型打印机或PC连接 ●外形尺寸:150mm×74mm×32 mm ●整机重量:245g

数字超声波探伤仪校验规程

数字超声波探伤仪校验规程 1.0目的 规范数字超声波探伤仪的校准操作,确保其有效性和准确性。 2.0范围 本规程适用于本公司新购置的和使用中的超声波探伤仪与探头的系统性能的校验。数字式超声仪的校验可按照本规程,也可按照仪器内置的仪器自校功能。 3.0校验人员 校验人员应熟悉仪器的工作原理和使用方法,并按本规程规定的方法进行校验。 4.0应用器材 4.1 标准试块CSK-ⅠA试块及DB一P Z20一2、DB一P Z20一4型标准试块。 4.2 所用试块必须是具有相应资质的企业生产的标准试块,且经过计量部门检定合格。 5.0校验及评定内容 5.1 外观检查 采用目视及操作方法进行。 5.2 水平线性误差 5.2.1 所用检定设备与被检超声探伤仪的连接方式如图1所示。并应使函数信号发生器输出阻抗、衰减器特性阻抗和终端负载相互匹配。 5.2.2 被检超声探伤仪的工作方式置[双],抑制置“0”,衰减器置适中量值。在扫描范围各挡上,将被检超声探伤仪的发射脉冲输人到函数信号发生器输人端,其输出通过标准衰减器接到被检超声探伤仪“收”端,并调节频率、信号幅度、调制波数及标准衰减器旋钮,使超声探伤仪显示屏上显示六个幅度相等的 (如垂直满刻度80%)脉冲波形。

5.2.3 调节被检超声探伤仪[扫描微调]及[移位]旋钮,使第一个波的前沿对准水平刻度“0”,第六个波的前沿对准水平刻度 “10”,依次读取第二至第五个波的前沿与水平刻度“2”、“4”、“6”、“8”的偏差amax ,如图2所示,取其最大偏差值。按下式计算超声探伤仪水平线性误差: % 100max ?= ?B a L 式中:ΔL —水平线性误差;B —水平满刻度数。 5.3 衰减器衰减误差 5.3.1 所用检定设备与被检超声探伤仪的连接方式如图1所示。并应使正弦信号发生器输出阻抗衰减器特性阻抗和终端负载相互匹配。

超声波探伤II级人员考试试题及解答

第六期船舶超声波探伤II级人员 考试试题及解答 一、选择题 1、在单位时间内通过弹性介质中某质点的完整波的数目叫做: A、波动的振幅; B、波动的波长; C、波动的脉冲时间; D、波动的频率。 2 A 3 A 4 A、0.5% 5 A 6 A 闭合;D 7 A、纵波; B、横波; C、纵波和横波; D、表面波。 8、第二临界角是: A、折射纵波等于90o时的纵波入射角; B、折射横波等于90o时的纵波入射角; C、折射纵波等于90o时的横波入射角; D、折射横波等于90o时的横波入射角。 9、在材料相同,频率一定的情况下,横波的检测灵敏度高于纵波是因为: A、横波振动方向对反射有利; B、横波波长比纵波短; C、横波的指向性好; D、横波探伤杂波少。 10、斜探头的K值表示:

A、纵波入射角的正切值; B、横波入射角的正切值; C、纵波折射角的正切值; D、横波折射角的正切值。 11、超声波探伤仪各部分的工作由哪个电路进行协调? A、发射电路; B、接收电路; C、电源电路; D、同步电路。 12、下列哪种频率的探头晶片最薄? A、0.5MHz; B、1MHz; C、5MHz; D、10MHz。 13 A、2MHz 14 A 15 A、与探头16 A 17 A、C1〈 18 A 19、通常锻件探测灵敏度的调节方式是: A、只能采用试块方式; B、只能采用底波方式; C、可采用试块或底波方式; D、任意选用不需调节。 20、大型铸件应用超声波探伤的主要困难是: A、表面粗糙; B、缺陷太多; C、缺陷太大; D、晶粒粗大。 21、使用多次重合液浸探伤法时,调节水层厚度应使声波在水中传播时间: A、为在工件中传播时间的整数倍; B、大于工件中传播时间; C、小于工件中传播时间; D、以上都不对。

超声波探伤检验操作规程

超声波探伤检验操作规程 1适用范围 本检验规程叙述的是使用A型脉冲反射式超声波探伤仪对煤矿用设备中原材料及零部件等内部进行的一种无损检测。 2引用标准、规范 CHSNDT001-2007 无损检测人员资格鉴定与认证 GB/T11345-1989 钢焊缝手工超声波探伤方法和探伤结果分级 3超声波检测人员 3.1从事承压设备的原材料和零部件等无损检测的人员,应按照《无损检测人 员资格鉴定与认证》的要求取得相应无损检测资格。 3.2无损检测人员资格级别分为:Ⅲ(高)级、Ⅱ(中)级、Ⅰ(初)级。取 得不同无损检测方法各资格级别的人员,只能从事与该方法和该资格级别相应的无损检测工作,并负相应的技术责任。 3.3无损检测人员应根据CHSNDT001的规定每年进行一次视力检查。 4检验设备、器材和材料 4.1超声检测设备均应具有产品质量合格证或合格的证明文件。 4.2超声波探伤仪 A型脉冲反射式超声波探伤仪,其工作频率范围为0.5 MHz ~10MHz,仪器至少在荧光屏满刻度的80%范围内呈线性显示。探伤仪应具有80dB以上的连续可调衰减器,步进级每档不大于2dB,其精度为任意相邻12dB的误差在±1dB 以内,最大累计误差不超过1dB。水平线性误差不大于1%,每次连续使用周期开始(或每三个月)应对垂直线性进行评定,误差不大于5%。 4.3探头 4.3.1晶片面积不应大于500平方毫米,其任一边长原则上不大于25mm。4.3.2单斜探头声束轴线水平偏离角不应大于2°,主声束垂直方向不应有明显 的双峰。 4.4超声波探伤仪和探头的系统性能 4.4.1在达到所探工件的最大检测声程时,其有效灵敏度余量应不小于10dB。

超声波检测规程

超声波检测规程 1校准与复核 校准应在试块上进行,校准中应使超声主声束垂直对准反射体的轴线,以获得稳定和最大的反射信号。 在开始使用仪器时,应对仪器的水平线性和垂直线性进行测定,在使用过程中,每隔三个月至少应对仪器的水平线性和垂直线性进行一次测试。 在探头开始使用时,应对探头进行一次全面的性能校准。斜探头在使用前应进行前沿距离、折射角、主声束偏离、灵敏度余量和分辨力的校准。使用过程中,每次使用前应校准前沿距离、折射角和主声束偏离。直探头的始脉冲占宽、灵敏度余量和分辨力应根据使用的频度每隔一个月或三个月检查一次。 2检测工艺 对于具体部件的检测,中级或高级检验人员应根据相应的标准编制检测工艺卡,经审批后实施。工艺卡应包括如下内容:检验等级、材料种类、规格、检验时机、坡口形式、焊接工艺方法、表面状态及灵敏度补偿、耦合剂、仪器型号、探头及扫查方式、灵敏度、试块、缺陷位置标定方法、报告要求、操作人员资格、执行标准等。 3检验程序 工件准备一表面检查、委托检验一接受委托、指定检验员一了解焊接情况一确定检测工艺卡一选定无损检测方法、仪器、探头、试块一校准仪器和探头一制作距离波幅曲线一调整无损检测灵敏度一校准与复核一涂布耦合剂一粗无损检测一标示缺陷位置一精无损检测一评定缺陷一复核一记录一报告一审核一存档。对于不合格焊缝的重新无损检测,仍然遵从此程序的要求。 4检验前的准备 根据被检部件的材质、规格、性质和结构形状选定无损检测标准,确定检验等级,确定检测工艺卡。 对选定的仪器、探头的性能及其组合性能应进行测试,并符合要求。 制作距离一波幅曲线及综合补偿测定: 斜探头前沿距离、K值的测定应在SGB-4试块上进行,前沿距离、K值至少应测量三次,取其平均值。 调节扫描速度、扫描比例,按照选定的标准要求制作距离波幅曲线,并计入综合补偿,绘制在坐标纸上。 综合补偿测定按选定的标准进行。 检测面和检测范围的确定应保证检查到工件被检部分的整个体积,检验前应用80#或100#砂纸去除检测面上的毛刺等,以利于声耦合和探头的移动并减少探头磨损。 5检验 按照选定标准的规定确定无损检测灵敏度,并对扫描线和灵敏度进行复核。 扫查时应尽量扫查到工件的整个被检区域,探头移动速度不应大于 150mm/S。 可以采用不同的扫查方式,以检测不同走向的缺陷。检测纵向缺陷时,探头沿焊缝在母材上均匀做锯齿形或矩形扫查,在保持探头移动方向与焊缝中心线基本垂直的同时,还要作10°-15°的摆动;检测焊缝和热影响去的横向缺陷应采用平行扫查。初探时,如发现评定线及以上的反射波时,可先用记号笔在部件上

超声波探伤仪的试题及答案

超声波探伤工考题 一、填空 1、超声波探伤对工作间的要求是,, ,。 2、超探工必须配备、、、 、、和。 3、超声波探伤常用、、、 、这些试块。 4、超声波探伤间应有、、、毛扁刷、、印泥盒、砂布、、粉笔。 二,简答题 1、试述超声波探伤所用探头的各项技术指标? 2、超声波探伤设备日常校验哪些内容?

3、超声波探伤设备季度性能校验哪些内容? 4、全轴穿透探伤检查中什麽情况可判为透声不良? 5、对用于超声波探伤的转轮机有什麽要求?

1、超声波探伤对工作间的要求探伤间内应清洁宽敞、照度适中、通风良好、室内温度 应保持在10~30。 2、超探工必须配备三角函数计算器、2m钢卷尺、300mm钢板尺、外径卡钳、手电筒 和螺丝刀。 3、超声波探伤常用CSK-1型标准试块;TS-1型标准试块;TZS-R型标准试块;CS-1-5 型标准试块;半轴实物试块。 4、超声波探伤间应有容积1.0L的耦合剂盛放桶、残余耦合剂托盘、容积0.5L的铅油 盒、毛扁刷、毛笔、印泥盒、砂布、棉纱或擦拭布、粉笔。 简答题 1、试述超声波探伤所用探头的各项技术指标? 答:探头频率采用2.5MHz;回波频率误差Δf/f≤15%;直探头纵向分辨力R≥26dB; 直探头声轴偏斜角≤1.5°;斜探头折射角误差a.β≤45°时,Δβ≤1.5°, b.β>45°时,Δβ≤2°;探头相对灵敏度a.斜探头ΔS≥60dB;b.直探头S≥46dB。 2、超声波探伤设备日常校验哪些内容? 答:检查探伤仪的技术状态,使用标准试块标定测距,确定探伤灵敏度,并在半轴实物试块上进行当量对比检验。校验完毕,确定良好后在超生波探伤仪日常性能校验记录上详细做好记录并共同签章。 3、超声波探伤设备季度性能校验哪些内容? 答:全面检查探伤仪的状态,检测探伤仪的主要性能指标,并按日常校验的内容进行检查,详细填写超声波探伤仪极度校验记录并共同签章。 4、全轴穿透探伤检查中什麽情况可判为透声不良? 答:如发现底波达不到满幅30%的部位,其面积占轴端探测面积的1/16以上的探测区域时,可判为透声不良。 5、对用于超声波探伤的转轮机有什麽要求? 答:转轮机转数≤2r/min,并能随时控制转停

超声波测厚仪使用说明和注意事项

超声波测厚仪(TT110)使用说明和注意事项 一、产品描述: TT110超声波测厚仪可用在工业生产领域中对钢板厚度的测量,可以对生产设备中各种管道和压力容器进行监测,监测它们在使用过程中受腐蚀后的减薄程度,还可以对各种零件作精确测量。 液晶屏显示: 键盘功能是说明:

二、性能指标 三、基本原理: 超声波测量厚度的原理与光波测量原理相似。探头发射的超声波脉冲到达被测物体并在物体中传播,到达材料分界面时被反射回探头,通过精确测量超声波在材料中传播的时间来确定被测材料的厚度。 四、主要功能: 1.自动校对零点,可对系统误差进行修正; 2.非线性自动补偿:在全范围内利用计算机软件对探头非线性误差进行修正,以提供测量 准确度; 3.耦合状态提示:提供耦合标志,通过观察其稳定状态可知耦合是否正常; 4.低电压提示; 5.自动关机:定时自动关机会帮你断电; 6.全键膜密闭式操作——防油污,提高使用寿命。 五、测量步骤 1.测量准备: 将探头插头插入主机插座中,按ON键开机,全屏幕显示数秒后显示声速(5900m/s),此时可以开始测量。

2.校准: 在每次更换探头、电池及环境温度变化较大时应进行校准。此步骤对保证测量准确度十分关键。如有必要可重复多次,按ZERO键进入校准状态,屏幕显示: 用耦合剂将探头与随机试块耦合,屏幕显示的横线将逐条消失,直到屏幕显示 4.0mm即校准完毕。 说明:按ZERO键进入校准状态后,若要放弃校准,再按ZERO将可回到测量状态,屏幕显示声速5900mm/s。 3.测量厚度: 将耦合剂涂于被测处,将探头与被测材料耦合即可测量,屏幕将显示被测材料的厚度,如图:

初、中级无损检测技术资格人员超声检测考题汇编计算题

计算题 1.在水浸法探伤中,求水/钢的往复透过率T 解:Z1=1.5×106Kg/m2s(水温20℃) Z2=45.4×106Kg/m2s(水温20℃) T=4Z1Z2/(Z1+Z2)2=(4x1.5x45.4x1012)/(1.5+45.4)2×1012=0.12=12% 答:水/钢的往复透过率T为12% 2.碳素钢和不锈钢的声阻抗差异约为1%,求二者复合界面上的声压反射率。 解:设界面声压反射率为r(r取绝对值) r=(Z1-Z2)/(Z1+Z2)=(1-0.99)/(0.99+1)=0.005=0.5% 答:二者复合界面上的声压反射率为0.5%。 3.边长为D=10mm的方形晶片,指向角用θ0=57λ/D表示。试计算探测钢材时,下列探头晶片的指向角: ①5MHz10x10、②4MHz12x12、③3MHz15x15、④2MHz20x20 解:λ①=(5900x103)/(5x106)=1.18mm;λ②=(5900x103)/(4x106)=1.48mm; λ③=(5900x103)/(3x106)=1.97mm; λ④=(5900x103)/(2x106)=2.95mm,则:①的指向角:θ0=57x1.18/10=6.70;②的指向角:θ0=57x1.48/12=7.030; ③的指向角:θ0=57x1.97/15=7.480;④的指向角:θ0=57x2.95/20=8.410 4.当声压比为下列数值时,计算dB值。(不可用图表及计算尺)①8、②400、③20、④0.8、 ⑤1000 解:如用分贝表示两数值之比P/Q,则数值A=20lg(P/Q) ① A=20lg8=60lg2=18dB;② A=20lg400=40lg20=52dB;③ A=20lg20=20(lg2+lg10)=26dB; ④ A=20lg0.8=20(lg8+lg10-1)=-2dB;⑤ A=20lg1000=60lg10=60dB 5.5P20x10 45°的探头有机玻璃楔块内声速为2730m/s,被检材料(低碳钢)中声速为3230m/s,求入射角α。 解:根据折射定律:sinα/sinβ=C L1/C S2又: β=45° sinα=(C L1/C S2)·sinβ=(2730/3230)·sin45°=0.59 α=36.7° 答:入射角α为36.7° 6.试以钢材为例,计算2MHzΦ30直探头的近场区 解:声波在钢材中的纵波速度为5900m/s λ钢=C钢/f=5900x103/2x106=2.95mm N钢 =D2/4λ=302/4x2.95=76mm 答:2MHzΦ30直探头近场区为76mm。

TT100超声波测厚仪工具系列说明书

重庆里博仪器有限公司 TH100超声波测厚仪系列说明书

目录 1.概述 (2) 2.性能指标 (4) 3.测量与操作 (5) 4.测量技术 (14) 5.测量误差的预防方法 (17) 6.主要事项 (18) 7.维修 (19) 8.附表 (20) 1概述 1.1适用范围 TT100,TT110,TT130工具系列超声波测厚仪,采用超声波测量原理,适用于能使超声波以一恒定速度在其内部传播,并能从其背面得到反射的各种材料厚度的测量。 此仪器可对各种板材和各种加工零件做精确测量,另一重要方面是可以对生产设备中各种管道和压力容器进行监测,监测它们在使用过程中受腐蚀后的减薄程度。可广泛应用于石油、化工、冶金、造船、航空、航天等各个领域。

1.2基本原理 超声波测量厚度的原理与光波测量原理相似。探头发射的超声波脉冲到达背测物体并在物体中传播,到达材料分界面时被反射回探头,通过精确测量超声波在材料中传播的时间来确定被测材料的厚度。 1.3 基本配置及仪器各部分名称 1.3.1 基本配置: 主机 1台 L51 探头 1支 耦合剂 1瓶 仪器箱 1只 1.3.2 选购件: L77探头 LZ2探头 LG5探头 标准试块 1.3.3 仪器各部分名称(见图)

液晶显示屏:(TT130功能最全的操作界面) 键盘功能说明: 存储---将当前测量的值存储到选定的文件夹。 查看---阅读当前文件夹中已经存储的测量数据。 ↑ --- 用于加数字或菜单选择。 ↓ --- 用于减数字或菜单选择。 菜单--- 用于进入菜单或确认。 ◎ --- 用于开关机或退出菜单。

2性能指标 测量范围:0.7mm~250.00mm 显示分辨率:0.01mm或0.1mm 示值误差:±0.05mm或0.1mm 管材的测量下限(钢):φ20mm×3.0mm(L51探头) φ15mm×2.0mm(L77探头) 示值误差不超过±0.03mm 声速调节范围:1000m/s~10000m/s 已知厚度反测声速:测量范围1000m/s~10000m/s,试块厚度≤20mm 时,声速测量精度为±1mm/H×100%;试块厚度>20mm时,声速测量精度为±5%。 使用环境温度:0℃~40℃ 电源:二节7号干电池 功耗:工作电流<20mA(不开背光) 外形尺寸:132mm×69mm×27mm 重量:245g 3测量与操作 3.1测量准备 1-将探头插入主机探头插座。

超声波检测笔试试题(含答案)

笔试考卷 单位:: 评分:日期: 一是非判断题(在每题后面括号打“X”号表示“错误”,画“○”表示正确) (共20题,每题1.5分,共30分) 1.质点完成五次全振动所需要的时间,可以使超声波在介质中传播五个波长的距离(0) 2.超声波检测时要求声束方向与缺陷取向垂直为宜(0) 3.表面波、兰姆波是不能在液体传播的(0) 4.纵波从第一介质倾斜入射到第二介质中产生的折射横波其折射角达到90°时的纵波入射角称为第一临界角(X) 5.吸收衰减和散射衰减是材料对超声能量衰减的主要原因(0) 6.我国商品化斜探头标称的角度是表示声轴线在任何材料中的折射角(X) 7.超声波探头的近场长度近似与晶片直径成正比,与波长成反比(0) 8.根据公式:C=λ·f 可知声速C与频率f成正比,同一波型的超声波在同一材料中传播时高频的声波传播速度比低频大(X) 9.一台垂直线性理想的超声波检测仪,在线性围其回波高度与探头接收到的声压成正比例(0) 10.在人工反射体平底孔、矩形槽、横孔、V形槽中,回波声压只与声程有关而与探头折射角度无关的是横孔(0) 11.用sinθ=1.22λ/D公式计算的指向角是声束边缘声压P1与声束中心声压P0之比等于0%时的指向角(0) 12.水平线性、垂直线性、动态围属于超声波探头的性能指标(X) 13.入射点、近场长度、扩散角属于超声波检测仪的性能指标(X) 14.在超声波检测中,如果使用的探测频率过低,在探测粗晶材料时会出现林状回波(X) 15.钢板探伤中,当同时存在底波和伤波时,说明钢板中存在小于声场直径的缺陷(0)

16.探测工件侧壁附近的缺陷时,探伤灵敏度往往会明显偏低,这是因为有侧壁干扰所致(0) 17.耦合剂的用途是消除探头与工件之间的空气以利于超声波的透射(0) 18.按照经典理论,超声波检测方法所能检测的最小缺陷尺寸大约是(λ/2)(0) 19.按JB/T4730-2005.3标准检验钢板时,相邻间距为70mm的两个缺陷,第一缺陷指示面积为20cm2,指示长度为50mm,第二缺陷指示面积为25cm2,指示长度为75mm,则此钢板(1x1m)为II级(0) 20.外径400mm,径300mm压力容器用低合金钢筒形锻件,可按JB/T4730-2005.3标准检验(X) 二选择题(将认为正确的序号字母填入题后面的括号,只能选择一个答案) (共30题,每题1.5分,共45分) 1.工业超声波检测中,产生和接收超声波的方法,最经常利用的是某些晶体的(c) a.电磁效应 b.磁致伸缩效应 c.压电效应 d.磁敏效应 2.对于无损检测技术资格等级人员,有权独立判定检测结果并签发检测报告的是(d) a.高级人员 b.中级人员 c.初级人员 d.a和b e.以上都可以 3.焊缝中常见的缺陷是下面哪一组?(b) a.裂纹,气孔,夹渣,白点和疏松 b.未熔合,气孔,未焊透,夹渣和裂纹 c.气孔,夹渣,未焊透,折叠和缩孔 d.裂纹,未焊透,未熔合,分层和咬边 4. GB/T 9445-1999无损检测人员资格鉴定与认证规定的证书一次有效期最长为(b) a.3年 b.5年 c.10年 d.15年 5.下列材料中声速最低的是(a):a.空气b.水c.铝d.不锈钢 6.一般来说,在频率一定的情况下,在给定的材料中,横波探测缺陷要比纵波灵敏,这是因为(a) a.横波比纵波的波长短 b.在材料中横波不易扩散 c.横波质点振动的方向比缺陷更为灵敏 d.横波比纵波的波长长 7.超过人耳听觉围的声波称为超声波,它属于(c) a.电磁波 b.光波 c.机械波 d.微波

无缝钢管超声波探伤检验方法

无缝钢管超声波探伤检验方法 2010-1-25 发布时间:2008年08月05日 实施时间:2009年04月01日 规范号:GB/T 5777—2008 发布单位:中国人民共和国国家质量监督检验检疫总局/中国国家标准化管理委员会 本标准修改采用ISO 9303:1989(E)《承压无缝和焊接(埋弧焊除外)钢管纵向缺陷的全周向超声波检测》。 本标准根据ISO 9303:1989(E)重新起草。在附录A中列出了本标准章条编号与ISO 9303:1989(E)章条编号对照一览表。 本标准在采用国际标准时做了一些修改。有关技术性差异用垂直单线标识在它们所涉及的条款的页边空白处。在附录B中给出了技术性差异及其原因的一览表以供参考。 为便于使用,对于ISO 9303:1989(E)还做了下列编辑性修改: ——“本国际标准”一词改为“本标准”; ——删除ISO 9303:1989(E)的前言和引言。 本标准代替GB/T 5777—1996《无缝钢管超声波探伤检验方法》,与GB/T 5777—1996相比主要变化如下: ——范围增加“电磁超声探伤可参照此标准执行”(见第1章); ——增加了对斜向缺陷的检验及检验方法(见第4章和附录B); ——修改了管端人工槽位置的限制(GB/T 5777—1996中的第5章;本标准的第5章); ——修改了人工缺陷的尺寸和代号(GB/T 5777—1996中的第5章;本标准的第5章和附录E);

——探头工作频率由2.5MHz~10MHz修改为1MHz~15MHz(GB/T 5777—19 96中的第6章;本标准的第6章)。 本标准的附录A、附录B和附录E是资料性附录。附录C、附录D是规范性附录。 本标准由中国钢铁工业协会提出。 本标准由全国钢标准化技术委员会归口。 本标准主要起草单位:湖南衡阳钢管(集团)有限公司、冶金工业信息标准研究院、宝山钢铁股份有限公司特殊钢分公司。 本标准主要起草人:左建国、张黎、彭善勇、黄颖、邓世荣、赵斌、刘志琴、赵海英。 本标准所代替标准的历次版本发布情况为: ——GB/T 5777—1986、GB/T 5777—1996; ——GB/T 4163—1984。 无缝钢管超声波探伤检验方法 2010-1-25 1 范围 本标准规定了无缝钢管超声波探伤的探伤原理、探伤方法、对比试样、探伤设备、探伤条件、探伤步骤、结果评定和探伤报告。 本标准适用于各种用途无缝钢管纵向、横向缺陷的超声波检验。本标准所述探伤方法主要用于检验破坏了钢管金属连续性的缺陷,但不能有效地检验层状缺陷。 本标准适用于外径不小于6mm且壁厚与外径之比不大于0.2的钢管。壁厚与外径之比大于0.2的钢管的检验,经供需双方协商可按本标准附录C执行。 电磁超声探伤可参照此标准执行。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 9445 无损检测人员资格鉴定与认证 YB/T 4082 钢管自动超声探伤系统综合性能测试方法 JB/T 10061 A型脉冲反射式超声波探伤仪通用技术条件 3 探伤原理 超声波探头可实现电能和声能之间的相互转换以及超声波在弹性介质中 传播时的物理特性是钢管超声波探伤原理的基础。定向发射的超声波束在管中传播时遇到缺陷时产生波的反射。缺陷反射波经超声波探头拾取后,通过探伤仪处理获得缺陷回波信号,并由此给出定量的缺陷指示。 4 探伤方法 4.1 采用横波反射法在探头和钢管相对移动的状态下进行检验。自动或手工检验时均应保证声束对钢管全部表面的扫查。自动检验时对钢管两端将不能有效地检验,此区域视为自动检验的盲区,制造方可采用有效方法来保证此区域质量。 4.2 检验纵向缺陷时声束在管壁内沿圆周方向传播;检验横向缺陷时声束在管壁内沿管轴方向传播。纵向、横向缺陷的检验均应在钢管的两个相反方向上进行。

相关主题