搜档网
当前位置:搜档网 › 多孔碳材料制备与应用

多孔碳材料制备与应用

多孔碳材料制备与应用
多孔碳材料制备与应用

摘要

离子液体因为具有绿色环保、不易挥发、稳定性高以及结构设计性强等特点,最几年在合成碳材料中的应用引起了人们的广泛关注[1]。且因多孔碳材料质量轻,法及其相关表征。稳定性好,耐高温,耐酸碱,无毒性,吸附性好等优点而在多领域中被广泛应用。本文主要介绍的是以 PEI(聚醚酰亚胺Polyetherimide)为原料制备离子液体前驱体并制得碳材料的方法。首先通过向原材料PEI 中加入溴乙腈(BrCH2CN)制备离子液体前驱体,向得到的离子液体前驱体中加入二氰胺银[AgN(CN)2]进行阴离子交换反应,最后通过活化法得到多孔碳材料。这种方法的最大优点是有较高的碳产率。

关键词:离子液体、阴离子交换法、多孔碳材料

Abstract

In recent years,the application of ionic liquid in the synthesis of carbon materials has aroused extensive attention because of its features, such as green, less volatile, high stability and structural design of characters. And because the porous carbon material with light weight, good stability, high temperature resistance, acid and alkali resistant, non-toxic and good adsorption, it has been used in many fields. This paper mainly introduces the PEI (Polyetherimide) prepared for ionic liquid precursors, methods of carbon materials and related characterization. First by PEI of raw materials to join bromoacetonitrile (BrCH2CN) of ionic liquid precursor preparation, obtained by ionic liquid precursor to join dicyanamide silver [AgN (CN) 2] by anion exchange reaction, the activation method of porous carbon materials. The greatest advantage of this method is that there is a high carbon yield.

Keywords: Ionic liquid, anion exchange, porous carbon material.

前言

近年来多孔碳材料成为一种新型的快速发展起来的新型材料体系,在各个领域中的应用得到了广泛地关注,特别是在能源相关领域的应用。多孔材料因为结构上具有较高的孔隙率而具有一些相应的优异性能。多孔材料分为多孔金属材料(也就是所谓的泡沫金属)、非金属多孔材料(包括多孔陶瓷材料、多孔碳材料、多泡玻璃等)[2]。因为多孔材料孔道排列规则且孔道尺寸可以调节控制的优点,大比表面积和大的吸附量,它在大分子催化,吸附及分离,纳米材料组装等众多领域中具有较为宽泛的应用前景。

众多的多孔材料中,多孔碳材料由于具有成本低、质量轻、无毒害、表面化学惰性、耐高温耐酸碱、高机械稳定性、良好的导电性、吸附性以及大的比表面积和孔体积等特点,在CO2 吸附、储氢、催化以及燃料电池与电化学双电层电容器等领域显示出巨大的应用潜力而备受各界关注。各种各样的碳材料被不断的发现,其中包括碳纳米管、碳气凝胶、玻璃碳以及比表面积活性碳等,最近几年来,碳纳米管、碳气凝胶、活性碳受到众多研究者的青睐。这些碳材料均属于多孔碳材料的范围。

传统上,这些材料通过低蒸汽压力或天然的合成聚合物的碳化合成。然而,由于聚合物有限的溶解度和复杂的合成,通过聚合物碳化的相关程序是复杂并且费时的。近年来,离子液体(ILS),由完全的阳离子和阴离子,已成为一个碳前躯体家庭的新成员。这种新的碳材料前躯体离子液体,受到大众的广泛关注,离子液体,也被称为低温熔融盐,一般由

有机阳离子和无机阴离子组成且在低温(<100℃)下呈液态。离子液体具有很多优异的性质,如良好的化学定性和热稳定性、较低的熔点、高的离子导电性、良好的溶解性、可忽略的蒸气压、优异的加工性以及较强的结构设计性等[3]。

以离子液体作为形成多孔碳材料的前驱体制备出高比表面积的碳材料在近年也开始发展起来。经过恰当的分子设计和组合,离子液体和聚离子液体都可以被用来直接或间接制备各种碳材料及相关纳米杂化催化材料并拥有广泛的应用前景。

随着科学技术与工业生产的高速发展,我们需要在研究多孔碳材料的道路上作出更多的努力,作出比表面积更大,性能更优异的多孔碳材料。

第一章绪论

1.1 多孔碳材料简介

1.1.1 多孔碳材料概念多孔碳材料是指具有不通孔结构的碳素材料,它们孔的尺寸从具有相当于分子大小的纳米级超细微孔到可以适用于微生物增殖及活动的微米级细孔。多孔碳材料作为一种新的材料,具有耐高温、耐强酸强碱、导电、传热的众多优点。各种各样形态的活性炭是这种材料及其典型的例子,在气体吸附,光电磁,燃料电池,双层电容器等多个领域多个范围都得到了广泛地应用。

1.1.2 多孔碳材料的分类依据国际纯粹与应用化学联合会(IUPAC 1972)的规定,根据孔道尺寸大小可以将多孔碳材料分为以下几类:微孔(D<2nm),中孔也称为介孔(2nm

(D>50nm)。

种类孔径范围举例

微孔碳材料以小于2nm 的微孔为主沸石、分子筛、活性炭

中孔碳材料以2-50nm 的中孔为主气溶胶、层状黏土、MCM-41

大孔碳材料以大于50nm 的大孔为主多孔玻璃

锥形孔、筒形孔、球形、孔及裂缝等。

但实际上,仅仅从微观形貌或微观尺寸上划分多孔碳并不能代表它们实际的使用性能。它还受到其它诸多因素的影响,例如比表面积、孔容,孔径,孔的分布以及表面的官能团等。其中比图1-1 孔的类型图1-2 孔的形状

图1-3 孔径的分类

表面积和孔容是影响最显著的因素。通常情况下,多孔碳材料的比表面积越大,孔容越大,那么它的吸附能力越强。但是,在实际的吸附中吸附质的颗粒大小不同,种类也不相同,化学特性之间的差异也比较大,因而吸附量的大小又与多孔碳材料孔径的尺寸及分布有关联[4]。各种类型的孔的吸附机理随着孔径的不同会有相应的变化,在材料中尺寸大于50nm 的大孔作为吸附质分子及基团的通径,通过大孔吸附质分子得以进入吸附表面。这些通径是否畅通影响着吸附质分子的吸附速度。而中孔结构不仅起着吸附通径的作用同时会在相对的吸附压力下发生毛细凝结现象,使不能进入为空的分子被吸附在这里。多孔碳中微孔起着最重要的作用,这主要是由于它巨大的比表面积,它对多孔碳材料的吸附量起着重要的支配作用。因此,在制备过程中有效控制多孔碳材料的孔径以及孔分布将要成为新型炭材料研究的一个重要走向趋势。

1.2多孔碳材料的制备方法

1.2.1 活化法这种方法是制备多孔碳材料最传统的一种方法,这种方法制备出来的碳材料多为无序多孔碳材料,且孔的形状和孔径的尺寸不好控制。活化法包括(1)物理活化法利用气体介质

对原材料进行活化、化学活化法---- 通过化学试剂对原料进行活化成孔、化学-物理活化法

--- 先利用化学活化再利用物理法进一步扩大孔径;(2)可炭化和热解的高分子聚合物混合炭化:用两种热稳定程度不同的聚合物均匀混合后,若形成相分离结构则在进行热处理时,热稳定性差的聚合物完全分解成气相产物溢出,在热稳定性高的聚合物形成的碳前躯体或最终产物中留下孔结构[5];(3)铸型碳化法:指以无机多孔物质做铸型,含碳的有机物作为碳前躯体,通过一定的手段将碳的前驱体引入铸型,碳化铸型中的有机物,并通过一定方法去除铸型得到多孔碳材料[6];(4)碳前驱体的催化活化:一般在ZnCl2 或CeO2等固体金属盐类催化剂上完成活化,金属原子可以选择性气化结晶性较高的碳原子,从而将微孔扩大为介孔,同时,气化产物向外表面的扩散也会增大最终材料的孔性[6]。

1.2.2 模板法通过模板法制备出的多孔碳材料具有优异的结构可控性,这使得多孔炭的制备多了新的途径。模板法制备多孔碳材料的方法包括(1)软模板法:碳前驱体与软模板(表面活性剂)相互作用自行组装→碳前驱体碳化;(2)硬模板法:碳前驱体的合成→无机模板的碳化→无机模板的去除;合成方法为(3)双模板法:硬模板控制碳材料形貌以及大孔的形成,软模板控制有序孔孔道的形成[8];

1.3 离子液体的简介

离子液体(ILS)是指一类完全由离子组成的液体,是在室温或室温附近温度下呈现出液体状态的盐,在组成上,离子液体与人们概念中的“盐”相近,而其熔点通常又低于室温,因而也被称作“室温熔融盐”。目前人们所使用的离子液体大多数在室温下就呈液态,故也称为室温离子液体。它是从传统的高温熔融盐演变而来的,但与一般的离子化合物有着非常不同的性质和行为,最大的区别在于一般离子化合物只有在高温状态下才能变成液态,而离子液体在室温附近很大的温度范围内均为液态,最低凝固点可达-96℃[9]。

离子液体有富含碳的性质,加上他们不同的阳离子与阴离子的组合,有低波动率和高的热稳定性的优良性能,不仅大大简化了整个炭化过程中,也可以产生有吸引力的功能炭,不同于那些使用传统的聚合物碳前驱体,如有非常高含氮量和电导率。

离子液体具有诸多的优点使它成为碳前躯体的候选人,如:(1)由于内在库伦力相互作用构成的可忽略的蒸汽压以及高的稳定性,降低分解过程的质量损失;(2)相比于小分子前驱体具有有限的溶解度和复杂的过程相比,离子液体作为前躯体简化了碳化的过程并降低了时间与成本;(3)含有氮的离子液体可以在没有掺杂剂的前提下将碳、氮均匀的分布(4)在环境条件下的液体状态有利于生产无缝连续的碳膜;(5)极性的前体和无机材料的极性表面之间的相互作用,可能有助成功制造先进的碳材料,如中空多孔碳或氮掺杂的碳涂层材料;(6)离子液体的结构多样性

提供了方便以及可以控制分子水平上的碳材料的结构和性质更多可能性[10]。

1.4 含氮多孔碳材料的应用

氮元素进入到多孔碳材料的内部结构形成的氮掺杂多孔碳材料,除了具有多孔碳材料的所有优点外,以其独特的机械、电子、光学、半导体、储能性质、适宜的碱性等特点,在超硬材料、吸附、催化和燃料电池等方面的应用范围进一步扩大[11]。

(1)在催化上的应用:多孔碳材料中引入氮,在材料表面可以形成不同种类的含氮官能团,如氨基、亚氨基、吡啶氮等。这些功能团使碳材料表面的碱性大大增强。在催化领域,既可以被作为固体非金属碱催化剂,用于碱催化反应中;也可以用作催化剂载体,制备出高分散、高活性的负载型催化剂[12]。

(2)在吸附上的应用:多孔碳材料中掺杂N 原子或含氮碱性基团后,可以极大地调变多孔碳材料的表面积、孔道结构、表面化学特性,因此被许多研究者用于污染物,尤其是污染气体的吸附研究。化石燃料使用过程中产生的SO2, NOx 等酸性气体是导致酸雨的罪魁祸首,一些研究者致力于N 掺杂多孔碳材料用于除去SO2, NOx, H2S 等酸性气体的研究[13]。

(3)在电化学上的应用:燃料电池由于高效、环保而被认为是各种便携式电子设备、电动汽车的理想电源。多孔碳材料中掺杂N 原子后用作电池催化剂载体,可增强催化剂的催化活性:改变催化剂纳米颗粒沉积过程中成核及生长动力学,使得催化剂颗粒尺寸更小,增加催化剂颗粒的分散性;增加催化剂纳米颗粒与载体之间的化学键,有效抑制催化剂颗粒聚集,延长催化剂的使用寿命;使催化剂纳米颗粒电子结构发生改变,增强催化剂固有的催化活性[14]。

(4)在储氢上的应用:掺杂的N 原子可以增加氢原子在相邻碳原子上的吸附能,从而有利于氢气解离。与未掺杂氮元素的碳材料相比,H2在N 掺杂微孔碳上吸附热比H2经溢流在N 掺杂微孔碳上的吸附热高得多,从而在理论上解释了以上结果的合理性。这些结果表明,N 掺杂有利于碳材料对H2的储存量的增加[15]。

含氮多孔碳材料因为具有诸多优异的性能而具有广泛的和良好的发展前景。

第二章 实验部分

2.1 实验药品与仪器

药品:PEI(聚醚酰亚胺 Polyetherimide )、溴乙腈 (C2H2BrN )、NaDCA [NaN(CN)2]、AgNO 3、 乙醚(C 4H 10O ) 仪器:真空干燥箱、恒温水浴锅、磁力搅拌器、高温管式炉、分析天平、旋转蒸发仪、超声 装置

2.2 实验步骤

2.2.1 离子液体前驱体的制备

分别将 3 份 5g(0.1069mol) PEI(Polyetherimide )溶解在 15ml 去离子水中,搅拌, 待完全溶解转移至干净的单瓶中,标号为 PEI-1、PEI-2、PEI-3 号,继续搅拌备用;分别将

2.4g(0.02mol)、6.0g(0.05mol)、9.6g(0.08mol)的溴乙腈加入到 10ml 乙醇中,搅拌至溶 解,标号为 1、2、3 号;用滴管将 1、2、3 号的溴乙腈与乙醇的混合液缓慢滴加到对应的 PEI 溶液中,搅拌约 36 小时。此时现象为:PEI-1 号单颈瓶中的混合液体为淡黄色;PEI-2 号单颈瓶中的混合液体为棕色;PEI-3 号单颈瓶中的混合液体为深褐色。将PEI-1、PEI-2、 PEI-3 号号单颈瓶在45℃左右旋蒸,之后分别用乙醚洗涤两次,放入真空干燥箱中干燥一夜, 温度为 50℃。备用

图 2-1 前驱体

2.2.2 AgN(CN)2(AgDCA)的制备

PEI-1 号 PEI-2 号 PEI-3 号

根据 AgNO3+NaN(CN)2→AgN(CN)2+NaNO3 ;先将 15.48gAgNO3 在水中搅拌至完全溶解,再加入8.11gNaN(CN)2 反应 1 小时,随后在转速为 6000r 下离心 5 分钟,离心两次;放入真空干燥箱干燥一夜,温度为50℃。备用

2.2.3前驱体与AgN(CN)2的阴离子交换反应步骤

取与前驱体材料摩尔量比为1:1的AgN(CN)2 3.0579g、5.1438g、6.1978g分别加入到 5g的前驱体材料中,加水溶解搅拌反应12小时。标号为PEI-DCA-1、PEI-DCA-2、PEI-DCA-3 旋蒸,洗涤后放入真空干燥箱干燥过夜,温度为50℃。

2.2.4前驱体直接与NaN(CN)2进行阴离子交换反应

取与前驱体材料摩尔量比为 1 : 1 的 NaN(CN)2 0.48g 、 0.81g 、 0.98g 分别加入到 2g 的前驱体材料中,加水溶解搅拌反应 12 小时。标号为 PEI-NaDCA-1、PEI-DNaCA-2、PEI-NaDCA-3 旋蒸,洗涤后放入真空干燥箱干燥过夜,温度为50℃

图 2-2 前驱体与 AgDCA 反应后的产物

2.2.5 多孔碳材料的制备

分别将 PEI-1、PEI-2、PEI-3;PEI-DCA-1、PEI-DCA-2、PEI-DCA-3;PEI-NaDCA-1、

PEI-DNaCA-2、PEI-NaDCA-3 材料放入管式炉在N2氛围下烧至800℃。得到所需多孔碳材料。

PEI-DCA-1 PEI-DCA-2 PEI-DCA-3

图 2-3 经过800 ℃得到的碳材

2.3 材料的测试与表征方法

2.3.1热失重分析(TG)

热重法,是在程序控制温度下,测量物质的质量与温度或时间的关系的方法。进行热重分析的仪器,称为热重仪,主要由三部分组成,温度控制系统,检测系统和记录系统。通过分析热重曲线,我们可以知道样品及其可能产生的中间产物的组成、热稳定性、热分解情况及生成的产物等与质量相联系的信息。

2.3.2红外吸收光谱(FTIR)

一定频率的红外线经过分子时,被分子中相同振动频率的键震振动吸收,记录所得透过率的曲线成为红外光谱图。

当样品受到频率连续变化的红外光照射时,分子吸收某些频率的辐射,并由其振动转动运动引起偶极矩的净变化,产生的分子振动和转动能级从基态到激发态的跃迁,相应于这些区域的投射光强减弱,记录 T%对波数或波长的曲线,即为红外光谱。又称为分子振动转动光谱。

2.3.3BET 测试法

BET 测试法是 BET 比表面积测试法的简称,该方法由于是依据著名的 BET 理论为基础而

得名。BET 是三位科学家(Brunauer、Emmett 和 Teller)的首字母缩写,三位科学家从经典统计理论推导出的多分子层吸附公式基础上,即著名的 BET方程,成为了颗粒表面吸附科学的理论基础,并被广泛应用于颗粒表面吸附性能研究及相关检测仪器的数据处理中。

BET 测定比表面积是以氮气为吸附质,以氦气或氢气作载气,两种气体按一定比例混合,

达到指定的相对压力,然后流过固体物质。当样品管放入液氮保温时,样品即对混合气体中的氮气发生物理吸附,而载气则不被吸附。这时屏幕上即出现吸附峰。当液氮被取走时,样品管重新处于室温,吸附氮气就脱附出来,在屏幕上出现脱附峰。最后在混合注入已知体积的纯氮,得到一个校正峰,根据校正峰和脱附峰的峰面积,即可算出在该相对压力下样品的吸附量。

第三章结果与讨论

3.1热失重结果及分析

测试条件:实验测试气氛为氮气 , 氮气流速为 100mL/min ,温度设置:20-120 ℃除水,停留10min,90-500℃,10℃/min。

PEI 、加入溴乙腈后的产物、最终与 AgDCA 发生阴离子交换反应后的产物分别在氮气氛围下加热到800℃后测得结果;通过测试结果我们可知 PEI 及加入溴乙腈后的产物在350℃ 左右开始分解失重,且在400℃时停止继续分解失重;由测试结果我们可以看出通过AgN(CN)2 加入使原料 PEI 的产率从4.62%提高到 48.86%,这使得产品的产率大幅度的提高了。

图 3-1 PEI 及加入溴乙腈后产物的热失重测试结果

苏州大学物理与光电·能源学部本科生毕业论文

图 3-2 与 AgDCA 发生阴离子交换后产物热失重测试结果

图 3-3 直接与 NaDCA 发生阴离子交换后产物热失重测试结果

3.2 红外吸收光谱结果及分析

测试条件: 4000-400 cm-1,扫描次数:32,分辨率:32 cm-1,室内温度:15℃,室内相对湿度<65%。

从红外图谱中我们可以看出,在波数为 2200左右的范围与 AgN(CN)2发生阴离子交换反应的产物比原材料 PEI 多出一个吸收峰,证明反应产物中-C三 N 三键的存在,且通过与

AgN(CN)2发生阴离子交换反应可以提高碳材料前驱体的 N 含量。

3.3BET 测试结果及分析

通过 BET 测试我们可以得到碳材料的比表面积、孔径、孔隙率、孔容等材料特征。结果显示 PEI-1、PEI-2、PEI-3、PEI-DCA-1、PEI-DCA-2、PEI-DCA-3;PEI-NaDCA-1、PEI-DNaCA-2、PEI-NaDCA-3 的比表面积如下表(表-2)

物质PEI-1 PEI-2 PEI-3

比表面积(m3/g) 3.3520 3.1607 2.3104 物质PEI-DCA-1 PEI-DCA-2 PEI-DCA-3 比表面积(m3/g)9.0626 34.0098 2.6391 物质PEI-NaDCA-1 PEI-NaDCA-2 PEI-NaDCA-3 比表面积(m3/g) 6.3584 87.8583 188.6445

图 3-5

第四章总结与展望

总结:以 PEI为原料加入不同比例的溴乙腈之后的生成物作为碳材料的前驱体通过与与之比例相对的AgDCA 进行阴离子交换反应,得到我们所需的碳材料前驱体,通过高温烧制得到最终的碳材料。之后我们又做了前驱体直接与NaDCA直接进行阴离子交换反应做对比。得到加入AgDCA 使原材料 PEI 的碳化后的产物的产率得到提高的结论。虽然产率得到了提高,但孔隙率较小,需要通过一些手段提高材料的孔隙率,如果还有机会这将是我今后需要努力继续科研的地方。

虽然过去的十年里碳微孔材料的合成取得了明显的进步,但依旧存在着一些理论和技术难题。在碳微孔材料的合成方面,控制孔径的大小和分布一直难以解决。而至今为止还未能成功利用软模板法来合成碳微孔材料,但这仍旧是一个值得深入挖掘的课题。如今能源、催化和生物等领域的应用不断拓展,碳微孔材料的控制合成及其性能研究将愈发受到重视,其应用前景将更加广阔。展望:因为离子液体出色的例子交换能力给制备新型的高质量的纳米杂化材料创造了机会,它

的优点为离子液体直接或间接制备碳材料提供了可能:经过有目的的分子设计后,直接碳化或

经过适当催化活化后可以得到高产率,高质量的碳材料,如高石墨化,高导电性,高比表面积

的碳材料;经过恰当的阴离子设计碳化后可以得到各种杂原子掺杂的碳材料,如N、S、B 掺杂等;且与各种贵金属前驱体经过阴离子交换再碳化后得到各种纳米杂化碳材料。离子液体为前

驱体制备出的碳材料未来会在能源、催化、分析检测、电子、航空复合材料等领域都会有广阔

的应用前景。

致谢

光阴荏苒,岁月如梭,不知不觉我已在苏州大学完成了四年的本科学业,四年来的每一天都深深镌刻在我脑海。不曾忘记卫校楼旁的操场,每天早上挥洒的汗水铸就了我强壮的身躯;不曾忘记怡远楼前的小公园,每天早上坚持不懈的朗读奠定了我在学习上扎实的基础;不曾忘记鸿远楼的打铃声,日复一日的辛勤笔记提高了我的专业知识储备;不曾忘记物理楼窗外皎洁的月光,年复一年的反复实验推动了我在专业学术上大步向前……

经过四年的锤炼与洗礼,我从懵懂小伙变成了四有青年,期间所经历的事情很多,同时我想感谢的人也很多。首先,我想感谢我的论文指导老师赵杰老师,他严肃的科学态度,严谨的治学精神,精益求精的工作作风,深深地感染和激励着我,没有他的亲切关怀和悉心指导,就没有这篇论文的完成。

然后要感谢一些帮助过我的其他老师,和蔼可亲的他们一直默默地给予我以鼓舞与支持,让我在困难面前永不放弃;认真负责的他们告诉我什么是责任,态度决定一切,细节决定成败。我想没有他们就不会有我今天的成绩,首在此对他们表示感谢,在今后的日子里我会牢记他们的教诲,继续努力学习,勇攀生命的高峰!

其次,感谢苏颖,王芸,易庆华,黄建文,朱俊桐等师姐师兄,感谢你们在我最困难的时候给予我的所有帮助和鼓励;感谢同窗马佳昕,王相国,孙鹏飞,我们在论文写作期间互相扶持,互相帮助,这篇论文的顺利完成离不开你们的热情相助,愿你们前程似锦,也希望我们友谊长存。

感谢学校给予了我良好的教育,感谢一路走来那么多真诚善良的人给予我的热心帮助。感谢你们的出现让我平凡的人生不再平凡。我从你们身上得到的感动与温暖,是我将珍藏一生的宝贵财富。

多孔碳材料制备与应用

摘要 离子液体因为具有绿色环保、不易挥发、稳定性高以及结构设计性强等特点,最几年在合成碳材料中的应用引起了人们的广泛关注[1]。且因多孔碳材料质量轻,法及其相关表征。稳定性好,耐高温,耐酸碱,无毒性,吸附性好等优点而在多领域中被广泛应用。本文主要介绍的是以PEI(聚醚酰亚胺Polyetherimide)为原料制备离子液体前驱体并制得碳材料的方法。首先通过向原材料PEI中加入溴乙腈(BrCH2CN)制备离子液体前驱体,向得到的离子液体前驱体中加入二氰胺银[AgN(CN)2]进行阴离子交换反应,最后通过活化法得到多孔碳材料。这种方法的最大优点是有较高的碳产率。 关键词:离子液体、阴离子交换法、多孔碳材料

Abstract In recent years,the application of ionic liquid in the synthesis of carbon materials has aroused extensive attention because of its features, such as green, less volatile, high stability and structural design of characters. And because the porous carbon material with light weight, good stability, high temperature resistance, acid and alkali resistant, non-toxic and good adsorption, it has been used in many fields. This paper mainly introduces the PEI (Polyetherimide) prepared for ionic liquid precursors, methods of carbon materials and related characterization.First by PEI of raw materials to join bromoacetonitrile (BrCH2CN) of ionic liquid precursor preparation, obtained by ionic liquid precursor to join dicyanamide silver [AgN (CN) 2] by anion exchange reaction, the activation method of porous carbon materials.The greatest advantage of this method is that there is a high carbon yield. Keywords: Ionic liquid, anion exchange, porous carbon material.

多孔碳材料制备与应用之欧阳家百创编

摘要 欧阳家百(2021.03.07) 离子液体因为具有绿色环保、不易挥发、稳定性高以及结构设计性强等特点,最几年在合成碳材料中的应用引起了人们的广泛关注[1]。且因多孔碳材料质量轻,法及其相关表征。稳定性好,耐高温,耐酸碱,无毒性,吸附性好等优点而在多领域中被广泛应用。本文主要介绍的是以PEI(聚醚酰亚胺Polyetherimide)为原料制备离子液体前驱体并制得碳材料的方法。首先通过向原材料PEI 中加入溴乙腈(BrCH2CN)制备离子液体前驱体,向得到的离子液体前驱体中加入二氰胺银[AgN(CN)2]进行阴离子交换反应,最后通过活化法得到多孔碳材料。这种方法的最大优点是有较高的碳产率。 关键词:离子液体、阴离子交换法、多孔碳材料 Abstract In recent years,the application of ionic liquid in the synthesis of carbon materials has aroused extensive attention because of its features, such as green, less volatile, high stability and structural design of characters. And because the porous carbon material with light weight, good stability, high temperature resistance, acid and alkali resistant, non-toxic and good adsorption, it has been used in many fields. This

多孔碳纳米球的制备及其电化学性能_杨秀涛

物理学报Acta Phys.Sin.Vol.66,No.4(2017)048101 多孔碳纳米球的制备及其电化学性能 ?杨秀涛梁忠冠袁雨佳阳军亮夏辉? (中南大学物理与电子学院,长沙 410083) (2016年10月11日收到;2016年10月31日收到修改稿) 以三嵌段共聚物F108为软模板,通过水热法合成酚醛树脂球并在氮气氛围下碳化、KOH 活化处理,最终得到多孔碳纳米球材料.通过扫描电子显微镜,透射电子显微镜和氮气吸附分析仪对样品进行表征,结果表明样品的平均粒径为120nm,球形度高,比表面积达到1403m 2/g,孔径分布广.通过X 射线衍射研究样品的结晶度, 序度提高明,10000次循环充放电后,关键词:PACS:1引上的电池,长、能影响较大[纳米管[5,6]球[12?14].物为模板,活化,得到活 P123(PEO 20-. 为软模板,利用水(porous .通过扫描电子X 射线,研究孔隙结构、 ?国家自然科学基金(批准号:51673214)资助的课题.?通信作者.E-mail:xhui73@https://www.sodocs.net/doc/e09864296.html, ?2017中国物理学会Chinese Physical Society https://www.sodocs.net/doc/e09864296.html, 网络出版时间:2017-01-12 10:56:13 网络出版地址:https://www.sodocs.net/doc/e09864296.html,/kcms/detail/11.1958.O4.20170112.1056.016.html

结晶度和表面官能团的影响.结合PCNS 样品的电化学性能的测试,研究了PCNS 样品的理化特性对其电化学性能的影响. 2实验部分 2.1 多孔碳纳米球的合成 首先,称取1.96g 三嵌段共聚物F108溶解于30mL 水中搅拌均匀得到澄清溶液A.然后称1.2g 的苯酚并量取4.2mL 质量分数为37%的甲醛溶液溶解于30mL 的0.1M(mol/L)氢氧化钠溶液,搅拌均匀, min 体系中加入到溶液B.取物质烘干.氛下以700? 物PCNS 为中性,900?C 时,2.2600i)TWIX)比表面积S 孔面积(S 计算.品的孔径分布.用X 射线衍射仪(XRD,SIEMENS D500)在电压为40kV 、电流为100mA,Cu 靶、K α射线(λ=0.15056nm)、石墨单色滤波器以及衍射角为10?—70?的条件下以2?/s 的速度对样品扫描. 用红外光谱仪(FTIR,Niclet 380)对样品在波数500cm ?1—4500cm ?1范围内进行扫描,根据得到的吸收光谱图分析样品的表面元素及官能团组成. 2.3电化学特性测试 采用辰华CHI660E 电化学工作站在三电极体 系进行电化学特性的测试.测试体系的对电极和参比电极分别采用铂片电极和Hg/HgO 电极,而工作电极的制备采用(1×1)cm 2泡沫镍为基底,将制备的多孔碳纳米球样品作为活性物-质和乙炔黑,用乙醇作为溶剂,60wt%聚四氟乙烯(PTFE)混合,调成浆状,,于10MPa 压(cyclic (galvano-GC)和电化学阻spectroscopy,5,10,20,50,100V 的电压区间进行·m ), (1) (A),放电时间(g).电化学kHz,微扰为,1(b)分别是PCNS 1(c)和图1(d)是照片,图1(e)和TEM 照片,每TEM 照片,KOH 处理后其粒径大小没有明显的改变.从选区电子衍射图可知,样品在?002?和?100?晶面处具有衍射特征峰.由超高放大倍数TEM 照片,可以看出样品PCNS700和PCN900的微晶有序度要高于PCNS 的有序度.

碳基纳米复合材料EDLC超级电容器

摘要 制造并测试了基于活性炭作为主材料电极的超级电容器。MWCNT作为添加剂添加到主体材料中以形成纳米复合材料并且确认MWCNT浓度对改善的影响,研究超级电容器的性能。使用1M TEABF4-PC溶液作为有机电解质。纳米复合材料在改善超级电容的比功率和能量密度方面不同地起作用,测试方法采用阻抗光谱、进行循环伏安法和恒电流充电- 放电测量来表征电容器。 介绍 电化学双层电容器(EDLC)的超级电容器是具有功率密度和能量密度是介于传统电容器和电池之间。随着对具有高功率的能量存储装置的需求长的耐久性增加的提高,超级电容器变得越来越重要。EDLC超级电容器与传统的电容器的区别,是其电极由多孔导体如活性炭组成,其具有巨大的表面积,并且其通过静电力累积并保持电荷/电解质界面的薄层上的电荷或非法拉效应,使得其具有巨大的电容(> 100F / g),并且具有更高的功率和更长的再循环寿命(> 100000个周期)比可充电电池。然而,到目前为止EDLC超级电容器的能量密度不是那么高。 碳质材料如碳气凝胶、粉末和碳纤维是最常用的材料作为超级电容器中的电极,因为碳可具有高表面积,化学和热稳定,成本相对低和环保。提高EDLC性能的方法包括创造新的碳纳米复合材料电极,目的是为了增加电极的导电性和表面积。 在本报告中,探索了一系列用于EDLC的碳基对称电极,使用商用的活性炭粉末作为基本活性材料,碳纳米管作为导电填料。还探讨了在混合溶剂中基于LiPF 6或Et 4 NBF 4的有机电解质的性能,其具有大于3V的电化学窗口。使用VersaSTAT MC分析仪在测试其阻抗谱,循环伏安法和恒电流充电- 放电测试。 实验步骤 1.碳电极 使用表面积为1000m 2 / g的活性炭粉末(AC)作为主体电极材料。在一系列研究中分别以0.15重量%,1重量%和7重量%的重量百分比添加多壁碳纳米管粉末(MWCNT)而没有改性。以5重量%的总固体组分添加PVDF(聚(偏二氟乙烯))作为粘合剂。碳质膜的面密度为4?5mg / cm 2。 2.制作电容器 图1 图1提供了在本研究中制造的超级电容器电池类型的图。电解质为1M Et 4 NBF 4(四氟硼酸四乙铵或TEABF 4)在PC(碳酸亚丙酯)中。盐和溶剂都来自Sigma-Aldrich,Et4NBF4纯度为99%,PC为无水,99.7%纯度。 为了组装电容器电池,切出两个碳质材料涂覆的Al的矩形条并与碳侧面对面组合,将隔膜用电解质溶液浸泡并夹在其间。因此,形成对称电极EDLC单元,其中电极重叠区域被定义为工作区域,其在所有器件中固定为2cm 2。

碳纤维及其复合材料的发展及应用_上官倩芡

第37卷第3期上海师范大学学报(自然科学版)Vol.37,N o.3 2008年6月J ou rnal of ShanghaiNor m alUn i versity(Natural S ci en ces)2008,J un 碳纤维及其复合材料的发展及应用 上官倩芡,蔡泖华 (上海师范大学机械与电子工程学院,上海201418) 摘要:叙述了碳纤维的结构形态、分类以及在力学、物理、化学方面的性能,介绍了碳纤维增强复合材料的特性,着重阐述了碳纤维增强树脂基复合材料中基体的分类、选择和应用,指出了碳纤维及其复合材料进一步发展的趋势. 关键词:碳纤维;复合材料 中图分类号:O636文献标识码:A文章编号:1000-5137(2008)03-0275-05 碳纤维作为一种高性能纤维,具有高比强度、高比模量、耐高温、抗化学腐蚀、耐辐射、耐疲劳、抗蠕变、导电、传热和热膨胀系数小等一系列优异性能.此外,还具有纤维的柔曲性和可编性[1~3].碳纤维既可用作结构材料承载负荷,又可作为功能材料发挥作用.因此碳纤维及其复合材料近几年发展十分迅速.本文作者就碳纤维的特性、分类及其在复合材料领域的应用等内容进行介绍. 1碳纤维特性、结构及分类 碳纤维是纤维状的碳材料,由有机纤维原丝在1000e以上的高温下碳化形成,且含碳量在90%以上的高性能纤维材料.碳纤维主要具备以下特性:1密度小、质量轻,碳纤维的密度为1.5~2g/c m3,相当于钢密度的1/4、铝合金密度的1/2;o强度、弹性模量高,其强度比钢大4~5倍,弹性回复为100%;?热膨胀系数小,导热率随温度升高而下降,耐骤冷、急热,即使从几千摄氏度的高温突然降到常温也不会炸裂;?摩擦系数小,并具有润滑性;?导电性好,25e时高模量碳纤维的比电阻为775L8/c m,高强度碳纤维则为1500L8/c m;?耐高温和低温性好,在3000e非氧化气氛下不熔化、不软化,在液氮温度下依旧很柔软,也不脆化;?耐酸性好,对酸呈惰性,能耐浓盐酸、磷酸、硫酸等侵蚀[4~7].除此之外,碳纤维还具有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性. 碳纤维的结构取决于原丝结构和碳化工艺,但无论用哪种材料,碳纤维中碳原子平面总是沿纤维轴平行取向.用X-射线、电子衍射和电子显微镜研究发现,真实的碳纤维结构并不是理想的石墨点阵结构,而是属于乱层石墨结构[8],如图1所示.构成此结构的基元是六角形碳原子的层晶格,由层晶格组成层平面.在层平面内的碳原子以强的共价键相连,其键长为0.1421n m;在层平面之间则由弱的范德华力相连,层间距在0.3360~0.3440n m之间;层与层之间碳原子没有规则的固定位置,因而层片边缘参差不齐.处于石墨层片边缘的碳原子和层面内部结构完整的基础碳原子不同.层面内部的基础碳原子所受的引力是对称的,键能高,反应活性低;处于表面边缘处的碳原子受力不对称,具有不成对电子,活性 收稿日期:2008-01-04 基金项目:上海市教委科研基金项目(06D Z034). 作者简介:上官倩芡(1974-),女,上海师范大学机械与电子工程学院副教授.

金属多孔材料的制备及应用_于永亮

金属多孔材料的制备及应用 于永亮,张德金,袁勇,刘增林 (粉末冶金有限公司) 摘要:在归纳分析目前国内外各种制备多孔材料新技术的基础上,阐述了多孔材料在过滤、电极材料、催化载体、消音材料、生物和装饰材料方面应用及未来发展前景。 关键词:多孔材料功能结构制备方法金属加工 0前言 多孔材料是一种由相互贯通或封闭的孔洞构成网络结构的材料,孔洞的边界或表面由支柱或平板构成。由于多孔材料具有相对密度低、比强度高、比表面积大、重量轻、隔音、隔热、渗透性好等优点,其应用范围远远超过单一功能的材料。近年来金属多孔材料的开发和应用日益受到人们的关注。目前,金属多孔材料已经在冶金、石油、化工、纺织、医药、酿造等国民经济部门以及国防军事等部门得到了广泛的应用。从20世纪中叶开始,世界科技较发达国家竞相投入到多孔金属材料的研究与开发之中,并相继研发了各种不同的制备工艺。 1金属多孔材料的制备工艺 1.1粉末冶金(PM)法[1] 该方法的原理是将一种或多种金属粉末按一定的配比混合均匀后,在一定的压力下压制成粉末压坯。将成形坯在烧结炉中进行烧结,制得具有一定孔隙度的多孔金属材料。或不经过成形压制,直接将粉末松装于模具内进行无压烧结,即粉末松装烧结法。 1.2纤维烧结法[2] 纤维烧结法与粉末冶金法基本类似。用金属纤维代替金属粉末颗粒,选取一定几何分布的金属纤维混合均匀,分布成纤维毡,随后在惰性气氛或还原性气氛保护的条件下烧结制备金属纤维材料。该法制备的金属多孔材料孔隙度可在很大范围内调整。 作者简介:于永亮(1981-),男,2006年7月毕业于中南大学粉末冶金专业。现为莱钢粉末冶金有限公司技术科助理工程师,主要从事生产技术及质量管理工作。1.3发泡法[3] 1)直接吹气法。对于制备泡沫金属,直接吹气法是一种简便、快速且低耗能的方法。 2)金属氢化物分解发泡法。这种方法是在熔融的金属液中加入发泡剂(金属氢化物粉末),氢化物被加热后分解出H2,并且发生体积膨胀,使得液体金属发泡,冷却后得到泡沫金属材料。 3)粉末发泡法。该方法的基本工艺是将金属与发泡剂按一定的比例混合均匀,然后在一定的压力下压制成形。将成形坯经过进一步加工,如轧制、模锻等,使之成为半成品,然后将半成品放入一定的钢模中加热,使得发泡剂分解放出气体发泡,最后得到多孔泡沫金属材料。 1.4自蔓延合成法[4] 自蔓延高温合成法是一种利用原材料组分之间化学反应的强烈放热,在维持自身反应继续进行的同时产生大量孔隙的材料合成方法。该方法放热反应可迅速扩展(即自蔓延),在极短时间内即可完成全部燃烧反应。同时因为反应时的温度高,故容易得到高纯度材料。这种方法主要是依靠反应过程中产生的液体和气体的运动而得到多孔结构,因此其孔隙大多是相互连通的,采用这种方法制备的多孔材料孔隙度可达到60%以上。然而,由于在自蔓延高温合成过程中,其热量释放和反应过程过于剧烈,容易导致材料的变形和开裂,同时不利于材料的孔结构控制和近净成形。 1.5铸造法[5] 1)熔模铸造法。熔模铸造法是先将已经发泡的塑料填入一定几何形状的容器内,在其周围倒入液态耐火材料,在耐火材料硬化后,升温加热使发泡塑料气化,此时模具就具有原发泡塑料的形状,将液态金属浇注到模具内,在冷却后把耐火材料与 36 莱钢科技2011年6月

石墨烯复合材料的研究及其应用

石墨烯复合材料的研究及其应用 任成,王小军,李永祥,王建龙,曹端林 摘要:石墨烯因其独特的结构和性能,成为物理化学和材料学界的研究热点。本文综述了石墨烯复合材料的结构和分类,主要包括石墨烯-纳米粒子复合材料、石墨烯-聚合物复合材料和石墨烯-碳基材料复合材料。并简述石墨烯复合材料在催化领域、电化学领域、生物医药领域和含能材料领域的应用。 关键词:石墨烯;复合材料;纳米粒子;含能材料 Research and Application of Graphene composites ABSTRACT: Graphene has recently attracted much interest in physics,chemistry and material field due to its unique structure and properties. This paper reviews the structure and classification of graphene composites, mainly inclouding graphene-nanoparticles composites, graphene-polymer composites and graphene-carbonmaterials composites. And resume the application of graphene composites in the field of catalysis, electrochemistry, biological medicine and energetic materials. Keywords: graphene; composites; nanoparticles; energetic materials 石墨烯自2004年曼彻斯特大学Geim[1-3]等成功制备出以来,因其独特的结构和性能,颇受物理化学和材料学界的重视。石墨烯是一种由碳原子紧密堆积构成的二维晶体,是包括富勒烯、碳纳米管、石墨在内的碳的同素异形体的基本组成单元。石墨烯的制备方法主要有机械剥离法,晶体外延法,化学气相沉积法,插层剥离法以及采用氧化石墨烯的高温脱氧和化学还原法等[4-10]。与碳纳米管类似,石墨烯很难作为单一原料生产某种产品,而主要是利用其突出特性与其它材料体系进行复合.从而获得具有优异性能的新型复合材料。而氧化石墨烯由于其特殊的性质和结构,使其成为制备石墨烯和石墨烯复合材料的理想前驱体。本文综述了石墨烯复合材料的结构、分类及其在催化领域、电化学领域、生物医药领域和含能材料领域的应用。

碳纤维及其复合材料的发展和应用(精)

·开发与创新· Development and Applications of Carbon Fiber and Its Composites GAO Bo ,XU Zi-Li (Wuhan Textile University ,Wuhan Hubei 430073,China Abstract:This paper introduces performance and features of carbon fiber,briefly overviews the history,including both foreign and domestic.And analyses the properties and applications of carbon fiber composite material,emphasizes the related performance that carbon fiber adds to the metal matrix composites and points out its research prospects.Key words:carbon fiber ;composite ;metal matrix 0引言 碳纤维是含碳量高于90%的无机高分子纤维,是由有机母体纤维(聚丙烯睛、粘胶丝或沥青等采用高温分解法在1000~3000℃高温的惰性气体下碳化制成的。它是一种力学性能优异的新材料,比重不到钢的1/4,能像铜那样导电,比不锈钢还耐腐蚀,而其复合材料抗拉强度一般都在3500Mpa 以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa ,也高于钢。碳纤维按其原料可分为三类:聚丙烯腈基(PAN 碳纤维、石油沥青基碳纤维和人造丝碳纤维三类。其中聚丙烯腈基碳纤维用途最广,需求也最大[1]。 1碳纤维的发展史 1.1国外碳纤维的发展历史 20世纪50年代美国开始研究粘胶基碳纤维,1959 年生产出了粘胶基纤维Thormel-25,这是最早的碳纤维产品。同一年,日本发明了用聚丙烯腈基(PAN 原丝

多孔材料的制备及表征1

多孔材料合成及表征
多孔材料合成及表征
(Porous Materials: Synthesis and Characterization)
——概述
肖强
Applied Catalysis, Institute of Physical Chemistry

催化与多孔材料
催化
——催化剂和反应物均为气相或液相 均相催化 ——催化剂为固态物质,反应物是气态或液态 非均(多)相催化 酶催化
非均(多)相催化剂(载体)
沸石分子筛 活性炭 多孔Al2O3 多孔硅胶 非均相相催化剂绝大多数是多孔材料或以多孔材料为载体制备的
2

多相催化与吸附
H2
多相催化过程
吸附 活化 过渡态 脱附 产物
Ni Ni
H
H
Ni
Ni
Ni
凡气固多相催化反应,都包含吸附步骤。在反应过程中,至 少有一种反应物参与吸附过程。多相催化反应的机理与吸附 的机理不可分割。
吸附现象(adsorption) 多孔材料
3

多孔材料(porous materials)
sponge
foam
sand
filter paper
zeolites
mesoporous materials
macroporous materials
4

多孔材料特点
多孔性(porosity)
孔径可以从微孔到大孔
高比表面积(high specific surface area)
比表面积可高达2000 m2/g, MOF可达6000 m2/g!!
高吸附容量(high adsorption capability) 闭合孔 材料性质的多样性(versatile)
无机材料 有机-无机杂化材料 (metal-organic frameworks, MOFs) 有机高分子材料 ……
5
可接近孔

几种碳纳米材料的制备及其应用研究

几种碳纳米材料的制备及其应用研究 碳基纳米材料是指分散相至少有一维小于100 nm的碳材料。分散相可以由碳原子组成,也可以由其它原子(非碳原子)组成。 到目前为止,发现的碳基纳米材料有富勒烯、碳纳米管、石墨烯、荧光碳点及其复合材料。碳基纳米材料在硬度、耐热性、光学特性、耐辐射特性、电绝缘性、导电性、耐化学药品特性、表面与界面特性等方面都比其它材料优异,可以说碳基纳米材料几乎包括了地球上所有物质所具有的特性,如最硬—最软,全吸光—全透光,绝缘体—半导体—良导体,绝热—良导热等,因此具有广泛的用途。 发展制备这些材料的新方法、新技术,研究这些材料不同的纳米结构对性质的影响,不仅有重要的理论价值,而且对能源和生命分析领域的快速发展也具有重要的实际意义。在本论文工作中,以碳基纳米材料为主体,以微波水热、溶剂热等液相合成策略为手段,从探索纳米材料的结构、表面性质与其性能的关系出发,构建功能化碳基纳米材料,以满足在能源和生命分析应用中的要求。 本论文研究工作主要包括以下几方面的内容:1.微波辅助原位合成石墨烯/聚3,4-乙烯二氧噻吩复合物及其在超级电容器中的应用本工作中我们报道了一个新颖的微波辅助原位合成石墨烯/聚3,4-乙烯二氧噻吩复合物的新方法。首先,石墨烯氧化物(GO)和3,4-乙烯二氧噻吩单体(EDOT)通过两者间的吸附作用形成GO/EDOT复合物。 然后,在微波加热条件下,GO表面吸附的EDOT单体被GO氧化聚合为聚3,4-乙烯二氧噻吩,同时GO转化为石墨烯,进而形成石墨烯/聚3,4-乙烯二氧噻吩(G/PEDOT)复合物。产物中不含过量的EDOT或GO,从而保证了复合物的纯度。 本研究还对该复合物的结构进行了表征,利用循环伏安和恒电流充放电技术

多孔碳材料的制备与应用

多孔碳材料的制备与应用 摘要:多孔碳材料不仅具有碳材料化学稳定高、导电性好等优点,由于多孔结构的引入,还具有比表而积高、孔道结构丰富、孔径可调等特点,在催化、吸附和电化学储能等方而都得到了广泛的应用。本文综述了微孔、介孔、大孔及多级孔碳等多孔碳材料的最新研究进展,重点介绍了多孔碳孔道结构的调控,并对多孔碳材料的应用进行了展望。 关键词:多孔碳;模板合成;活化合成;有序孔道 Abstract: Porous carbon with large specific surface area,tunable porous structure,high stability and goodelectron conductivity,has attracted considerable attention due to its promising applications in the fields of catalyst,catalyst support,absorption and electrochemical energy storage.This manuscript reviews recent development in thefabrication of microporous carbon,mesoporous carbon,macroporous carbon and hierarchically porous carbon withboth ordered and disordered porous structures.The so-called soft- and hard-template methods are efficient in tuningthe porous structures and morphologies of carbon materials.The potential applications of porous carbon materialsare also highlighted in this review. Key words porous carbon:template synthesis; activation preparation; ordered porous channels

碳纤维复合材料在航空航天领域的应用

碳纤维复合材料在航空航天领域的应用林德春潘鼎高健陈尚开 (上海市复合材料学会)(东华大学)(连云港鹰游纺机集团公司) 碳纤维是纤维状的碳素材料,含碳量在90%以上。具有十分优异的力学性能,与其它高性能纤维相比具有最高比强度和最高比模量。特别是在2000℃以上高温惰性环境中,是唯一强度不下降的物质。此外,其还兼具其他多种得天独厚的优良性能:低密度、高升华热、耐高温、耐腐蚀、耐摩擦、抗疲劳、高震动衰减性、低热膨胀系数、导电导热性、电磁屏蔽性,纺织加工性均优良等。因此,碳纤维复合材料也同样具有其它复合材料无法比拟的优良性能,被应用于军事及民用工业的各个领域,在航空航天领域的光辉业绩,尤为世人所瞩目。 可以明显看出,在航空航天领域碳纤维的用量有大幅度增加,2006年比2001年增长约40%,2008年增长约76%,2010年和2001年相比增长超过100%。 本文将介绍碳纤维增强树脂基复合材料(CFRP)在航空航天领域应用的新进展。 1 航空领域应用的新进展 T300 碳纤维/树脂基复合材料已经在飞行器上广泛作为结构材料使用,目前应用较多的 为拉伸强度达到5.5GPa,断裂应变高出T300 碳纤维的30%的高强度中模量碳纤维T800H 纤维。 (1)军品 碳纤维增强树脂基复合材料是生产武器装备的重要材料。在战斗机和直升机上,碳纤维复合材料应用于战机主结构、次结构件和战机特殊部位的特种功能部件。国外将碳纤维/环氧和碳纤维/双马复合材料应用在战机机身、主翼、垂尾翼、平尾翼及蒙皮等部位,起到了明显的减重作用,大大提高了抗疲劳、耐腐蚀等性能,数据显示采用复合材料结构的前机身段,可比金属结构减轻质量31.5%,减少零件61.5%,减少紧固件61.3%;复合材料垂直安定面可减轻质量32.24%。用军机战术技术性能的重要指标——结构重量系数来衡量,国外第四代军机的结构重量系数已达到27~28%。未来以F-22为目标的背景机复合材料用量比例需求为35%左右,其中碳纤维复合材料将成为主体材料。国外一些轻型飞机和无人驾驶飞机,已实现了结构的复合材料化。目前主要使用的是T300级和T700级小丝束碳纤维增强的复合材。 美国在歼击机和战斗机上大量使用复合材料:F-22的结构重量系数为27.8%,先进复合材料的用量已达到25%以上,军用直升机用量达到50%以上。八十年代初美国生产的单人

多孔材料的制备

多孔材料的制备 摘要:本文主要介绍利用模板法制备多孔材料。 关键词:多孔材料;模板 按照国际纯粹与应用化学协会(iupac)的定义,多孔材料可分为微孔材料、介孔材料和大孔材料[1]。 多孔材料的制备方法有模板法、微乳法及腐蚀法等。目前对于模板法的认识存在两个层次,即“狭义模板法”和“广义模板法”。“狭义模板法”是将具有特定空间结构和基团的物质—“模板”引入到基材中,然后将模板除去来制备具有“模板识别部位”的基材的一种手段;而“广义模板法”是通过“模板”与基质物质的相互作用而构筑具有“模板信息”基材的制备手段[2]。 模板技术可分为阴模技术和阳模技术。阴模技术是指在模板内部的微小空间(受限空间)内进行材料制备,阳模技术系利用具有规整均一外形的模板,通过前驱物种的堆砌、组装、定形,以及脱模处理来制备具规整孔结构的材料。 在模板法中模板剂的类型决定了所得孔的形貌,不同的模板剂作用的方式、机理差别都很大。模板剂主要包括:表面活性剂模板、嵌段共聚物模板、乳液模板、非表面活性剂有机小分子模板、细菌模板、胶晶模板等。 一、表面活性剂模板 表面活性剂是一种双功能的分子,包含亲溶剂(亲液)的端基和憎溶剂(憎液)的尾基(例如它们都是两性分子)。由于它们具有

两性性质,表面活性剂能够组合成高分子的排列。 人们可以通过表面活性剂在溶液中的浓度以及控制在合成过程 中的反应条件来调节孔的几何尺寸。依据表面活性剂端基的化学性能和电荷,可以将表面活性剂划分为:①阴离子型―表面活性剂亲水基团带有一个负电荷。例如硫酸盐、磺酸盐、磷酸盐和羧酸等; ②阳离子型―表面活性剂憎水基团带有正电荷;③非离子型―表面活性剂亲水基团及憎水基团均不带电荷。如聚合物(乙氧基氧化物);④两性表面活性剂,但很少有关于它们应用的报道。 二、嵌段共聚物模板 含亲水基和疏水基的嵌段共聚物作为模板剂,可明显提高多孔材料的水热稳定性,且可以有效地调控多孔材料的结构与性能。这类模板剂主要是聚烷氧类嵌段共聚物,如聚环氧乙烯醚―聚环氧丙烯醚―聚环氧乙烯醚(epe)。利用这类模板剂合成出的氧化硅分子筛不但孔径可调,而且材料的形态也可控制,如可形成纤维状、面包圈状、香肠状和球形介孔材料。此外,新开发的嵌段共聚多肽模板剂能模仿自然界的硅蛋白。在中性溶液(ph=7)及室温条件下,能使硅酸乙酯(teos)经水解、缩合反应后形成特定形态的氧化硅。这种方法首次突破了硅酸乙酯水解需要催化剂、酸或碱性条件下水解的局限,能在自然界的温和条件下形成氧化硅特定的结构,使仿生矿化越来越接近自然界中的生物模拟过程。 三、乳液模板 乳液模板法具有形式多样、适应性强、实施方便且多孔材料孔径

【CN109772419A】在限域空间构筑氮化碳基超薄纳米片复合材料的制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910178756.8 (22)申请日 2019.03.11 (71)申请人 辽宁石油化工大学 地址 113001 辽宁省抚顺市望花区丹东路 西段1号 (72)发明人 杨占旭 王崇泽 谭文 崔博洋  (74)专利代理机构 沈阳亚泰专利商标代理有限 公司 21107 代理人 郭元艺 (51)Int.Cl. B01J 27/24(2006.01) B01J 37/08(2006.01) B82Y 30/00(2011.01) B82Y 40/00(2011.01) C01B 3/04(2006.01) (54)发明名称 在限域空间构筑氮化碳基超薄纳米片复合 材料的制备方法 (57)摘要 本发明属于光催化领域,尤其涉及一种在限 域空间构筑氮化碳基超薄纳米片复合材料的制 备方法,按如下步骤实施:(1)将氰胺与蛭石混 合,程序升温至300~400℃,再缓慢冷却至室温, 得到氰胺插层蛭石前体:(2)将所述氰胺插层蛭 石前体与有机溶液搅拌反应,抽滤洗涤后烘干; 在空气中加热至500~650℃,再缓慢冷却至室 温;(3)将所得产物与强酸反应,抽滤洗涤滤饼后 烘干。本发明成本低,易于工业化生产,目的产物 分散性好且具有优良光催化性能。权利要求书1页 说明书4页 附图3页CN 109772419 A 2019.05.21 C N 109772419 A

权 利 要 求 书1/1页CN 109772419 A 1.一种在限域空间构筑氮化碳基超薄纳米片复合材料的制备方法,其特征在于,按如下步骤实施: (1)将氰胺与蛭石混合,程序升温至300~400℃,再缓慢冷却至室温,得到氰胺插层蛭石前体; (2)将步骤(1)所述氰胺插层蛭石前体与有机溶液搅拌反应,抽滤洗涤后烘干;在空气中加热至500~650℃,再缓慢冷却至室温; (3)将步骤(2)所得产物与强酸反应,抽滤洗涤滤饼后烘干。 2.根据权利要求1所述的在限域空间构筑氮化碳基超薄纳米片复合材料的制备方法,其特征在于:所述步骤(1)中,氰胺与蛭石混合均匀后置于氧化铝坩埚中,在空气中以1~10℃/min加热至300~400℃,维持1~4h后,再缓慢冷却至室温。 3.根据权利要求2所述的在限域空间构筑氮化碳基超薄纳米片复合材料的制备方法,其特征在于:所述步骤(2)中,将氰胺插层蛭石前体与1~40mL有机溶液在40~90℃下搅拌反应2~60h,抽滤洗涤后40~80℃烘干;在空气中加热至500~650℃,维持1~4h后,再缓慢冷却至室温。 4.根据权利要求3所述的在限域空间构筑氮化碳基超薄纳米片复合材料的制备方法,其特征在于:所述步骤(3)中,将所得产物与强酸在40~90℃下搅拌反应2~60 h,抽滤并用去离子水洗涤滤饼后40~80℃烘干。 5.根据权利要求4所述的在限域空间构筑氮化碳基超薄纳米片复合材料的制备方法,其特征在于:所述步骤(1)中,所述氰胺为单氰胺、二氢二氨或三聚氰胺中的一种或两种以上的混合物。 6.根据权利要求5所述的在限域空间构筑氮化碳基超薄纳米片复合材料的制备方法,其特征在于:所述氰胺与蛭石的质量比为1:1~20。 7.根据权利要求6所述的在限域空间构筑氮化碳基超薄纳米片复合材料的制备方法,其特征在于:所述步骤(2)中,有机溶液为醛溶剂。 8.根据权利要求7所述的在限域空间构筑氮化碳基超薄纳米片复合材料的制备方法,其特征在于:所述醛溶剂为甲醛溶剂、乙醛溶剂或丁醛溶剂中的一种或两种以上的混合物。 9.根据权利要求8所述的在限域空间构筑氮化碳基超薄纳米片复合材料的制备方法,其特征在于:在空气中加热升温速率为1~10 ℃/min。 10.根据权利要求9所述的在限域空间构筑氮化碳基超薄纳米片复合材料的制备方法,其特征在于:所述步骤(3)中,强酸为盐酸、硫酸或氢氟酸中的一种或两种以上的混合物。 2

碳_碳复合材料的性能和应用进展

碳/碳复合材料的性能和应用进展 康 永1,柴秀娟2 (1 陕西金泰氯碱化工有限公司技术中心,陕西榆林,718100; 2 陕西金泰氯碱化工有限公司,陕西榆林,718100) 摘要:碳/碳(C/C)复合材料是以碳为基体,碳纤维增强的复合材料,具有高比强度、高比模量、耐高温、耐腐蚀、耐疲劳、抗蠕变、导电、传热和膨胀系数小等一系列优异性能,既可作为结构材料承载重荷,又可作为功能材料发挥作用。同时,碳/碳(C/C)复合材料是一种能在超高温条件下工作的高温结构材料,所以在航空航天领域具有广阔的应用前景。本文综述了碳/碳(C/C)复合材料的制备相应力学、热学性能,化学性能和其在各领域的应用进展。 关键词:碳/碳复合材料;石墨化度;性能;应用 中图分类号:TQ31 The R esearch Progress on the Carbon/Carbon Co m posites Properties and Applications KANG Yong1,C HA I X i u j u an2 (1The Research C enter of Shanx i Ji n tai Chlor-alkaliChe m ica lCo LTD.,Yuli n718100,Shanx,i China;2Shanx i Ji n ta iCh l o r a l k ali Che m ical Co LTD.Yu lin718100,Shanx,i China) A bstract:C arbon/Carbon co m posites wh ich is reinforced by carbon fiber bases on carbon m atr i x.It has a ser i e s of excellent perfor m ance,such as h i g h specific strength,h i g h specific m odu l u s,high te m perature resistance, corrosion resistance,fati g ue to lerance,creep resistance,e lectrical conductiv ity,heat transfer and s m a ll expan si o n coeffic ien.t So it can not on ly be a structura lm aterial beari n g heavy loads,but a lso play a ro l e as functi o na l m aterials.M ean w h ile,Carbon/C ar bon(C/C)co m posites exh i b it excellent structura l properties at e l e vated te m per atures,and are consi d ered as the m ost pr o m i s ing candida te m ateria ls for h i g h te m perature applicati o ns such as in a viati o n and space fli g ht i n dustries. K ey words:C arbon/Carbon co m posites;graph itization degree;properti e s;app li c ations 碳/碳复合材料是以碳纤维及其织物为增强材料,以碳为基体,通过加工处理和碳化处理制成的全碳质复合材料。碳/碳复合材料在高温热处理之后碳元素含量高于99%,故该材料具有密度低,耐高温,抗腐蚀,热冲击性能好,耐酸、碱、盐,耐摩擦磨损等一系列优异性能。此外,碳/碳复合材料的室温强度可以保持到2500 ,对热应力不敏感,抗烧蚀性能好。故该复合材料具有出色的机械特性,既可作为结构材料承载重荷,又可作为功能材料发挥作用,适于各种高温用途使用[1]。 碳/碳复合材料在树脂基复合材料,金属基复合材料,碳/碳复合材料以及陶瓷基复合材料四大类复合材料中就其研究与应用水平来说,仅次于树脂基复合材料,优先于其他类复合材料,已经全面走向工程应用阶段[2]。C/C复合材料是一种多相非均质混合物。这种材料的力学性能、热物理性能及摩擦磨损性能与材料的碳结构密切相关[3 5]。石墨化度是C/C复合材料最重要的结构参数之一,通过调整、控制C/C复合材料各组元及整体的石墨化状态、程度,可以赋予C/C复合材料不同的综合性能,满足不同的使用要求[6 9]。因此,石墨化研究是C/C复合材料研究的一个非常重要的 38 康 永等 碳/碳复合材料的性能和应用进展 收稿日期:2010 06 12

碳纤维及复合材料的种类、制备和应用

碳纤维及复合材料的种类、制备及应用 杨晨材研0906 (北京化工大学材料学院,100029) 摘要:本文主要陈述总结了复合材料及其碳纤维的种类、制备及应用方面的相关知识。 关键词:碳纤维;复合材料;种类;制备;应用 1.复合材料 复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。具有比强度高,比模量高,剪切强度和剪切模量高,高温性能高,耐热性高等特性广泛应用于各个领域。 1.1种类 复合材料按其性能高低可分为常用复合材料和先进复合材料;根据其用途可分为结构复合材料和功能复合材料;按照复合方式可分为宏观复合材料和微观复合材料。根据不同增强体形式可分为纤维复合材料、颗粒复合材料、片材复合材料和叠层复合材料。还有,可以根据基体材料的不同细分为:聚合物基复合材料、金属基复合材料和无机非金属基复合材料。本文主要以基体材料的细分方式介绍复合材料的制备及其应用。 其生产流程见图1.1。 图1.1 复合材料制品的生产流程图 1.2聚合物基复合材料 聚合物基复合材料是聚合物或俗称树脂作为基体与粒状、片状、纤维状填充组分作为增强体的复合材料。按基体的不同还可以分成热固性树脂基、热塑性树脂基和橡胶基。

1.2.1制备 其主要制备方法有:预浸料、手糊成型工艺、喷射成型、袋压成型、模压成型、纤维缠绕成型、拉挤成型、熔融流动成型、增强反应注射成型和树脂传递模塑。 1.2.2应用 聚合物基复合材料在建筑、化学、交通运输、机械电器、电子工业及医疗、国防、航天航空及火箭等领域都有广泛应用。如手糊成型制得的广播卫星抛物面天线、太阳能电池帆板;纤维缠绕成型可制得雷达罩、火箭发动机壳、压力容器;模压成型制得的整体浴室和汽车保险杠等等。 1.3金属基复合材料 金属基复合材料是以金属、合金和金属间化合物为基体,以无机纤维和金属间化合物等为增强体,通过浸渗、固结工艺制成的复合材料。根据其基体的种类可细分为轻金属基、高熔点金属基和金属间化合物基。 1.3.1制备 金属基复合材料的主要制备工艺方法有:固相法、液相法和原位复合法。固相法主要有粉末冶金、固态热压法、热等静压法;液态法主要有真空压力浸渍法、挤压铸造法;原位复合法主要包括共晶合金定向凝固、直接金属氧化物法、反应生成法。 1.3.2应用 金属基复合材料主要可应用于航天、航空、汽车、医疗、体育用品等领域。如航天飞机中段主机身的B/Al关键桁架、臂状支柱;齿轮;高尔夫球杆击球头及各种支架等等。 1.4无机非金属基复合材料 无机非金属复合材料主要有陶瓷基复合材料、水泥基复合材料和碳基复合材料。 1.4.1陶瓷基复合材料 陶瓷基复合材料是以陶瓷材料为基体,并以陶瓷、碳纤维和难熔金属的纤维、晶须、晶片和颗粒为增强体,通过适当的复合工艺所构成的复合材料。主要可细分为高温陶瓷基复合材料、玻璃基复合材料和玻璃陶瓷基复合材料。 其制备工艺主要有:粉末冶金法(颗粒)、浆体法(液体法)、热压烧结法、液态浸渍法、直接氧化法、溶胶-凝胶法、化学气相浸渍法(CVI)、先驱体转化和反应熔融浸渗(RMI)等。 陶瓷基复合材料可应用于切削工具方面及航空航天领域的研究。如刀具、滑动构件、发动机制件、能源构件等。法国已将长纤维增强炭化硅复合材料应用于制造高速列车的制动件,显示出优异的摩擦磨损特性,取得满意的使用效果。

相关主题